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1. Introduction

For two �nite subsets of the positive integers, A and B let A ∗ B =
{ab | a ∈ A, b ∈ B and ab occurs odd many times in A · B}. In other
words, if A = {a1, . . . , ak}, then A ∗ B = a1B∆ · · ·∆akB, where ∆
denotes the symmetric di�erence. For a positive integer m let m =
{1, 2, . . . ,m}.

Conjecture 1. If n, k are positive integers, then |n ∗ k| ≥ n.

For an arbitrary �nite subset A ⊂ N it was proved that |m ∗ A| ≥
π(m) + 1, where π(x) is the prime counting function, and the following
conjecture was formulated ([5]):

Conjecture 2. Let n be a positive integer and K ⊂ N be a �nite set
of integers. Then |n ∗K| ≥ n.

These purely number theoretical problems originate in the theory
of near-ring codes. A near-ring can be described as a ring, where the
addition is not necessarily commutative and only one of the distributive
laws is required. A typical example is the near-ring of polynomials,
where the addition is the usual polynomial addition, and multiplication
is the composition of the polynomials. In this example the addition
is commutative and only the right distributive law holds. Near-rings
play an important role in combinatorics: They are used to construct
block designs that give rise to e�cient error correcting codes. For
more information on these codes see [2], [3] and [4]. A special and very
interesting near-ring code is de�ned in the following way: Let f ∈ Z2[x]
be a polynomial and C(f, k) the code generated (as a subspace) by the
polynomials f = f ◦ x, f ◦ x2, . . . , f ◦ xk. For f = x + x2 + · · · + xn a
typical codeword is ∑

i∈K

f ◦ xi =
∑
j∈K∗n

xj,

where K is a �nite subset of k. As C(f, k) is a linear code, its minimal
distance is equal to the minimal weight of any nonzero codeword. Hence
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the minimum distance of C(f, k) is the minimal value of |n∗K| for some
K ⊆ k.
In this paper we settle Conjecture 1, and prove that for arbitrary

n ∈ N and �nite set K ⊂ N we have |n ∗ K| ≥ c · n

log0.223 n
for some

c > 0. Note that the minimal distance in C(f, k) depends heavily

on f . If, for example, we start with f(x) = x + x2 + x4 + · · · + x2k
,

then f ◦ x + f ◦ x2 = x + x2k+1
, hence the minimal distance of the

corresponding code is 2.
The natural logarithm will be denoted by log through the whole

paper.

2. The general case

Let us denote by g(n) the minimal size of the set n ∗ K, where
K is a �nite subset of the positive integers. In [5] it is proved that
g(n) ≥ π(n) + 1. In this section we improve this lower bound and

prove that g(n) ≥ c · n

log0.223 n
for some c > 0. The proof is based on

the following lemma:

Proposition 1. For every positive integer n

g(n) ≥
∑
p≤n

g (bn/pαpc) ,

where the sum goes over the primes less than n, and αp is the largest
integer such that pαp ≤ n.

Proof. Let p ≤ n be a prime and Kp ⊆ K the subset of K containing
the elements that are divisible by the largest power of p occuring as
divisor of some element of K (possibly p0 = 1). Similarly, let np ⊆ n be
the set of elements of n that are divisible by pαp . Note that np is never
empty. By the maximality of the exponents of p in Kp and np, for any
a ∈ np, b ∈ Kp and c ∈ n, d ∈ K if ab = cd, then c ∈ np and d ∈ Kp

hold. We prove that for p < q ≤ n di�erent primes np ·Kp and nq ·Kq

are disjoint. If for some a ∈ n and b ∈ K we have ab ∈ np ·Kp∩nq ·Kq,
then a ∈ np ∩ nq. Thus a = pqd′, and ā = p2d′ < a is in n. The
exponent of p in ā is larger than the one in a, which is contradiction.
Hence, n ∗K contains the disjoint union of the sets np ·Kp for p ≤ n,
so

(1) |n ∗K| ≥
∑
p≤n

|np ∗Kp|.
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As pαp ≤ n < pαp+1, clearly, np = {pαp , 2pαp , . . . , bn/pαpcpαp}, where
bn/pαpc < p. Dividing by pαp , we obtain that |np∗Kp| = |bn/pαpc∗Kp|,
thus by the de�nition of g we get

|np ∗Kp| = |bn/pαpc ∗Kp| ≥ g(bn/pαpc).
By (1) we have

g(n) ≥
∑
p≤n

g (bn/pαpc) ,

and this is what we wanted to prove. �

Theorem 2. For every λ > λ0 there exists a c = c(λ) > 0 such that
for every n > 1

g(n) ≥ c · n

logλ n
,

where λ0 satis�es

1∫
0

(
2

y

)λ0 1

2− y
dy = 1. Note that λ0 ∼ 0.2223...

Proof. Fix 1 > λ > λ0. We claim that there exists some c > 0 such
that the inequality

(2) g(n) ≥ c · n

logλ n

holds for every n > 1. The proof is by induction on n. First we discuss
the induction step. Assume that (2) holds for n < m. Now, we show
that it holds for n = m, as well. The value of c will be chosen later.
By Proposition 1 and the induction hypothesis:

(3) g(m) ≥
∑

√
m<p≤m

g (bm/pc) ≥
∑

√
m<p<m/2

c · bm/pc
logλ(bm/pc)

≥

≥
∑

√
m<p<m/2

c · bm/pc
logλ(bm/pc)

≥
∑

√
m<p<m/2

c · m/p− 1

logλ(bm/pc)
=

=
∑

√
m<p<m/2

c · m/p

logλ(bm/pc)
−

∑
√
m<p<m/2

c · 1

logλ(bm/pc)
.

In [7] it is proved that π(m) < 1.25506m
logm

for every m > 1, hence

π(m/2) − π(
√
m) ≤ π(m) < 1.5 · m

logm
. For the second term of the

last line of (3) we obtain:
(4)∑
√
m<p<m/2

c· 1

logλ(bm/pc)
≤

∑
√
m<p<m/2

c· 1

(log 2)λ
≤ 1.5· m

logm
· c

log 2
= o

(
m

logλm

)
,
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since λ < 1.
Now we estimate the main term. By Mertens' theorem, there exists

a constant M such that
∑
p≤x

1

p
= log log x+M + o(1). Hence, for every

ε > 0 there exists B = B(ε) such that for B ≤ a ≤ b

(5)

∣∣∣∣∣ ∑
a<p<b

1

p
− log log b+ log log a

∣∣∣∣∣ < ε

holds. For m > 22K we have m
1
2
+K−1

2K < m/2. Applying (5) to the

interval Ih = (m
1
2
+h−1

2K ,m
1
2
+ h

2K ], where h is an integer satisfying 1 ≤
h ≤ K − 1 we obtain that

(6)
∑
p∈Ih

1

p
> log

K + h

K + h− 1
− ε.

If p ∈ Ih, then logλ(m/p) ≤ logλ(m)(K−h+1
2K

)λ. Substituting into the
main term of the last line of (3), omitting the integer parts and rear-
ranging we get that

(7)
∑

√
m<p<m/2

c · m/p

logλ(bm/pc)
≥ cm

∑
√
m<p<m/2

1/p

logλ(m/p)
≥

≥ cm

logλm

K−1∑
h=1

∑
p∈Ih

(
2K

K − h+ 1

)λ
· 1

p
≥

≥ cm

logλm

(
K−1∑
h=1

(
2K

K − h+ 1

)λ
log

K + h

K + h− 1
− ε

K−1∑
h=1

(
2K

K − h+ 1

)λ)
.

Now we show that there exists some K such that

(8) SK =
K−1∑
h=1

(
2K

K − h+ 1

)λ
log

K + h

K + h− 1
> 1.

Let fK(y) =

(
2

y

)λ
K · log

(
1 +

1

K(2− y)

)
and f(y) =

(
2

y

)λ
· 1

2− y
.

The sequence of functions fK converges to f . Then

SK =
fK( 1

K
) + fK( 2

K
) + · · ·+ fK(K

K
)

K
−
fK( 1

K
)

K
.

Let
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TK =
f( 1

K
) + f( 2

K
) + · · ·+ f(K

K
)

K
.

As 1 > λ > λ0, the Riemann-sum Tk converges to
∫ 1

0
f > 1. As

fK( 1
K

)/K converges to 0, it is easy to see that SK − TK converges to
0. Hence we can �x a K such that SK > 1. Now, we can choose some
ε > 0 such that

η =
K−1∑
h=1

(
2K

K − h+ 1

)λ
log

K + h

K + h− 1
− 1− ε

K−1∑
h=1

(
2K

K − h+ 1

)λ
> 0.

According to (4) there exists some R such that if R < m, then∑
√
m<p<m/2

c · 1

logλ(bm/pc)
≤ η · c · m

logλm
.

By (3) and (7) we obtain that g(m) ≥ c · m

logλm
holds. If we choose

c > 0 such that (2) holds for n ≤ max(22K , B2(ε), R), then (3) is
gained.

�

3. The case K = k

In this section we prove Conjecture 1. We distinguish cases according
to how large is k compared to n. The conjecture is true for k ≤ 8. ([5])

3.1. Case 1: 9 ≤ k ≤ 1.34 · log n
We show that in this case the number of elements that occur exactly

once in the product n · k is at least n. We shall need the following two
observations.

Lemma 3. Let n/2 < a ≤ n and b ∈ k such that a is relatively prime
to every number less than k. Then ab occurs once in n · k.
Proof. Let us assume that a1, a2 ∈ n and b1, b2 ∈ k satisfy the condi-
tions of the lemma, and a1b1 = a2b2. Now, a1|a2b2 and a1 and b2 are
relatively prime, hence a1|a2. As a1 > n/2 we have 2a1 > n ≥ a2, thus
a1 = a2, which implies b1 = b2. �

Lemma 4. If k ≥ 14, then
∏
p≤k

(
1− 1

p

)
≥ 0.5

log k
.

Proof. In [7] it is shown that for k > 1

e−γ

log k

(
1− 1

log2 k

)
≤
∏
p≤k

(
1− 1

p

)
,
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where γ is the Euler constant. For k > 21 by using the monotonicity
of the logarithm function and e−γ > 0.56 we get that

e−γ

log k

(
1− 1

log2 k

)
≥ 0.56

log k

(
1− 1

log2 22

)
>

0.5

log k
.

For 14 ≤ k ≤ 21 it is enough to check the statement when k = 14, 17

and 19. For these numbers the values of (log k) ·
∏
p≤k

(
1− 1

p

)
are 0.506,

0.511 and 0.503, respectively, hence the statement holds. �

Proposition 5. Let 9 ≤ k ≤ 1.34 · log n. Then |n ∗ k| ≥ n.

Proof. We show that there are at least n products satisfying the condi-
tions of Lemma 3. For this we need to estimate the number of integers
between n/2 and n that are not divisible by a prime less than k. This
number will be denoted by D. By the inclusion-exclusion principle

(9) D = n− bn/2c+

+
r∑

h=1

(−1)h
∑

1≤i1<...<ih≤r

(⌊
n

pi1 . . . pih

⌋
−
⌊

n/2

pi1 . . . pih

⌋)
,

where π(k) = r and p1, . . . , pr are the primes up to k. Applying x−1 <
bxc ≤ x to all 2r+1 terms of the right side we get that

(10) D ≥ n− n/2+

+
r∑

h=1

(−1)h
∑

1≤i1<...<ih≤r

(
n

pi1 . . . pih
− n/2

pi1 . . . pih

)
− 2r =

=
n

2

∏
p≤k

(
1− 1

p

)
− 2r.

If k ≥ 14, Lemma 4 applies, and

D ≥ n

2

∏
p≤k

(
1− 1

p

)
− 2r ≥ 0.25n

log k
− 2r.

As k ≤ 1.34 log n, for k ≥ 14 we have the estimation

2r = 2π(k) ≤ 2k/2 ≤ 1

100 log k
· e

k
1.34 ≤ n

100 log k
.
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Hence, D ≥ 0.24n

log k
. Using Lemma 3 we obtain |n ∗ k| ≥ Dk. The

function x/ log x is monotone increasing on [1,∞), thus

|n ∗ k| ≥ Dk ≥ 0.24k

log k
n ≥ 0.24 · 14

log 14
n > n.

For 9 ≤ k ≤ 13 we have

|n ∗ k| ≥ Dk ≥

(
n

2

∏
p≤k

(
1− 1

p

)
− 2π(k)

)
k.

For 10 ≤ k ≤ 13 it is obtained by calculation that the right hand side is
greater than n if n ≥ ek/1.34. For k = 9 the inequality holds if n > 5040.
By brute force the statement can be checked for k = 9 and n ≤ 5040.
Thus we obtained |n ∗ k| > n.

�

3.2. Case 2: 1.34 · log n ≤ k ≤ n− 0.22 · n
log n

and n ≥ 1410.

Let k1 = max(k, n/7) and k1 < p ≤ n a prime. As k < p, the set of
elements of n∗k, which are divisible by p is {p, 2p, . . . , bn/pcp}∗k. This
set has the same cardinality as the set bn/pc∗k. Now, bn/pc ≤ 6, hence

|bn/pc∗k| ≥ k. It is easy to see that for p > q > n/7 an element of n∗k
cannot be divisible by both p and q. Hence, |n ∗ k| ≥ (π(n)− π(k1))k.
At �rst, suppose that k ≤ n/7. By a theorem of Dusart [1] for x ≥ 17

x

log x
≤ π(x) ≤ x

log x

(
1 +

1.2762

log x

)
holds. Hence, π(n) − π(n/7) ≥ 0.749 · n

log n
for n ≥ 1410. As 1.34 ·

log n ≤ k, we have

|n ∗ k| ≥ 1.34 · 0.749 · n > n.

Secondly, let us consider the case when n/7 < k ≤ n/2. As π(n) −
π(n/2) ≥ 7,

|n ∗ k| ≥ (π(n)− π(k1))k > 7 · n/7 = n.

Finally, let n/2 < k < n − 0.22 · n
log n

. Then by the estimates in [1] and

[6] there are at least two primes between k and n if n > 90000. It can
be checked that this also holds for n > 1410. Thus

|n ∗ k| ≥ (π(n)− π(k))k ≥ 2(n/2) = n.
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We continue with the case when k is "large", that is, n− 0.4·n
logn+1.02

≤ k.

By calculation we have n− 0.4·n
logn+1.02

≤ n− 0.22·n
logn

for n ≥ 4.

3.3. Case 3. n− 0.4 · n
log n+ 1.02

≤ k ≤ n and n > 5000.

If k = n, then k · n = {1, . . . , n} · {1, . . . , n}. If a 6= b, then pairing
ab with ba only the products of the form a · a are left, hence n ∗ k =
{12, 22, . . . , n2}. Thus

|n ∗ k| = n.

Assume now that k < n. Then

(11) |n ∗ k| = |(k ∗ k)∆((n \ k) ∗ k)| =
= |k ∗ k|+ |(n \ k) ∗ k| − 2|(k ∗ k) ∩ ((n \ k) ∗ k)|.

For the �rst term on the right side of (11) we have

(12) |k ∗ k| = |{12, 22, . . . , k2}| = k.

Lemma 6. For the second term of (11) we have

(13) |(n \ k) ∗ k| ≥ 2k − n.
Proof. We use the following observation: If

i ≤ k

n− k
and k + 1 ≤ j ≤ n,

then ij appears exactly once in (n \ k) · k, so ij ∈ (n \ k) ∗ k. Let us
assume that ij = i′j′ such that 1 ≤ i′ ≤ k and k+ 1 ≤ j′ ≤ n. If i = i′,

then j = j′. If i′ < i, then 1 ≤ i′ ≤ k

n− k
and k + 1 ≤ j′ ≤ n. Now,

changing the roles of (i, j) and (i′, j′) we may assume that i < i′. As

ij = i′j′, we have
i

i′
=
j′

j
and

i

i′
≤ i

i+ 1
≤

k
n−k
k

n−k + 1
=
k

n
<
k + 1

n
≤ j′

j
,

which is a contradiction. For (n \ k) ∗ k we obtain that

(14) |(n \ k) ∗ k| ≥
⌊

k

n− k

⌋
(n− k) ≥

≥
(

k

n− k
− 1

)
(n− k) = k − (n− k) = 2k − n.

�
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Now, we focus on the third term of (11).

Lemma 7. For the third second term of (11)

(15) |(k ∗ k) ∩ ((n \ k) ∗ k)| ≤ 0.431 · k.

holds.

Proof. It is enough to show that among the numbers 12, 22, ..., k2

at most 0.431k many has a divisor in the interval [k + 1, n]. Let
k + 1 ≤ m ≤ n and m = amb

2
m, where b

2
m is the largest square di-

visor of m. Since am is squarefree, m|i2 if and only if ambm|i. Let S
denote the following upper bound of the number of elements of the set
{12, 22, . . . , k2} which have a divisor in [k + 1, n]:

S =
n∑

m=k+1

⌊
k

ambm

⌋
≤

n∑
m=k+1

k

ambm
= k

n∑
m=k+1

bm
m
.

Recall that m = amb
2
m, where am is squarefree. Now, summing by

j = bm ≤
√
m:

S = k

b
√
nc∑

j=1

∑
j2|m,

k+1≤m≤n,
|µ(m/j2)|=1

j

m
≤ k

b
√
nc∑

j=1

j
∑
j2|m,

k+1≤m≤n

1

m
.

Rewrite S = k(S1 + S2), where

S1 :=

b
√
n/2c∑
j=1

j
∑
j2|m,

k+1≤m≤n

1

m
and S2 :=

b
√
nc∑

j=b
√
n/2c+1

j
∑
j2|m,

k+1≤m≤n

1

m
.

First, we give an upper bound for S1.

Lemma 8.

(16) S1 ≤
(

log n

2
+ 0.31

)
(log n− log k) +

n+ 2
√
n

8k
.

Proof. Let rj =

⌈
k + 1

j2

⌉
and sj =

[
n

j2

]
. Then

(17) S1 =

b
√
n/2c∑
j=1

j

sj∑
l=rj

1

lj2
=

b
√
n/2c∑
j=1

1

j

sj∑
l=rj

1

l
.
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The function 1
x
is a nonnegative decreasing function on (0,∞), hence

we can estimate the inside sum by
sj∑
l=rj

1

l
≤
∫ sj

rj

1/x+
1

rj
= log sj − log rj +

1

rj
.

As
k

j2
≤ rj and sj ≤

n

j2
we have

log sj − log rj = log
sj
rj
≤ log

n/j2

k/j2
= log n− log k.

Substituting into (17) we obtain

(18) S1 ≤
b
√
n/2c∑
j=1

1

j

(
log sj − log rj +

1

rj

)
≤

≤
b
√
n/2c∑
j=1

1

j

(
log n− log k +

j2

k

)
.

Since

(19)

b
√
n/2c∑
j=1

1

j
≤ logb

√
n/2c+ 1 ≤ log n

2
− log 2 + 1 ≤ log n

2
+ 0.31

and

(20)

b
√
n/2c∑
j=1

j =
b
√
n/2c · (b

√
n/2c+ 1)

2
≤ n+ 2

√
n

8
,

from the inequalities (18), (19), (20) we get (16). �

Now we give an upper bound for S2.

Lemma 9.

(21)

S2 ≤
(

1 +
1√
2

+
1√
3

)
· n− k

2
√
k
·
√
n

k
+

3
√
n

k
< 1.15 · (n− k)

√
n

k3/2
+

3
√
n

k
.

Proof. Recall that

(22) S2 =

b
√
nc∑

j=b
√
n/2c+1

∑
j2|m,

k+1≤m≤n

j

m
.
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In (22) for every j we have

n ≥ j2 ≥ (b
√
n/2c+ 1)2 >

n

4
.

Hence m = j2 or 2j2 or 3j2. As k < m ≤ n, for m = ij2 (i = 1, 2, 3)
we get √

k

i
< j ≤

√
n

i
and

j

m
≤
√
n

k
.

For �xed i, the number of j such that m = ij2 is at most:⌈√
n−
√
k√

i

⌉
=

⌈
1√
i
· n− k
√
n+
√
k

⌉
≤ 1√

i
· n− k

2
√
k

+ 1,

thus

S2 ≤
(

1 +
1√
2

+
1√
3

)
· n− k

2
√
k
·
√
n

k
+

3
√
n

k
< 1.15 · (n− k)

√
n

k3/2
+

3
√
n

k
,

and this is what we wanted to show. �

Summarizing the results, from (16) and (21) we obtain:

(23) S = k(S1 + S2) ≤

≤ k

{(
log n

2
+ 0.31

)
(log n− log k) +

n+ 2
√
n

8k
+ 1.15 · (n− k)

√
n

k3/2
+

3
√
n

k

}
.

We assumed that n − 0.4·n
logn+1.02

≤ k and n ≥ 5000. By using the

inequality e−x < 1
1+x

we obtain that ne
− 0.2

log n
2 +0.31 < n · 1

1+ 0.2
log n

2 +0.31

=

n − 0.4·n
logn+1.02

≤ k. As n ≥ 5000, we have that k
n
> 0.958. By easy

calculation from these inequalities the following ones can be deduced:

(24)

(
log n

2
+ 0.31

)
(log n− log k) < 0.2,

(25)
n+ 2

√
n

8k
< 0.135,

(26) 1.15 · (n− k)
√
n

k3/2
+

3
√
n

k
< 0.096.

Adding (24), (25) and (26) using (23) we arrive at:
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(27) S ≤ k (0.2 + 0.135 + 0.096) = 0.431 · k.
Then from inequalities (12), (13) and (15) in case k/n > 0.958 we get

|k ∗ n| ≥ k + 2k − n− 2S ≥ 2.138 · k − n > n,

thus we proved the statement in Case 3 as well. �

We proved the statement for all pairs n, k where n ≥ 5000. Cases
k ≤ n ≤ 5000 can be checked by brute force.
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