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Abstract. We prove that for any r-colouring of the squarefree num-
bers the equation a1a2 . . . ak = b1b2 . . . bl has a primitive monochromatic
solution.

1. Introduction

A set H is called product free if a, b ∈ H implies ab /∈ H. Hajdu, Schinzel
and Skaªba have shown that a product free subset of the positive integers
can have upper density arbitrarily close to 1 [4]. Sárközy has suggested to
investigate the Ramsey-type variation of the problem: is it true that for any
r-colouring of N the equation ab = c has a monochromatic solution di�erent
from the trivial solution 1 · 1 = 1. In particular he asked the question for
squarefree numbers:

Problem 1. Is it true that for any r-colouring of the squarefree numbers
greater than 1 the equation ab = c has a monochromatic solution?

There are several other questions without density theorems, where the
Ramsey-type version was answered positively, see for example [1], [5]. It is
a consequence of Schur's theorem [9] that Sárközy's original problem always
has a solution among the powers of 2.

Proposition 1. For every r-colouring of the 2-powers the equation ab = c
has a nontrivial solution.

Proof. Let us colour the 2-powers by r colours. We de�ne a colouring of N
by r colours in the following way. Let the colour of x ∈ N be the colour of 2x.
By Schur's theorem the equation x + y = z has a monochromatic solution
in N. Then the equation ab = c also has a monochromatic solution (for the
original colouring) among the 2-powers, namely a = 2x, b = 2y, c = 2z. �

Pomerance and Schinzel has proved that for Problem 1 the answer is
a�rmative if r = 2 ([7]). In this paper we settle the problem for arbitrary
r, and extend the results for more general equations. We show that the
equation a1a2 . . . ak = b1b2 . . . bl has a nontrivial monochromatic solution
for every r-colouring of the squarefree numbers.
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2. Squarefree numbers

The result of Hajdu, Schinzel and Skaªba implies that there is no density
theorem for the equation ab = c. The following example shows that if k 6= l,
then there is no density theorem for the equation a1a2 . . . ak = b1b2 . . . bl,
either.

Example 2.1. LetAn = {4i+2 : 0 ≤ i, 4i+2 ≤ n}. If a1, a2, . . . , ak, b1, b2, . . . , bl ∈
An, then the exponent of 2 is k in the canonical form of a1a2 . . . ak and l in
b1b2 . . . bl. Thus the equation a1a2 . . . ak = b1b2 . . . bl doesn't have a solution
in An if k 6= l. The size of An is 1

4
· n+O(1).

If k = l, then a1 = · · · = ak = b1 = · · · = bk is a solution. We say that
a1, a2, . . . , ak, b1, b2, . . . , bl is a primitive solution of the equation a1a2 . . . ak =
b1b2 . . . bl if a1, a2, . . . , ak, b1, b2, . . . , bl are pairwise distinct. From now we
look only for primitive solutions of equations.

In case k = l there is a density theorem for primitive solutions if k and
l are even.

Proposition 2. Let k ∈ N be even. For arbitrary ε > 0 there exists N =
N(ε) such that for every n ≥ N and A ⊆ {1, . . . , n} with size |A| ≥ εn the
equation a1a2 . . . ak = b1b2 . . . bk has a primitive solution in A.

Proof. The proof is by induction on k. At �rst let k = 2 and ε > 0 be
arbitrary. The bound N is chosen later. Let A ⊆ {1, . . . , n}, where n ≥ N
and |A| > εn. In [2] it is proved that only o(n2) numbers can be found
in the "multiplication table" of the integers up to n. As A ⊆ {1, . . . , n},
the set A · A = {c1c2 : c1, c2 ∈ A} has at most o(n2) elements. There are(|A|

2

)
= ε2

2
·n2 +o(n2) pairs c1, c2 with c1, c2 ∈ A and c1 6= c2. Now, choose N

such that
(|A|

2

)
is larger than the size of A ·A. Thus there exists an element

in A ·A which can be written as a product of two di�erent elements of A in
at least two di�erent ways: a1a2 = b1b2. This way we obtained a primitive
solution.

Now, assume that 4 ≤ k ∈ 2N and the statement holds for k − 2.
Let ε > 0 be arbitrary. By the induction hypothesis there exists some
N such that for any set B ⊆ {1, . . . , n} with at least ε

3
· n elements, the

equations a1a2 . . . ak−2 = b1b2 . . . bk−2 and ak−1ak = bk−1bk have a primitive
solution in B if n ≥ N . Let A ⊆ {1, . . . , n} having at least εn elements.
If n ≥ 3/ε, then A can be partitioned into two disjoint parts A1 and A2

both of size at least ε
3
· n. If n ≥ N , then a1a2 . . . ak−2 = b1b2 . . . bk−2

has a primitive solution in A1 and ak−1ak = bk−1bk has a primitive solu-
tion in A2. Therefore, a1, a2, . . . , ak, b1, b2, . . . , bk is a primitive solution of
a1, a2, . . . ak = b1, b2, . . . bk in A.

�

The case when k = l is odd is still open.

Problem 2. Is it true that for every odd k > 1 and ε > 0 there exists some
N such that for every N ≤ n and A ⊆ {1, 2, . . . , n} with size at least εn the
equation a1a2 . . . ak = b1b2 . . . bk has a primitive solution in A?
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For the main result of the paper the following form of Ramsey's theorem
will be used ([3], [6]):

Ramsey's Theorem. Let r and t be positive integers. Let us colour the
at most t-element subsets of a set S by r colours. Then for every positive
integer n there exists a positive integer d such that if |S| > d, then S has
a subset H with n elements, such that any two subsets of the same size
not greater than t have the same colour, that is, for every H1, H2 ⊆ H,
|H1| = |H2| ≤ t the colour of H1 and H2 are the same.

By Ramsey's theorem for every n there exists d such that if |S| > d,
then there exists a subset H ⊆ S, |H| = n such that every one-element
subset of H has the same colour, every two-element subset of H has the
same colour, and so on, every subset of H with t elements has the same
colour. The bound for this integer d is called a Ramsey-number and the
best known bound is multiply exponential in r.

The following version of Rado's theorem is also needed ([6],[8]):

Rado's Theorem. Let v ≥ 2. Let ci ∈ Z\{0}, 1 ≤ i ≤ v be constants such
that there exists a nonempty D ⊆ {ci : 1 ≤ i ≤ v} such that

∑
d∈D

d = 0. If

there exist distinct integers (not necessarily positive) yi such that
∑
ciyi = 0,

then for every natural number r there exists some t such that for every r-
colouring of the set {1, 2, . . . , t} the equation

c1x1 + · · ·+ cvxv = 0

has a monochromatic solution b1, . . . , bv in {1, 2, . . . , t}, where the bi-s are
distinct.

Now we prove that for every r-colouring of the squarefree numbers the
equation a1a2 . . . ak = b1b2 . . . bl has a primitive monochromatic solution if
k ≥ 2.

Theorem 3. For every k ≥ 2, l, r ∈ N and every r-colouring of the square-
free numbers greater than 1 the equation

(1) a1a2 . . . ak = b1b2 . . . bl

has a primitive monochromatic solution.

Proof. The squarefree numbers are in a one-to-one correspondence with the
�nite subsets of primes. To each squarefree number we assign the set of
its prime divisors. The product of two squarefree numbers is squarefree if
and only if the two sets are disjoint. Moreover, in this case the product
corresponds to the union of the two subsets.

For a given r-colouring of the squarefree numbers we de�ne a colour-
ing of the �nite subsets of primes. Each subset is coloured by the colour
of the product of its elements. If we �nd nonempty subsets of primes
A1, . . . , Ak, B1, . . . , Bl such that

(i) ∪Ai = ∪Bj,
(ii) A1, . . . , Ak, B1, . . . , Bl are pairwise distinct,
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then ai =
∏

p∈Ai

p for 1 ≤ i ≤ k and bj =
∏

p∈Bj

p for 1 ≤ j ≤ l is a primitive

monochromatic solution of (1). Now we show that the sets Ai, Bj with the
above conditions exist with the additional condition:

(iii) the sizes |A1| = α1, . . . , |Ak| = αk, |B1| = β1, . . . , |Bl| = βl are
distinct.

The equation

(2) α1 + · · ·+ αk = β1 + · · ·+ βl

is equivalent to
α1 + · · ·+ αk − β1 − · · · − βl = 0,

hence Rado's theorem applies with v = k+ l, and ci = 1, yi = i if 1 ≤ i ≤ k

and ci = −1, yi = −i if k < i < v and cv = −1, yv = (v−1)v
2

. Let t be
chosen such that for every r-colouring of {1, 2, . . . , t} the equation (2) has
a monochromatic solution. Now, apply Ramsey's Theorem for this t and
n = tmax(k, l). There is a number d such that for every r-colouring of
the subsets of the �rst d primes there is a subset of primes H such that
|H| = n, and for every j ≤ t the j-element subsets of H have the same
colour. Let us colour the elements of the set {1, . . . , t} by r colours in the
following way: for 1 ≤ i ≤ t let the colour of i be the colour of the i-element
subsets of H. By Rado's theorem there exist a monochromatic solution of
(2). Let m = α1 + · · ·+ αk = β1 + · · ·+ βl, where α1, . . . , αk, β1, . . . , βl are
distinct positive integers not greater than t. Consider an arbitrary partition
A1, . . . , Ak of type α1, . . . , αk and an arbitrary partition B1, . . . , Bl of type
β1, . . . , βl of the �rst m primes in H. These sets satisfy conditions (i)-(iii),
so the statement is proved.

�
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