
Semantic and Declarative Technologies. Sample mid-course test 1. Solutions
Time: 50 minutes. Total score: 200 points

1. Determine whether the execution of the following Prolog queries results in an error (no need to name a specific
error type), failure, or success. In case of success, specify the variable substitutions of named (non-void, i.e.
non _) variables. All queries are fed to Prolog independently, i.e. typed on their own after the | ?- prompt. (6*5 = 30 p)

(a) append([], [a|L], [A]). L = [], A = a

(b) [a,b] = [X|Y]. X = a, Y = [b]

(c) U+V = 5+7+2. U = 5+7, V = 2

(d) 2*3 is X*Y. error

(e) A is 2*4, B = A+1. A = 8, B = 8+1

(f) Z = 1+5, \+ Z = 2*3. Z = 1+5

2. Assume that the following program is loaded into the Prolog system.

p([A,B|_], D, R) :- A < B-D, R = B.
p([A|As], D, R):- p(As, D, R).

Determine the values that X will take as a result of the following (independent) queries. Write down all solutions
separated by semicolons, in the order Prolog enumerates them. If there are no solutions, write no. (4*10+10 = 50 p)

(a) p([], 5, X). no

(b) p([1,2], 0, X). 2

(c) p([10,12,13,15], 1, X). 12 ; 15

(d) p([1,10,9,1,0,42], 10, X). 42

Consider the following predicate, which builds on the predicate p/3 defined above:

% p(L, Z): Z is an element of L such that...
p(L, Z) :- p(L, 0, Z).

(e) Provide a declarative spec for the predicate p/2, i.e. expand the head comment above to a full sentence.
Furthermore, describe in what order are the solutions enumerated.

% p(L, Z): Z is an element of L such that it is strictly larger than the
% immediately preceeding element.
% Solutions are enumerated from left to right.

3. Consider a list L consisting of integers. We call a non-empty (continuous) sublist S of L an all positive segment,
or aps for short, if all elements of S are positive, and S is maximal, i.e. it cannot be extended to a longer sublist
containing positive integers only. Write a Prolog procedure which takes a list of integers and returns the first all
positive segment. (60 p)

% first_aps1(+L, ?S): S is the first all positive segment of integer list L.
first_aps1([X|L], S) :-

(X > 0 -> S = [X|S1], pos_prefix1(L, S1)
; first_aps1(L, S)
).

% pos_prefix1(L, S): S is the maximal prefix of L consisting of positive integers
pos_prefix1([], []).
pos_prefix1([X|L], S) :-

(X > 0 -> S = [X|S1], pos_prefix1(L, S1)
; S = []
).

1

% first_aps2(+L, ?S): S is the first all positive segment of integer list L.
first_aps2(L, S) :-

L = [X|_], X > 0, !, pos_prefix2(L, S).
first_aps2([_|L], S) :-

first_aps2(L, S).

% pos_prefix2(L, S): S is the maximal prefix of L consisting of positive integers
pos_prefix2([X|L], S) :-

X > 0, !, S = [X|S1], pos_prefix2(L, S1).
pos_prefix2(_, []).

first_aps3([X|L], S) :-
(X =< 0 -> first_aps3(L, S)
; S = [X|S1],

(L = [Y|_], Y > 0 -> first_aps3(L, S1)
; S1 = []
)

).

first_aps4([X|L], S) :-
(X =< 0 -> first_aps4(L, S)
; S = [X|S1],

(L == [] -> S1 = []
; L = [Y|_], Y =< 0 -> S1 = []
; first_aps4(L, S1)
)

).

first_aps5([X|L], S) :-
X =< 0, !, first_aps5(L, S).

first_aps5([X], S) :-
X > 0, !, S = [X].

first_aps5([X,Y|_], S) :-
X > 0, Y =< 0, !, S = [X].

first_aps5([X|L], S) :-
X > 0, L = [Y|_], Y > 0,
S = [X|S1],
first_aps5(L, S1).

4. Write a Prolog predicate which enumerates all all-positive-segments on backtracking. You may use the predicate
first_aps/3, but you don’t have to. (50 p)

% aps(+L, ?S): S is an all-positive-segment of integer list L
| ?- aps([1,2,0,3,4], S). ----> S = [1,2] ? ; S = [3,4] ? ; no
| ?- aps([-1,1,2,0,3,0,4,-3], S). ----> S = [1,2] ? ; S = [3] ? ; S = [4] ? ; no
| ?- aps([0,-2,-1], S). ----> no
| ?- S = [1|_], aps([1,0,2,-1,1,3], S). ----> S = [1] ? ; S = [1,3] ? ; no

% aps(+L, ?S): S is an all positive segment of integer list L.
aps(L, S) :-

first_aps(L, S0, R),
(S = S0
; aps(R, S)
).

2

