
Semantic and Declarative Technologies. Sample mid-course test 2. Solutions
Time: 50 minutes. Total score: 200 points

1. Determine whether the execution of the following Prolog queries results in an error (no need to name a specific
error type), failure, or success. In case of success, specify the variable substitutions of named (non-void, i.e.
non _) variables. All queries are fed to Prolog independently, i.e. typed on their own after the | ?- prompt. (6*5 = 30 p)

(a) \+ X = 6, X = 2. no

(b) [a|[b,c,d]] = [X,Y|L]. X = a, Y = b, L = [c,d]

(c) A*B = 2*5*(7+2). A = 2*5, B = 7+2

(d) 2+3 is U+V. error

(e) N is 2*4, M = N+1. N = 8, M = 8+1

(f) append([2|R], S, [3,4,5]). no

2. Assume that the following program is loaded into the Prolog system.

p([_|Xs], A, Y) :-
A1 is A+1,
p(Xs, A1, Y).

p([X|Xs], X, X).

Determine the values that X will take as a result of the following (independent) queries. Write down all solutions
separated by semicolons, in the order Prolog enumerates them. If there are no solutions, write no. (4*10+10 = 50 p)

(a) p([], 5, Y). no

(b) p([3,2,1,3], 1, Y). 2

(c) p([0,3,2,1], 0, Y). 2 ; 0

(d) p([1,3,9,5,6,4,8], 2, Y). 8 ; 6 ; 5 ; 3

Consider the following predicate, which builds on the predicate p/3 defined above:

% p(L, Z): Z is an element of L such that...
p(L, Z) :- p(L, 0, Z).

(e) Provide a declarative spec for the predicate p/2, i.e. expand the head comment above to a full sentence.
Furthermore, describe in what order are the solutions enumerated.

% p(L, Z): Z is an element of L such that it occurs as the Zth element of
% L, counted from 0 (the head is the 0th element)
% Solutions are enumerated from right to left.

3. Consider a linear expression of the form a1x1 + · · · anxn, where ai are numbers and xi are variables. Let
us represent such an expression with a Prolog list of the form [A1*X1,...,An*Xn], where Ai are (Prolog)
numbers and Xi are atoms (variable names). For example, the Prolog list [1*x,2*y,3*z] represents the
algebraic formula x + 2y + 3z, while the [] empty list represents the formula 0. We assume that no two
elements of the list contain the same Xi and no Ai is equal to 0.

Write a Prolog predicate lin_sum(+E0, +A, +X, ?E), where E0 is a list representing a linear expression,
A is a number, X is an atom, and E is a list representing the sum of E0 and A*X, satisfying the assumptions
discussed above. The order of the elements of the list E is arbitrary.

% lin_sum(+E0, +A, +X, -E): E is the list format representation of the sum
% of E0 (in list format) with A*X.

(80 p)
Examples:

| ?- lin_sum([], 5, x, K). =⇒ K = [5*x] ? ; no
| ?- lin_sum([1*u,3*y], 3, u , K). =⇒ K = [4*u,3*y] ? ; no
| ?- lin_sum([-1*u,3*y], 1, u , K). =⇒ K = [3*y] ? ; no
| ?- lin_sum([1*u,3*y,7*x,8*q], 3, x , K). =⇒ K = [1*u,3*y,10*x,8*q] ? ; no
| ?- lin_sum([1*u,3*y,8*q], 3, x , K). =⇒ K = [1*u,3*y,8*q,3*x] ? ; no

Hints: To handle the first three test cases, you should write non-recursive clauses. The fourth and fifth test cases
should be covered by a single recursive clause.

1

lin_sum([], A, X, E) :-
(A =:= 0 -> E = []
; E = [A*X]
).

lin_sum([A*X|Rest], B, X, E) :- !,
C is A+B,
(C =:= 0 -> E = Rest
; E = [C*X|Rest]
).

lin_sum([AX|Rest], B, Y, [AX|E]) :-
lin_sum(Rest, B, Y, E).

4. Consider a Prolog term that takes one of the following forms: (a) Atom*Number, (b) Number*Atom, (c)
Atom, or (d) a compound built from cases (a)–(c) through repeated use of the operator +.

Write a Prolog predicate that takes a term in the above operator-based form and returns its equivalent in list-
based form, as described in task 3.

% list_form_of(+OpExpr, -E): The list based form of the operator-based
% expression OpExpr is E.

(40 p)
Examples:

| ?- list_form_of(y*3, K). =⇒ K = [3*y] ? ; no
| ?- list_form_of(6*x, K). =⇒ K = [6*x] ? ; no
| ?- list_form_of(x, K). =⇒ K = [1*x] ? ; no
| ?- list_form_of(-1*x+x, K). =⇒ K = [] ? ; no
| ?- list_form_of(x*5+x, K). =⇒ K = [6*x] ? ; no
| ?- list_form_of(x*5+ -1*x, K). =⇒ K = [4*x] ? ; no
| ?- list_form_of(5*x+(3*x+y*2), K). =⇒ K = [8*x,2*y] ? ; no
| ?- list_form_of((x+2*y)+(x*3+y), K). =⇒ K = [4*x,3*y] ? ; no

Hint: use the following helper predicate

% list_form_of(+OpExpr, +E0, -E): The sum of the operator-based OpExpr and
% list-based E0 is the list-based expression E.

The above cases (a)-(c) can be handled using a non-recursive clause, while case (d) can be covered by a doubly
recursive clause.

list_form_of(OpExpr, E) :-
list_form_of(OpExpr, [], E).

list_form_of(U*V, E0, E) :-
(atom(U), number(V) -> A=U, N=V
; atom(V), number(U) -> A=V, N=U
),
lin_sum(E0, N, A, E).

list_form_of(Atom, E0, E) :-
atom(Atom),
lin_sum(E0, 1, Atom, E).

list_form_of(U+V, E0, E) :-
list_form_of(U, E0, E1),
list_form_of(V, E1, E).

2

