Solving equations under Simon's congruence

PÉter Pál Pach*
Department of Computer Science and
Information Theory
Budapest University of Technology and
Economics
1521 Budapest, Magyar tudósok körútja 2., Hungary
ppp@cs.bme.hu

Abstract

Simon's congruence, denoted by \sim_{k}, relates the words having the same subwords of length at most k. In this paper a normal form is presented for the equivalence classes of \sim_{4}. Moreover, a canonical solution of the equation $p w q \sim_{2} r$ is also shown $(p, q, r$ are the parameters), which can be viewed as a generalization of giving a normal form for \sim_{2}.

Keywords: combinatorics of words, normal form, piecewise testable languages

1 Introduction

The theory of formal languages goes back to natural languages. Linguists, e.g. Chomsky, gave mathematical definitions of natural concepts such as words, languages and grammars: Given a finite set A, a word on A is simply an element of the free monoid on A, and a language is a set of words. This theory connects languages, automata and semigroups.

One of the bases of formal language theory is Kleene's theorem: It states that the class of recognizable languages (e.g. recognized by finite automata) coincides with the class of rational languages, which are given by rational expressions. Rational expressions are the generalization of polynomials involving three operations: union, product and star operation. As another crucial point, Schützenberger showed that there is an equivalence between finite automata and finite semigroups. He proved that a finite monoid, the so-called syntactic monoid, can be assigned to each recognizable language; this is the smallest monoid recognizing the language.

A large class of languages is the family of piecewise testable languages, which has been deeply studied in formal language theory, see for example, Simon [6] or Stern [7]. Formally, a language L is k-piecewise testable, if $x \in L$ and $x \sim_{k} y$ implies that $y \in L$, where $x \sim_{k} y$ if and only if x and y have the same subwords of length at most k. It is easy to see that \sim_{k} is a congruence, the so-called Simon's congruence, with finite index. Some estimations of this index can be found in [3] and [4]. Furthermore, in [4] the word problem for the syntactic monoids of the varieties of k-piecewise testable languages are analyzed and a normal form of the words is presented for $k=2$ and 3. In this paper our aim is to give a normal form when $k=4$. The new idea is to investigate a more general question, namely, to determine a canonical solution of the equation $p w q \sim_{k} r$. It is going to be seen that if a canonical solution of the equations of the form $p w q \sim_{k} r$ can be defined for some k, then a normal form can be defined for $k+2$.

2 Preliminaries

At first, some basic notions and definitions are going to be introduced. The word w is a subword of u, if w is a sequence of not necessarily consecutive variables taken from u. Given an integer $k>0$, let $u \sim_{k} v$

[^0]if and only if the words u, v have the same set of subwords of length at most k. A language L over an alphabet X is k-piecewise testable if and only if L is a union of classes of the equivalence relation \sim_{k}. Another characterization says that a language L over an alphabet X is k-piecewise testable if and only if it is a finite boolean combination of languages of the form
$$
X^{*} x_{1} X^{*} x_{2} X^{*} \ldots X^{*} x_{l} X^{*}, \text { where } x_{1}, \ldots, x_{l} \in X, 0 \leq l \leq k
$$

A language is piecewise testable, if there exists a natural number k such that the language is k-piecewise testable.

Simon [6] found a basis of identities for k-piecewise testable languages, if $k=1,2$. Moreover, BlanchetSadri [1, 2] gave a basis of identities for $k=3$, and proved that there is no finite basis of identities for $k>3$. If one is interested in the basic definitions and theorems in more detail, they can read about them in Pin [5].

In this paper the alphabet X is going to be an n-element set (for some $n \in \mathbb{N}$), namely $X=$ $\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$. For a word w let us denote the set of its subwords of length at most k by $(w)_{k}$. This way $w_{1} \sim_{k} w_{2}$ if and only if $\left(w_{1}\right)_{k}=\left(w_{2}\right)_{k}$, thus we can refer to the \sim_{k}-equivalence class of a word w by $(w)_{k}$. The set of the 1-element subwords of w is the content of w, let us denote it by $c(w)$. Clearly, $(w)_{k}$ determines $c(w)$.

3 Solving the equation $p w q \sim_{2} r$

In this section our aim is to define a canonical solution of the equation $p w q \sim_{2} r$, or equivalently $(p w q)_{2}=(r)_{2}$, if a solution exists. Here the words p, q, r are parameters, and we would like to solve the equation for w. By the term canonical solution we mean that the solution should only depend on the equivalence classes of the words p, q, r, that is, on $(p)_{2},(q)_{2}$ and $(r)_{2}$. This approach is a generalization of finding a normal form for the words under \sim_{2} (that is, a normal form for the elements of the free syntactic monoid of the 2-piecewise testable languages). Namely, the normal form of the word r can be defined as the canonical solution of the equation $(p w q)_{2}=(r)_{2}$ when we set p and q to be the empty word.

Assume that the words p, q, r are given, and our aim is to find an above mentioned well-defined solution $\bar{w}^{(p, q, r)}=\bar{w}$ of the equation $(p w q)_{2}=(r)_{2}$. At first some observations are made about the set which contains the subwords of w having length at most $2:(w)_{2}$. Let us define \mathcal{A} and \mathcal{B} as follows:

$$
\begin{aligned}
& \mathcal{A}=\left\{u_{1} u_{2}, u_{1}, u_{2} \mid u_{1} u_{2} \in(r)_{2}, u_{1} \notin c(p), u_{2} \notin c(q)\right\} \cup\{\text { empty word }\} \cup \\
& \cup\left\{u_{1} \mid u_{1} \notin c(p) \text { and } \exists u_{2}: u_{1} u_{2} \in(r)_{2}, u_{1} u_{2} \notin(q)_{2}\right\} \cup\left\{u_{2} \mid u_{2} \notin c(q) \text { and } \exists u_{1}: u_{1} u_{2} \in(r)_{2}, u_{1} u_{2} \notin(p)_{2}\right\}, \\
& \mathcal{B}=\left\{u_{1} u_{2} \mid u_{1} u_{2} \notin(r)_{2}\right\} \cup\left\{\text { empty word } \mid(p q)_{2} \backslash(r)_{2} \neq \emptyset\right\} \cup \\
& \cup\left\{u_{1} \mid \exists u_{2} \in c(q): u_{1} u_{2} \notin(r)_{2}\right\} \cup\left\{u_{2} \mid \exists u_{1} \in c(p): u_{1} u_{2} \notin(r)_{2}\right\} .
\end{aligned}
$$

(Here u_{1} and u_{2} denote single letters.)
The following statements can be easily checked:
Proposition 1 For the above defined sets \mathcal{A} and \mathcal{B} we have that:

- $(p w q)_{2} \supseteq(r)_{2}$ if and only if $\mathcal{A} \subseteq(w)_{2}$,
- $(p w q)_{2} \subseteq(r)_{2}$ if and only if $\mathcal{B} \cap(w)_{2}=\emptyset$.

For example, if $p=x_{1}, q=x_{2}, r=x_{2} x_{1} x_{1} x_{3} x_{2}$, then our equation is

$$
\left(x_{1} w x_{2}\right)_{2}=\left(x_{2} x_{1} x_{1} x_{3} x_{2}\right)_{2},
$$

and we have

$$
\mathcal{A}=\left\{x_{1}, x_{2}, x_{3}, x_{2} x_{1}, x_{2} x_{3}\right\}, \mathcal{B}=\left\{x_{3} x_{1}, x_{3} x_{3}\right\}
$$

The word $w=x_{2} x_{1} x_{3}$ is a solution of this equation, since both $\mathcal{A} \subseteq(w)_{2}$ and $\mathcal{B} \cap(w)_{2}$ hold.
Note that the sets \mathcal{A} and \mathcal{B} only depend on the \sim_{2}-equivalence classes of p, q and r, moreover, $\mathcal{A} \cup \mathcal{B}$ may not contain all the words of length at most 2. Accordingly, we obtained as a key observation that a word w satisfies the equation $(p w q)_{2}=(r)_{2}$ if and only if $\mathcal{A} \subseteq(w)_{2}$ and $(w)_{2} \cap \mathcal{B}=\emptyset$.

Clearly, if $\mathcal{A} \cap \mathcal{B} \neq \emptyset$, then the equation has no solution. However, $\mathcal{A} \cap \mathcal{B}$ does not straightforwardly yield that there is a solution, since for arbitrary sets \mathcal{A} and \mathcal{B} containing words of length at most 2 and satisfying $\mathcal{A} \cap \mathcal{B}=\emptyset$, it is possible that there is no word w such that $\mathcal{A} \subseteq(w)_{2}$ and $\mathcal{B} \cap(w)_{2}=\emptyset$ (even if \mathcal{A} is downward closed and \mathcal{B} is upward closed). For instance, if $\mathcal{A}=\left\{x_{1}, x_{2}\right.$, empty word $\}$ and $\mathcal{B}=\left\{x_{1} x_{2}, x_{2} x_{1}\right\}$, then there is no w such that $\mathcal{A} \subseteq(w)_{2}$ and $(w)_{2} \cap \mathcal{B}=\emptyset$.

Let us try to find the word \bar{w} satisfying the conditions $\mathcal{A} \subseteq(\bar{w})_{2}$ and $(\bar{w})_{2} \cap \mathcal{B}=\emptyset$, moreover containing each variable at most twice. Now we define a directed graph $G=(V, E)$. The vertices of the graph correspond to the variables in $c(\bar{w}): y_{i}$ represents the first appearance of the variable x_{i} and z_{i} the last appearance of it. (The alphabet is $\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$.) We choose V in such a way that it satisfies the following conditions:

- If $x_{i} \in \mathcal{A}$ and $x_{i} x_{i} \in \mathcal{B}$, then let $y_{i}=z_{i} \in V$.
- If $x_{i} \in \mathcal{A}$ and $x_{i} x_{i} \notin \mathcal{B}$, then let $y_{i}, z_{i} \in V, y_{i} \neq z_{i}$.
- If $x_{i} \notin \mathcal{A}$, then $y_{i}, z_{i} \notin V$.
- If $i \neq j$, then $y_{i} \neq y_{j}, z_{i} \neq z_{j}, y_{i} \neq z_{j}$.

Therefore, the set of the vertices of the graph is

$$
V=\left\{y_{i} \mid x_{i} \in \mathcal{A}, x_{i} x_{i} \in \mathcal{B}\right\} \cup\left\{y_{i}, z_{i} \mid x_{i} \in \mathcal{A}, x_{i} x_{i} \notin \mathcal{B}\right\} .
$$

A directed edge from a vertex u to another vertex v represents that u must appear before v in \bar{w}. For instance, if $y_{1} \rightarrow z_{2}$ is a directed edge, then in \bar{w} the first appearance of x_{1} must preceeds the last appearance of x_{2}. The edges of G are obtained in the following way:
(i) If $x_{i} x_{j} \in \mathcal{A}$ (where $i \neq j$), then let $y_{i} z_{j} \in E$.
(ii) If $z_{j}, y_{i} \in V$ and $x_{i} x_{j} \in \mathcal{B}$ (where $i \neq j$), then let $z_{j} y_{i} \in E$.
(iii) If $y_{i} \in V$ and $y_{i} \neq z_{i}$, then let $y_{i} z_{i} \in E$.

Hence, the set of the edges of the graph is

$$
E=\left\{y_{i} z_{j} \mid x_{i} x_{j} \in \mathcal{A}\right\} \cup\left\{z_{j} y_{i} \mid z_{j}, y_{i} \in V \text { and } x_{i} x_{j} \in \mathcal{B}\right\} \cup\left\{y_{i} z_{i} \mid x_{i} \in \mathcal{A}, x_{i} x_{i} \notin \mathcal{B}\right\}
$$

The following proposition gives a characterisation of the solvability of the equation $(p w q)_{2}=(r)_{2}$:
Proposition 2 The equation $(p w q)_{2}=(r)_{2}$ is solvable if and only if $\mathcal{A} \cap \mathcal{B}=\emptyset$ and there is no directed cycle in the graph G.

Proof: At first assume that the equation has a solution, let's denote it by \bar{w}. Since $\mathcal{A} \subseteq(\bar{w})_{2}$ and $(\bar{w})_{2} \cap \mathcal{B}=\emptyset$, we have $\mathcal{A} \cap \mathcal{B}=\emptyset$. If $x_{i} x_{i} \in \mathcal{A}$, then x_{i} has to appear in \bar{w} at least twice. If $x_{i} \in \mathcal{A}$ and $x_{i} x_{i} \notin \mathcal{B}$, then x_{i} has to appear in \bar{w}, and without the loss of generality it can be assumed that x_{i} appears at least twice in \bar{w}. Since, if \bar{w} satisfies the equation and contains x_{i} only once, then if we double x_{i} (that is, right after the unique appearance of the letter x_{i} we write x_{i} again) and obtain the word \bar{w}^{*}, then clearly $(\bar{w})_{2} \subseteq\left(\bar{w}^{*}\right)_{2} \subseteq(\bar{w})_{2} \cup\left\{x_{i} x_{i}\right\}$, therefore \bar{w}^{*} is a solution, as well. Hence, it can be assumed that all the letters x_{i} for which $x_{i} \in \mathcal{A}$ and $x_{i} x_{i} \notin \mathcal{B}$ appear in \bar{w} at least twice. If we delete all except the first and last appearances of every variable, $(\bar{w})_{2}$ does not change, so it can be assumed that \bar{w} contains each variable at most twice. Then the word \bar{w} can be viewed as a permutation of the vertices of G : The vertex y_{i} is represented by the first appearance of x_{i}, the vertex z_{i} is represented by
the last (second) appearance of x_{i}, and when $x_{i} \in \mathcal{A}$ and $x_{i} x_{i} \in \mathcal{B}$, the vertex $y_{i}=z_{i}$ is represented by the unique appearance of x_{i}. If $y_{i} z_{j} \in E$, then $x_{i} x_{j} \in \mathcal{A}$, hence in \bar{w} the first appearance of x_{i}, that is, y_{i} has to appear before the last appearance of x_{j}, that is, z_{j}. If $z_{j} y_{i} \in E$, then $x_{i} x_{j} \in \mathcal{B}$, so in \bar{w} the last appearance of x_{j}, that is, z_{j} has to appear before the first appearance of x_{i}, that is, y_{i}. Finally, if $x_{i} \in \mathcal{A}$ and $x_{i} x_{i} \notin \mathcal{B}$, then the first appearance of x_{i}, that is, y_{i} has to appear before the last appearance of x_{i}, that is, z_{i}, naturally. To sum up, for all edges $u v \in E$ the occurence of the letter corresponding to u must preceed the occurence of the letter corresponding to v in \bar{w}. Therefore, G can not contain a directed cycle.

Now assume that $\mathcal{A} \cap \mathcal{B}=\emptyset$ and G does not contain a directed cycle. Then G has a topological ordering, that is, an ordering of the vertices $v_{1}, v_{2}, \ldots, v_{|V|}$ satisfying that for all the edges $v_{i} v_{j}$ we have $i<j$. Let \bar{w} be the word obtained in the following way: In $v_{1} v_{2} \ldots v_{|V|}$ replace each y_{i} and z_{i} by x_{i}. We claim that \bar{w} is a solution of the equation $(p w q)_{2}=(r)_{2}$. Accoring to Proposition 1 we have to show that each element of \mathcal{A} is in $(\bar{w})_{2}$ and none of the elements of \mathcal{B} appears in $(\bar{w})_{2}$. By the definition of the vertex set of G it can be easily seen that the content of \bar{w} is precisely the set of the letters occuring as a 1 -length subword in \mathcal{A}. Then the condition $\mathcal{A} \cap \mathcal{B}=\emptyset$ implies that the 1 -length words in \mathcal{B} are not in $(\bar{w})_{2}$. Now, it remains to check the 2-length words. If $x_{i} x_{i} \in \mathcal{A}$, then x_{i} appears twice in \bar{w}, therefore $x_{i} x_{i} \in(\bar{w})_{2}$. If $x_{i} x_{j} \in \mathcal{A}$ for some $i \neq j$, then $y_{i} z_{j} \in E$, hence the first appearance of x_{i} is before the last appearance of x_{j} in \bar{w}, so $x_{i} x_{j} \in(\bar{w})_{2}$. Therefore, we obtained that $\mathcal{A} \subseteq(\bar{w})_{2}$. Now, if $x_{i} x_{i} \in \mathcal{B}$, then x_{i} appears at most once in \bar{w}, so $x_{i} x_{i} \notin(\bar{w})_{2}$. If $x_{i} x_{j} \in \mathcal{B}$ for some $i \neq j$, then $z_{j} y_{i} \in E$, so in \bar{w} the last appearance of x_{j} is before the first appearance of x_{i}, thus $x_{i} x_{j} \notin(\bar{w})_{2}$. Therefore, $\mathcal{B} \cap(\bar{w})_{2}=\emptyset$, hence \bar{w} is indeed a solution.

To sum up, we have seen that the graph G is well-defined by $(p)_{2},(q)_{2},(r)_{2}$, the sets \mathcal{A} and \mathcal{B} are also well-defined and, of course, we can choose a topological ordering of the vertices of G in a canonical way, if G is acyclic. For instance, the one achieved by running depth first search and taking the vertices in reverse order respect to their finishing times. Accordingly, a canonical solution $\bar{w}=\bar{w}^{(p, q, r)}$ is obtained this way. Note that the length of \bar{w} is at most $2 n$, where n is the size of the alphabet.

The characterization in Proposition 2 can be formulated in the following way as well.
Proposition 3 The condition $\mathcal{A} \cap \mathcal{B}=\emptyset$ implies that G is a directed acyclic graph, so $\mathcal{A} \cap \mathcal{B}=\emptyset$ is a necessary and sufficient condition for the solvability of the equation $(p w q)_{2}=(r)_{2}$.

Proof: In order to prove this let \hat{r} be the \sim_{2}-normal form of r and w^{*} be the word obtained from \hat{r} after deleting the letters occuring as a 1-length word in \mathcal{B}. We claim that $\left(p w^{*} q\right)_{2}=(r)_{2}$. At first, $\mathcal{A} \subseteq(r)_{2}$ and $\mathcal{A} \cap \mathcal{B}=\emptyset$ implies that $\mathcal{A} \subseteq w^{*}$. The 1-length words of \mathcal{B} do not occur in w^{*} (since we deleted them from \hat{r}), moreover the 2-length words of \mathcal{B} neither, since they do not occur in $(\hat{r})_{2}=(r)_{2}$ and $(r)_{2} \supseteq\left(w^{*}\right)_{2}$.

Actually, this construction provides us another possible way to define a canonical solution w^{*} of the equation $(p w q)_{2}=(r)_{2}$. However, this construction uses the normal form for \sim_{2}, while the previously described one does not use the \sim_{2}-normal form.

Finally we summarize the result of this section in the following proposition:
Proposition 4 Let $p, q, r, p^{\prime}, q^{\prime}, r^{\prime}$ be words and suppose that the equation $p w q \sim_{2} r$ has a solution. Then $p \bar{w}^{(p, q, r)} q \sim_{2} r$. If $p \sim_{2} p^{\prime}, q \sim_{2} q^{\prime}, r \sim_{2} r^{\prime}$, then $\bar{w}^{(p, q, r)}=\bar{w}^{\left(p^{\prime}, q^{\prime}, r^{\prime}\right)}$. Hence, $\bar{w}^{(p, q, r)}$ is a canonical form of a solution of the equation $p w q \sim_{2} r$. The length of $\bar{w}^{(p, q, r)}$ is at most $2 n$.

Note that it is possible that $p w q \sim_{2} r$, but $w \not \chi_{2} \bar{w}^{(p, q, r)}$.

4 Normal form for $k=4$

In this section our aim is to present a normal form for the words (\sim_{4}-equivalence classes) when $k=4$. This normal form is going to be given with the help of the canonically defined solution of equations of
the form $p w q \sim_{2} r$ (where the words p, q, r are parameters). More generally, it is going to be shown that if for some k a canonical solution of the equation $p w q \sim_{k-2} r$ is defined for every p, q, r, then a normal form can be constructed for the words in the case of k. As we defined such a solution in the previous section for $\sim_{4-2}=\sim_{2}$, this will provide us a normal form for $k=4$.

Hence, let us assume that a "canonical solution" of the equation $(p w q)_{k-2}=(r)_{k-2}$ (where the words p, q, r are parameters) can be defined (if such w exists). Let us denote this canonical solution by $\bar{w}=\bar{w}^{(p, q, r)}$. The word $\bar{w}^{(p, q, r)}$ is determined by the \sim_{k-2}-equivalence classes of p, q, r, that is, by $(p)_{k-2},(q)_{k-2}$ and $(r)_{k-2}$, and it satisfies the equation $\left(p \bar{w}^{(p, q, r)} q\right)_{k-2}=(r)_{k-2}$. Note that $\left(p w_{1} q\right)_{k-2}=$ $(r)_{k-2}=\left(p w_{2} q\right)_{k-2}$ might hold with different $\left(w_{1}\right)_{k-2}$ and $\left(w_{2}\right)_{k-2}$, but we only use that one well-defined solution can be obtained in a canonical way (as we obtained such a solution for $k-2=2$ in the previous section).

Now we show that with the help of this "canonical solution" (for every equation of the form $(p w q)_{k-2}=$ $(r)_{k-2}$) a normal form can be defined for \sim_{k}. Let w be a word and let w^{\prime} denote the word (obtained from $w)$ in which only the first and last occurences of the variables of w are kept, and the others are deleted. Note that the word $w^{\prime}=y_{1} y_{2} \ldots y_{t}$, where $y_{i} \in c(w)$, has length at most $2 n$. The word w is separated into $t-1$ (possibly empty) parts by the letters of w^{\prime} :

$$
w=y_{1} u_{1} y_{2} u_{2} \ldots u_{t-1} y_{t}
$$

In [4] for $k=3$ we proved that w^{\prime} is "almost determined" by $(w)_{k}$ and defined a "normal form" for w^{\prime}, as well. For general k this normal form for w^{\prime} can be obtained in the same way. In other words, a word $w^{\prime}=$ $y_{1} y_{2} \ldots y_{t}$ can be given in such a way that it only depends on $(w)_{k}$ and there exist words $u_{1}, u_{2}, \ldots, u_{t-1}$ satisfying $(w)_{k}=\left(y_{1} u_{1} y_{2} u_{2} \ldots u_{t-1} y_{t}\right)_{k}$. Now we show that w^{\prime} and $\left(u_{1}\right)_{k-2}, \ldots,\left(u_{t-1}\right)_{k-2}$ determine $(w)_{k}$. Let us suppose that $z=z_{1} z_{2} z_{3}$ is a word of length at most k, where the first letter of z is z_{1}, the last letter of z is z_{3} (and z_{2} is a word of length at most $k-2$). Let y_{a} be the first appearance of the letter z_{1} in w^{\prime} and y_{b} be the last appearance of the letter z_{3} in w^{\prime}. If $b \leq a$, then $z \notin(w)_{k}$. If $a<b$, then $z \in(w)_{k}$ if and only if $z_{2} \in\left(u_{a} y_{a+1} \ldots u_{b-1}\right)_{k-2}$. Therefore, w^{\prime} and $\left(u_{1}\right)_{k-2}, \ldots,\left(u_{t-1}\right)_{k-2}$ determine $(w)_{k}$ and our aim is to define u_{1}, \ldots, u_{t-1} in such a way that for every first appearance y_{a} and last appearance y_{b} the following holds (we know that an appropriate choice exists):

$$
\begin{equation*}
\left(u_{a} y_{a+1} \ldots u_{b-1}\right)_{k-2}=\left\{m: y_{a} m y_{b} \in(w)_{k}\right\}=: M_{y_{a}, y_{b}}(w) \tag{1}
\end{equation*}
$$

At first we determine an order in which the words $\left(u_{i}\right)_{k-2}$ are going to be defined. For $1 \leq i \leq t-1$ let n_{i} be the total number of first appearances in $\left\{y_{i+1}, \ldots, y_{t}\right\}$ and last appearances in $\left\{y_{1}, \ldots, y_{i}\right\}$. We define u_{i} in increasing order according to n_{i}. Suppose that for some i, the words u_{v} for which $n_{v}<n_{i}$, are already defined. We show that now u_{i} can be defined, as well. Let $j \leq i$ be maximal such that y_{j} is a first appearance and $i+1 \leq l$ be minimal such that y_{l} is a last appearance. Since $y_{j+1}, y_{j+2}, \ldots, y_{i}$ are all last appearances and $y_{i+1}, y_{i+2}, \ldots, y_{l-1}$ are all first appearances, $\max \left(n_{j}, n_{j+1}, \ldots, n_{i-1}, n_{i+1}, n_{i+2}, \ldots, n_{l-1}\right)<n_{i}$, so $u_{j}, u_{j+1}, \ldots, u_{i-1}, u_{i+1}, u_{i+2}, \ldots, u_{l-1}$ are already defined. Let $p=u_{j} y_{j+1} u_{j+1} \ldots y_{i}, q=y_{i+1} u_{i+1} \ldots u_{l-1}$ and $(r)_{k-2}=M_{y_{j}, y_{l}}=\left\{m \mid y_{j} m y_{l} \in(w)_{k}\right\}$. The word u_{i} has to satisfy the equation $\left(p u_{i} q\right)_{k-2}=(r)_{k-2}$, so let us choose u_{i} as the canonically defined solution of this equation: $u_{i}:=\bar{u}_{i}=\bar{u}_{i}^{(p, q, r)}$. Now, we show that for any appropriate choice of the words u_{v}, that is, for any choice for which all the equations of the form (1) hold, if we replace u_{i} by the previously defined \bar{u}_{i}, they will still hold. It means that by setting u_{i} to be \bar{u}_{i} we can't make a "mistake".

When we check the equation $M_{y_{a}, y_{b}}=\left(u_{a} y_{a+1} \ldots u_{b-1}\right)_{k-2}$ for some first appearance y_{a} and last appearance y_{b} (satisfying $a<b$), then the choice of u_{i} only plays a role if $a \leq i<b$. This yields $a \leq j$ and $l \leq b$. In the special case when $a=j$ and $l=b$, according to the definition of $\overline{u_{i}}$ we have $\left(u_{j} y_{j+1} \ldots u_{l-1}\right)_{k-2}=M_{y_{j}, y_{l}}$. Here, $M_{y_{j}, y_{l}}$ is determined by $(w)_{k}$, therefore $\left(u_{j} y_{j+1} \ldots u_{l-1}\right)_{k-2}$ is also determined by $(w)_{k}$. Using this observation we obtain that for arbitrary $a \leq j$ and $l \leq b$ the right hand side of

$$
\left(u_{a} y_{a+1} \ldots u_{b-1}\right)_{k-2}=\left(u_{a} y_{a+1} \ldots y_{j}\right)_{k-2}\left(u_{j} y_{j+1} \ldots u_{l-1}\right)_{k-2}\left(y_{l} u_{l} \ldots u_{b-1}\right)_{k-2}
$$

does not depend on the choice of u_{i} (the only restriction for u_{i} is that it has to satisfy $\left(u_{j} y_{j+1} \ldots u_{l-1}\right)_{k-2}=$ $\left.M_{y_{j}, y_{l}}\right)$. Hence, we can set $u_{i}:=\overline{u_{i}}$. Therefore, one by one, the words u_{i} can be defined with the help of
a canonical form of a solution of equations of the form $(p u q)_{k-2}=(r)_{k-2}$, and finally the normal form $\hat{w}=y_{1} \bar{u}_{1} y_{2} \bar{u}_{2} \ldots \bar{u}_{t-1} y_{t}$ is obtained.

We summarize the results of this section in the following proposition:
Proposition 5 Let v and w be two words. Then $w \sim_{4} \hat{w}$, moreover $v \sim_{4} w$ yields that $\hat{v}=\hat{w}$. Hence, \hat{w} is a normal form of w.

Finally, it is going to be shown that the length of this normal form is the least possible up to a constant factor. Let $f_{k}(n)$ be the number of \sim_{k}-equivalence classes over an n-letter alphabet. In [4] we proved that $\log f_{k}(n)=\Theta_{k}\left(n^{\frac{k+1}{2}}\right)$, if k is odd and $\log f_{k}(n)=\Theta_{k}\left(n^{\frac{k}{2}} \log n\right)$, if k is even. From these estimates it follows immediately that there exists a word such that in its \sim_{k}-equivalence class the length of every word is at least $\Omega_{k}\left(\frac{n \frac{k+1}{2}}{\log n}\right)$, if k is odd and at least $\Omega_{k}\left(n^{\frac{k}{2}}\right)$, if k is even. Hence, there must be a word w such that in its \sim_{4}-equivalence class even the shortest word has length at least $\Omega\left(n^{2}\right)$. The normal form defined in this paper has length $O\left(n^{2}\right)$, therefore, up to a constant factor its length is the least possible.

References

[1] F. Blanchet-Sadri: Games equations and dot-depth hierarchy, Comput. Math. Appl. 18 (1989) 809822.
[2] F. Blanchet-Sadri: Equations and monoids varieties of dot-depth one and two, Theoret. Comput. Sci. 123 (1994) 239-258.
[3] P. Karandikar, M. Kufleitner, P. Schnoebelen: On the index of Simon's congruence for piecewise testability, Information Processing Letters 15(4) (2015) 515-519.
[4] K. Kátai-Urbán, P. P. Pach, G. Pluhár, A. Pongrácz, Cs. Szabó: On the word problem for syntactic monoids of piecewise testable languages, Semigroup Forum 84(2) (2012) 323-332.
[5] J. E. Pin: Varieties of Formal Languages, North Oxford Academic, Plenum, 1986.
[6] I. Simon: Piecewise testable events, in Proc. 2nd GI Conf., Lect. Notes in Comput. Sci. 33 (1975) 214-222.
[7] J. Stern: Complexity of some problems from the theory of automata, Inform. and Control 66 (1985) 163-176.

[^0]: *Research is supported by the OTKA research grant K108947.

