
Abstra
tA new type of dependen
ies in a relational database model is introdu
ed. If b is anattribute, A is a set of attributes then it is said that b (p; q)-depends on A, in notationA (p;q)�! b, in a database r if there are no q + 1 relations in r su
h that they have at mostp di�erent values in A, but q + 1 di�erent values in b. (1; 1)-dependen
y is the 
lassi
alfun
tional dependen
y. Let J (A) denote the set fb:A (p;q)�! bg. The set fun
tion J (A) is
hara
terized if p = 1, 1 < q; p = 2, 3 < q; 2 < p, p2 � p � 1 < q. Impli
ations among(p; q)-dependen
ies are also determined.
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1. Introdu
tionA relational database system of the s
heme R(A1; A2; : : : ; An) 
an be 
onsidered as amatrix, where the 
olumns 
orrespond to the attributes Ai's (for example name, date ofbirth, pla
e of birth et
.), while the rows are the n-tuples of the relation r. That is, a row
ontains the data of a given individual. Let 
 denote the set of attributes (the set of the
olumns of the matrix). Let A � 
 and b 2 
. We say that b (fun
tionally) depends on A(see [1℄,[2℄) if the data in the 
olumns of A determine the data of b, that is there exist notwo rows whi
h agree in A but di�erent in b. We denote this by A �! b.Fun
tional dependen
ies have turned out to be very useful. All existing data basemanaging systems are based on this 
on
ept. Let us 
onsider the following example.Suppose that 
 = fA1; A2; A3; A4g and A1 �! A2 and A3 �! A4 hold. If we store thewhole matrix in the memory of a 
omputer, then it requires 4N1N3 regiters in the worst
ase, where N1 (N3) denotes the number of possible di�erent values of A1 (A3). Indeed,A1 and A3 
an take values independently, but they determine A2 and A4, respe
tively.Thus, the number di�erent rows is at most N1N3. However, using the given fun
tionaldependen
ies, we 
an save a lot of memory. Indeed, it is enough to store the matrix
onsisting of the 
olumns A1 and A3 (2N1N3 registers) together with two little matri
esea
h having two 
olumns. One 
ontains values of A1 and A2 in the �rst and se
ond
olumns, respe
tively. The �rst 
olumn 
ontains all possible values of A1, while the se
ondone 
ontains the values determined by the dependen
y A1 �! A2. The other small matrixis built up from A3 and A4 in the same way. The number of stored values is at most2N1N3 + 2(N2 +N4), whi
h is usually signi�
antly smaller than 4N1N3.In the present paper we introdu
e a more general (weaker) dependen
y, than thefun
tional dependen
y. We do it �rst in a very parti
ular 
ase, then we show the usefulnessof the 
on
ept. Let A � 
 and b 2 
, we say that b (1; 2)-depends on A if the values in Adetermine the values in b in a "two-valued" way. That is, there exist no three rows samein A but having three di�erent values in b. We denote it by A (1;2)�! b. Similarly, A (1;q)�! bif there exist no q + 1 rows ea
h having the same values in 
olumns of A, but 
ontainingq + 1 di�erent values in the 
olumn b.Let us suppose that the database 
onsists of the trips of an international transporttru
k, more pre
isely, the names of the 
ountries the tru
k enters. For the sake of simpli
ity,2



let us suppose, that the tru
k goes through exa
tly four 
ountries in ea
h trip, (
ountingthe start and endpoints, too) and does not enter a 
ountry twi
e during one trip. Supposefurthermore, that there are 30 possible 
ountries and one 
ountry has at most �ve neigh-bours. Let A1; A2; A3; A4 denote the �rst, se
ond, third and fourth 
ountry as attributes.It is easy to see that A1 (1;5)�! A2, fA1; A2g (1;4)�! A3 and fA2; A3g (1;4)�! A4. Now, we 
annotde
rease the size of the stored matrix, as in the 
ase of fun
tional ((1,1)-) dependen
y, butwe 
an de
rease the range of the elements of the matrix. The range of ea
h element ofthe original matrix 
onsists of 30 values, names of 
ountries or some 
odes of them (5 bitsea
h, at least). Let us store a little table (30�5�5 = 750 bits) that 
ontains a numberingof the neighbours of ea
h 
ountry, whi
h assignes to them the numbers 0,1,2,3,4 in someorder. Now we 
an repla
e attribute A2 by these numbers (A�2), be
ause the value of A1gives the starting 
ountry and the value of A�2 determines the se
ond 
ountry with the helpof the little table. The same holds for the attribute A3, but we 
an de
rease the number ofpossible values even further, if we give a table of numbering the possible third 
ountries forea
h A1; A2 pair. In this 
ase, the attribute A�3 
an take only 4 di�erent values. The sameholds for A4, too. That is, while ea
h element of the original matrix 
ould be en
oded by5 bits, now for the 
ost of two little auxiliary tables we 
ould de
rease the length of theelements in the se
ond 
olumn to 3 bits, and that of the elements in the third and fourth
olumns to 2 bits.It is easy to see, that the same idea 
an be applied in ea
h 
ase when we store thepaths of a graph, whose maximal degree is mu
h less than the number of its verti
es orwhen we want to store the sequen
e of states of a pro
ess, where the number of all possiblestates is mu
h larger, than the number of possible su

essing states of a state or in any
ase when there hold many (1; q)-dependen
ies, where q is small.The general 
on
ept we shall study is the (p; q)-dependen
y (1 � p � q integers).De�nition 1.1Let r be a relational database system of the s
heme R(A1; A2; : : :An). Let A � 
 andb 2 
. We say that b (p; q)-depends on A if there are no q + 1 rows (n-tuples) of r su
hthat they 
ontain at most p di�erent values in ea
h 
olumn (attribute) of A, but q + 1di�erent values in b.The aim of this paper is to generalize theorems valid for fun
tional dependen
ies to (p; q)-3



dependen
ies. There arise several very interesting 
ombinatorial problems in this 
ontext.2. Chara
terization of (p; q)-dependen
iesFor a given relation r (or its matrix M) we de�ne a fun
tion from the family of subsets of
 into itself 
 as follows.De�nition 2.1Let M be the matrix of the given relation r. Let us suppose, that 1 � p � q. Then themapping JMpq: 2
 ! 2
 is de�ned byJMpq(A) = �b:A (p;q)�! b� : (2:1)We 
olle
t two important properties of the mapping JMpq in the following proposition.Proposition 2.2Let r, 
, M , p and q as above. Furthermore, let A;B � 
. Then(i) A � JMpq(A)(ii) A � B =) JMpq(A) � JMpq(B): (2:2)Proof.It is 
lear that if b 2 A, then A (p;q)�! b whi
h proves (i). On the other hand, if A � B andA (p;q)�! b, then B (p;q)�! b holds as well.De�nition 2.3Set fun
tions satisfying (2.2) are 
alled in
reasing-monotone fun
tions. We say that su
han in
reasing-monotone fun
tion N is (p; q)-representable if there exists a matrix M su
hthat N = JMpq.There arises the question whether all in
reasing-monotone fun
tions on subsets of anygiven 
 are (p; q)-representable? If not, what are the restri
tions on p and q or N ? Thefollowing theorem gives partial answer.Theorem 2.4Let N be an in
reasing-monotone fun
tion on subsets of 
 satisfying N (;) = ;. Then N(p; q)-representable if one of the following holds.(i) p = 1 and 1 < q(ii) p = 2 and 3 < q(iii) 2 < p and p2 � p� 1 < q (2:3)4



Proof.Let us 
all a sequen
e of subsets ; 6= A1 � A2 � : : : � Ak of 
 a 
hain if the following two
onditions hold: (i) N (Ai) = Ai+1 (1 � i < k)(ii) N (Ak) = Ak: (2:4)For su
h a 
hain L we 
onstru
t the matrix M(z; r; L) shown in Table 2.1.A1 A2 nA1 A3 nA2 : : : Ak nAk�1 
 nAkz z z : : : z zz z z : : : z z + 1z z z : : : z z + 2... ... ... . . . ... ...z z z + r : : : z + (k � 2)r z + krz z + 1 z + r + 1 : : : z + (k � 2)r + 1 z + kr + 1z z + 2 z + r + 2 : : : z + (k � 2)r + 2 z + kr + 2... ... ... . . . ... ...z z + r z + 2r : : : z + (k � 1)r z + (k + 1)rTable 2.1Ea
h 
olumn of the matrix begins with some z's, then from a 
ertain position thenatural numbers 
ome in in
reasing order: z; : : : ; z; z+1; z+2; : : :. The 
olumns of AinAi�1(1 < i � k) are all identi
al and the same holds for the 
olumns of A1 and 
 n Ak,respe
tively. The 
olumns of the latter 
onsist of z; z + 1; z + 2; : : :. On the other hand,
olumns of A1 
onsist of all z's. Columns of A2 nA1 are shifted in 
omparison to 
olumnsof A1 by r, i.e. the number of z's at the beginning is r less than that in 
olumns of A1,but their last element is r + z. In general, 
olumns of Ai nAi�1 are shifted in 
omparisonto those of Ai�1 n Ai�2 by r (1 < i � k). However, 
olumns of 
 n Ak are shifted by 2rin 
omparison to Ak nAk�1. A

ording to the de�nition of a 
hain, Ai nAi�1 (1 � i � k)
annot be empty, but 
 n Ak 
an be. In the latter 
ase the matrix does not 
ontain su
h
olumns. We shall only use the following easily 
he
ked properties of this matrix.(i) If two positions in a 
olumn of Ai n Ai�1 (1 < i � k) 
ontain the same element, thenany 
olumn of Aj n Aj�1 
ontains identi
al element in those two positions for all j < i.(A0 = ; by assumption.)(ii) Choosing a z in a 
olumn of Ai n Ai�1 there 
an stand only z or z + 1 or z + 2 or : : :5



or z + r in the same position of a 
olumn of Ai+1 nAi. However, if we 
hoose a number sdi�erent from z in a 
olumn of Ai n Ai�1, then only s+ r 
an stand in the same positionof a 
olumn of Ai+1 nAi.(iii) For k � j > i+1 � 2 we 
an �nd 2r+1 di�erent numbers (namely z; z+1; : : : ; z+2r)in a 
olumn of Aj n Aj�1 so that only z's stand in the same positions of a 
olumn ofAi nAi�1.(iv) We 
an �nd 2r+1 di�erent numbers (namely z; z+1; : : : ; z+2r) in a 
olumn of 
nAkso that only z's stand in the same positions of a 
olumn of Ai nAi�1 for 1 � i � k.Let L = fL1; L2; : : : ; Lmg be a set of 
hains whi
h satis�es that for every pair A; b(A � 
; b 2 
) satisfying A 6= ;, b 62 N (A) there is a 
hain Lj and a set Ai in that 
hainsatisfying A � Ai and b 62 N (Ai): (2:4)We obtain su
h a set of 
hains for example, if we take all possible nonempty subsets of 
 asA1. For every 
hain Li we 
onstru
t p matri
esM(zi1; r; Li), M(zi2; r; Li); : : : ;M(zip; r; Li).We 
hoose the numbers zij so that a natural number 
an o

ur in at most one of thesematri
es. We write the matri
es one under the other to obtain the matrix M(r). If some
olumn 
ontains less than q+1 di�erent symbols, then we repeatM(z11; r; L1) enough timeswith all di�erent z's to obtain at least q + 1 di�erent symbols in every 
olumn. We 
laimthat for a suitable 
hoi
e of r, JM(r)pq = N holds. This is true if 1) b 62 N (A) impliesthat b 62 JM(r)pq(A) and 2) b 2 N (A) implies that b 2 JM(r)pq(A).1) Let us suppose �rst that b 62 N (A) for some A � 
. If A = ;, then b 62 JM(r)pq(;)follows from the fa
t that there are at least q+1 di�erent symbols in any 
olumn ofM(r).However, if A 6= ;, then there exists a 
hain Lj and a set Ai of that 
hain satisfying (2.4).We have that b 62 N (Ai) = Ai+1, so b 2 Af nAf�1, k � f > i+1 or b 2 
nAk holds. In the�rst 
ase we use (iii) and in the se
ond 
ase we use (iv) to 
hoose altogether p(2r+1) rowsfrom M(zj1; r; Lj);M(zj2; r; Lj); : : : ;M(zjp; r; Lj) so that they 
ontain at most p di�erentsymbols in 
olumns of A � Ai, but they 
ontain all di�erent symbols in the 
olumn b.Thus, if p(2r + 1) � q + 1; (2:5)then b 62 JM(r)pq(A) holds.2) Let us suppose now that b 2 N (A). N (;) = ; implies that A 6= ;. Let us 
onsider6



an arbitrary 
hain Lv from L: A1; A2; : : :Ak. Let i = i(Lv) = k + 1 if A \ (
 n Ak) 6= ;.On the other hand, if A\ (
 nAk) = ;, then let i be the largest index that A\ (Ai nAi�1)is nonempty. A � Ai implies that b 2 N (A) � N (Ai) = Ai+1 for i < k. For i = k wehave that b 2 N (Ai) = Ai. Applying (ii), this implies that if there are at most t di�erentsymbols in a 
olumn of A in the matrixM(zvf ; r; Lv), then in the 
olumn b there 
an standonly t+ r di�erent values.Let us 
hoose q+1 rows that 
ontain at most p di�erent values in 
olumns of A. Theserows 
ould be 
hosen from at most p di�erent matri
es M(zvf ; r; Lv). Suppose that theyare 
hosen in fa
t from u (u � p) di�erent matri
es. Be
ause there are di�erent symbols indi�erent matri
es, we have that in the 
olumns of A there 
an only stand at most p�u+1di�erent symbols in one matrix, whi
h implies that in one matrix at most p � u + 1 + rdi�erent values are in the 
olumn b. Altogether there are at most u(p�u+1+ r) di�erentsymbols in 
olumn b in the u di�erent matri
es of type M(zvf ; r; Lv). If r � p�2 > 0, thenthis number is maximal for u = p. Thus, if r � p� 2 > 0 andp(r + 1) � q; (2:6)then b 2 JM(r)pq(A) follows.It easy to 
he
k that for the pairs p; q satisfying (2.3) one 
an �nd r whi
h simultane-ously satis�es (2.5) and (2.6).It is natural to ask the following.Problem 2.5Is the statement of Theorem 2.4 true for arbitrary (p; q)-dependen
ies (p < q)? Is itpossible to drop the 
ondition N (;) = ;?In the 
ase p = q the situation 
hanges signi�
antly. It is shown in [4℄ that J = JMppmust satisfy an important 
ondition together with (2.1).Proposition 2.6 JMpp(JMpp(A)) = JMpp(A) (2:7)Proof.The in
lusion JMpp(A) � JMpp(JMpp(A)) follows from (2.2). Thus, we only have to provethat b 2 JMpp(JMpp(A)) implies b 2 JMpp(A). Let us 
onsider su
h a set of rows of M7



that ea
h 
olumn of A 
ontains at most p di�erent numbers in these rows. A

ording tothe de�nition of JMpp, the same holds for ea
h 
olumn of JMpp(A), too. This, togetherwith the assumption b 2 JMpp(JMpp(A)) implies that there are at most p di�erent valuesin 
olumn b whi
h proves that b 2 JMpp(A).Set fun
tions satisfying (2.2) and (2.7) are 
alled 
losures. It is well known (seeArmstrong [1℄ or in this form [3℄), that for p = 1 the 
onverse of Proposition 2.6 is true,i.e. for every 
losure L there exists a matrix M su
h that L = JM11 whi
h means thatevery 
losure is (1,1)-representable. We show in the following that this is true for p = 2,as well, but not true for p > 2 in general.First, we re
all some well known 
on
epts and propositions about 
losures, for detailedproofs see for example [3℄. Let L be a 
losure on 
, i.e. L: 2
 ! 2
 satisfying (2.2) and(2.7). A � 
 is 
alled 
losed if L(A) = A. The 
olle
tion of 
losed sets is denoted byZ = Z(L). The interse
tion of two 
losed sets is 
losed. L(A) is the interse
tion of all
losed sets 
ontaining A. Furthermore, let M = M(Z(L)) denote the 
olle
tion of those
losed sets that 
annot be obtained as an interse
tion of two other 
losed sets di�erentfrom them. An arbitrary 
losed set 
an be obtained as interse
tion of some sets from M,
onsequently L(A) is equal to the interse
tion of all members of M 
ontaining A.Theorem 2.7Every 
losure is (2; q)-representable if 2 � q.Proof.Let L be a 
losure on 
 and let M = M(Z(L)) = fG1; G2; : : :Gmg. It is easy to seethat G = L(;) is a subset of every 
losed set, in parti
ular it is a subset of every Gi. We
onstru
t a matrix M .For every Gi there 
orrespond q rows in M , namely the qi� q+1; qi� q+2; : : : ; qith.In the 
olumns of G 0's are standing in every row. We put i to the positions 
orrespondingto 
olumns of Gi nG. In the remaining positions j + qm stands in the jth row. Note thatthere are at least q + 1 di�erent numbers in 
olumns of 
 n G. We 
laim that for thismatrix M L = JM2q.Let A � 
 and suppose that b 62 L(A). Then by the properties of 
losures there existsa Gi su
h that A � L(A) � Gi 63 b: (2:8)8



Then in the q rows 
orresponding to Gi identi
al elements are standing in the 
olumns ofA (either 0 or i), while q di�erent values stand in 
olumn b. Let us take a q + 1st rowsu
h that it 
ontains a q + 1st di�erent value in 
olumn b. Thus, we obtained q + 1 rowsthat 
ontain at most 2 di�erent values in 
olumns of A, but q + 1 di�erent ones in b, sob 62 JM2q(A).On the other hand, let us suppose now that b 2 L(A). Consider q + 1 rows that
ontain at most 2 di�erent values in ea
h 
olumn of A. We have to distinguish two 
ases.Case 1: A � L(;).In this 
ase b 2 L(;) holds, as well, hen
e the 
olumn b 
ontains only 0's, so b 2JM2q(A).Case 2: A n L(;) 6= ;.Be
ause A has a 
olumn not in the 
losure of the empty set, there 
an be at most 2di�erent values in ea
h 
olumn of A i� the given q + 1 rows are 
orresponding to at mosttwo di�erent Gi's. If all the q+1 rows 
orrespond to the same Gi and AnGi 6= ;, then the
olumns of A not in Gi 
ontain q + 1 di�erent values in these q + 1 rows, a 
ontradi
tion.Thus, A � Gi (2:9)
onsequently b 2 L(A) � L(Gi) = Gi: (2:10)This implies that b 
ontains all identi
al elements in these q+1 rows. On the other hand,if the given q + 1 rows 
orrespond to two di�erent Gi's, namely to Gi and Gj , then wemay assume that at least two rows of the q + 1 
orrespond to Gi. If A had a 
olumn notin Gi, then there would stand at least three di�erent symbols in that 
olumn in the q + 1rows, a 
ontradi
tion. Thus (2.9) and (2.10) again hold and b 
ontains at most q di�erentvalues in the given rows. This proves that b 2 JM2q(A).Let us note, that the (1; q)-representability of a 
losure 
an be proved in a similar (buteasier) way. Now, we show a 
losure, whi
h is not (p; p)-representable if p > 2.De�nition 2.8Let Lkn denote the following 2
 ! 2
 fun
tion:Lkn(X) = nX if jXj < k
 otherwise (2:12)9



It is easy to see that Lkn is a 
losure.Theorem 2.9If p > 2 and n > 6 then L2n is not (p; p)-representable.Proof.Let us suppose in 
ontrary that there exists a matrix M of n 
olumns (p; p)-representingL2n. Let us suppose that subje
t to this 
ondition the number of rows of M is minimal.Be
ause L2n(;) = ;, we have that there are at least p+1 di�erent values in ea
h 
olumn ofM . If all symbols in a 
olumn a were di�erent, then b 2 JMpp(fag) would hold for ea
hb 2 
 that 
ontradi
ts to the assumption JMpp = L2n.Now suppose that the rows r and s both 
ontain identi
al elements in the 
olumnsa and b, respe
tively. By de�nition, 
 2 L2n(fa; bg) holds for all 
 2 
. Let us 
hoosep�1 rows additionally to r and s su
h that they 
ontain all di�erent values in 
 and thosevalues are di�erent from the values of r and s. (This is possible, be
ause there are at leastp+ 1 di�erent numbers in 
olumn 
.) In these p+ 1 rows a and b take at most p di�erentvalues. Thus, by JMpp = L2n 
 takes at most p di�erent values, too. This 
an only happenif r and s agree in 
, hen
e r and s are identi
al rows that 
ontradi
ts the minimality ofM . We obtained that two rows may agree in at most one 
olumn.Let us suppose now that rows t and u agree in the �rst 
olumn, while rows r and sagree in the se
ond 
olumn (t 6= u; r 6= s). By the previous paragraph ft; ug 6= fr; sg, sowe only have to 
onsider the following two 
ases: (i) jft; u; r; sgj = 3; (ii) all the four rowsare distin
t.(i) The �rst and se
ond 
olumns 
ontain at most two di�erent values in these threerows. Be
ause JMpp = L2n any other 
olumn 
ontains at most two di�erent values in theserows. If the number of 
olumns is larger than three, then there must exist two 
olumns thatagree in the same pair of rows that 
ontradi
ts the 
on
lusion of the previous paragraph.(ii) Using that p > 2 one 
an see that every 
olumn 
ontains at most three di�erentvalues in rows r; s; t; u. There are six possibilities for a 
olumn to 
ontain identi
al elementsin two of these four rows, so for n > 6 we 
an apply the pigeon hole prin
iple to obtaina pair of di�erent 
olumns that 
ontain identi
al elements in the same pair of rows, a
ontradi
tion. 10



In the following we give a 
ertain 
hara
terization of (p; p)-representable 
losures.First we need a de�nition.De�nition 2.10Let B = fAi;jg be system of subsets of an n-element set X, where 1 � i < j � m. Wesay that B satis�es the triangle-
ondition if for all i < j < k the interse
tion of any pairof Ai;j , Aj;k and Ai;k is 
ontained in the third set.The following lemma 
an be proved by an easy greedy 
onstru
tion.Lemma 2.11Let B = fAi;jg be a system of subsets of an n-element set X, where 1 � i < j � m. Thereexists an m � n matrix M su
h that its ith and jth rows agree exa
tly in the 
olumns
orresponding to Ai;j i� B satis�es the triangle-
ondition.Theorem 2.12The 
losure L is (p; p)-representable if and only if there exists a system of subsets of 
B = fAi;jg (1 � i < j � m) su
h that it satis�es the triangle-
ondition, the following setsare all 
losed by L: [0�r<s�pAjr;js (2:13)(where 1 � j0; j1; : : : ; jp � m are arbitrarily �xed integers) and every L-
losed set 
an beobtained as interse
tion of sets of type (2.13).In order to prove Theorem 2.12 we need the following easily 
he
ked lemma.Lemma 2.13Let M be a matrix of m rows and suppose that the ith and jth rows of M agree in the
olumn set Ai;j . Then A � 
 is 
losed a

ording to JMpp if and only if it is an interse
tionof sets of type (2.13).Proof of Theorem 2.12If L is (p; p)-representable, then the representing matrixM de�nes the set system fAi;j : 1 �i < j � mg by that the ith and jth rows of M agree in the 
olumn set Ai;j. By Lemma2.13 Ai;j's satisfy the triangle-
ondition. A set of type (2.13) is trivially an interse
tion of11



sets of type (2.13) (one element interse
tion), so by Lemma 2.13 it is 
losed. It also followsfrom Lemma 2.13 that every 
losed set is an interse
tion of sets of type (2.13).On the other hand, if there exist sets fAi;jg satisfying the 
ondition of the theorem,then by the triangle-
ondition we have a matrix M su
h that the ith and jth rows ofM agree in the 
olumn set Ai;j. The L-
losed sets 
an be obtained as interse
tions ofsets of type (2.13) by the 
onditions of the theorem. Conversely, non-
losed sets 
annotbe obtained be
ause (2.13) type sets are all L-
losed and interse
tion of L-
losed sets isL-
losed, too. Thus, Lemma 2.13 
ompletes the proof.Eventhough the 
onditions of Theorem 2.12 are not algorithmi
ally e�e
tive, it yieldsni
e theoreti
al results like the following 
orollary.Corollary 2.14Let L be a 
losure su
h that M = M(Z(L)) = fG1; G2; : : : ; Gtg is 
losed under takingunions. Then L is (p; p)-representable for every p.Proof.Let t � p (if t < p then we repeat G1 enough times to obtain at least p sets). We applyTheorem 2.12 with m = 2t, A2i�1;2i = Gi (1 � i � t), while the other Ai;j 's are empty.The next easy proposition shows that a 
losure is either (p; p)-representable only for�nitely many p's, or (p; p)-representable for every large enough p. We omit its quitestraightforward proof.Proposition 2.15Let L be 
losure on the n-element set 
. Furthermore, let N � 2n� 3 and suppose thatL is (N;N)-representable. Then L is (p; p)-representable for all p > N .Summarizing, the question remained basi
ally open:Problem 2.16Find an algorithmi
ally good 
hara
terization of (p; p)-representable 
losures.We have already showed that every 
losure (2; q)-representable if q � 2. Furthermore,we 
an apply Theorem 2.4 for 
losures, too, be
ause they are spe
ial in
reasing-monotonefun
tions. However, we are able to utilize the additional properties of 
losures to provethe following. 12



Proposition 2.17Let L be a 
losure on 
. If 3 � p and �p+12 �2 � q, then L (p; q)-representableProof.Let M(Z(L)) = fG1; G2; : : :Grg and G = L(;). We 
onstru
t a matrix M similarly tothe proof of Theorem 2.7. There 
orrespond q + 1 rows to ea
h Gi in M , namely the(i�1)(q+1)+1st, (i�1)(q+1)+2nd, : : : ,i(q+1)th. If (i�1)(q+1)+1 � j � i(q+1) i.e.row j belongs to Gi, then in this row 0 stands in the 
olumns of G, i stands in the 
olumnsof Gi nG and (q+1)r+ j stands in the other 
olumns. Let A � 
 an arbitrary subset andlet us suppose �rst that b 62 L(A). Then there exists an i su
h that L(A) � Gi 63 b holds.The q + 1 rows 
orresponding to Gi 
ontain all identi
al elements in 
olumns of A (either0 or i), but the values in b are all di�erent. This shows that b 62 JMpq(A).On the other hand, let us suppose that b 2 L(A) and take q + 1 rows that 
ontain atmost p di�erent symbols in 
olumns of A. Suppose that these rows belong to exa
tly udi�erent Gi's (u � p). Then the rows 
orresponding to the same given Gj 
ontain at mostp� u+ 1 di�erent values in 
olumns of A. We 
laim that b 
annot 
ontain more distin
tnumbers in rows belonging to a given Gj , than the maximum for 
olumns of A. Indeed, ifA 6� Gj , then there is a 
olumn of A that 
ontains all di�erent values in the rows belongingto Gj . On the other hand, if A � Gj , then by b 2 L(A) � L(Gj) = Gj , so all identi
alelements are standing in b. Thus, at most u(p� u+ 1) di�erent symbols stand in b in the
hosen q + 1 rows. u(p� u+ 1) � �p+ 12 �2 � q (2:14)implies that b 2 JMpq(A) holds, as well.It is natural to ask the following.Problem 2.18Is every 
losure (p; q)-representable if p < q? Or even more, is every in
reasing-monotonefun
tion (p; q)-representable if p < q?For 
losures the smallest open 
ase is p = 4; q = 5, while for in
reasing-monotone fun
tionsp = 2; q = 3. It is not hard to 
he
k that an argument similar to those above yields thatif p divides q + 1, then every 
losure (p; q)-representable.13



The next problem seems to be somewhat easier, than the previous ones. Let N bean in
reasing-monotone fun
tion on the set 
. A set K is 
alled a key if N (K) = 
. Kis minimal key if it is a key and no proper subset of it is key. Easy to 
he
k that there
annot be in
lusion between two minimal keys, so the system of minimal keys K satis�esthe Sperner 
ondition: K1; K2 2 K; K1 6= K2 =) K1 6� K2: (2:15)In this 
ase K is 
alled a Sperner family. We say that a Sperner family on 
 is (p; q)-representable (p < q) if there exists an in
reasing-monotone fun
tion on 
 that is (p; q)-representable and its system of minimal keys is exa
tly K. The de�nition of (p; p)-representation of a Sperner family is analogous, we just have to look for a 
losure.Problem 2.19Is every nonempty Sperner family (p; q)-representable for any p < q? Whi
h Spernerfamilies are (p; p)-representable for all p?3. Impli
ations among (p; q)-dependen
iesIn this se
tion we investigate the 
onne
tions between (p; q)-dependen
ies for various p'sand q's.De�nition 3.1Let (p; q) �! (p0; q0) denote the property that b 2 JMpq(A) implies b 2 JMp0q0(A) forevery matrix M . Let (p; q) m=) (p0; q0) denote the above impli
ation when we require onlyfor matri
es that have at least m di�erent values in ea
h of their 
olumns.The proof of the following lemma is obvious.Lemma 3.2 (p; q) �! (p; q + 1)(p; q) �! (p� 1; q) (3:1)We 
an say more, if we assume that the matrix M 
ontains at least m di�erent values inea
h of its 
olumns. 14



Lemma 3.3We have that (p; q) q+1=) (p� 1; q � 1) (3:2)but (p; q) 6 q=) (p� 1; q � 1): (3:3)Proof.In order to prove (3.2) let us assume that b 2 JMpq(A) in some matrix M . We want toprove that b 2 JMp�1q�1(A) holds, as well. If it did not hold, then there would exist qrows of the matrix su
h that they 
ontain at most p� 1 di�erent values in ea
h 
olumn ofA, but q di�erent symbols in b. By assumption, there are at least q + 1 distin
t numbersin the 
olumn b, so we may 
hoose a q + 1st row that 
ontains a q + 1st di�erent valuein b. This, together with the previous q rows would form q + 1 rows that 
ontain at mostp di�erent values in 
olumns of A, but all di�erent values in b that 
ontradi
ts to theassumption b 2 JMpq(A).On the other hand, a matrix that 
ontains exa
tly q di�erent values in 
olumn b andat most p� 1 di�erent symbols in 
olumns of A proves (3.3).Lemma 3.4 (p; q) 6 q=) (1; q � 1): (3:4)Proof.The 
ounterexample shown in Table 3.1 gives the proof. The �rst 
olumn represents
olumns of A, while the se
ond one represents 
olumn b.Lemma 3.5If (p < q) then (p; q) 6 m=) (1; q � p): (3:5)Proof.The 
ounterexample shown in Table 3.2 gives the proof. The �rst 
olumn represents
olumns of A, while the se
ond one represents 
olumn b.15



1 11 21 3... ...1 q2 12 2... ...2 q... ...q 1q 2... ...q qTable 3.11 11 2... ...1 q � p+ 12 q � p+ 1... ...m q � p+ 1Table 3.2Lemma 3.6If (p < N) then (p; q) 6 m=) (p+ 1; N): (3:6)Proof.First we give a 
onstru
tion that shows (p; q) 6�! (p + 1; N). The matrix has N + 1rows, whi
h 
ontain numbers 1; 2; 3; : : : ; N + 1 in 
olumn b, respe
tively. The numbers1; 2; : : : ; p + 1 may stand in 
olumns of A. Let the 
olumns of A be 
onstru
ted in su
hway, that for any p + 1 rows there exists a 
olumn that 
ontain p + 1 di�erent numbersin those rows. This 
an be done if A has enough 
olumns. It is easy to see, that in theso 
onstru
ted matrix M b 2 JMpp(A), hen
e b 2 JMpq(A) a

ording to Lemma 3.2.However, b 62 JMp+1N (A) holds.In order to prove (3.6) we only have to modifyM so that ea
h 
olumn would 
ontain at16



leastm di�erent values. Let us write all N+1+i in the N+1+ith row (1 � i � m�N�1).This modi�
ation does not 
hange the above property.Now we 
an say when does a (p; q)-dependen
y imply an other in the sense of De�nition3.1.Theorem 3.7Let m > q. Then (p; q) m=) (p0; q0) (3:7)holds if and only if 1 � p0 � p and q � p � q0 � p0. On the other hand if m � q, then thene

essary and suÆ
ient 
ondition for impli
ation (3.7) is 1 � p0 � p and q � q0.Proof.The statement follows easily from lemmae 3.2-3.6.Note, that in the proof of Lemma 3.6 A must be large. This means that for relativelysmall A's b 2 JMpq(A) implies b 2 JMp+1N (A). Thus, if j
j = n is less than that boundfor example, then the above impli
ation holds for ea
h A. This motivates the followingproblem.Problem 3.8What is the size bound for A that b 2 JMpq(A) implies b 2 JMp+1N (A) for all M (p; qand N is �xed)?We give the solution for two spe
ial 
ases without proof.Proposition 3.9If jAj < dlog(N+1)e, then b 2 JM11(A) implies b 2 JM2N (A) for all matri
esM . However,if jAj � dlog(N + 1)e, then this impli
ation does not hold.Proposition 3.10If jAj < � q + 22(q � p+ 1)� ; (3:8)then b 2 JMpp(A) implies b 2 JMp+1q+1(A) for all matri
es M , but if A is larger than(3.8), then the impli
ation is not true. 17
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