
AIT Semantic and Declarative Technologies Course

Assignment 1: Solving a Sudoku puzzle

Description

This task is related to the well-known Sudoku puzzle.

A Sudoku grid is square matrix consisting of m rows and m columns where m itself is a square number, m = k ∗ k. We refer to
the elements of the matrix as the �elds of the grid. The Sudoku grid subdivides to square sub-grids of k rows and k columns.

For the mathematically minded, the the top left �elds of sub-grids have (row,column) coordinates (i∗k, j ∗k), for i = 0, . . . , k−1
and j = 0, . . . , k − 1; assuming that the top left �eld of the whole grid has (row,column) coordinates (0, 0).

An example grid for k = 2 is shown below, the sub-grid borders are indicated by double lines.

2 3 4 1

4 2

2 1 4

4 2

Given a Sudoku grid, the task is to �nd a solution by �lling in the empty �elds with values between 1 and m in such a way that
all values in each row, column and subgrid are di�erent.

Data representation

The Sudoku grid is given as a list of rows, each row being a list of integers. You can assume (i.e. you don't have to check) that
the Sudoku grid supplied to your program is correct in the following sense: it consists of m rows, each row is a list of m �elds,
and each �eld is an integer between 0 and m, where m = k ∗ k. You can also assume that 1 ≤ k ≤ 10, although probably you
will not make use of this assumption.

The above example is supplied to your program as the following Prolog data structure:

[[2,3, 4,1],

[4,0, 2,0],

[0,2, 1,4],

[0,4, 0,2]]

The integer 0 represents a �eld which is not yet �lled in. Positive integers represent �elds that are �lled in.

De�nitions

A Sudoku grid is said to be inconsistent if it contains a row or a column or a sub-grid, which, in turn, contains two occurrences
of the same positive integer. A Sudoku grid is said to be consistent if it is not inconsistent.

The term area is used to denote any of the rows, columns or sub-grids. Using this terminology, we can state that a Sudoku grid
is consistent if no area contains two occurrences of the same positive integer.

The above example grid is consistent. The following example grid is inconsistent, because the bottom-right sub-grid contains
two occurrences of integer 1.

[[2,3, 0,0],

[1,0, 2,3],

[3,2, 1,4],

[4,0, 0,1]]

A Sudoku grid is said to be a re�nement of another Sudoku grid, if the former can be obtained by �lling in (zero or more)
�elds of value 0 in the latter, i.e. replacing the 0 value by a positive integer.

A Sudoku grid is said to be fully �lled in, if all its �elds contain positive integers.

A Sudoku grid is said to be complete, if it is fully �lled in and consistent.

Solving a sudoku grid means �nding all its complete re�nements.

Note that the a grid may be consistent and yet it may have no solutions. The following is an example of such a grid.

[[2,3, 0,0],

[0,0, 0,0],

[0,0, 1,0],

[0,0, 4,0]]

No positive integer occurs more than once within any area (as each positive integer occurs exactly once in the whole grid), but
any value between 1 and 4 assigned to �eld in row 1, column 3 would make the grid inconsistent.

1



The assignment

The assignment consists of three parts, the last is optional

1. Write a Prolog predicate consistent/1 which takes a Sudoku grid and succeeds if, and only if, the grid is consistent. If
the grid is consistent, the predicate should succeed exactly once.

A Sudoku grid is represented by a Prolog term which is a list whose elements represent the rows of the grid in top-down
order. Each row is represented by a list of integers, the �elds in the given row, in left-to-right order.

The predicate has the following speci�cation (head comment):

% consistent(+SGrid): For all areas of the Sudoku grid SGrid it holds

% that all positive integers in the area are distinct.

2. Using the generate-and-test approach and relying on the predicate consistent/1, implement the following predicate for
solving a Sudoku puzzle:

% sudoku0(+Grid0, ?Grid): Grid is a complete refinement of the Sudoku grid Grid0

3. (Optional) Provide a more e�cient implementation for the sudoku0/2 predicate and name it sudoku/2

In increasing order of ambition and e�ciency you can consider the following approaches:

a) Fused generate-and-test: Re�ne the input grid by �lling in a single �eld, and immediately check the result for
consistency. Continue this process until a (fully) �lled in re�nement is obtained.

b) Fill in �elds that are unique: Try to �nd empty �elds that can only be assigned a single positive value while
keeping the grid consistent.

c) Find integers that can be uniquely placed in an area: Try to �nd integers that can only be placed into a
single �eld of an area while keeping the grid consistent.

d) Keep the braching factor of the search tree low: If you run out of deterministic re�nements (such as listed as
the two preceding items), try to �nd a �eld assigning which leads to the smallest number of consistent re�nements.

Sample runs

| ?- consistent([[1]]).

yes

| ?- consistent([[2,3, 4,1],

[4,0, 2,0],

[0,2, 1,4],

[0,4, 0,2]]

).

yes

| ?- consistent([[2,3, 0,0],

[1,0, 2,3],

[3,2, 1,4],

[4,0, 0,1]]

).

no

| ?- consistent( [[0,0, 0,0], [0,0, 0,0], [0,0, 0,0], [0,0, 0,0]]).

yes

| ?- sudoku0([[2,3, 4,1],[4,0, 2,0],[0,2, 1,4],[0,4, 0,2]], Grid).

Grid = [[2,3,4,1],[4,1,2,3],[3,2,1,4],[1,4,3,2]] ? ;

no

Notes

� The following example shows how obtain the integer square root K of a square number M using the built-in predicate is/2:

K is integer(sqrt(M))

� You may �nd useful some predicates in SICStus Prolog library(lists), e.g. transpose/2 and sublist/5. In solving this
assignment you can freely use predicates from this library.

In SWI Prolog transpose/2 is part of library(clpfd). You can load this library for the purpose of using transpose/2,
but no other predicates should be used from library(clpfd). Also, sublist/5 is not available in SWI, you can use
list_sub/5 from Homework P4 instead.

Ask the instructors if you would like to use other libraries.

Any predicate you wrote as part of an earlier homework may be re-used here. Possible examples: chop/3 from Homework
P4 and pairings/2 from Homework P3.

� Instructions for submitting solutions will be announced soon.

2


