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Abstrat. We present a desription of the �nitely generated free

algebras in the varieties of iterated semidiret produts of semilat-

ties. Asymptotial bounds for the free spetra of these varieties

are given.

1. Introdution

Semidiret produts and iterated semidiret produts of semmilat-

ies are thorougly investigated in [1℄. Among others, it is shown that

eah variety of iterated meet semilatties is �nitely generated and non-

�nitely based. In this paper we extend the results of [1℄ on these vari-

eties. We present a new haraterization for the word problem of these

varieties, and give an asymptoti estimate for their free spetra. We

do it via �nding a normal form for the elements of the free algebras in

eah variety.

Let A be an m-element �nite algebra. Let V denote the variety

generated by A, and denote by FV(n) the free algebra in V generated

by n elements. The free spetrum of a variety V is the sequene of

ardinalities |FV(n)|, n = 0, 1, 2, . . .. We an think of the free spetrum

as the number of n-ary operations over A. The pn sequene of the

variety is the number of essentially n-ary term operations over A. It is

known that the size of the n-generated free algebra (|FV(n)|) in V is at

most m
mn

. If m ≥ 2, then |FV(n)| ≥ n. For example, the free spetrum

of Boolean algebras is |FV(n)| = 22n

. The �rst important question

about free spetra is the following: Within the above bounds what are

the possible sequenes? For example, if G is a �nite group, then the

size of the n-generated relatively free group in the variety generated by

G is exponential in n if G is nilpotent, and doubly-exponential if G is

not nilpotent ([5℄ and [8℄).
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There are very few results on the free spetra of semigroup varieties.

For a basi referene on the general properties of pn sequenes for semi-

groups see [3℄. A full desription of �nite semigroups for whih the pn

sequene is bounded by a polynomial is presented in [4℄. Among others,

free spetra of surjetive semigroups were onsidered in [3℄, bands in

[9℄ and ombinatorial 0-simple semigroups in [7℄.

2. Preliminaries

Let t = t(x1, . . . , xn) be an n-ary term. Then a term operation tA is

said to be essentially n-ary if it depends on all of its variables. That

is, if for all 1 ≤ i ≤ n there exist a1, . . . , ai−1, a, b, ai+1, . . . , an ∈ A suh

that

t(a1, . . . , ai−1, a, ai+1, . . . , an) 6= t(a1, . . . , ai−1, b, ai+1, . . . , an).

The ontent of t for some term t is the set of variables ourring in t.

We denote it by c(t). For n ≥ 1, denote the number of essentially n-ary

term operations over A by pn(A). For the free spetrum of a variety

we have

(1) |FV(n)| =
n
∑

k=0

(

n

k

)

pk(A)

Our main referene is going to be the book of J. Almeida ([1℄), where

detailed disussion of semidiret produts of semigroups an be found.

In this paper we only list the properties of iterated semidiret produts

of semilatties whih are neessary for us. A semilattie is a ommuta-

tive idempotent semigroup. The variety of semilatties will be denoted

by SL. The variety generated by semidiret produts of two semi-

latties will be denoted by SL2
, and SLt

will denote in general the

variety generated by the t-times iterated semidiret produt of semi-

latties. For every t the variety SLt
is loally �nite and generated by

FSLt(2t), the 2t generated free algebra of the variety. Sine the variety

of semilatties SL is ontained in eah variety SLt
, a term ontaining

n variables neessary determines an essentially n-ary term operation.

Let SLt(n) be the set of the n-ary terms in SLt
. We denote by pn(t)

the number of essentially n-ary term operations in the variety SLt
,

thus |SLt(n)| = pn(t).

3. Reurrene formula

In this Setion we present a new haraterization of the word problem

for the variety SLt
, then a reurrene formula is given for the number

of essentially n-ary terms.
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At �rst reall the identity basis of SLt
from [1℄. Let X = {x1, x2, . . . }

be a ountable set of variables and X+ (X∗) be the free semigroup (free

monoid) over X.

ut−1 . . . u1xixj = ut−1 . . . u1xjxi,

ut−1 . . . u1x
2
i = ut−1 . . . u1xi,

where c(w) denotes the ontent of w for some w ∈ X∗ and xi, xj ∈
c(u1) ⊆ · · · ⊆ c(ut−1), uj ∈ X+). We say that

(2) (u =)w0, w1, . . . , wr(= v)

is a dedution of an identity u = v from a set Σ of identities if for eah

j ∈ {0, . . . , r − 1} there exist fatorizations

(3) wj = aj(ϕjuj)bj and wj+1 = aj(ϕjvj)bj,

where eah ϕj : X+ → X+ is a substitution of the variables and one of

the identities uj = vj or vj = uj belongs to Σ. The dedution is left

absorbing if eah aj of the ourring pre�xes in (3) is the empty word.

We say the dedution (2) involves no substitutions, if all homomorphism

ϕj are the identity funtion. Lemma 10.3.4. and Theorem 10.3.6. in

[1℄ ontains the following result.

Theorem 3.1. For eah t ≥ 2 Σt−1 is the identity basis for SLt
.

Moreover, SLt |= u = v for u, v ∈ X∗ if and only if there exists a

dedution of u = v from Σt−1 whih is left absorbing and involves no

substitutions.

That is, if SLt |= u = v, then there exists a dedution u = w0, w1, . . . , wr =
v suh that eah wj = wj+1 of the dedution is one of the following

identities

ut−1 . . . u1xyw = ut−1 . . . u1yxw(4)

ut−1 . . . u1x
2w = ut−1 . . . u1xw,(5)

where x, y ∈ X, w ∈ X∗, uj ∈ X+ (j ∈ {1, . . . , t − 1}) and x, y ∈
c(u1) ⊆ · · · ⊆ c(ut−1). We all a step of the form (4) or (5) an elemen-

tary step on level t. From now on, let u ∼t v denote SLt |= u = v for

two terms u, v ∈ X∗ . Note that u ∼t v and c(v) = c(u) ⊆ c(w) yields

wu ∼t+1 wv. Moreover, from u ∼t v follows uw ∼t vw for any terms

u, v, w ∈ X∗, t ≥ 2. Now, let us introdue a notation whih we will use

frequently throughout Setions 3 and 4.

Notation 3.2. Let u ∈ X+ be a term. Let mu be the last ourring

variable. Let fu be the pre�x of u before the �rst ourene of mu and
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let bu be the su�x of u after the �rst ourene of mu, i.e. u = fumubu,

where c (fu) = c (u) \ {mu }. Note that bu is the empty term if a

variable ours only at the end of u, and fu is the empty term if u

ontains only one variable.

Theorem 3.3. Let t ≥ 2 and u and v be two essentially n-ary terms

over the set Xn = { x1, . . . , xn }. Aording to Notation 3.2: u =
fumubu, v = fvmvbv. Then u ∼t v if and only if

(i) mu = mv,

(ii) fu ∼t fv,

(iii) bu ∼t−1 bv.

Proof. Assume �rst that onditions (i),(ii) and (iii) hold. We prove

that u ∼t v. By (iii) there exist a dedution bu = w0, w1, . . . , wr = bv,

suh that every wi ∼t−1 wi+1 is an elementary step on level t − 1.
Note that fumuwi ∼t fumuwi+1 is an elementary step on level t, sine

c(fumu) = Xn. Then fumubu ∼t fumubv by the dedution fumubu =
fumuw0, fumuw1, . . . , fumuwr = fumubv. From (ii) we have fu ∼t fv,

therefore fumubv ∼t fvmubv. These two dedutions together prove

fumubu ∼t fvmubv. Finally, by (i) we have mu = mv, hene u =
fumubu ∼t fvmvbv = v.

For the other diretion we prove that if u = fumubu ∼t fvmvbv = v

by one elementary step on level t, then (i), (ii) and (iii) hold. Then

by indution on the length of the dedution it follows that if u =
fumubu ∼t fvmvbv = v then (i), (ii) and (iii) hold.

Assume �rst that we use an elementary step of form (4). Now,

u = ut−1ut−2 . . . u1xyw and v = ut−1ut−2 . . . u2u1yxw for some terms

w ∈ X∗
n and uj ∈ X+

n suh that x, y ∈ c(u1) ⊆ c(u2) ⊆ · · · ⊆
c(ut−2) ⊆ c(ut−1). We distinguish two ases aording to whether or

not c(ut−1) = Xn.

Case 1. c (ut−1) = Xn. This implies that mu ours in ut−1, and

therefore fumu is a pre�x of ut−1. Similarly fvmv is a pre�x of vt−1,

hene (i) and (ii) hold. For some term s ∈ X∗
n we have ut−1 =

fumus = fvmvs. Then the dedution bu = (sut−2)ut−3 . . . u1xyw,

(sut−2)ut−3 . . . u1yxw = bv shows bu ∼t−1 bv, and so (iii) holds.

Case 2. c (ut−1) 6= Xn. Thus c(ut−1ut−2 . . . u2u1xy) 6= Xn, either,

hene the last ourring variable in both u and v appears in w. Now,

u = ut−1ut−2 . . . u1xyw, v = ut−1ut−2 . . . u1yxw, hene mu = mv and

bu = bv, proving (ii) and (iii). Moreover, there exists a term s ∈ X∗
n suh

that fu = ut−1ut−2 . . . u2u1xys and fv = ut−1ut−2 . . . u2u1yxs. Then

ut−1ut−2 . . . u2u1xys ∼t ut−1ut−2 . . . u2u1yxs is an elementary step. Thus

fu ∼t fv and (iii) holds.
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The ase where we use an elementary step of form (5) an be handled

similarly. Indution on the length of the dedution showing u ∼t v

�nishes the proof, as eah property (i), (ii) and (iii) is preserved by an

elementary step. �

In other words, by Theorem 3.3 every n-ary term over SLt
an be

represented as a triple. This triple onsists of an (n− 1)-ary term over

SLt
, a variable and an at most n-ary (possibly empty) term of SLt−1

.

This is the key observation for proving a reurrene formula for pn(t).

Theorem 3.4. The following reurrene formula holds for the number

of essentially n-ary term operations:

(6) pn (t) = npn−1 (t)
n
∑

k=0

(

n

k

)

pk (t − 1) .

Proof. In the variety SLt
every term ontaining n variables determines

an essentially n-ary term operation. Let u be an essentially n-ary

term over SLt
. By Theorem 3.3 we an assign a triple fu, mu, bu

to u bijetively, where fu is an (n − 1)-ary term over SLt
, mu is a

variable and bu is an at most n-ary (possible empty) term of SLt−1
.

We ount the number of suh triples. We have n many hoies for mu

and pn−1 (t) many hoies for fu. The number of the at most n-ary

terms over SLt−1
is the size of the n-generated free algebra in SLt−1

.

ording to formula (1) in Setion 2 we have
∑n

k=0

(

n
k

)

pk (t − 1) many

hoies for bu. Thus the reurrene formula (6) is gained. �

4. Normal form

In Setion 4 a normal form for the elements of the free algebra in the

varieties SLt
is presented. The length of this normal form is polynomial

in the number of variables. Additionally, one an easily alulate the

produt of these normal forms and obtain the result in normal form.

Constrution 4.1. By Theorem 3.3 every n-ary term over SLt
an be

represented as a triple. This triple onsists of an (n− 1)-ary term over

SLt
, a variable and an at most n-ary (possible empty) term of SLt−1

.

Let us assign this triple to the term. If we multiply these elements from

left to right we obtain the original word. Now, we iterate this proess

for the �rst and the third parts, simoultaneously. After �nitely many

steps we arrive at terms of SL1
and unary terms of SLs

for some s ≤ t.

Conneting all the noted terms with the elements of the orresponding

triple, we get a rooted tree, as it is illustrated on Figure 1.
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Figure 1

Aording to Theorem 3.3 this tree uniquely determines the original

term, and the sheme of the tree only depends on the equivalene lass

of the original term. There are three kinds of leaves on the tree: unary

terms of SLs
for some s, arbitrary terms of SL1

and variables. In the

�rst two ases we assign to the leaf the shortest normal form of the

term written on the leaf itself. That is, in the ase of a unary term xk
i

of SLs
we assign xl

i to the leaf, where l = min{k, s}. While in the ase

of an arbitrary term w of SL1
the term xi1xi2 · · ·xir is assigned, where

the variables ourring in w are in inreasing order aording to their

indies. We de�ne the normal form of the term by writing the terms

assigned to the leaves next to eah other from left to right.

Figure 2 illustrates an example. It shows how the normal form of

x3
1x2x1x3x

2
2x3x1 in SL2

is omputed. The normal form is x2
1x2x1x3x1x2x3.

The variety is indiated in the upper right orner of the terms.

Figure 2
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Let us denote the normal form of a term w in the variety SLt
by

ϕt (w). The following algorithm omputes ϕt reursively.

Algorithm 4.2. Let w be an n-ary term.

(1) If t = 1, then let ϕ1 (w) = xi1xi2 . . . xik , where the variables

ourring in w are in inreasing order aording to their indies.

(2) If n = 1 and w = xk
i , then let l = min {t, k} and ϕt

(

xk
i

)

= xl
i.

(3) Otherwise let ϕt (w) be the onatenation of the terms ϕt (fw),
mw and ϕt−1 (bw), i.e. ϕt (w) = ϕt (fw) mwϕt−1 (bw).

Note that steps (1), (2) and (3) are invoked as many times as the

number of verties the tree has in Constrution 4.1. Moreover eah

step takes linear time (in the length of the term).

Now, we show that we assigned a unique normal form to every term,

and distint terms have distint normal forms.

Proposition 4.3. Let u, v be n-ary terms. Then u ∼t v if and only if

the normal form of u and v in SLt
are the same, that is, ϕt (u) = ϕt (v).

Proof. We prove the proposition by indution on t and n. If t = 1 or

n = 1 then the proposition holds. Assume that n ≥ 2 and t ≥ 2.
Let u ∼t v. By Theorem 3.3 we have fu ∼t fv, mu = mv and bu ∼t−1

bv. By the indution hypothesis fu ∼t fv implies ϕt (fu) = ϕt (fv), and
ϕt−1 (bu) = ϕt−1 (bv) follows from bu ∼t−1 bv. From step (3) of Algo-

rithm 4.2 we have ϕt (u) = ϕt (fu) muϕt−1 (bu) = ϕt (fv) mvϕt−1 (bv) =
ϕt (v).
Now, assume that ϕt (u) = ϕt (v). From step (3) of Algorithm 4.2

we have mu = mv, thus ϕt (fu) = ϕt (fv) and ϕt−1 (bu) = ϕt−1 (bv).
By the indution hypothesis we have fu ∼t fv and bu ∼t−1 bv. From

Theorem 3.3 u ∼t v follows. �

Proposition 4.4. Let u be an n-ary term in the free algebra of SLt
.

Then ϕt (u) is a shortest element in the equivalene lass of u.

Proof. We prove the proposition by indution on n and t. The state-

ment holds if n = 1 or t = 1. Assume that n ≥ 2 and t ≥ 2, and let

v be in the equivalene lass of u. By Theorem 3.3 we have fu ∼t fv,

mu = mv and bu ∼t−1 bv. By the indution hypothesis ϕt (fu) is in

the equivalene lass of fu and ϕt (fu) is shorter than fv. Similarly,

ϕt−1 (bu) is in the equivalene lass of bu and ϕt−1 (bu) is shorter than
bv. By Theorem 3.3, ϕt (u) = ϕt (fu) muϕt−1 (bu) is in the equivalene

lass of u = fumubu and is shorter than v = fvmvbv. �

Finally, we give an upper bound on the length of the normal form

and on the time demand of Algorithm 4.2 for omputing the normal

form of the produt of two normal forms.
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Proposition 4.5. The normal form of an n-ary term in SLt
has length

at most
(

n+t
t

)

− 1. Given two n-ary normal forms in SLt
the normal

form of their produt an be alulated in O (n2t−1) time.

Proof. Let M(n, t) denote the maximal length of the normal form of an

n-ary term in the variety SLt
. From Proposition 4.4 and Algorithm 4.2

we obtain M(n, t) = M(n − 1, t) + 1 + M(n, t − 1) with initial values

M(1, t) = t and M(n, 1) = n. This reurrene formula has the solution

M(n, t) =
(

n+t
t

)

− 1 = O(nt).
Let L(n, t) denote the number of leaves on the tree of the nor-

mal form in Constrution 4.1. Again, a reurrene formula an be

obtained: L(n, t) = L(n − 1, t) + L(n, t − 1) + 1 with initial val-

ues L(n, 1) = L(1, t) = 1. This reurrene formula has the solution

L(n, t) = 2
(

n+t−2
t−1

)

− 1 = O(nt−1). Every non-leaf vertex of the tree

is a parent of a leaf, thus the tree in Constrution 4.1 has exatly

2L(n, t) = 4
(

n+t−2
t−1

)

− 2 = O(nt−1) verties. The number of non-leaf

verties is equal to the number of steps invoked during Algorithm 4.2.

Let u and v be two n-ary normal forms in SLt
, then their lengths are at

most O (nt). Steps (1), (2) and (3) are invoked O(nt−1) times, and eah

time omputing the arguments for the next reursive step takes linear

time in the length of the term, i.e. O (nt) time. Thus Algorithm 4.2

takes O (n2t−1) time to run on uv. �

5. Expliit formula

The aim of this setion is to �nd expliit formulae for the pn sequenes

and the free spetra of the varieties SLt
. The size of the free monoids

in the smallest varieties an be determined with high auray.

Proposition 5.1. For the number of n-ary terms in SL1
and SL2

we

have

(7) pn(1) = 1 and pn(2) = n! · 2(n+1

2 )

Proof. As any element of the free semilattie is determined by the set

of its variables, we have pn(1) = 1, and learly p1(2) = 2 holds. By

iterated use of (6) we get
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pn(2) = n

(

n
∑

k=0

(

n

k

)

pk(1)

)

pn−1(2) =

= n

(

n
∑

k=0

(

n

k

)

pk(1)

)

(n − 1)

(

n−1
∑

k=0

(

n − 1

k

)

pk(1)

)

pn−2(2) =

= n

(

n
∑

k=0

(

n

k

)

pk(1)

)

(n−1)

(

n−1
∑

k=0

(

n − 1

k

)

pk(1)

)

· · · 1·

(

1
∑

k=0

(

1

k

)

)

p0(2) =

= n!
n
∏

i=1

(

i
∑

k=0

(

i

k

)

pk(1)

)

= n!
n
∏

i=1

(

i
∑

k=0

(

i

k

)

)

= n!
n
∏

i=1

2i = n!·2(n+1

2 )

�

Corollary 5.2. |FSL1(n)| = 2n − 1 and |FSL2(n)| = n! · 2(n+1

2 ) + O(n! ·

2(n

2)).

Proof. By formulae (1) and (7) we get

|FSL1(n)| =
n
∑

i=1

(

n

i

)

pn(1) =
n
∑

i=1

(

n

i

)

= 2n − 1.

For t = 2 the same arguments yield

|FSL2(n)| =
n
∑

i=1

(

n

i

)

i! · 2(i+1

2 ) =

= n! ·2(n+1

2 )+n(n−1)! ·2(n

2)+

(

n

2

)

(n−2)! ·2(n−1

2 )+
n−3
∑

i=1

(

n

i

)

i! ·2(i+1

2 ) =

= n! · 2(n+1

2 ) +n! · 2(n

2) +
n!

2
· 2(n−1

2 ) +
n−3
∑

i=1

n(n− 1) · · · (n− i+1)2(
i+1

2 ) =

= n! · 2(n+1

2 ) + O
(

n! · 2(n

2)
)

+ O
(

2nn! · 2(n−2

2 )
)

=

= n! · 2(n+1

2 ) + O
(

n! · 2(n

2)
)

�

Although for pn(2) we have a nie losed formula, it is hopeless to

get one for |FSL2(n)|. The ase of SL3
is even more ompliated.
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Proposition 5.3. There exist a onstant α > 1 and a monotone in-

reasing sequene of real numbers αn → α suh that

pn(3) = αnn!(
n
∏

i=1

i!)2(n+2

3 )

.

Proof. Aording to the reurrene formula (6) and formula (7) one an

obtain pk(3) = pk−1(3)k
k
∑

i=0

(

k
i

)

i! · 2(i+1

2 ). To simplify the alulation εk

be de�ned by the following:

(8)

k
∑

i=0

(

k

i

)

i! · 2(i+1

2 ) = pk(2)(1 + εk).

The reurrene formula an be expanded as follows:

pn(3) = pn−1(3)npn(2)(1 + εn) =

= pn−2(3)n(n − 1)pn(2)pn−1(2)(1 + εn)(1 + εn−1) = · · · =

= n!

(

n
∏

i=2

pi(2)(1 + εi)

)

p1(3) = n!

(

n
∏

i=2

i! · 2(i+1

2 )(1 + εi)

)

p1(3) =

=
3

2
n!

(

n
∏

i=1

i!

)

2(n+2

3 )
n
∏

i=2

(1 + εi).

From (8) εk =
k−1
∑

i=0

1
(i+1)!

2−(i+1)(2k−i)/2 <
k−1
∑

i=0

2−k−i < 21−k (for k ≥ 2).

Using the inequality 1 + x < ex we obtain

n
∏

i=2

(1 + εi) <

n
∏

i=2

eεi <

n
∏

i=2

e21−i

< e.

Thus αn = 3
2

n
∏

i=2

(1 + εi) < 3
2
e, and the statement holds. �

Note that α = 1.70506 . . .

Corollary 5.4. There exists a sequene of real numbers βn → α suh

that |FSL3(n)| = βnn!(
n
∏

i=1

i!)2(n+2

3 ). In partiular,

log2 |Fn(3)| =

(

n + 2

3

)

+
1

2 log 2
· n2 log n + O(n2).
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Proof. By Proposition 5.3 we have pk(3) = αkk!(
k
∏

i=1

i!)2(k+2

3 ). The �rst

part of the statement holds, sine
|F

SL3 (n)|

pn(3)
→ 1. Indeed,

|FSL3(n)| =
n
∑

i=1

(

n

i

)

pi(3) =
n
∑

i=1

(

n

i

)

αii!

(

i
∏

j=1

j!

)

2(i+2

3 ) =

= pn(3)
(

1 + O(2−n(n+1)/2)
)

= pn(3)(1 + o(1)).

For the seond part note that the numbers of the form

n
∏

i=1

i! are alled

superfatorials. From Stirling's formula one an derive the following

well-known estimates for the logarithms of fatorials and superfatori-

als.

log2 βnn! = O(n log n),

(9) log2

(

n
∏

i=1

i!

)

=
1

2 log 2
· n2 log n + O(n2).

By substituting these to the formula |FSL3(n)| = βnn!(
n
∏

i=1

i!)2(n+2

3 ), we

get

log2 |FSL3(n)| =

(

n + 2

3

)

+
1

2 log 2
· n2 log n + O(n2).

�

Theorem 5.5. For the pn sequene of the variety SLt
the following

asymptoti formula holds for t ≥ 3:

log2 pn(t) =

(

n + t − 1

t

)

+
1

log 2
·

1

(t − 1)!
· nt−1 log n + Ot(n

t−1)

Proof. De�ne

an(t) =





n
∏

i1=1

i1
∏

i2=1

· · ·

it−3
∏

it−2=1

it−2!



 2(n+t−1

t
) and bn(t) = ent−2 log n

Now we prove that

(10) an(t) ≤ pn(t) ≤ an(t)bn(t) for t ≥ 3, n ≥ 2,

then give an estimate for log an(t).
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For the lower bound at �rst we hek the ase n = 2. Clearly,

a2(t) = 2t+2 and p2(2) = a2(2) = 16, thus a2(t) ≤ p2(t) is true for

t = 2. By indution on t and the reurrene formula (6)

p2(t) = 2t(p2(t − 1) + 2(t − 1) + 1) ≥ 2p2(t − 1) ≥ 2a2(t − 1) = a2(t),

thus a2(t) ≤ p2(t) holds for every t ≥ 2.
We prove the inequality an(t) ≤ pn(t) by indution on t. For t = 3

it follows from Proposition 5.3, as αn > 1. Suppose that it is proved

for some t ≥ 3.
The reurrene formula (6) for pn(t) implies that

pn(t + 1) = pn−1(t + 1)n
n
∑

i=0

(

n

i

)

pi(t) ≥ pn−1(t + 1)pn(t) ≥ · · · ≥

≥ pn(t)pn−1(t) · · · p2(t)p1(t + 1).

By the indution hypothesis ak(t) ≤ pk(t) for 2 ≤ k ≤ n and p1(t+1) =

t + 1 ≥ 2, and using

n
∏

i=2

ai(t) = 1
2
an(t + 1)

pn(t + 1) ≥ an(t)an−1(t) · · · a2(t) · 2 = an(t + 1).

Now we ontinue with the upper bound of (10). Similarly to the

proof of Proposition 5.3 in order to estimate the quotient of the size of

the free algebra and pn(t) de�ne ηk = |Ft(k)|
pk(t)

=
k−1
∑

i=0

(

k
i

)

pi(t)
pk(t)

. We prove

that

(11)

n
∏

k=2

k
∑

i=0

(

k
i

)

pi(t)

pk(t)
=

n
∏

k=2

(1 + ηk) < e.

From the reurrene formula (6)

pi−1(t)

pi(t)
=

1

i
·

1
i
∑

j=0

(

k
j

)

pj(t − 1)

≤
1

i
·

1
i
∑

j=0

(

k
j

)

=
1

i2i
.

Then

(

k

i

)

pi(t)

pk(t)
=

(

k

i

) k
∏

j=i+1

pj−1(t)

pj(t)
≤

1

(k − i)!
· 2(i+1

2 )−(k+1

2 ) ≤ 2i−2k+1,
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so ηk =
k−1
∑

i=0

(

k
i

)

pi(t)
pk(t)

< 21−k. Using the inequality 1 + x < ex we obtain

n
∏

i=2

(1 + ηi) <

n
∏

i=2

eηi <

n
∏

i=2

e21−i

< e.

By proeeding by indution on t we show that pn(t) ≤ an(t)bn(t) if

t ≥ 3, n ≥ 2 exept t = 4 and n = 2. For t = 3 the inequality pn(t) ≤
an(t)bn(t) obviously holds (see Proposition 5.3). By the reurrene

formula (6) and the inequality (11)

(12) pn(t + 1) = n!(t + 1)pn(t)pn−1(t) · · · p2(t) ·
n
∏

k=2

k
∑

i=0

(

k
i

)

pi(t)

pk(t)
<

< n!(t + 1)pn(t)pn−1(t) · · · p2(t)e.

Aording to the indution hypothesis we have pj(t) ≤ aj(t)bj(t) for

any 2 ≤ j ≤ n exept the ase t = 4, j = 2. In this exeptional

ase, p2(4) = 1064 and a2(4)b2(4) = 1024, hene p2(4) ≤ 2a2(4)b2(4).
Applying these estimations we get

(13)

n!(t+1)pn(t)pn−1(t) · · · p2(t)e < n!(t+1)an(t) · · · a2(t)bn(t) · · · b2(t)·2e =

= an(t + 1)n!(t + 1)e
n
∏

i=2

bi(t).

Hene,

(14) pn(t + 1) < an(t + 1)n!(t + 1)e
n
∏

i=2

bi(t).

Now, an estimate for the logarithm of the right-hand side of (14) is

going to be given. The funtion xt−2 log x is inreasing, thus for the

logarithm of

n
∏

i=2

bi(t) we get

(15) log

(

n
∏

i=2

bi(t)

)

=
n
∑

i=2

it−2 log i ≤ nt−2 log n +

n
∫

2

xt−2 log x,
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where

(16)

n
∫

2

xt−2 log x ≤

n
∫

2

xt−2 log x +
1

t − 1
xt−2 =

=

[

1

t − 1
xt−1 log x

]n

2

≤
1

t − 1
nt−1 log n.

From (15) and (16) we obtain

(17)

log
n
∏

i=2

bi(t) ≤

(

1

n
+

1

t − 1

)

nt−1 log n =

(

1

n
+

1

t − 1

)

log bn(t + 1).

The following inequality also holds

(18) log(n!(t + 1)e) ≤ n log n + log(t + 1) + 1 =

=

(

1

nt−2
+

log(t + 1)

nt−1 log n
+

1

nt−1 log n

)

log bn(t + 1).

Taking the logarithm of both sides of (14) and substituting (17) and

(18) we obtain that pn(t + 1) ≤ an(t + 1)bn(t + 1) if

1

n
+

1

t − 1
+

1

nt−2
+

log(t + 1)

nt−1 log n
+

1

nt−1 log n
≤ 1.

This inequality holds, exept the ases (n; t) = (2; 3), (2; 4), (2; 5), (3; 3), (4; 3)
(we suppose that n ≥ 2 and t ≥ 3). Calulation says that pn(t) ≤
an(t)bn(t) holds for the remaining four ases, as well.

Hene, for a �xed t log2 pn(t) = log2 an(t) + O(nt−2 log n), where

log2 an(t) =

(

n + t − 1

t

)

+ log2





n
∏

i1=1

i1
∏

i2=1

· · ·

it−3
∏

it−2=1

it−2!



 .

Now we show that

(19)

log2





n
∏

i1=1

i1
∏

i2=1

· · ·

it−3
∏

it−2=1

it−2!



 =
1

log 2
·

1

(t − 1)!
· nt−1 log n + Ot(n

t−1),

whih proves the statement.

(19) an be proved by indution on t. For t = 3 this is the estimate

for the superfatorials (see (9)). In the indution step it is shown that

(20)

n
∑

i=1

(

1

(t − 1)!
· it−1 log i + Ot(i

t−1)

)

=
1

t!
· nt log n + Ot+1(n

t).
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From the monotoniity of the funtion x
t−1 log x and estimating the

integral on the standard way we get

n
∑

i=1

1

(t − 1)!
· it−1 log i =

n
∫

2

1

(t − 1)!
· xt−1 log x + Ot+1(n

t−1 log n) =

=
1

t!
· nt log n + Ot+1(n

t−1 log n).

As

n
∑

i=1

Ot(i
t−1) = Ot+1(n

t), we obtain (20), hene the statement holds.

�
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