
Declarative Programming with Constraints � Homework practice C3

For each of the following problems, write a Prolog program � using the SICStus CLP(FD) library � that corresponds to the
speci�cation provided as a comment. Try to make your program e�cient.

1. In a list of numbers, an element is a local optimum if it is either greater than both of its neighbors or it is less than both of
its neighbors. (The �rst and last elements of the list are not considered to be local optima.)

% optnum(+L, ?K): the number of local optima in list L is K and the elements of L are all distinct.

% It can be assumed that L is proper (i.e., not open-ended). The elements of L as well as K are

% FD-variables or integers. optnum/2 should not perform labeling nor create any choice points.

| ?- L=[1,_,_,_], domain(L, 1, 4), optnum(L, 2), labeling([], L).

L = [1,3,2,4] ? ;

L = [1,4,2,3] ? ;

no

2. In a list of integers, an element is visible from the left if it is greater than all the preceding elements of the list. (The �rst
element of the list is always visible from the left.)

% visnum(+L, ?K): L is a list of positive integers.

% The number of elements in L that are visible from the left is K.

% It can be assumed that L is proper (i.e., not open-ended). The elements of L as well as K are

% FD-variables or integers. visnum/2 should not perform labeling nor create any choice points.

| ?- L=[_,_,2,_], domain(L, 1, 4), all_distinct(L), visnum(L, 3), labeling([], L).

L = [1,3,2,4] ? ;

no

3. Global constraints are not rei�able. In some cases, it is useful to manually implement the rei�ed version of a global constraint.

% alldifferent_reif(+L, ?B): B is a boolean value (0 or 1).

% The elements of list L are all pairwise different if and only if B=1.

% It can be assumed that L is proper (i.e., not open-ended).

% B and the elements of L are FD-variables or integers.

% Predicate alldifferent_reif/2 should not perform labeling nor create any choice points.

| ?- alldifferent_reif([4,5,6,5,7],B).

B = 0 ? ;

no

| ?- alldifferent_reif([4,50,7],B).

B = 1 ? ;

no

| ?- alldifferent_reif([4,X],0).

X = 4 ? ;

no

| ?- alldifferent_reif([4,X,5],1).

X in(inf..3)\/(6..sup) ? ;

no

| ?- X in 0..3, Y in 6..11, alldifferent_reif([X,Y,5],B).

B = 1, X in 0..3, Y in 6..11 ? ;

no

| ?- X in 0..20, Y in {3,6}, alldifferent_reif([4,Y,X],0), labeling([], [X,Y]).

X = 3, Y = 3 ? ;

X = 4, Y = 3 ? ;

X = 4, Y = 6 ? ;

X = 6, Y = 6 ? ;

no

Hints:

� To understand what is expected from the above predicate, it may help to �rst try implementing variants that work for
some simple special cases. For example:

alldifferent_reif([X,Y], B) :- X #\= Y #<=> B.

Try writing the body of the predicate below. Use rei�cation and propositional constraints.

alldifferent_reif([X,Y,Z], B) :- ... .

Note that working out the special case for three variables serves only for understanding the general case with n variables.
The special case is not envisaged to be used as a helper.

� You may consider using predicate pairings/2 from Homework P3.


