
ON SUMSETS OF NONBASES OF MAXIMUM SIZE

BÉLA BAJNOK AND PÉTER PÁL PACH

Abstract. Let G be a finite abelian group. A nonempty subset A in G is called a basis of
order h if hA = G; when hA 6= G, it is called a nonbasis of order h. Our interest is in all
possible sizes of hA when A is a nonbasis of order h in G of maximum size; we provide the
complete answer when h = 2 or h = 3.
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1. Introduction

Let G be a finite abelian group of order n ≥ 2, written in additive notation. For a positive
integer h, the Minkowski sum of nonempty subsets A1, . . . , Ah of G is defined as

A1 + · · ·+ Ah = {a1 + · · ·+ ah : a1 ∈ A1, . . . , ah ∈ Ah}.
When A1 = · · · = Ah = A, we simply write hA, which then is the collection of sums of h
not-necessarily-distinct elements of A.

We say that a nonempty subset A of G is h-complete (alternatively, a basis of order h) if
hA = G; while, if hA is a proper subset of G, we say that A is h-incomplete. The h-critical
number χ(G, h) of G is defined as the smallest positive integer m for which all m-subsets of
G are h-complete; that is:

χ(G, h) = min{m : A ⊆ G, |A| ≥ m⇒ hA = G}.
It is easy to see that for all G and h we have hG = G, so χ(G, h) is well defined. The value
of χ(G, h) is now known for every G and h—see [1, 2]. For more on the h-critical number
and related topics, see also [4, 8].

The following question then arises naturally: What can one say about the size of hA if A
is an h-incomplete subset of maximum size in G? Namely, we aim to determine the set

S(G, h) = {|hA| : A ⊂ G, |A| = χ(G, h)− 1, hA 6= G}.
In this paper we attain the complete answer to this question for h = 2 and h = 3. For

h = 2, we find that the situation is greatly different for groups of even and odd order.

Theorem 1.1. Let G be an abelian group of order n.

(1) When n is even, the maximum size of a 2-incomplete subset of G is n/2, and the
elements of S(G, 2) are of the form n − n/d where d is some even divisor of n; in
fact all such integers are possible, with the exception that 3n/4 arises only when the
exponent of G is divisible by 4.

(2) When n is odd, the maximum size of 2-incomplete subsets of G is (n− 1)/2; further-
more, when G is of order 3, 5, or is noncyclic and of order 9, then S(G, 2) = {n−2},
and for all other groups of odd order we have S(G, 2) = {n− 2, n− 1}.
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For h = 3 we separate three cases.

Theorem 1.2. Let G be an abelian group of order n.

(1) When n has prime divisors congruent to 2 mod 3, and p is the smallest such prime,
the maximum size of a 3-incomplete subset is (p + 1)n/(3p), and we have S(G, 3) =
{n− n/p}.

(2) When n is divisible by 3 but has no divisors congruent to 2 mod 3, then the maximum
size of a 3-incomplete subset is n/3, and the elements of S(G, 3) are of the form
n− n/d or n− 2n/d where d is some divisor of n that is divisible by 3; furthermore,
all such integers are possible, with the exceptions of 2n/3 and n − 2n/d when the
highest power of 3 that divides d is more than the highest power of 3 that divides the
exponent of G.

(3) In the case when all divisors of n are congruent to 1 mod 3, then the maximum size
of a 3-incomplete subset is (n − 1)/3, and S(G, 3) = {n − 3, n − 1}, unless G is an
elementary abelian 7-group, in which case S(G, 3) = {n− 3}.

We should note that the three cases addressed in Theorem 1.2 are the same as those used
while studying sumfree sets—see [5] and [7]; in fact, the maximum size of a 3-incomplete set
in G agrees with the maximum size of a sumfree set in G when G is cyclic.

Our methods are completely elementary, with Kneser’s Theorem as the main tool. In
Section 2 we review some standard terminology and notations and prove some auxiliary
results, then in Sections 3 and 4 we prove Theorems 1.1 and 1.2, respectively.

2. Preliminaries

Here we present a few generic results that will come useful later. We will use the following
version of Kneser’s Theorem.

Theorem 2.1 (Kneser’s Theorem; [9, 11]). If A1, . . . , Ah are nonempty subsets of G, and H
is the stabilizer subgroup of A1 + · · ·+ Ah in G, then

|A1 + · · ·+ Ah| ≥ |A1|+ · · ·+ |Ah| − (h− 1)|H|.

Our first lemma is a simple application of Kneser’s Theorem:

Lemma 2.2. Suppose that G is a finite abelian group and that h is a positive integer. Let
A be an h-incomplete subset of maximum size in G, and let H denote the stabilizer of hA in
G. Then both A and hA are unions of full cosets of H; furthermore, if A and hA consist of
k1 and k2 cosets of H, respectively, then

k2 ≥ hk1 − h+ 1.

Proof. Consider the sumset A+H. Since we have

h(A+H) = hA+H = hA 6= G,

A+H is h-incomplete in G. But A ⊆ A+H and A is an h-incomplete subset of maximum
size, therefore A + H = A, implying that A, as well as hA, are both unions of cosets of H.
By Kneser’s Theorem, we have

|hA| ≥ h|A| − (h− 1)|H|,
from which our claim follows. �

We will also use the following observation:
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Lemma 2.3. Suppose that G is a finite abelian group and that h is a positive integer. Let
H be a subgroup of G of index d for some d ∈ N, and let φ be the canonical map from G to
G/H. Suppose further that B is a subset of G/H, and set A = φ−1(B). Then |A| = n

d
· |B|

and |hA| = n
d
· |hB|.

Our next result takes advantage of the fact that the elements of a finite abelian group have
a natural ordering. We review some background and introduce a useful result.

When G is cyclic and of order n, we identify it with Zn = Z/nZ. More generally, G has a
unique type (n1, . . . , nr), where r and n1, . . . , nr are positive integers so that n1 ≥ 2, ni is a
divisor of ni+1 for i = 1, . . . , r − 1, and

G ∼= Zn1 × · · · × Znr ;

here r is the rank of G and nr is the exponent of G.
The above factorization of G allows us to arrange the elements in lexicographic order and

then consider the ‘first’ m elements in G (as was done in [6]). Namely, suppose that m is a
nonnegative integer less than n; we then have unique integers q1, . . . , qr, so that 0 ≤ qk < nk

for each 1 ≤ k ≤ r, and

m =
r∑

k=1

qknk+1 · · ·nr.

For instance, if qr ≥ 1, the firstm elements inG range from the zero element to (q1, . . . , qr−1, qr−
1) and thus form the set

I(G,m) =
r⋃

k=1

{q1} × · · · × {qk−1} × {0, 1, . . . , qk − 1} × Znk+1
× · · · × Znr .

The advantage of considering these initial sets is that their h-fold sumsets are also initial
sets. Indeed, if hqk < nk for each k and qr ≥ 1, we find that hI(G,m) consists of the elements
from the zero element to (hq1, . . . , hqr−1, hqr − h), and thus

hI(G,m) = I(G, hm− h+ 1).

We will also employ a slight modification of I(G,m) where its last element is replaced by
the next one in the lexicographic order. If we further assume that qr ≥ 3, we have

I∗(G,m) = I(G,m− 1) ∪ {(q1, . . . , qr−1, qr)};
an easy calculation shows that

hI∗(G,m) = I(G, hm− 1) ∪ {(hq1, . . . , hqr−1, hqr)}.
We can summarize these calculations, as follows.

Proposition 2.4. Suppose that G is of type (n1, . . . , nr). Let 0 ≤ m < n, and let q1, . . . , qr
be the unique integers with 0 ≤ qk < nk for each 1 ≤ k ≤ r for which

m =
r∑

k=1

qknk+1 · · ·nr.

Let h be a positive integer for which hqk < nk for each 1 ≤ k ≤ r. Then for the m-subsets
I(G,m) and I∗(G,m) of G we have the following:

(1) If qr ≥ 1, then |hI(G,m)| = hm− h+ 1.
(2) If qr ≥ 3, then |hI∗(G,m)| = hm.
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3. Two-fold sumsets

In this section we prove Theorem 1.1. We separate two cases depending on the Therefore
of the order of the group: the even case is considered in Theorem 3.3 and the odd case is
established in Theorem 3.4.

The critical number χ(G, 2) can be easily determined as follows.

Proposition 3.1. For any abelian group G of order n we have

χ(G, 2) = bn/2c+ 1.

Proof. Suppose that A is a subset of G of size |A| > n/2. Since for any g ∈ G, A and g − A
cannot be disjoint, we have 2A = G.

To complete the proof, we need to identify a subset of G of size bn/2c that is 2-incomplete.
When n is even, any subgroup of index 2 (or a coset of such a subgroup) will do.

Suppose now that n is odd, in which case G has type (n1, . . . , nr) for some r, n1, . . . , nr ∈ N
and nk odd for all k. We then have

n− 1

2
=

r∑
k=1

nk − 1

2
· nk+1 · · ·nr.

Therefore, according to Proposition 2.4, the initial segment I(G, (n − 1)/2) has a 2-fold
sumset of size n− 2 and is thus 2-incomplete. �

We now turn to finding

S(G, 2) = {|2A| : A ⊂ G, |A| = bn/2c , 2A 6= G}.
We start with a result that may be of independent interest.

Theorem 3.2. Let G be a group of even order whose exponent is not divisible by 4, and
suppose that A is a subset of G of size |A| = n/2. Then G has a subgroup H of order n/2
for which

|A ∩H| 6= |A ∩ (G \H)|.

Proof. We proceed indirectly, and assume that each subgroup of order n/2 in G contains
exactly half of the elements of A. We may assume that G = G1 × G2, where G1 has odd
order, and G2 = Zn1 × · · · ×Znr with all ni even; by assumption, we also know that they are
not divisible by 4.

We say that a subset C of G of the form C = G1 × B1 × · · · × Br is a projection of G, if
for each i, either Bi = Zni

or Bi is a coset of the subgroup of index 2 in Zni
. Note that each

projection of G has size n/2k for some 0 ≤ k ≤ r. We prove the following:

Claim: If C is a projection of G of size n/2k, then A ∩ C has size n/2k+1.
Since this is clearly impossible for k = r, we arrive at a contradiction.

Proof of Claim: We use induction on k. The claim trivially holds for k = 0, and it also
holds for k = 1, since any projection of G of size n/2 is either a subgroup of index 2 or a
coset of that subgroup and, by our indirect assumption, both contain exactly n/4 elements
of A.

Assume now that our claim holds for k − 1 for some k ≤ r. To prove our claim for k, by
symmetry it clearly suffices to consider projections in

C = {G1 ×B1 × · · · ×Br : |Bi| = ni/2 for 1 ≤ i ≤ k and |Bi| = ni for k + 1 ≤ i ≤ r}.
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Recall that the elements of Zk
2 may be arranged in Gray-code order; that is, we have a

sequence
e0, e1, . . . , e2k−1, e2k

where e0 = e2k is the zero-element of Zk
2, and ej and ej+1 differ in exactly one position for

every j = 0, 1, . . . , 2k−1. We can then arrange the elements of C in a corresponding sequence

C0, C1, . . . , C2k−1, C2k

where Cj = G1 × B1 × · · · × Br has Bi ≤ Zni
for some 1 ≤ i ≤ k if, and only if, the i-th

component of ej equals 0 (and (Zni
\Bi) ≤ Zni

otherwise).
Observe that, for every j = 0, 1, . . . , 2k − 1, the union of Cj and Cj+1 is a projection of G

of size n/2k−1; therefore, by our inductive hypothesis, it must contain exactly n/2k elements
of A. Thus, if C0 contains t elements of A, then Cj will contain t elements of A if j is even,
and n/2k − t elements of A when j is odd. We need to show that t = n/2k+1.

A standard parity argument proves that

H = C0 ∪ C2 ∪ C4 ∪ · · · ∪ C2k−2

is a subgroup of index 2 in G, so by our assumption, it contains n/4 elements of A. Therefore,
t · 2k/2 = n/4, which proves our claim. �

We note that the claim of Theorem 3.2 may be false in groups with exponent divisible by
4. For example, in Z2 × Z4, the set Z2 × {0, 1} intersects all three subgroups of order 4 in
two elements.

We are now ready to determine S(G, 2). We start with the case when n is even.

Theorem 3.3. If the exponent of G is divisible by 4, then

S(G, 2) = {n− n/d : d|n, 2|d} ;

if the exponent of G is even but not divisible by 4, then

S(G, 2) = {n− n/d : d|n, 2|d, d 6= 4} .

Proof: Let A be a 2-incomplete subset of G of maximal size. Using the notations of Lemma
2.2, we have |A| = n/2 = k1n/d where d is the index of the stabilizer subgroup of 2A. This
implies that d is even and k1 = d/2; using Lemma 2.2 again yields k2 ≥ d − 1 and thus
|2A| = k2n/d equals n or n− n/d. Therefore, we have

S(G, 2) ⊆ {n− n/d : d|n, 2|d} .
When the exponent of G is congruent to 2 mod 4, then we can rule out d = 4, as follows.

By Theorem 3.2, G has a subgroup H of index 2 for which H ∩ A and (G \ H) ∩ A have
different sizes; let A = A1∪A2 where A1 and A2 are subsets of different cosets of H. Without
loss of generality, we assume that |A1| > n/4, and thus 2A1 = H. If A2 were to be empty,
then A is a full coset of H, and thus |2A| = n/2 6= 3n/4. Otherwise, |A1 +A2| ≥ |A1| > n/4,
which implies that |2A| ≥ |2A1|+ |A1 + A2| > 3n/4.

What remains is the proof that all remaining values arise as sumset sizes. This is clearly
true when d = 2, or when d = 4 and the exponent of G is divisible by 4. Suppose now that
d is an even divisor of n and d > 4. According to Lemma 2.3, it suffices to prove that every
group K of order d contains some subset B of size d/2 for which |2B| = d− 1. Let H be any
subgroup of index 2 in K, and set B = (H \{h})∪{g}, where h and g are arbitrary elements
of H and K \H, respectively. Since |H \ {h}| = d/2− 1 > d/4, we get 2(H \ {h}) = H and
thus 2A = G \ {h+ g}. Therefore, |2B| = d− 1, and our proof is complete. �
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Let us now turn to the case when n is odd.

Theorem 3.4. If G ∼= Z3, Z5, or Z2
3, then S(G, 2) = {n− 2}. For all other G of odd order

we have S(G, 2) = {n− 2, n− 1}.

Proof. Let A be a subset of G of size (n−1)/2. By Lemma 2.2, A is the union of some k1 cosets
of the stabilizer H of 2A; if H has index d in G, then we thus have (n− 1)/2 = |A| = k1n/d.
But this implies that d = n and k1 = (n − 1)/2, so using Lemma 2.2 again, we get that 2A
has size k2 ≥ n− 2. Therefore, S(G, 2) ⊆ {n− 2, n− 1}.

In the proof of Proposition 3.1 we already established that n − 2 ∈ S(G, 2) by pointing
out that the set I(G, (n − 1)/2), consisting of the initial (n − 1)/2 elements in G, has a
2-fold sumset of size n− 2. Similarly, Proposition 2.4 yields that, when (nr − 1)/2 ≥ 3, then
I∗(G, (n− 1)/2)| is of size (n− 1)/2 and has |2I∗(G,m)| = n− 1.

This leaves us with the elementary abelian 3-groups and 5-groups. When r ≥ 3, for
Zr

3 we may take the first (n − 1)/2 elements, except that we replace (1, 1, . . . , 1, 0, 2, 2) by
(1, 1, . . . , 1, 2, 0, 0); one can easily determine that this way 2A = Zr

3 \ {(2, 2, . . . , 2)}. Simi-
larly, when r ≥ 2, for Zr

5 we may take the first (n − 1)/2 elements, except that we replace
(2, 2, . . . , 2, 1, 4) by (2, 2, . . . , 2, 3, 0); this way 2A = Zr

5 \{(4, 4, . . . , 4)}. It can also be readily
verified that for Z3, Z5, or Z2

3, we have n− 1 /∈ S(G, 2). �

4. Three-fold sumsets

In this section we prove Theorem 1.2. We consider three cases: Theorem 4.2 covers the
cases when the order n of the group has some prime divisor congruent to 2 mod 3, Theorem 4.3
deals with the cases when n is divisible by 3 but has no divisors that are congruent to 2 mod
3, and Theorem 4.4 and Corollary 4.6 establish the cases when all divisors of n are congruent
to 1 mod 3.

Our first task is to find the 3-critical number of each finite abelian group. For a formula
for the h-critical number with arbitrary h, we refer to [2, 3].

Proposition 4.1. Suppose that G is an abelian group of order n. Then:

χ(G, 3) =


(

1 + 1
p

)
n
3

+ 1 if n has prime divisors congruent to 2 mod 3,

and p is the smallest such divisor,⌊
n
3

⌋
+ 1 otherwise.

Proof. It is easy to see that the expressions above provide lower bounds for χ(G, 3). Indeed,
if H is a subgroup of G of prime index p then G/H is cyclic; by Lemma 2.3, taking an
arithmetic progression of size b(p+ 1)/3c in G/H yields a set of size b(p+ 1)/3c · n/p in G
whose 3-fold sumset has size (

3 ·
⌊
p+ 1

3

⌋
− 2

)
· n
p
,

which is less than n. This establishes the cases when n has prime divisors congruent to 2
mod 3, and p is the smallest such divisor, or when n is divisible by 3 (take p = 3).

For the case when all divisors of n are congruent to 1 mod 3, let (n1, n2, . . . , nr) be the
type of G, and note that

n− 1

3
=

r∑
k=1

nk − 1

3
· nk+1 · · ·nr.
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Therefore, according to Proposition 2.4, the initial segment I(G, (n− 1)/3) in G has a 3-fold
sumset of size n− 3 and is thus 3-incomplete.

We now show that the expressions above are upper bounds. Suppose that A ⊆ G is a 3-
incomplete subset of maximum size in G. Using the notations of Lemma 2.2, we have |A| =
k1n/d and |3A| = k2n/d where d is the index of the stabilizer subgroup of 3A. According to
Lemma 2.2, k2 ≥ 3k1 − 2, and since 3A 6= G, we have k2 ≤ d− 1, so k1 ≤ (d+ 1)/3.

We consider first the case when n has prime divisors congruent to 2 mod 3, and p is the
smallest such divisor. Since (1 + 1/p)(n/3) is an integer, and is of the form k1n/d, we have
p | d. Therefore, we find that

|A| = k1n/d ≤ (d+ 1)/3 · n/d ≤ (1 + 1/p) · n/3,
as claimed. However, if n has no divisors congruent to 2 mod 3, then k1 ≤ bd/3c, so

|A| = k1n/d ≤ bd/3c · n/d ≤ bn/3c,
which completes the proof. �

In the rest of this section we determine S(G, 3) for all finite abelian groups G. We start
with the case when |G| = n has prime divisors congruent to 2 mod 3 and p is the smallest
such divisor.

Theorem 4.2. Suppose that n has prime divisors congruent to 2 mod 3, and p is the smallest
such divisor. Then S(G, 3) = {n− n/p}.

Proof. Suppose that A is a 3-incomplete subset of maximum size in G. Using the notations
of Lemma 2.2, we have |A| = (p + 1)/3 · n/p = k1n/d where d is the index of the stabilizer
subgroup of 3A. This implies that d is divisible by p. Furthermore, k1 = (p + 1)/p · d/3;
using Lemma 2.2 again yields

k2 ≥ 3k1 − 2 = d+ (d/p− 2) ≥ d− 1,

with equality only if d = p. Therefore, |3A| equals n or n − n/p, proving that S(G, 3) ⊆
{n− n/p}.

As S(G, 3) 6= ∅ (according to its definition), it is obtained that S(G, 3) = {n− n/p}.
�

As a special case of Theorem 4.2, we see that when the order n of G is odd but divisible by
5, then a 3-incomplete subset of maximum size 0.4n in G consists of two cosets of a subgroup
of index 5. It is worth mentioning that, according to a result of Lev in [10, Theorem 5],
if G is an elementary abelian 5-group, then any 3-incomplete subset of size at least 0.3n is
contained in a union of two cosets of a subgroup of index 5.

Next, we address the case when the order n of G is divisible by 3 but has no divisors that
are congruent to 2 mod 3.

Theorem 4.3. Suppose that n is divisible by 3 but has no prime divisors congruent to 2 mod
3. We then have

S(G, 3) = {n− n/d : d|n, 3|d, d 6= 3} ∪ {n− 2n/d : d|n, 1 ≤ ν3(d) ≤ ν3(κ)} ,
where κ is the exponent of G, and ν3(t) is the highest power of 3 that divides the integer t.

Proof. By Proposition 4.1, the maximum size of a 3-incomplete subset of G in this case is
n/3. We provide the proof through several claims.
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Claim 1: S(G, 3) ⊆ {n− cn/d : d|n, 3|d, c = 1, 2} .
Proof of Claim 1: Using the notations of Lemma 2.2, we have |A| = n/3 = k1n/d where
d is the index of the stabilizer subgroup of 3A. This implies that d is divisible by 3 and
k1 = d/3; using Lemma 2.2 again yields k2 ≥ d− 2 and thus |3A| = k2n/d equals n, n−n/d,
or n− 2n/d, proving our claim.

Claim 2: If d is a divisor of n that is divisible by 3 and d 6= 3, then n− n/d ∈ S(G, 3).

Proof of Claim 2: By Lemma 2.3, it suffices to prove that all groups K of order d with 3|d
and d > 3 contain some subset A of size d/3 for which |3A| = d− 1. Let H be any subgroup
of index 3 in K, and set A = (H \ {h}) ∪ {g}, where h and g are arbitrary elements of H
and K \ H, respectively. Note that d 6= 6 since d has no divisors congruent to 2 mod 3,
and thus we have d ≥ 9. Therefore, |H \ {h}| = d/3 − 1 > d/6, so 2(H \ {h}) = H and
3(H \ {h}) = H. But then

3A = 3(H \ {h}) ∪ ((2(H \ {h}) + g) ∪ ((H \ {h}) + 2g) = G \ {h+ 2g}.
Therefore, |3A| = d− 1, as claimed.

Claim 3: We have 2n/3 6∈ S(G, 3).

Proof of Claim 3: As before, we see that A is the union of k1 = d/3 cosets of H and 3A is
the union of k2 ≥ d− 2 cosets of H, where d is the index of the stabilizer subgroup H of 3A.
But 2n/3 = k2n/d ≥ (d − 2)n/d yields d ≤ 6, and since d is odd and is divisible by 3, this
can only happen if d = 3. Therefore, k1 = 1 and thus k2 = 1 as well, which gives |3A| = n/3.

Claim 4: If d is a divisor of n for which ν3(d) > ν3(κ), then n− 2n/d 6∈ S(G, 3).

Proof of Claim 4: For the sake of contradiction, let us assume that A is a subset of G of size
n/3 and |3A| = n− 2n/d.

Suppose that H is the stabilizer of 3A and that H has index δ in G; we will first show that
δ = d. According to Lemma 2.2, the set A is the union of k1 = δ/3 cosets of H, and 3A is
the union of δ − 2δ/d = k2 ≥ 3k1 − 2 cosets of H. Hence, d ≥ δ and d divides 2δ, thus d is
either δ or 2δ; since n is odd, we obtain d = δ.

Let φ be the canonical map from G to G/H. With the notations G′ = G/H and A′ = φ(A),
we then have |G′| = d, |A′| = d/3, and |3A′| = d− 2.

We let {x, y} = G′ \ (3A′), and note that x− A′ ⊆ G′ \ 2A′ and y − A′ ⊆ G′ \ 2A′. Since
the stabilizer of 3A′ in G′ is trivial, so is the stabilizer of 2A′, and thus by Kneser’s Theorem
we have

|G′ \ 2A′| ≤ |G′| − 2|A′|+ 1 = d/3 + 1.

This means that x− A′ and y − A′ have at least d/3− 1 elements in common.
Now let ` = x− y, K = 〈`〉, and |K| = k. Since

|A′ ∩ (A′ + `)| = |(x− A′) ∩ (y − A′)| ≥ |A′| − 1,

A′ is the union of arithmetic progressions, each of difference `, and at most one of them
has size less than k. Since k | κ and, according to our assumption, ν3(d) > ν3(κ), we have
ν3(d) > ν3(k), and thus d/3 is divisible by k, which then means that A′ is the union of full
cosets of K. Therefore, 3A′ is the union of full cosets of K as well, and thus d− 2 is divisible
by k. But then k ≤ 2, and thus k = 1 since k is odd, which is a contradiction if x 6= y.

Claim 5: If d is a divisor of n for which 1 ≤ ν3(d) ≤ ν3(κ), then n− 2n/d ∈ S(G, 3).
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Proof of Claim 5: Suppose that G is of type (n1, . . . , nr); we can then find positive integers
d1, . . . , dr so that di|ni for each i = 1, . . . , r; d1 · · · dr = d; and d1, . . . , dr−1 are all congruent
to 1 mod 3. We then have

d

3
=

r−1∑
k=1

dk − 1

3
dk+1 · · · dr +

dr
3
.

Let H be a subgroup of G so that K = G/H is of type (d1, . . . , dr). According to Proposi-
tion 2.4, the initial segment I(K, d/3) of size d/3 has 3-fold sumset of size d− 2. By Lemma
2.3, G then contains a subset of size n/3 whose 3-fold subset has size n− 2n/d.

This completes the proof of Theorem 4.3. �

For our final case, we consider groups whose order n only has divisors that are congruent
to 1 mod 3. Our previous techniques work well for all groups in this category, other than
elementary abelian 7-groups, so we consider those separately.

Theorem 4.4. If all divisors of the order n of G are congruent to 1 mod 3, but G is not
isomorphic to an elementary abelian 7-group, then S(G, 3) = {n− 3, n− 1}.

Proof. By Proposition 4.1, the maximum size of a 3-incomplete subset of G in this case is
(n− 1)/3. We provide the proof through the following three claims.

Claim 1: S(G, 3) ⊆ {n− 3, n− 2, n− 1} .

Proof of Claim 1: Using the notations of Lemma 2.2, we have |A| = (n−1)/3 = k1n/d where
d is the index of the stabilizer subgroup of 3A. This implies that d is divisible by n and thus
d = n and k1 = (n− 1)/3; using Lemma 2.2 again yields k2 ≥ n− 3, as claimed.

Claim 2: We have {n− 3, n− 1} ⊆ S(G, 3).

Proof of Claim 2: Suppose that G is of type (n1, n2, . . . , nr). Since n1, . . . , nr are all congruent
to 1 mod 3, we have

n− 1

3
=

r∑
k=1

nk − 1

3
· nk+1 · · ·nr.

Therefore, Proposition 2.4 yields that n− 3 ∈ S(G, 3) and, since nr ≥ 10, n− 1 ∈ S(G, 3) as
well.

Claim 3: We have n− 2 6∈ S(G, 3).

Proof of Claim 3: Suppose that A is a subset of G of size (n − 1)/3, and assume indirectly
that 3A = G \ {x, y} with some x, y ∈ G, x 6= y.

According to Lemma 2.2, the size of the stabilizer of 3A divides both |A| = (n− 1)/3 and
|3A| = n− 2, therefore it is trivial. Then so is the stabilizer of 2A, so by Kneser’s Theorem,

|G \ 2A| ≤ |G| − 2|A|+ 1 = |A|+ 2.

Since x−A and y−A are both of size (n− 1)/3 and are subsets of G \ 2A, this then means
that they must have at least |A| − 2 elements in common.

Now let ` = x− y, K = 〈`〉, and |K| = k. Since

|A ∩ (A+ `)| = |(x− A) ∩ (y − A)| ≥ |A| − 2,
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A is the union of arithmetic progressions, each of difference `, and at most two of them have
size less than k. Furthermore, note that (n − 1)/3 ≡ (k − 1)/3 mod k. Therefore, we have
three possibilities:

(1) A is the union of some full cosets of K and an arithmetic progression of size (k−1)/3;
(2) A is the union of some full cosets of K and two arithmetic progressions that are

in different cosets of K, and the sizes of these two arithmetic progressions add to
(k − 1)/3 or k + (k − 1)/3; or

(3) A is the union of some full cosets of K and two (disjoint) arithmetic progressions that
are in the same coset of K, and the sizes of these two arithmetic progressions add to
(k − 1)/3.

We can quickly rule out the first case as that would lead to |3A| ≡ k−3 mod k, contradicting
|3A| = n− 2.

For the second case, suppose that the two arithmetic progressions that are not full cosets
of K are B1 and B2, with |B1| = r1 and |B2| = r2. Observe that if B1 and B2 are within
distinct cosets of K, then so are 3B1, 2B1 +B2, B1 +2B2, and 3B2. When r1 +r2 = (k−1)/3,
then each of these four sumsets have size less than k, so we have

n− 2 = |3A| ≡ |3B1|+ |2B1 +B2|+ |B1 + 2B2|+ |3B2| = 6(r1 + r2)− 8 ≡ −10

mod k. This implies that 8 is divisible by k, and since k > 1, this means that k is even,
which is not possible since k is odd. If r1 + r2 = k+ (k− 1)/3, then at least three of the sets
3B1, 2B1 +B2, B1 + 2B2, and 3B2 have size k. Indeed, by symmetry we may assume that we
have r1 ≥ r2, in which case

3r1 − 2 ≥ 2r1 + r2 − 2 ≥ r1 + 2r2 − 2 = k + (k − 1)/3 + r2 − 2 ≥ k.

Therefore, if 3r2 − 2 < k, then n − 2 = |3A| ≡ 3r2 − 2 mod k, but that is a contradiction,
since r2, and therefore 3r2, is not divisible by k, and if 3r2 − 2 ≥ k, then n − 2 = |3A| ≡ 0
mod k, contradicting that k > 1 is odd.

Let us now turn to case (3), where A contains arithmetic progressions B1 and B2 that are
in the same coset of K and have a combined size of (k − 1)/3. It suffices to show that it is
not possible that 3(B1 ∪ B2) has size k − 2, and this can be accomplished by proving that
if I1 and I2 are disjoint intervals in the cyclic group Zk with |I1| + |I2| = (k − 1)/3, then
|3(I1 ∪ I2)| 6= k − 2.

Without loss of generality, we may assume that

I1 = {0, 1, . . . , r1 − 1}
and

I2 = {s, s+ 1, . . . , s+ r2 − 1}
for some positive integers r1, r2, and s with r1 + r2 = (k − 1)/3, r1 ≥ r2, and r1 + 1 ≤ s ≤
k − r2 − 1. Also, we may further assume that s ≤ (k − 1)/3 + r1, which holds when among
the two gaps between I1 and I2, the size of {r1, r1 + 1 . . . , s − 1} is at most as much as the
size of {s+ r2, s+ r2 + 1, . . . , k − 1}.

The set 3(I1 + I2) is the union of four intervals:

3I1 = {0, 1, . . . , 3r1 − 3},
2I1 + I2 = {s, s+ 1, . . . , s+ 2r1 + r2 − 3},

I1 + 2I2 = {2s, 2s+ 1, . . . , 2s+ r1 + 2r2 − 3},
3I2 = {3s, 3s+ 1, . . . , 3s+ 3r2 − 3}.
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Now if r1 + 1 ≤ s ≤ (k − 1)/3 + r2 − 2, then there is no gap between these intervals, thus
they cover (as integer intervals) [0, 3s+ 3r2 − 3]. Since

3s+ 3r2 − 3 ≥ 3(r1 + 1) + 3r2 − 3 = k − 1,

all elements of Zk are covered.
If (k− 1)/3 + r2 − 1 ≤ s ≤ (k− 1)/3 + r1 − 2, then there is no gap between the first three

intervals, so their union is [0, 2s+ r1 + 2r2 − 3]. Here we have

2s+ r1 + 2r2 − 3 ≥ 2(k − 1)/3 + 2r2 − 2 + r1 + 2r2 − 3 = k + 3r2 − 6 ≥ k − 3.

If either of the inequalities is a strict inequality, then the union of these three intervals covers
Zk with the exception of at most one element. On the other hand, if both inequalities are
equalities, then we have s = (k − 1)/3, r1 = (k − 4)/3, and r2 = 1; in this case we have
3(I1 ∪ I2) = Zk \ {k − 2}.

If (k − 1)/3 + r1 − 1 ≤ s, then either s = (k − 1)/3 + r1 − 1 or s = (k − 1)/3 + r1. Note
that if r1 ≥ (k − 1)/6 + 1, then s ≤ (k − 1)/3 + r1 ≤ 3r1 − 2, which means that there is no
gap between the first two intervals, and thus they cover [0, s+ 2r1 + r2 − 3]. If we also have
s+ r1 ≥ 2(k − 1)/3 + 2, then

s+ 2r1 + r2 − 3 ≥ 2(k − 1)/3 + 2 + (k − 1)/3− 3 = k − 2,

and thus all elements of Zk are covered with the possible exception of k − 1. If we still have
r1 ≥ (k − 1)/6 + 1 but s + r1 ≤ 2(k − 1)/3 + 1, then we must have r1 = (k − 1)/6 + 1 and
s = (k− 1)/2, so the first two intervals cover [0, k− 3], but the third interval includes k− 1,
and thus all elements of Zk are covered with the possible exception of k − 2.

This leaves us with only the cases when r1 = r2 = (k− 1)/6, and s = (k− 1)/3 + r1− 1 =
(k − 3)/2 or s = (k − 1)/2. In the first case, we can compute that, as a set of integers,
3(I1 ∪ I2) equals

[0, 2k − 8] \ {i(k − 3)/2− 1 : i = 1, 2, 3}.
For k = 7, this means that 3(I1 ∪ I2) = {0, 2, 4, 6}, so |3(I1 ∪ I2)| 6= k− 2. When k > 7, then
k+(k−3)/2−1 is between 3(k−3)/2−1 and 2k−8, so we find that 3(I1∪I2) = Zk \{k−4}.

The remaining case is when r1 = r2 = (k − 1)/6 and s = (k − 1)/2, in which case I1 ∪ I2
is an arithmetic progression with starting element (k − 1)/2 and difference (k + 1)/2, so
|3(I1 ∪ I2)| = k − 3. �

The only groups left to treat are the elementary abelian 7-groups, and they require con-
siderable attention. Our result will follow easily from the following structure theorem.

Theorem 4.5. Let r be a positive integer. Suppose that A is a subset of G = Zr
7 of size

(7r − 1)/3 and 0 6∈ 3A. Then there is an ascending chain of subgroups

{0} = H0 < H1 < · · · < Hr = G

and elements

a0, a
′
0 ∈ H1, ak ∈ Hk+1 \Hk for k = 1, . . . , r − 1,

such that

A = {a0, a′0} ∪
r−1⋃
k=1

({ak, 2ak}+Hk) .
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Proof. First, recall that Zr
7 has exactly (7r−1)/6 subgroups of index 7; indeed, identifying Zr

7

with the r-dimensional vector space over Z7, we note that each (r− 1)-dimensional subspace
corresponds to its normal vector that is unique up to nonzero scalar multiples.

Next, we prove that our conditions imply that for any subgroup H of G we have |A∩H| =
(|H| − 1)/3. Since by Proposition 4.1 we have

χ(H, 3) = (|H| − 1)/3 + 1,

we see that H may contain at most (|H| − 1)/3 elements of A, since otherwise H ⊆ 3A,
contradicting 0 6∈ 3A. Therefore, we only need to prove that H contains at least (|H| − 1)/3
elements of A. As 0 6∈ 3A implies that 0 6∈ A, this trivially holds for |H| = 1.

For subgroups of order 7, we observe that the collection of pierced lines

{H \ {0} : H ≤ G, |H| = 7}
forms a partition of G \ {0}. Therefore, in order to have |A| = (|G| − 1)/3, no pierced line,
and thus no subgroup of order 7, may contain fewer than 2 elements of A. Since for all
subgroups H of G, H \ {0} is the disjoint union of pierced lines, our claim follows.

We are now ready to prove our theorem. For r = 1 there is nothing to prove.
We consider the case of r = 2 next, and suppose that A is a 16-element subset of Z2

7 such
that 0 6∈ 3A. Note that if H ≤ Z2

7 is of order 7, then at most two H-cosets can contain
3 or more elements from A. Suppose, to the contrary, that H-cosets C1, C2, and C3 each
contain at least 3 elements from A. Since χ(G/H, 3) = χ(Z7, 3) = 3, we can then find (not
necessarily distinct) indices i, j, k ∈ {1, 2, 3} so that Ci +Cj +Ck = H. Letting Ai = A∩Ci,
Aj = A ∩ Cj, and Ak = A ∩ Ck, Kneser’s Theorem implies that

|Ai + Aj + Ak| ≥ |Ai|+ |Aj|+ |Ak| − 2|K|,
where K is the stabilizer subgroup of Ai + Aj + Ak in H. Since 0 6∈ 3A, here Ai + Aj + Ak

is a proper subset of H, and thus is aperiodic (that is, K is trivial). But then our inequality
becomes

6 ≥ |Ai|+ |Aj|+ |Ak| − 2,

a contradiction.
Next, we show that there is a subgroup H of G of order 7 so that one of its cosets contains

at least 4 elements from A. For the sake of contradiction, assume the contrary. Then for
each H, out of the seven H-cosets, two contain 3 elements from A and five contain 2 elements
from A. Let us count the size of the following set in two different ways:

S := {(C, a, a′) : C is an affine line in G; a, a′ ∈ C ∩ A; a 6= a′},
where by an affine line we mean a coset of a subgroup of order 7. On one hand, after
arbitrarily choosing distinct elements a and a′ from A, there exists a unique affine line C
through a and a′, thus |S| = |A| · (|A| − 1) = 240.

For a different count, we partition the 56 affine lines into 8 different parallel classes de-
pending on which subgroup they correspond to. According to our indirect assumption, for
each such class, the numbers of elements of A lying on the 7 parallel lines are 3, 3, 2, 2, 2, 2, 2.
Therefore, for each class the number of suitable pairs a, a′ is 6 + 6 + 2 + 2 + 2 + 2 + 2 = 22,
yielding |S| = 8 · 22 = 176, a contradiction.

Therefore, we may choose a subgroup H of order 7 in G in such a way that at least one
of its cosets contains at least 4 elements from A. We choose an arbitrary element c ∈ G \H,
and let Ci = ic+H for i = 0, . . . , 6; we also set Ai = Ci∩A. According to our considerations
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at the beginning of the proof, we have |A0| = 2, and we may assume that |A1| = max{|Ai|};
by the previous reasoning, |A1| ≥ 4.

An argument similar to the one above using Kneser’s Theorem yields that when there are
(not necessarily distinct) indices i, j, k ∈ {0, . . . , 6} for which i+ j+k ≡ 0 mod 7, none of Ai,
Aj, or Ak is the emptyset, and |Ai| + |Aj| + |Ak| ≥ 9, then H ⊆ 3A, contradicting 0 6∈ 3A.
Therefore, we have 2|A1| + |A5| ≤ 8 if A5 6= ∅; since |A1| ≥ 4, this yields A5 = ∅. Similarly,
|A0| + |A1| + |A6| ≤ 8 if A6 6= ∅, and thus |A6| ≤ max{0, 6 − |A1|}; and |A1| + 2|A3| ≤ 8,
and thus |A3| ≤ 4− |A1|/2. Furthermore, we can easily see that |A2| + |A4| ≤ |A1|; indeed,
if neither A2 nor A4 is empty, then this follows from |A2| + |A4| ≤ 8 − |A1| since |A1| ≥ 4,
and it holds trivially when one of A2 or A4 is empty, by our choice of A1. We thus have

16 = |A| = |A0|+ |A1|+ |A3|+ |A5|+ |A6|+ (|A2|+ |A4|)
≤ 2 + |A1|+ (4− |A1|/2) + 0 + max{0, 6− |A1|}+ |A1|,

from which we get |A1| = 7. But then our previous inequalities yield A3 = A6 = ∅ and
|A2| + |A4| = 7; the latter equality can only occur when one of A2 or A4 is empty and the
other is a full coset.

Note that (C0, C1, C2) and (C0, C4, C1) are both 3-term arithmetic progressions in G/H.
Let us now set H1 = H, {a0, a′0} = A0, and a1 = c or a1 = 4c depending on whether
A = A0 ∪ C1 ∪ C2 or A = A0 ∪ C1 ∪ C4. Then

A = {a0, a′0} ∪ ({a1, 2a1}+H1) ,

and thus our proof for the case of r = 2 is complete.
We now use induction to prove that our result holds for any r ≥ 3. To start, we examine

cosets of subgroups of rank r− 2 in G, which here we call flats; more specifically, we say that
a coset of a subgroup K of rank r − 2 is a flat of type K. We can count the number of flats
fully contained in A as follows. Since none of them is a subgroup, each flat F contained in A
generates a unique subgroup 〈F 〉 of index 7. By our inductive hypothesis, 〈F 〉 ∩ A consists
of two full flats and a part of a third, all of the same type. Therefore, 〈F 〉∩A cannot contain
a full third flat of any type. Since there are (7r− 1)/6 subgroups of index 7 in G, A contains
exactly (7r − 1)/3 flats; we call these A-flats.

We see that not all A-flats are of the same type: indeed, a subgroup of rank r− 2 in G has
49 cosets, of which at most 48 are in A, but (7r − 1)/3 is more than 48 if r ≥ 3. Now let F1

and F2 be A-flats of types K1 and K2, respectively, with K1 6= K2. Then H = K1 +K2 is a
subgroup of index 7 in G, since K1 +K2 = G would imply that F1 + 2F2 = G, contradicting
3A 6= G. For the same reason, H contains every subgroup of rank r− 2 that has a flat in A.

Now let c ∈ G \H be an arbitrary element; the cosets of H in G then are Ci = ic+H as
i = 0, 1, . . . , 6. Note that each A-flat is contained entirely in one of the seven cosets of H in
G; let Fi be the union of A-flats in Ci. By our inductive assumption, H itself has exactly
two A-flats, and they are of the same type. However, there has to be at least one coset of H
that has at least two A-flats of different types, since we have more than 2 + 6 ·7 = 44 A-flats;
without loss of generality, suppose that C1 contains at least two different types of A-flats.

Note that the sum of two flats of different types is an entire coset of H. Therefore, F6 = ∅,
since otherwise F0 + F1 + F6 = C0, contradicting 0 6∈ 3A. Similarly, from 1 + 3 + 3 ≡
1 + 1 + 5 ≡ 1 + 2 + 4 ≡ 0 mod 7, we get F3 = F5 = ∅ and that at least one of F2 or F4 is
empty. So either C0 ∪C1 ∪C2 or C0 ∪C1 ∪C4 contains all A-flats; since C0 contains exactly
2, the other two cosets each have to contain the maximum possible number that they can,
which is 7 · (7r−1 − 1)/6. But if a coset of H contains 7 A-flats of the same type, then it is
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the disjoint union of these A-flats, so we must have A = (A ∩ H) ∪ (c + H) ∪ (2c + H) or
A = (A∩H)∪ (c+H)∪ (4c+H). This means that we can set Hr = H and ar = c or ar = 4c,
and then apply the inductive hypothesis within H. This completes our proof. �

Corollary 4.6. If G is an elementary abelian 7-group, then S(G, 3) = {n− 3}.

Proof. Let A be a 3-incomplete subset of G of size (n− 1)/3. After translating A, if needed,
we may assume that 0 6∈ 3A; we can then use Theorem 4.5 to show that |3A| = n−3. Indeed,
we find that if n = 7r, then

|3A| = 6 · 7r−1 + 6 · 7r−2 + · · ·+ 6 · 7 + 6− 2 = 7r − 3.

�
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Arithmetic Combinatorics Research Group, ELKH, Műegyetem rkp. 3., H-1111 Budapest,
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