
AbstratA new type of dependenies in a relational database model is introdued. If b is anattribute, A is a set of attributes then it is said that b (p; q)-depends on A, in notationA (p;q)�! b, in a database r if there are no q + 1 relations in r suh that they have at mostp di�erent values in A, but q + 1 di�erent values in b. (1; 1)-dependeny is the lassialfuntional dependeny. Let J (A) denote the set fb:A (p;q)�! bg. The set funtion J (A) isharaterized if p = 1, 1 < q; p = 2, 3 < q; 2 < p, p2 � p � 1 < q. Impliations among(p; q)-dependenies are also determined.
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1. IntrodutionA relational database system of the sheme R(A1; A2; : : : ; An) an be onsidered as amatrix, where the olumns orrespond to the attributes Ai's (for example name, date ofbirth, plae of birth et.), while the rows are the n-tuples of the relation r. That is, a rowontains the data of a given individual. Let 
 denote the set of attributes (the set of theolumns of the matrix). Let A � 
 and b 2 
. We say that b (funtionally) depends on A(see [1℄,[2℄) if the data in the olumns of A determine the data of b, that is there exist notwo rows whih agree in A but di�erent in b. We denote this by A �! b.Funtional dependenies have turned out to be very useful. All existing data basemanaging systems are based on this onept. Let us onsider the following example.Suppose that 
 = fA1; A2; A3; A4g and A1 �! A2 and A3 �! A4 hold. If we store thewhole matrix in the memory of a omputer, then it requires 4N1N3 regiters in the worstase, where N1 (N3) denotes the number of possible di�erent values of A1 (A3). Indeed,A1 and A3 an take values independently, but they determine A2 and A4, respetively.Thus, the number di�erent rows is at most N1N3. However, using the given funtionaldependenies, we an save a lot of memory. Indeed, it is enough to store the matrixonsisting of the olumns A1 and A3 (2N1N3 registers) together with two little matrieseah having two olumns. One ontains values of A1 and A2 in the �rst and seondolumns, respetively. The �rst olumn ontains all possible values of A1, while the seondone ontains the values determined by the dependeny A1 �! A2. The other small matrixis built up from A3 and A4 in the same way. The number of stored values is at most2N1N3 + 2(N2 +N4), whih is usually signi�antly smaller than 4N1N3.In the present paper we introdue a more general (weaker) dependeny, than thefuntional dependeny. We do it �rst in a very partiular ase, then we show the usefulnessof the onept. Let A � 
 and b 2 
, we say that b (1; 2)-depends on A if the values in Adetermine the values in b in a "two-valued" way. That is, there exist no three rows samein A but having three di�erent values in b. We denote it by A (1;2)�! b. Similarly, A (1;q)�! bif there exist no q + 1 rows eah having the same values in olumns of A, but ontainingq + 1 di�erent values in the olumn b.Let us suppose that the database onsists of the trips of an international transporttruk, more preisely, the names of the ountries the truk enters. For the sake of simpliity,2



let us suppose, that the truk goes through exatly four ountries in eah trip, (ountingthe start and endpoints, too) and does not enter a ountry twie during one trip. Supposefurthermore, that there are 30 possible ountries and one ountry has at most �ve neigh-bours. Let A1; A2; A3; A4 denote the �rst, seond, third and fourth ountry as attributes.It is easy to see that A1 (1;5)�! A2, fA1; A2g (1;4)�! A3 and fA2; A3g (1;4)�! A4. Now, we annotderease the size of the stored matrix, as in the ase of funtional ((1,1)-) dependeny, butwe an derease the range of the elements of the matrix. The range of eah element ofthe original matrix onsists of 30 values, names of ountries or some odes of them (5 bitseah, at least). Let us store a little table (30�5�5 = 750 bits) that ontains a numberingof the neighbours of eah ountry, whih assignes to them the numbers 0,1,2,3,4 in someorder. Now we an replae attribute A2 by these numbers (A�2), beause the value of A1gives the starting ountry and the value of A�2 determines the seond ountry with the helpof the little table. The same holds for the attribute A3, but we an derease the number ofpossible values even further, if we give a table of numbering the possible third ountries foreah A1; A2 pair. In this ase, the attribute A�3 an take only 4 di�erent values. The sameholds for A4, too. That is, while eah element of the original matrix ould be enoded by5 bits, now for the ost of two little auxiliary tables we ould derease the length of theelements in the seond olumn to 3 bits, and that of the elements in the third and fourtholumns to 2 bits.It is easy to see, that the same idea an be applied in eah ase when we store thepaths of a graph, whose maximal degree is muh less than the number of its verties orwhen we want to store the sequene of states of a proess, where the number of all possiblestates is muh larger, than the number of possible suessing states of a state or in anyase when there hold many (1; q)-dependenies, where q is small.The general onept we shall study is the (p; q)-dependeny (1 � p � q integers).De�nition 1.1Let r be a relational database system of the sheme R(A1; A2; : : :An). Let A � 
 andb 2 
. We say that b (p; q)-depends on A if there are no q + 1 rows (n-tuples) of r suhthat they ontain at most p di�erent values in eah olumn (attribute) of A, but q + 1di�erent values in b.The aim of this paper is to generalize theorems valid for funtional dependenies to (p; q)-3



dependenies. There arise several very interesting ombinatorial problems in this ontext.2. Charaterization of (p; q)-dependeniesFor a given relation r (or its matrix M) we de�ne a funtion from the family of subsets of
 into itself 
 as follows.De�nition 2.1Let M be the matrix of the given relation r. Let us suppose, that 1 � p � q. Then themapping JMpq: 2
 ! 2
 is de�ned byJMpq(A) = �b:A (p;q)�! b� : (2:1)We ollet two important properties of the mapping JMpq in the following proposition.Proposition 2.2Let r, 
, M , p and q as above. Furthermore, let A;B � 
. Then(i) A � JMpq(A)(ii) A � B =) JMpq(A) � JMpq(B): (2:2)Proof.It is lear that if b 2 A, then A (p;q)�! b whih proves (i). On the other hand, if A � B andA (p;q)�! b, then B (p;q)�! b holds as well.De�nition 2.3Set funtions satisfying (2.2) are alled inreasing-monotone funtions. We say that suhan inreasing-monotone funtion N is (p; q)-representable if there exists a matrix M suhthat N = JMpq.There arises the question whether all inreasing-monotone funtions on subsets of anygiven 
 are (p; q)-representable? If not, what are the restritions on p and q or N ? Thefollowing theorem gives partial answer.Theorem 2.4Let N be an inreasing-monotone funtion on subsets of 
 satisfying N (;) = ;. Then N(p; q)-representable if one of the following holds.(i) p = 1 and 1 < q(ii) p = 2 and 3 < q(iii) 2 < p and p2 � p� 1 < q (2:3)4



Proof.Let us all a sequene of subsets ; 6= A1 � A2 � : : : � Ak of 
 a hain if the following twoonditions hold: (i) N (Ai) = Ai+1 (1 � i < k)(ii) N (Ak) = Ak: (2:4)For suh a hain L we onstrut the matrix M(z; r; L) shown in Table 2.1.A1 A2 nA1 A3 nA2 : : : Ak nAk�1 
 nAkz z z : : : z zz z z : : : z z + 1z z z : : : z z + 2... ... ... . . . ... ...z z z + r : : : z + (k � 2)r z + krz z + 1 z + r + 1 : : : z + (k � 2)r + 1 z + kr + 1z z + 2 z + r + 2 : : : z + (k � 2)r + 2 z + kr + 2... ... ... . . . ... ...z z + r z + 2r : : : z + (k � 1)r z + (k + 1)rTable 2.1Eah olumn of the matrix begins with some z's, then from a ertain position thenatural numbers ome in inreasing order: z; : : : ; z; z+1; z+2; : : :. The olumns of AinAi�1(1 < i � k) are all idential and the same holds for the olumns of A1 and 
 n Ak,respetively. The olumns of the latter onsist of z; z + 1; z + 2; : : :. On the other hand,olumns of A1 onsist of all z's. Columns of A2 nA1 are shifted in omparison to olumnsof A1 by r, i.e. the number of z's at the beginning is r less than that in olumns of A1,but their last element is r + z. In general, olumns of Ai nAi�1 are shifted in omparisonto those of Ai�1 n Ai�2 by r (1 < i � k). However, olumns of 
 n Ak are shifted by 2rin omparison to Ak nAk�1. Aording to the de�nition of a hain, Ai nAi�1 (1 � i � k)annot be empty, but 
 n Ak an be. In the latter ase the matrix does not ontain suholumns. We shall only use the following easily heked properties of this matrix.(i) If two positions in a olumn of Ai n Ai�1 (1 < i � k) ontain the same element, thenany olumn of Aj n Aj�1 ontains idential element in those two positions for all j < i.(A0 = ; by assumption.)(ii) Choosing a z in a olumn of Ai n Ai�1 there an stand only z or z + 1 or z + 2 or : : :5



or z + r in the same position of a olumn of Ai+1 nAi. However, if we hoose a number sdi�erent from z in a olumn of Ai n Ai�1, then only s+ r an stand in the same positionof a olumn of Ai+1 nAi.(iii) For k � j > i+1 � 2 we an �nd 2r+1 di�erent numbers (namely z; z+1; : : : ; z+2r)in a olumn of Aj n Aj�1 so that only z's stand in the same positions of a olumn ofAi nAi�1.(iv) We an �nd 2r+1 di�erent numbers (namely z; z+1; : : : ; z+2r) in a olumn of 
nAkso that only z's stand in the same positions of a olumn of Ai nAi�1 for 1 � i � k.Let L = fL1; L2; : : : ; Lmg be a set of hains whih satis�es that for every pair A; b(A � 
; b 2 
) satisfying A 6= ;, b 62 N (A) there is a hain Lj and a set Ai in that hainsatisfying A � Ai and b 62 N (Ai): (2:4)We obtain suh a set of hains for example, if we take all possible nonempty subsets of 
 asA1. For every hain Li we onstrut p matriesM(zi1; r; Li), M(zi2; r; Li); : : : ;M(zip; r; Li).We hoose the numbers zij so that a natural number an our in at most one of thesematries. We write the matries one under the other to obtain the matrix M(r). If someolumn ontains less than q+1 di�erent symbols, then we repeatM(z11; r; L1) enough timeswith all di�erent z's to obtain at least q + 1 di�erent symbols in every olumn. We laimthat for a suitable hoie of r, JM(r)pq = N holds. This is true if 1) b 62 N (A) impliesthat b 62 JM(r)pq(A) and 2) b 2 N (A) implies that b 2 JM(r)pq(A).1) Let us suppose �rst that b 62 N (A) for some A � 
. If A = ;, then b 62 JM(r)pq(;)follows from the fat that there are at least q+1 di�erent symbols in any olumn ofM(r).However, if A 6= ;, then there exists a hain Lj and a set Ai of that hain satisfying (2.4).We have that b 62 N (Ai) = Ai+1, so b 2 Af nAf�1, k � f > i+1 or b 2 
nAk holds. In the�rst ase we use (iii) and in the seond ase we use (iv) to hoose altogether p(2r+1) rowsfrom M(zj1; r; Lj);M(zj2; r; Lj); : : : ;M(zjp; r; Lj) so that they ontain at most p di�erentsymbols in olumns of A � Ai, but they ontain all di�erent symbols in the olumn b.Thus, if p(2r + 1) � q + 1; (2:5)then b 62 JM(r)pq(A) holds.2) Let us suppose now that b 2 N (A). N (;) = ; implies that A 6= ;. Let us onsider6



an arbitrary hain Lv from L: A1; A2; : : :Ak. Let i = i(Lv) = k + 1 if A \ (
 n Ak) 6= ;.On the other hand, if A\ (
 nAk) = ;, then let i be the largest index that A\ (Ai nAi�1)is nonempty. A � Ai implies that b 2 N (A) � N (Ai) = Ai+1 for i < k. For i = k wehave that b 2 N (Ai) = Ai. Applying (ii), this implies that if there are at most t di�erentsymbols in a olumn of A in the matrixM(zvf ; r; Lv), then in the olumn b there an standonly t+ r di�erent values.Let us hoose q+1 rows that ontain at most p di�erent values in olumns of A. Theserows ould be hosen from at most p di�erent matries M(zvf ; r; Lv). Suppose that theyare hosen in fat from u (u � p) di�erent matries. Beause there are di�erent symbols indi�erent matries, we have that in the olumns of A there an only stand at most p�u+1di�erent symbols in one matrix, whih implies that in one matrix at most p � u + 1 + rdi�erent values are in the olumn b. Altogether there are at most u(p�u+1+ r) di�erentsymbols in olumn b in the u di�erent matries of type M(zvf ; r; Lv). If r � p�2 > 0, thenthis number is maximal for u = p. Thus, if r � p� 2 > 0 andp(r + 1) � q; (2:6)then b 2 JM(r)pq(A) follows.It easy to hek that for the pairs p; q satisfying (2.3) one an �nd r whih simultane-ously satis�es (2.5) and (2.6).It is natural to ask the following.Problem 2.5Is the statement of Theorem 2.4 true for arbitrary (p; q)-dependenies (p < q)? Is itpossible to drop the ondition N (;) = ;?In the ase p = q the situation hanges signi�antly. It is shown in [4℄ that J = JMppmust satisfy an important ondition together with (2.1).Proposition 2.6 JMpp(JMpp(A)) = JMpp(A) (2:7)Proof.The inlusion JMpp(A) � JMpp(JMpp(A)) follows from (2.2). Thus, we only have to provethat b 2 JMpp(JMpp(A)) implies b 2 JMpp(A). Let us onsider suh a set of rows of M7



that eah olumn of A ontains at most p di�erent numbers in these rows. Aording tothe de�nition of JMpp, the same holds for eah olumn of JMpp(A), too. This, togetherwith the assumption b 2 JMpp(JMpp(A)) implies that there are at most p di�erent valuesin olumn b whih proves that b 2 JMpp(A).Set funtions satisfying (2.2) and (2.7) are alled losures. It is well known (seeArmstrong [1℄ or in this form [3℄), that for p = 1 the onverse of Proposition 2.6 is true,i.e. for every losure L there exists a matrix M suh that L = JM11 whih means thatevery losure is (1,1)-representable. We show in the following that this is true for p = 2,as well, but not true for p > 2 in general.First, we reall some well known onepts and propositions about losures, for detailedproofs see for example [3℄. Let L be a losure on 
, i.e. L: 2
 ! 2
 satisfying (2.2) and(2.7). A � 
 is alled losed if L(A) = A. The olletion of losed sets is denoted byZ = Z(L). The intersetion of two losed sets is losed. L(A) is the intersetion of alllosed sets ontaining A. Furthermore, let M = M(Z(L)) denote the olletion of thoselosed sets that annot be obtained as an intersetion of two other losed sets di�erentfrom them. An arbitrary losed set an be obtained as intersetion of some sets from M,onsequently L(A) is equal to the intersetion of all members of M ontaining A.Theorem 2.7Every losure is (2; q)-representable if 2 � q.Proof.Let L be a losure on 
 and let M = M(Z(L)) = fG1; G2; : : :Gmg. It is easy to seethat G = L(;) is a subset of every losed set, in partiular it is a subset of every Gi. Weonstrut a matrix M .For every Gi there orrespond q rows in M , namely the qi� q+1; qi� q+2; : : : ; qith.In the olumns of G 0's are standing in every row. We put i to the positions orrespondingto olumns of Gi nG. In the remaining positions j + qm stands in the jth row. Note thatthere are at least q + 1 di�erent numbers in olumns of 
 n G. We laim that for thismatrix M L = JM2q.Let A � 
 and suppose that b 62 L(A). Then by the properties of losures there existsa Gi suh that A � L(A) � Gi 63 b: (2:8)8



Then in the q rows orresponding to Gi idential elements are standing in the olumns ofA (either 0 or i), while q di�erent values stand in olumn b. Let us take a q + 1st rowsuh that it ontains a q + 1st di�erent value in olumn b. Thus, we obtained q + 1 rowsthat ontain at most 2 di�erent values in olumns of A, but q + 1 di�erent ones in b, sob 62 JM2q(A).On the other hand, let us suppose now that b 2 L(A). Consider q + 1 rows thatontain at most 2 di�erent values in eah olumn of A. We have to distinguish two ases.Case 1: A � L(;).In this ase b 2 L(;) holds, as well, hene the olumn b ontains only 0's, so b 2JM2q(A).Case 2: A n L(;) 6= ;.Beause A has a olumn not in the losure of the empty set, there an be at most 2di�erent values in eah olumn of A i� the given q + 1 rows are orresponding to at mosttwo di�erent Gi's. If all the q+1 rows orrespond to the same Gi and AnGi 6= ;, then theolumns of A not in Gi ontain q + 1 di�erent values in these q + 1 rows, a ontradition.Thus, A � Gi (2:9)onsequently b 2 L(A) � L(Gi) = Gi: (2:10)This implies that b ontains all idential elements in these q+1 rows. On the other hand,if the given q + 1 rows orrespond to two di�erent Gi's, namely to Gi and Gj , then wemay assume that at least two rows of the q + 1 orrespond to Gi. If A had a olumn notin Gi, then there would stand at least three di�erent symbols in that olumn in the q + 1rows, a ontradition. Thus (2.9) and (2.10) again hold and b ontains at most q di�erentvalues in the given rows. This proves that b 2 JM2q(A).Let us note, that the (1; q)-representability of a losure an be proved in a similar (buteasier) way. Now, we show a losure, whih is not (p; p)-representable if p > 2.De�nition 2.8Let Lkn denote the following 2
 ! 2
 funtion:Lkn(X) = nX if jXj < k
 otherwise (2:12)9



It is easy to see that Lkn is a losure.Theorem 2.9If p > 2 and n > 6 then L2n is not (p; p)-representable.Proof.Let us suppose in ontrary that there exists a matrix M of n olumns (p; p)-representingL2n. Let us suppose that subjet to this ondition the number of rows of M is minimal.Beause L2n(;) = ;, we have that there are at least p+1 di�erent values in eah olumn ofM . If all symbols in a olumn a were di�erent, then b 2 JMpp(fag) would hold for eahb 2 
 that ontradits to the assumption JMpp = L2n.Now suppose that the rows r and s both ontain idential elements in the olumnsa and b, respetively. By de�nition,  2 L2n(fa; bg) holds for all  2 
. Let us hoosep�1 rows additionally to r and s suh that they ontain all di�erent values in  and thosevalues are di�erent from the values of r and s. (This is possible, beause there are at leastp+ 1 di�erent numbers in olumn .) In these p+ 1 rows a and b take at most p di�erentvalues. Thus, by JMpp = L2n  takes at most p di�erent values, too. This an only happenif r and s agree in , hene r and s are idential rows that ontradits the minimality ofM . We obtained that two rows may agree in at most one olumn.Let us suppose now that rows t and u agree in the �rst olumn, while rows r and sagree in the seond olumn (t 6= u; r 6= s). By the previous paragraph ft; ug 6= fr; sg, sowe only have to onsider the following two ases: (i) jft; u; r; sgj = 3; (ii) all the four rowsare distint.(i) The �rst and seond olumns ontain at most two di�erent values in these threerows. Beause JMpp = L2n any other olumn ontains at most two di�erent values in theserows. If the number of olumns is larger than three, then there must exist two olumns thatagree in the same pair of rows that ontradits the onlusion of the previous paragraph.(ii) Using that p > 2 one an see that every olumn ontains at most three di�erentvalues in rows r; s; t; u. There are six possibilities for a olumn to ontain idential elementsin two of these four rows, so for n > 6 we an apply the pigeon hole priniple to obtaina pair of di�erent olumns that ontain idential elements in the same pair of rows, aontradition. 10



In the following we give a ertain haraterization of (p; p)-representable losures.First we need a de�nition.De�nition 2.10Let B = fAi;jg be system of subsets of an n-element set X, where 1 � i < j � m. Wesay that B satis�es the triangle-ondition if for all i < j < k the intersetion of any pairof Ai;j , Aj;k and Ai;k is ontained in the third set.The following lemma an be proved by an easy greedy onstrution.Lemma 2.11Let B = fAi;jg be a system of subsets of an n-element set X, where 1 � i < j � m. Thereexists an m � n matrix M suh that its ith and jth rows agree exatly in the olumnsorresponding to Ai;j i� B satis�es the triangle-ondition.Theorem 2.12The losure L is (p; p)-representable if and only if there exists a system of subsets of 
B = fAi;jg (1 � i < j � m) suh that it satis�es the triangle-ondition, the following setsare all losed by L: [0�r<s�pAjr;js (2:13)(where 1 � j0; j1; : : : ; jp � m are arbitrarily �xed integers) and every L-losed set an beobtained as intersetion of sets of type (2.13).In order to prove Theorem 2.12 we need the following easily heked lemma.Lemma 2.13Let M be a matrix of m rows and suppose that the ith and jth rows of M agree in theolumn set Ai;j . Then A � 
 is losed aording to JMpp if and only if it is an intersetionof sets of type (2.13).Proof of Theorem 2.12If L is (p; p)-representable, then the representing matrixM de�nes the set system fAi;j : 1 �i < j � mg by that the ith and jth rows of M agree in the olumn set Ai;j. By Lemma2.13 Ai;j's satisfy the triangle-ondition. A set of type (2.13) is trivially an intersetion of11



sets of type (2.13) (one element intersetion), so by Lemma 2.13 it is losed. It also followsfrom Lemma 2.13 that every losed set is an intersetion of sets of type (2.13).On the other hand, if there exist sets fAi;jg satisfying the ondition of the theorem,then by the triangle-ondition we have a matrix M suh that the ith and jth rows ofM agree in the olumn set Ai;j. The L-losed sets an be obtained as intersetions ofsets of type (2.13) by the onditions of the theorem. Conversely, non-losed sets annotbe obtained beause (2.13) type sets are all L-losed and intersetion of L-losed sets isL-losed, too. Thus, Lemma 2.13 ompletes the proof.Eventhough the onditions of Theorem 2.12 are not algorithmially e�etive, it yieldsnie theoretial results like the following orollary.Corollary 2.14Let L be a losure suh that M = M(Z(L)) = fG1; G2; : : : ; Gtg is losed under takingunions. Then L is (p; p)-representable for every p.Proof.Let t � p (if t < p then we repeat G1 enough times to obtain at least p sets). We applyTheorem 2.12 with m = 2t, A2i�1;2i = Gi (1 � i � t), while the other Ai;j 's are empty.The next easy proposition shows that a losure is either (p; p)-representable only for�nitely many p's, or (p; p)-representable for every large enough p. We omit its quitestraightforward proof.Proposition 2.15Let L be losure on the n-element set 
. Furthermore, let N � 2n� 3 and suppose thatL is (N;N)-representable. Then L is (p; p)-representable for all p > N .Summarizing, the question remained basially open:Problem 2.16Find an algorithmially good haraterization of (p; p)-representable losures.We have already showed that every losure (2; q)-representable if q � 2. Furthermore,we an apply Theorem 2.4 for losures, too, beause they are speial inreasing-monotonefuntions. However, we are able to utilize the additional properties of losures to provethe following. 12



Proposition 2.17Let L be a losure on 
. If 3 � p and �p+12 �2 � q, then L (p; q)-representableProof.Let M(Z(L)) = fG1; G2; : : :Grg and G = L(;). We onstrut a matrix M similarly tothe proof of Theorem 2.7. There orrespond q + 1 rows to eah Gi in M , namely the(i�1)(q+1)+1st, (i�1)(q+1)+2nd, : : : ,i(q+1)th. If (i�1)(q+1)+1 � j � i(q+1) i.e.row j belongs to Gi, then in this row 0 stands in the olumns of G, i stands in the olumnsof Gi nG and (q+1)r+ j stands in the other olumns. Let A � 
 an arbitrary subset andlet us suppose �rst that b 62 L(A). Then there exists an i suh that L(A) � Gi 63 b holds.The q + 1 rows orresponding to Gi ontain all idential elements in olumns of A (either0 or i), but the values in b are all di�erent. This shows that b 62 JMpq(A).On the other hand, let us suppose that b 2 L(A) and take q + 1 rows that ontain atmost p di�erent symbols in olumns of A. Suppose that these rows belong to exatly udi�erent Gi's (u � p). Then the rows orresponding to the same given Gj ontain at mostp� u+ 1 di�erent values in olumns of A. We laim that b annot ontain more distintnumbers in rows belonging to a given Gj , than the maximum for olumns of A. Indeed, ifA 6� Gj , then there is a olumn of A that ontains all di�erent values in the rows belongingto Gj . On the other hand, if A � Gj , then by b 2 L(A) � L(Gj) = Gj , so all identialelements are standing in b. Thus, at most u(p� u+ 1) di�erent symbols stand in b in thehosen q + 1 rows. u(p� u+ 1) � �p+ 12 �2 � q (2:14)implies that b 2 JMpq(A) holds, as well.It is natural to ask the following.Problem 2.18Is every losure (p; q)-representable if p < q? Or even more, is every inreasing-monotonefuntion (p; q)-representable if p < q?For losures the smallest open ase is p = 4; q = 5, while for inreasing-monotone funtionsp = 2; q = 3. It is not hard to hek that an argument similar to those above yields thatif p divides q + 1, then every losure (p; q)-representable.13



The next problem seems to be somewhat easier, than the previous ones. Let N bean inreasing-monotone funtion on the set 
. A set K is alled a key if N (K) = 
. Kis minimal key if it is a key and no proper subset of it is key. Easy to hek that thereannot be inlusion between two minimal keys, so the system of minimal keys K satis�esthe Sperner ondition: K1; K2 2 K; K1 6= K2 =) K1 6� K2: (2:15)In this ase K is alled a Sperner family. We say that a Sperner family on 
 is (p; q)-representable (p < q) if there exists an inreasing-monotone funtion on 
 that is (p; q)-representable and its system of minimal keys is exatly K. The de�nition of (p; p)-representation of a Sperner family is analogous, we just have to look for a losure.Problem 2.19Is every nonempty Sperner family (p; q)-representable for any p < q? Whih Spernerfamilies are (p; p)-representable for all p?3. Impliations among (p; q)-dependeniesIn this setion we investigate the onnetions between (p; q)-dependenies for various p'sand q's.De�nition 3.1Let (p; q) �! (p0; q0) denote the property that b 2 JMpq(A) implies b 2 JMp0q0(A) forevery matrix M . Let (p; q) m=) (p0; q0) denote the above impliation when we require onlyfor matries that have at least m di�erent values in eah of their olumns.The proof of the following lemma is obvious.Lemma 3.2 (p; q) �! (p; q + 1)(p; q) �! (p� 1; q) (3:1)We an say more, if we assume that the matrix M ontains at least m di�erent values ineah of its olumns. 14



Lemma 3.3We have that (p; q) q+1=) (p� 1; q � 1) (3:2)but (p; q) 6 q=) (p� 1; q � 1): (3:3)Proof.In order to prove (3.2) let us assume that b 2 JMpq(A) in some matrix M . We want toprove that b 2 JMp�1q�1(A) holds, as well. If it did not hold, then there would exist qrows of the matrix suh that they ontain at most p� 1 di�erent values in eah olumn ofA, but q di�erent symbols in b. By assumption, there are at least q + 1 distint numbersin the olumn b, so we may hoose a q + 1st row that ontains a q + 1st di�erent valuein b. This, together with the previous q rows would form q + 1 rows that ontain at mostp di�erent values in olumns of A, but all di�erent values in b that ontradits to theassumption b 2 JMpq(A).On the other hand, a matrix that ontains exatly q di�erent values in olumn b andat most p� 1 di�erent symbols in olumns of A proves (3.3).Lemma 3.4 (p; q) 6 q=) (1; q � 1): (3:4)Proof.The ounterexample shown in Table 3.1 gives the proof. The �rst olumn representsolumns of A, while the seond one represents olumn b.Lemma 3.5If (p < q) then (p; q) 6 m=) (1; q � p): (3:5)Proof.The ounterexample shown in Table 3.2 gives the proof. The �rst olumn representsolumns of A, while the seond one represents olumn b.15



1 11 21 3... ...1 q2 12 2... ...2 q... ...q 1q 2... ...q qTable 3.11 11 2... ...1 q � p+ 12 q � p+ 1... ...m q � p+ 1Table 3.2Lemma 3.6If (p < N) then (p; q) 6 m=) (p+ 1; N): (3:6)Proof.First we give a onstrution that shows (p; q) 6�! (p + 1; N). The matrix has N + 1rows, whih ontain numbers 1; 2; 3; : : : ; N + 1 in olumn b, respetively. The numbers1; 2; : : : ; p + 1 may stand in olumns of A. Let the olumns of A be onstruted in suhway, that for any p + 1 rows there exists a olumn that ontain p + 1 di�erent numbersin those rows. This an be done if A has enough olumns. It is easy to see, that in theso onstruted matrix M b 2 JMpp(A), hene b 2 JMpq(A) aording to Lemma 3.2.However, b 62 JMp+1N (A) holds.In order to prove (3.6) we only have to modifyM so that eah olumn would ontain at16



leastm di�erent values. Let us write all N+1+i in the N+1+ith row (1 � i � m�N�1).This modi�ation does not hange the above property.Now we an say when does a (p; q)-dependeny imply an other in the sense of De�nition3.1.Theorem 3.7Let m > q. Then (p; q) m=) (p0; q0) (3:7)holds if and only if 1 � p0 � p and q � p � q0 � p0. On the other hand if m � q, then theneessary and suÆient ondition for impliation (3.7) is 1 � p0 � p and q � q0.Proof.The statement follows easily from lemmae 3.2-3.6.Note, that in the proof of Lemma 3.6 A must be large. This means that for relativelysmall A's b 2 JMpq(A) implies b 2 JMp+1N (A). Thus, if j
j = n is less than that boundfor example, then the above impliation holds for eah A. This motivates the followingproblem.Problem 3.8What is the size bound for A that b 2 JMpq(A) implies b 2 JMp+1N (A) for all M (p; qand N is �xed)?We give the solution for two speial ases without proof.Proposition 3.9If jAj < dlog(N+1)e, then b 2 JM11(A) implies b 2 JM2N (A) for all matriesM . However,if jAj � dlog(N + 1)e, then this impliation does not hold.Proposition 3.10If jAj < � q + 22(q � p+ 1)� ; (3:8)then b 2 JMpp(A) implies b 2 JMp+1q+1(A) for all matries M , but if A is larger than(3.8), then the impliation is not true. 17
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