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On sumsets of nonbases of maximum size
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Abstract

Let G be a finite abelian group. A nonempty subset A in G is called a basis of order h
if hA = G; when hA # G, it is called a nonbasis of order h. Our interest is in all possible
sizes of hA when A is a nonbasis of order h in G of maximum size; we provide the complete
answer when h =2 or h = 3.

1 Introduction

Let G be a finite abelian group of order n > 2, written in additive notation. For a positive integer h,
the Minkowski sum of nonempty subsets A1, ..., A of G is defined as

Ai+-+Ap={a1+---+ap : a1 € A1,...,ap € Ap}.

When A = --- = A = A, we simply write hA, which then is the collection of sums of h not-necessarily-
distinct elements of A.

We say that a nonempty subset A of G is h-complete (alternatively, a basis of order h) if hA = G;
while, if hA is a proper subset of G, we say that A is h-incomplete. The h-critical number x(G, h) of G
is defined as the smallest positive integer m for which all m-subsets of G are h-complete; that is:

X(G,h) =min{m : ACG,|A| >m = hA=G}.

It is easy to see that for all G and h we have hG = G, so x(G, h) is well defined. The value of x(G, h)
is now known for every G and h—see [1, 2].

The following question then arises naturally: What can one say about the size of hA if A is an
h-incomplete subset of maximum size in G? Namely, we aim to determine the set

S(G,h) = {|hA| : ACG, |Al =x(G,h) —1, hA # G}.

In this paper we attain the complete answer to this question for A = 2 and h = 3. For h = 2, we find
that the situation is greatly different for groups of even and odd order.

Theorem 1. Let G be an abelian group of order n.
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1. When n is even, the mazximum size of a 2-incomplete subset of G is n/2, and the elements of
S(G,2) are of the form n — n/d where d is some even divisor of n; in fact all such integers are
possible, with the exception that 3n/4 arises only when the exponent of G is divisible by 4.

2. When n is odd, the mazimum size of 2-incomplete subsets of G is (n — 1)/2; furthermore, when G
is of order 8, 5, or is noncyclic and of order 9, then S(G,2) = {n — 2}, and for all other groups
of odd order we have S(G,2) = {n —2,n —1}.

For h = 3 we separate three cases.
Theorem 2. Let G be an abelian group of order n.

1. When n has prime divisors congruent to 2 mod 3, and p is the smallest such prime, the mazimum
size of a 3-incomplete subset is (p + 1)n/(3p), and we have S(G,3) = {n — n/p}.

2. When n is divisible by 8 but has no divisors congruent to 2 mod 3, then the maximum size of
a 3-incomplete subset is n/3, and the elements of S(G,3) are of the form n —n/d orn —2n/d
where d is some divisor of n that is divisible by 3; furthermore, all such integers are possible, with
the exceptions of 2n/3 and n — 2n/d when the highest power of 3 that divides d is more than the
highest power of 8 that divides the exponent of G.

3. In the case when all divisors of n are congruent to 1 mod 8, then the maximum size of a 3-
incomplete subset is (n — 1)/3, and S(G,3) = {n — 3,n — 1}, unless G is an elementary abelian
7-group, in which case S(G,3) = {n — 3}.

We should note that the three cases addressed in Theorem 2 are the same as those used while studying
sumfree sets—see [3] and [4]; in fact, the maximum size of a 3-incomplete set in G agrees with the
maximum size of a sumfree set in G when G is cyclic.

Our methods are completely elementary, with Kneser’s Theorem as the main tool. In Section 2 we
review some standard terminology and notations and prove some auxiliary results, then in Section 3 we
sketch the proof of Theorem 1 in the case when the order of the group is even.

2 Preliminaries

Here we present a few generic results that come useful in our proofs. We will use the following version
of Kneser’s Theorem.

Theorem 3 (Kneser’s Theorem; [5]). If A1,..., Ay are nonempty subsets of a finite abelian group G,
and H is the stabilizer subgroup of A1 +---+ Ap in G, then

|Ar+ -+ Ap| 2 A1 + -+ + |Ap| = (R = 1)|H|.
Our first lemma is a simple application of Kneser’s Theorem:

Lemma 4. Suppose that G is a finite abelian group and that h is a positive integer. Let A be an
h-incomplete subset of maximum size in G, and let H denote the stabilizer of hA in G. Then both
A and hA are unions of full cosets of H; furthermore, if A and hA consist of k1 and ko cosets of H,
respectively, then

ko > hky — h+ 1.

We will also use the following observation:

Lemma 5. Suppose that G is a finite abelian group of order n and that h is a positive integer. Let H
be a subgroup of G of index d for some d € N, and let ¢ be the canonical map from G to G/H. Suppose
further that B is a subset of G/H, and set A= ¢~ (B). Then |A| =% -|B| and |hA| =% - |hB].
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Our next result takes advantage of the fact that the elements of a finite abelian group have a natural
ordering. We review some background and introduce a useful result.

When G is cyclic and of order n, we identify it with Z, = Z/nZ. More generally, G has a unique
type (n1,...,n,), where r and nq,...,n, are positive integers so that ny > 2, n; is a divisor of n;; for
i1=1,...,r—1, and

G=Zp, X X Lnp,;

here r is the rank of G and n, is the exponent of G.

The above factorization of G allows us to arrange the elements in lexicographic order and then
consider the ‘first’ m elements in G. Namely, suppose that m is a nonnegative integer less than n; we
then have unique integers ¢1, ..., ¢, so that 0 < g, < ny, for each 1 < k < r, and

T
m = Z QN1 - Tope
k=1

For simplicity, we assume ¢, > 1, in which case the first m elements in G range from the zero element
to (q1,---,¢r—-1,q- — 1) and thus form the set

.
Z(G,m) = U{‘h}x"' X {aqr—1} x {0,1,...,qx — 1} X Zp,; X -+ X Ln,.
k=1

The advantage of considering these initial sets is that their h-fold sumsets are also initial sets. Indeed,
assuming for simplicity that hqgy < ng for each k, we find that hZ(G, m) consists of the elements from
the zero element to (hq,...,hq,—1,hq, — h), and thus

hZ(G,m)=Z(G,hm —h+1).

We will also employ a slight modification of Z(G,m) where its last element is replaced by the next
one in the lexicographic order. To avoid degenerate cases, we further assume that ¢, > 3, in which case
we have

I*(G7 m) = I(G7 m — 1) U {((Il, ceesQr—1, q’l")}a
an easy calculation shows that
hZ*(G,m) =Z(G,hm — 1) U{(hqi, ..., hg—1,hqr)}.
We can summarize these calculations, as follows.

Proposition 6. Suppose that the finite abelian group G is of type (ni,...,n,). Let 0 < m < n, and let
qQ,---,q be the unique integers with 0 < qi < ng for each 1 < k < r for which

T
m = Z QrMk+1 " " - N
k=1

Let h be a positive integer for which hq, < ny for each 1 < k <r. Then for the m-subsets Z(G,m) and
Z*(G,m) of G we have the following:

1. If g» > 1, then |hZ(G,m)| = hm — h + 1.

2. If gr > 3, then |hZ*(G,m)| = hm.
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3 Sketch of the proof for two-fold sumsets

In this section we outline the proof of Theorem 1 in the case when the order of the group is even:
Theorem 9.
The critical number x(G,2) is as follows.

Proposition 7. For any abelian group G of order n we have
X(G,2) = |n/2] + 1.
We now turn to finding
S(G,2) =A{|24] : ACG, |A| = |n/2], 2A # G}.
Our proof builds on the following result that may be of independent interest.

Theorem 8. Let G be a finite abelian group of even order whose exponent is not divisible by 4, and
suppose that A is a subset of G of size |A| =n/2. Then G has a subgroup H of order n/2 for which

ANH| # AN (G\ H)|

We note that the claim of Theorem 8 may be false in groups with exponent divisible by 4. For
example, in Zy X Zg, the set Zg x {0, 1} intersects all three subgroups in two elements.
We are now ready to determine S(G,2). Here we present the proof in the case when n is even.

Theorem 9. If the exponent of G is divisible by 4, then
S(G,2) ={n—n/d : d|n, 2|d};
if the exponent of G is even but not divisible by 4, then
S(G,2)={n—n/d : dn, 2|d, d # 4} .

Proof: Using the notations of Lemma 4, we have |A| = n/2 = kin/d where d is the index of the
stabilizer subgroup of 2A. This implies that d is even and k; = d/2; using Lemma 4 again yields
ko > d — 1 and thus [2A| = kan/d equals n or n — n/d. Therefore, we have

S(G,2) C{n—n/d : d|n, 2|d}.

When the exponent of GG is congruent to 2 mod 4, then we can rule out d = 4, as follows. By Theorem 8,
G has a subgroup H of index 2 for which HNA and (G\ H)N A have different sizes; let A = A;UAs where
A; and Ay are subsets of different cosets of H. Without loss of generality, we assume that |A;| > n/4,
and thus 24, = H. If Ay were to be empty, then A is a full coset of H, and thus [24| = n/2 # 3n/4.
Otherwise, |A; + As| > |A1| > n/4, which implies that [2A4] > |2A41] + |41 + A2| > 3n/4.

What remains is the proof that all remaining values arise as sumset sizes. This is clearly true when
d = 2, or when d = 4 and the exponent of G is divisible by 4. Suppose now that d is an even divisor
of n and d > 4. According to Lemma 5, it suffices to prove that every group K of order d contains
some subset B of size d/2 for which |2B| = d — 1. Let H be any subgroup of index 2 in K, and
set B = (H \ {h})U{g}, where h and g are arbitrary elements of H and K \ H, respectively. Since
|H\{h} =d/2—1>d/4, we get 2(H \ {h}) = H and thus 2B = G \ {h + g}. Therefore, [2B| =d — 1,
and our proof is complete. O
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