ON FREE ALGEBRAS IN THE VARIETIES OF ITERATED SEMIDIRECT PRODUCTS OF MEET-SEMILATTICES

GÁBOR HORVÁTH, KAMILLA KÁTAI-URBÁN, PÉTER PÁL PACH, GABRIELLA PLUHÂR, ANDRÁS PONGRĀCZ, AND CSABA SZABÓ

Abstract

We present a description of the finitely generated free algebras in the varieties of iterated semidirect products of semilattices. Asymptotical bounds for the free spectra of these varieties are given.

1. Introduction

Semidirect products and iterated semidirect products of semmilatices are thorougly investigated in [1]. Among others, it is shown that each variety of iterated meet semilattices is finitely generated and nonfinitely based. In this paper we extend the results of [1] on these varieties. We present a new characterization for the word problem of these varieties, and give an asymptotic estimate for their free spectra. We do it via finding a normal form for the elements of the free algebras in each variety.

Let \mathbf{A} be an m-element finite algebra. Let \mathcal{V} denote the variety generated by \mathbf{A}, and denote by $\mathbf{F}_{\mathcal{V}}(n)$ the free algebra in \mathcal{V} generated by n elements. The free spectrum of a variety \mathcal{V} is the sequence of cardinalities $\left|\mathbf{F}_{\mathcal{V}}(n)\right|, n=0,1,2, \ldots$ We can think of the free spectrum as the number of n-ary operations over \mathbf{A}. The p_{n} sequence of the variety is the number of essentially n-ary term operations over \mathbf{A}. It is known that the size of the n-generated free algebra $\left(\left|\mathbf{F}_{\mathcal{V}}(n)\right|\right)$ in \mathcal{V} is at most $m^{m^{n}}$. If $m \geq 2$, then $\left|\mathbf{F}_{\mathcal{V}}(n)\right| \geq n$. For example, the free spectrum of Boolean algebras is $\left|\mathbf{F}_{\mathcal{V}}(n)\right|=2^{2^{n}}$. The first important question about free spectra is the following: Within the above bounds what are the possible sequences? For example, if \mathbf{G} is a finite group, then the size of the n-generated relatively free group in the variety generated by \mathbf{G} is exponential in n if \mathbf{G} is nilpotent, and doubly-exponential if \mathbf{G} is not nilpotent ([5] and [8]).

Date: October 29, 2010.
Key words and phrases. free spectra, semigroup, semilattice, semidirect product.

There are very few results on the free spectra of semigroup varieties. For a basic reference on the general properties of p_{n} sequences for semigroups see [3]. A full description of finite semigroups for which the p_{n} sequence is bounded by a polynomial is presented in [4]. Among others, free spectra of surjective semigroups were considered in [3], bands in [9] and combinatorial 0 -simple semigroups in [7].

2. Preliminaries

Let $t=t\left(x_{1}, \ldots, x_{n}\right)$ be an n-ary term. Then a term operation $t^{\mathbf{A}}$ is said to be essentially n-ary if it depends on all of its variables. That is, if for all $1 \leq i \leq n$ there exist $a_{1}, \ldots, a_{i-1}, a, b, a_{i+1}, \ldots, a_{n} \in A$ such that

$$
t\left(a_{1}, \ldots, a_{i-1}, a, a_{i+1}, \ldots, a_{n}\right) \neq t\left(a_{1}, \ldots, a_{i-1}, b, a_{i+1}, \ldots, a_{n}\right)
$$

The content of t for some term t is the set of variables occurring in t. We denote it by $c(t)$. For $n \geq 1$, denote the number of essentially n-ary term operations over \mathbf{A} by $p_{n}(\mathbf{A})$. For the free spectrum of a variety we have

$$
\begin{equation*}
\left|\mathbf{F}_{\mathcal{V}}(n)\right|=\sum_{k=0}^{n}\binom{n}{k} p_{k}(\mathbf{A}) \tag{1}
\end{equation*}
$$

Our main reference is going to be the book of J. Almeida ([1]), where detailed discussion of semidirect products of semigroups can be found. In this paper we only list the properties of iterated semidirect products of semilattices which are necessary for us. A semilattice is a commutative idempotent semigroup. The variety of semilattices will be denoted by $\mathcal{S L}$. The variety generated by semidirect products of two semilattices will be denoted by $\mathcal{S} \mathcal{L}^{2}$, and $\mathcal{S} \mathcal{L}^{t}$ will denote in general the variety generated by the t-times iterated semidirect product of semilattices. For every t the variety $\mathcal{S L}^{t}$ is locally finite and generated by $\mathbf{F}_{\mathcal{S} \mathcal{L}^{t}}(2 t)$, the $2 t$ generated free algebra of the variety. Since the variety of semilattices $\mathcal{S L}$ is contained in each variety $\mathcal{S L}^{t}$, a term containing n variables necessary determines an essentially n-ary term operation. Let $\mathcal{S L}^{t}(n)$ be the set of the n-ary terms in $\mathcal{S L}^{t}$. We denote by $p_{n}(t)$ the number of essentially n-ary term operations in the variety $\mathcal{S L}^{t}$, thus $\left|\mathcal{S L}^{t}(n)\right|=p_{n}(t)$.

3. RECURRENCE FORMULA

In this Section we present a new characterization of the word problem for the variety $\mathcal{S} \mathcal{L}^{t}$, then a recurrence formula is given for the number of essentially n-ary terms.

At first recall the identity basis of $\mathcal{S} \mathcal{L}^{t}$ from [1]. Let $X=\left\{x_{1}, x_{2}, \ldots\right\}$ be a countable set of variables and $X^{+}\left(X^{*}\right)$ be the free semigroup (free monoid) over X.

$$
\begin{aligned}
u_{t-1} \ldots u_{1} x_{i} x_{j} & =u_{t-1} \ldots u_{1} x_{j} x_{i} \\
u_{t-1} \ldots u_{1} x_{i}^{2} & =u_{t-1} \ldots u_{1} x_{i}
\end{aligned}
$$

where $c(w)$ denotes the content of w for some $w \in X^{*}$ and $x_{i}, x_{j} \in$ $\left.c\left(u_{1}\right) \subseteq \cdots \subseteq c\left(u_{t-1}\right), u_{j} \in X^{+}\right)$. We say that

$$
\begin{equation*}
(u=) w_{0}, w_{1}, \ldots, w_{r}(=v) \tag{2}
\end{equation*}
$$

is a deduction of an identity $u=v$ from a set Σ of identities if for each $j \in\{0, \ldots, r-1\}$ there exist factorizations

$$
\begin{equation*}
w_{j}=a_{j}\left(\varphi_{j} u_{j}\right) b_{j} \text { and } w_{j+1}=a_{j}\left(\varphi_{j} v_{j}\right) b_{j} \tag{3}
\end{equation*}
$$

where each $\varphi_{j}: X^{+} \rightarrow X^{+}$is a substitution of the variables and one of the identities $u_{j}=v_{j}$ or $v_{j}=u_{j}$ belongs to Σ. The deduction is left absorbing if each a_{j} of the occurring prefixes in (3) is the empty word. We say the deduction (2) involves no substitutions, if all homomorphism φ_{j} are the identity function. Lemma 10.3.4. and Theorem 10.3.6. in [1] contains the following result.
Theorem 3.1. For each $t \geq 2 \Sigma_{t-1}$ is the identity basis for $\mathcal{S L}^{t}$. Moreover, $\mathcal{S L}^{t} \models u=v$ for $u, v \in X^{*}$ if and only if there exists a deduction of $u=v$ from Σ_{t-1} which is left absorbing and involves no substitutions.

That is, if $\mathcal{S L}^{t} \models u=v$, then there exists a deduction $u=w_{0}, w_{1}, \ldots, w_{r}=$ v such that each $w_{j}=w_{j+1}$ of the deduction is one of the following identities

$$
\begin{gather*}
u_{t-1} \ldots u_{1} x y w=u_{t-1} \ldots u_{1} y x w \tag{4}\\
u_{t-1} \ldots u_{1} x^{2} w=u_{t-1} \ldots u_{1} x w \tag{5}
\end{gather*}
$$

where $x, y \in X, w \in X^{*}, u_{j} \in X^{+}(j \in\{1, \ldots, t-1\})$ and $x, y \in$ $c\left(u_{1}\right) \subseteq \cdots \subseteq c\left(u_{t-1}\right)$. We call a step of the form (4) or (5) an elementary step on level t. From now on, let $u \sim_{t} v$ denote $\mathcal{S} \mathcal{L}^{t} \models u=v$ for two terms $u, v \in X^{*}$. Note that $u \sim_{t} v$ and $c(v)=c(u) \subseteq c(w)$ yields $w u \sim_{t+1} w v$. Moreover, from $u \sim_{t} v$ follows $u w \sim_{t} v w$ for any terms $u, v, w \in X^{*}, t \geq 2$. Now, let us introduce a notation which we will use frequently throughout Sections 3 and 4.

Notation 3.2. Let $u \in X^{+}$be a term. Let m_{u} be the last occurring variable. Let f_{u} be the prefix of u before the first occurence of m_{u} and
let b_{u} be the suffix of u after the first occurence of m_{u}, i.e. $u=f_{u} m_{u} b_{u}$, where $c\left(f_{u}\right)=c(u) \backslash\left\{m_{u}\right\}$. Note that b_{u} is the empty term if a variable occurs only at the end of u, and f_{u} is the empty term if u contains only one variable.

Theorem 3.3. Let $t \geq 2$ and u and v be two essentially n-ary terms over the set $X_{n}=\left\{x_{1}, \ldots, x_{n}\right\}$. According to Notation 3.2: $u=$ $f_{u} m_{u} b_{u}, v=f_{v} m_{v} b_{v}$. Then $u \sim_{t} v$ if and only if
(i) $m_{u}=m_{v}$,
(ii) $f_{u} \sim_{t} f_{v}$,
(iii) $b_{u} \sim_{t-1} b_{v}$.

Proof. Assume first that conditions (i),(ii) and (iii) hold. We prove that $u \sim_{t} v$. By (iii) there exist a deduction $b_{u}=w_{0}, w_{1}, \ldots, w_{r}=b_{v}$, such that every $w_{i} \sim_{t-1} w_{i+1}$ is an elementary step on level $t-1$. Note that $f_{u} m_{u} w_{i} \sim_{t} f_{u} m_{u} w_{i+1}$ is an elementary step on level t, since $c\left(f_{u} m_{u}\right)=X_{n}$. Then $f_{u} m_{u} b_{u} \sim_{t} f_{u} m_{u} b_{v}$ by the deduction $f_{u} m_{u} b_{u}=$ $f_{u} m_{u} w_{0}, f_{u} m_{u} w_{1}, \ldots, f_{u} m_{u} w_{r}=f_{u} m_{u} b_{v}$. From (ii) we have $f_{u} \sim_{t} f_{v}$, therefore $f_{u} m_{u} b_{v} \sim_{t} f_{v} m_{u} b_{v}$. These two deductions together prove $f_{u} m_{u} b_{u} \sim_{t} f_{v} m_{u} b_{v}$. Finally, by (i) we have $m_{u}=m_{v}$, hence $u=$ $f_{u} m_{u} b_{u} \sim_{t} f_{v} m_{v} b_{v}=v$.

For the other direction we prove that if $u=f_{u} m_{u} b_{u} \sim_{t} f_{v} m_{v} b_{v}=v$ by one elementary step on level t, then (i), (ii) and (iii) hold. Then by induction on the length of the deduction it follows that if $u=$ $f_{u} m_{u} b_{u} \sim_{t} f_{v} m_{v} b_{v}=v$ then (i), (ii) and (iii) hold.

Assume first that we use an elementary step of form (4). Now, $u=u_{t-1} u_{t-2} \ldots u_{1} x y w$ and $v=u_{t-1} u_{t-2} \ldots u_{2} u_{1} y x w$ for some terms $w \in X_{n}^{*}$ and $u_{j} \in X_{n}^{+}$such that $x, y \in c\left(u_{1}\right) \subseteq c\left(u_{2}\right) \subseteq \cdots \subseteq$ $c\left(u_{t-2}\right) \subseteq c\left(u_{t-1}\right)$. We distinguish two cases according to whether or not $c\left(u_{t-1}\right)=X_{n}$.
Case 1. $c\left(u_{t-1}\right)=X_{n}$. This implies that m_{u} occurs in u_{t-1}, and therefore $f_{u} m_{u}$ is a prefix of u_{t-1}. Similarly $f_{v} m_{v}$ is a prefix of v_{t-1}, hence (i) and (ii) hold. For some term $s \in X_{n}^{*}$ we have $u_{t-1}=$ $f_{u} m_{u} s=f_{v} m_{v} s$. Then the deduction $b_{u}=\left(s u_{t-2}\right) u_{t-3} \ldots u_{1} x y w$, $\left(s u_{t-2}\right) u_{t-3} \ldots u_{1} y x w=b_{v}$ shows $b_{u} \sim_{t-1} b_{v}$, and so (iii) holds.
Case 2. $c\left(u_{t-1}\right) \neq X_{n}$. Thus $c\left(u_{t-1} u_{t-2} \ldots u_{2} u_{1} x y\right) \neq X_{n}$, either, hence the last occurring variable in both u and v appears in w. Now, $u=u_{t-1} u_{t-2} \ldots u_{1} x y w, v=u_{t-1} u_{t-2} \ldots u_{1} y x w$, hence $m_{u}=m_{v}$ and $b_{u}=b_{v}$, proving (ii) and (iii). Moreover, there exists a term $s \in X_{n}^{*}$ such that $f_{u}=u_{t-1} u_{t-2} \ldots u_{2} u_{1} x y s$ and $f_{v}=u_{t-1} u_{t-2} \ldots u_{2} u_{1} y x s$. Then $u_{t-1} u_{t-2} \ldots u_{2} u_{1} x y s \sim_{t} u_{t-1} u_{t-2} \ldots u_{2} u_{1} y x s$ is an elementary step. Thus $f_{u} \sim_{t} f_{v}$ and (iii) holds.

The case where we use an elementary step of form (5) can be handled similarly. Induction on the length of the deduction showing $u \sim_{t} v$ finishes the proof, as each property (i), (ii) and (iii) is preserved by an elementary step.

In other words, by Theorem 3.3 every n-ary term over $\mathcal{S} \mathcal{L}^{t}$ can be represented as a triple. This triple consists of an ($n-1$)-ary term over $\mathcal{S} \mathcal{L}^{t}$, a variable and an at most n-ary (possibly empty) term of $\mathcal{S} \mathcal{L}^{t-1}$. This is the key observation for proving a recurrence formula for $p_{n}(t)$.

Theorem 3.4. The following recurrence formula holds for the number of essentially n-ary term operations:

$$
\begin{equation*}
p_{n}(t)=n p_{n-1}(t) \sum_{k=0}^{n}\binom{n}{k} p_{k}(t-1) . \tag{6}
\end{equation*}
$$

Proof. In the variety $\mathcal{S L}^{t}$ every term containing n variables determines an essentially n-ary term operation. Let u be an essentially n-ary term over $\mathcal{S L}^{t}$. By Theorem 3.3 we can assign a triple f_{u}, m_{u}, b_{u} to u bijectively, where f_{u} is an $(n-1)$-ary term over $\mathcal{S} \mathcal{L}^{t}, m_{u}$ is a variable and b_{u} is an at most n-ary (possible empty) term of $\mathcal{S L}^{t-1}$. We count the number of such triples. We have n many choices for m_{u} and $p_{n-1}(t)$ many choices for f_{u}. The number of the at most n-ary terms over $\mathcal{S} \mathcal{L}^{t-1}$ is the size of the n-generated free algebra in $\mathcal{S L}^{t-1}$. ccording to formula (1) in Section 2 we have $\sum_{k=0}^{n}\binom{n}{k} p_{k}(t-1)$ many choices for b_{u}. Thus the recurrence formula (6) is gained.

4. Normal form

In Section 4 a normal form for the elements of the free algebra in the varieties $\mathcal{S} \mathcal{L}^{t}$ is presented. The length of this normal form is polynomial in the number of variables. Additionally, one can easily calculate the product of these normal forms and obtain the result in normal form.

Construction 4.1. By Theorem 3.3 every n-ary term over $\mathcal{S L}^{t}$ can be represented as a triple. This triple consists of an ($n-1$)-ary term over $\mathcal{S L}^{t}$, a variable and an at most n-ary (possible empty) term of $\mathcal{S L}^{t-1}$. Let us assign this triple to the term. If we multiply these elements from left to right we obtain the original word. Now, we iterate this process for the first and the third parts, simoultaneously. After finitely many steps we arrive at terms of $\mathcal{S} \mathcal{L}^{1}$ and unary terms of $\mathcal{S} \mathcal{L}^{s}$ for some $s \leq t$. Connecting all the noted terms with the elements of the corresponding triple, we get a rooted tree, as it is illustrated on Figure 1.

Figure 1

According to Theorem 3.3 this tree uniquely determines the original term, and the scheme of the tree only depends on the equivalence class of the original term. There are three kinds of leaves on the tree: unary terms of $\mathcal{S} \mathcal{L}^{s}$ for some s, arbitrary terms of $\mathcal{S} \mathcal{L}^{1}$ and variables. In the first two cases we assign to the leaf the shortest normal form of the term written on the leaf itself. That is, in the case of a unary term x_{i}^{k} of $\mathcal{S} \mathcal{L}^{s}$ we assign x_{i}^{l} to the leaf, where $l=\min \{k, s\}$. While in the case of an arbitrary term w of $\mathcal{S} \mathcal{L}^{1}$ the term $x_{i_{1}} x_{i_{2}} \cdots x_{i_{r}}$ is assigned, where the variables occurring in w are in increasing order according to their indices. We define the normal form of the term by writing the terms assigned to the leaves next to each other from left to right.

Figure 2 illustrates an example. It shows how the normal form of $x_{1}^{3} x_{2} x_{1} x_{3} x_{2}^{2} x_{3} x_{1}$ in $\mathcal{S L}^{2}$ is computed. The normal form is $x_{1}^{2} x_{2} x_{1} x_{3} x_{1} x_{2} x_{3}$. The variety is indicated in the upper right corner of the terms.

Figure 2

Let us denote the normal form of a term w in the variety $\mathcal{S} \mathcal{L}^{t}$ by $\varphi_{t}(w)$. The following algorithm computes φ_{t} recursively.
Algorithm 4.2. Let w be an n-ary term.
(1) If $t=1$, then let $\varphi_{1}(w)=x_{i_{1}} x_{i_{2}} \ldots x_{i_{k}}$, where the variables occurring in w are in increasing order according to their indices.
(2) If $n=1$ and $w=x_{i}^{k}$, then let $l=\min \{t, k\}$ and $\varphi_{t}\left(x_{i}^{k}\right)=x_{i}^{l}$.
(3) Otherwise let $\varphi_{t}(w)$ be the concatenation of the terms $\varphi_{t}\left(f_{w}\right)$, m_{w} and $\varphi_{t-1}\left(b_{w}\right)$, i.e. $\varphi_{t}(w)=\varphi_{t}\left(f_{w}\right) m_{w} \varphi_{t-1}\left(b_{w}\right)$.
Note that steps (1), (2) and (3) are invoked as many times as the number of vertices the tree has in Construction 4.1. Moreover each step takes linear time (in the length of the term).

Now, we show that we assigned a unique normal form to every term, and distinct terms have distinct normal forms.

Proposition 4.3. Let u, v be n-ary terms. Then $u \sim_{t} v$ if and only if the normal form of u and v in $\mathcal{S L}^{t}$ are the same, that is, $\varphi_{t}(u)=\varphi_{t}(v)$.
Proof. We prove the proposition by induction on t and n. If $t=1$ or $n=1$ then the proposition holds. Assume that $n \geq 2$ and $t \geq 2$.

Let $u \sim_{t} v$. By Theorem 3.3 we have $f_{u} \sim_{t} f_{v}, m_{u}=m_{v}$ and $b_{u} \sim_{t-1}$ b_{v}. By the induction hypothesis $f_{u} \sim_{t} f_{v}$ implies $\varphi_{t}\left(f_{u}\right)=\varphi_{t}\left(f_{v}\right)$, and $\varphi_{t-1}\left(b_{u}\right)=\varphi_{t-1}\left(b_{v}\right)$ follows from $b_{u} \sim_{t-1} b_{v}$. From step (3) of Algorithm 4.2 we have $\varphi_{t}(u)=\varphi_{t}\left(f_{u}\right) m_{u} \varphi_{t-1}\left(b_{u}\right)=\varphi_{t}\left(f_{v}\right) m_{v} \varphi_{t-1}\left(b_{v}\right)=$ $\varphi_{t}(v)$.

Now, assume that $\varphi_{t}(u)=\varphi_{t}(v)$. From step (3) of Algorithm 4.2 we have $m_{u}=m_{v}$, thus $\varphi_{t}\left(f_{u}\right)=\varphi_{t}\left(f_{v}\right)$ and $\varphi_{t-1}\left(b_{u}\right)=\varphi_{t-1}\left(b_{v}\right)$. By the induction hypothesis we have $f_{u} \sim_{t} f_{v}$ and $b_{u} \sim_{t-1} b_{v}$. From Theorem $3.3 u \sim_{t} v$ follows.
Proposition 4.4. Let u be an n-ary term in the free algebra of $\mathcal{S L}^{t}$. Then $\varphi_{t}(u)$ is a shortest element in the equivalence class of u.
Proof. We prove the proposition by induction on n and t. The statement holds if $n=1$ or $t=1$. Assume that $n \geq 2$ and $t \geq 2$, and let v be in the equivalence class of u. By Theorem 3.3 we have $f_{u} \sim_{t} f_{v}$, $m_{u}=m_{v}$ and $b_{u} \sim_{t-1} b_{v}$. By the induction hypothesis $\varphi_{t}\left(f_{u}\right)$ is in the equivalence class of f_{u} and $\varphi_{t}\left(f_{u}\right)$ is shorter than f_{v}. Similarly, $\varphi_{t-1}\left(b_{u}\right)$ is in the equivalence class of b_{u} and $\varphi_{t-1}\left(b_{u}\right)$ is shorter than b_{v}. By Theorem 3.3, $\varphi_{t}(u)=\varphi_{t}\left(f_{u}\right) m_{u} \varphi_{t-1}\left(b_{u}\right)$ is in the equivalence class of $u=f_{u} m_{u} b_{u}$ and is shorter than $v=f_{v} m_{v} b_{v}$.

Finally, we give an upper bound on the length of the normal form and on the time demand of Algorithm 4.2 for computing the normal form of the product of two normal forms.

Proposition 4.5. The normal form of an n-ary term in $\mathcal{S} \mathcal{L}^{t}$ has length at most $\binom{n+t}{t}-1$. Given two n-ary normal forms in $\mathcal{S L}^{t}$ the normal form of their product can be calculated in $O\left(n^{2 t-1}\right)$ time.

Proof. Let $M(n, t)$ denote the maximal length of the normal form of an n-ary term in the variety $\mathcal{S L}^{t}$. From Proposition 4.4 and Algorithm 4.2 we obtain $M(n, t)=M(n-1, t)+1+M(n, t-1)$ with initial values $M(1, t)=t$ and $M(n, 1)=n$. This recurrence formula has the solution $M(n, t)=\binom{n+t}{t}-1=O\left(n^{t}\right)$.

Let $L(n, t)$ denote the number of leaves on the tree of the normal form in Construction 4.1. Again, a recurrence formula can be obtained: $L(n, t)=L(n-1, t)+L(n, t-1)+1$ with initial values $L(n, 1)=L(1, t)=1$. This recurrence formula has the solution $L(n, t)=2\binom{n+t-2}{t-1}-1=O\left(n^{t-1}\right)$. Every non-leaf vertex of the tree is a parent of a leaf, thus the tree in Construction 4.1 has exactly $2 L(n, t)=4\binom{n+t-2}{t-1}-2=O\left(n^{t-1}\right)$ vertices. The number of non-leaf vertices is equal to the number of steps invoked during Algorithm 4.2. Let u and v be two n-ary normal forms in $\mathcal{S} \mathcal{L}^{t}$, then their lengths are at most $O\left(n^{t}\right)$. Steps (1), (2) and (3) are invoked $O\left(n^{t-1}\right)$ times, and each time computing the arguments for the next recursive step takes linear time in the length of the term, i.e. $O\left(n^{t}\right)$ time. Thus Algorithm 4.2 takes $O\left(n^{2 t-1}\right)$ time to run on $u v$.

5. Explicit formula

The aim of this section is to find explicit formulae for the p_{n} sequences and the free spectra of the varieties $\mathcal{S} \mathcal{L}^{t}$. The size of the free monoids in the smallest varieties can be determined with high accuracy.

Proposition 5.1. For the number of n-ary terms in $\mathcal{S L}^{1}$ and $\mathcal{S L}^{2}$ we have

$$
\begin{equation*}
p_{n}(1)=1 \quad \text { and } \quad p_{n}(2)=n!\cdot 2\binom{n+1}{2} \tag{7}
\end{equation*}
$$

Proof. As any element of the free semilattice is determined by the set of its variables, we have $p_{n}(1)=1$, and clearly $p_{1}(2)=2$ holds. By iterated use of (6) we get

$$
\begin{aligned}
& \quad p_{n}(2)=n\left(\sum_{k=0}^{n}\binom{n}{k} p_{k}(1)\right) p_{n-1}(2)= \\
& =n\left(\sum_{k=0}^{n}\binom{n}{k} p_{k}(1)\right)(n-1)\left(\sum_{k=0}^{n-1}\binom{n-1}{k} p_{k}(1)\right) p_{n-2}(2)= \\
& =n\left(\sum_{k=0}^{n}\binom{n}{k} p_{k}(1)\right)(n-1)\left(\sum_{k=0}^{n-1}\binom{n-1}{k} p_{k}(1)\right) \cdots 1 \cdot\left(\sum_{k=0}^{1}\binom{1}{k}\right) p_{0}(2)= \\
& =n!\prod_{i=1}^{n}\left(\sum_{k=0}^{i}\binom{i}{k} p_{k}(1)\right)=n!\prod_{i=1}^{n}\left(\sum_{k=0}^{i}\binom{i}{k}\right)=n!\prod_{i=1}^{n} 2^{i}=n!\cdot 2^{\binom{n+1}{2}}
\end{aligned}
$$

Corollary 5.2. $\left|F_{\mathcal{S L}^{1}}(n)\right|=2^{n}-1$ and $\left|F_{\mathcal{S L}^{2}}(n)\right|=n!\cdot 2^{\binom{n+1}{2}}+O(n!$. $2^{\binom{n}{2}}$).

Proof. By formulae (1) and (7) we get

$$
\left|F_{\mathcal{S L}^{1}}(n)\right|=\sum_{i=1}^{n}\binom{n}{i} p_{n}(1)=\sum_{i=1}^{n}\binom{n}{i}=2^{n}-1 .
$$

For $t=2$ the same arguments yield

$$
\begin{aligned}
&\left|F_{\mathcal{S L}^{2}}(n)\right|=\sum_{i=1}^{n}\binom{n}{i} i!\cdot 2^{\binom{i+1}{2}}= \\
&=n!\cdot 2^{\binom{n+1}{2}}+n(n-1)!\cdot 2^{\binom{n}{2}}+\binom{n}{2}(n-2)!\cdot 2^{\binom{n-1}{2}}+\sum_{i=1}^{n-3}\binom{n}{i} i!\cdot 2^{\binom{i+1}{2}}= \\
&=n!\cdot 2^{\binom{n+1}{2}}+n!\cdot 2^{\binom{n}{2}}+\frac{n!}{2} \cdot 2^{\binom{n-1}{2}}+\sum_{i=1}^{n-3} n(n-1) \cdots(n-i+1) 2^{\binom{i+1}{2}}= \\
&=n!\cdot 2^{\binom{n+1}{2}}+O\left(n!\cdot 2^{\binom{n}{2}}\right)+O\left(2^{n} n!\cdot 2^{\binom{n-2}{2}}\right)= \\
&=n!\cdot 2^{\binom{n+1}{2}}+O\left(n!\cdot 2^{\binom{n}{2}}\right)
\end{aligned}
$$

Although for $p_{n}(2)$ we have a nice closed formula, it is hopeless to get one for $\left|F_{\mathcal{S} \mathcal{L}^{2}}(n)\right|$. The case of $\mathcal{S} \mathcal{L}^{3}$ is even more complicated.

Proposition 5.3. There exist a constant $\alpha>1$ and a monotone increasing sequence of real numbers $\alpha_{n} \rightarrow \alpha$ such that

$$
p_{n}(3)=\alpha_{n} n!\left(\prod_{i=1}^{n} i!\right) 2^{\binom{n+2}{3}}
$$

Proof. According to the recurrence formula (6) and formula (7) one can obtain $p_{k}(3)=p_{k-1}(3) k \sum_{i=0}^{k}\binom{k}{i} i!\cdot 2^{\binom{i+1}{2}}$. To simplify the calculation ε_{k} be defined by the following:

$$
\begin{equation*}
\sum_{i=0}^{k}\binom{k}{i} i!\cdot 2^{\binom{i+1}{2}}=p_{k}(2)\left(1+\varepsilon_{k}\right) \tag{8}
\end{equation*}
$$

The recurrence formula can be expanded as follows:

$$
\begin{aligned}
& p_{n}(3)=p_{n-1}(3) n p_{n}(2)\left(1+\varepsilon_{n}\right)= \\
&=p_{n-2}(3) n(n-1) p_{n}(2) p_{n-1}(2)\left(1+\varepsilon_{n}\right)\left(1+\varepsilon_{n-1}\right)=\cdots= \\
&=n!\left(\prod_{i=2}^{n} p_{i}(2)\left(1+\varepsilon_{i}\right)\right) p_{1}(3)= n!\left(\prod_{i=2}^{n} i!\cdot 2^{\binom{i+1}{2}}\left(1+\varepsilon_{i}\right)\right) p_{1}(3)= \\
&=\frac{3}{2} n!\left(\prod_{i=1}^{n} i!\right) 2^{\binom{n+2}{3} \prod_{i=2}^{n}\left(1+\varepsilon_{i}\right) .}
\end{aligned}
$$

From (8) $\varepsilon_{k}=\sum_{i=0}^{k-1} \frac{1}{(i+1)!} 2^{-(i+1)(2 k-i) / 2}<\sum_{i=0}^{k-1} 2^{-k-i}<2^{1-k}$ (for $k \geq 2$).
Using the inequality $1+x<e^{x}$ we obtain

$$
\prod_{i=2}^{n}\left(1+\varepsilon_{i}\right)<\prod_{i=2}^{n} e^{\varepsilon_{i}}<\prod_{i=2}^{n} e^{2^{1-i}}<e .
$$

Thus $\alpha_{n}=\frac{3}{2} \prod_{i=2}^{n}\left(1+\varepsilon_{i}\right)<\frac{3}{2} e$, and the statement holds.
Note that $\alpha=1.70506 \ldots$
Corollary 5.4. There exists a sequence of real numbers $\beta_{n} \rightarrow \alpha$ such

$$
\log _{2}\left|F_{n}(3)\right|=\binom{n+2}{3}+\frac{1}{2 \log 2} \cdot n^{2} \log n+O\left(n^{2}\right) .
$$

Proof. By Proposition 5.3 we have $p_{k}(3)=\alpha_{k} k!\left(\prod_{i=1}^{k} i!\right) 2^{\binom{k+2}{3} \text {. The first }}$ part of the statement holds, since $\frac{\left|F_{\mathcal{S}^{3}}(n)\right|}{p_{n}(3)} \rightarrow 1$. Indeed,

$$
\left.\begin{array}{rl}
\left|F_{\mathcal{S L}^{3}}(n)\right|=\sum_{i=1}^{n}\binom{n}{i} & p_{i}(3)=\sum_{i=1}^{n}\binom{n}{i} \alpha_{i} i!\left(\prod_{j=1}^{i} j!\right) 2^{(i+2} 3 \\
3
\end{array}\right)=, ~=p_{n}(3)\left(1+O\left(2^{-n(n+1) / 2}\right)\right)=p_{n}(3)(1+o(1)) . ~ \$
$$

For the second part note that the numbers of the form $\prod_{i=1}^{n} i!$ are called superfactorials. From Stirling's formula one can derive the following well-known estimates for the logarithms of factorials and superfactorials.

$$
\log _{2} \beta_{n} n!=O(n \log n)
$$

$$
\begin{equation*}
\log _{2}\left(\prod_{i=1}^{n} i!\right)=\frac{1}{2 \log 2} \cdot n^{2} \log n+O\left(n^{2}\right) \tag{9}
\end{equation*}
$$

By substituting these to the formula $\left|F_{\mathcal{S L}^{3}}(n)\right|=\beta_{n} n!\left(\prod_{i=1}^{n} i!\right) 2^{\binom{n+2}{3}}$, we get

$$
\log _{2}\left|F_{\mathcal{S L}^{3}}(n)\right|=\binom{n+2}{3}+\frac{1}{2 \log 2} \cdot n^{2} \log n+O\left(n^{2}\right) .
$$

Theorem 5.5. For the p_{n} sequence of the variety $\mathcal{S} \mathcal{L}^{t}$ the following asymptotic formula holds for $t \geq 3$:

$$
\log _{2} p_{n}(t)=\binom{n+t-1}{t}+\frac{1}{\log 2} \cdot \frac{1}{(t-1)!} \cdot n^{t-1} \log n+O_{t}\left(n^{t-1}\right)
$$

Proof. Define

$$
\left.a_{n}(t)=\left(\prod_{i_{1}=1}^{n} \prod_{i_{2}=1}^{i_{1}} \cdots \prod_{i_{t-2}=1}^{i_{t-3}} i_{t-2}!\right) 2_{t}^{(n+t-1}\right) \quad \text { and } \quad b_{n}(t)=e^{n^{t-2} \log n}
$$

Now we prove that

$$
\begin{equation*}
a_{n}(t) \leq p_{n}(t) \leq a_{n}(t) b_{n}(t) \quad \text { for } \quad t \geq 3, n \geq 2 \tag{10}
\end{equation*}
$$

then give an estimate for $\log a_{n}(t)$.

For the lower bound at first we check the case $n=2$. Clearly, $a_{2}(t)=2^{t+2}$ and $p_{2}(2)=a_{2}(2)=16$, thus $a_{2}(t) \leq p_{2}(t)$ is true for $t=2$. By induction on t and the recurrence formula (6)

$$
p_{2}(t)=2 t\left(p_{2}(t-1)+2(t-1)+1\right) \geq 2 p_{2}(t-1) \geq 2 a_{2}(t-1)=a_{2}(t),
$$

thus $a_{2}(t) \leq p_{2}(t)$ holds for every $t \geq 2$.
We prove the inequality $a_{n}(t) \leq p_{n}(t)$ by induction on t. For $t=3$ it follows from Proposition 5.3, as $\alpha_{n}>1$. Suppose that it is proved for some $t \geq 3$.

The recurrence formula (6) for $p_{n}(t)$ implies that

$$
\begin{aligned}
p_{n}(t+1)=p_{n-1}(t+1) n \sum_{i=0}^{n}\binom{n}{i} & p_{i}(t) \geq p_{n-1}(t+1) p_{n}(t) \geq \cdots \geq \\
\geq & p_{n}(t) p_{n-1}(t) \cdots p_{2}(t) p_{1}(t+1)
\end{aligned}
$$

By the induction hypothesis $a_{k}(t) \leq p_{k}(t)$ for $2 \leq k \leq n$ and $p_{1}(t+1)=$ $t+1 \geq 2$, and using $\prod_{i=2}^{n} a_{i}(t)=\frac{1}{2} a_{n}(t+1)$

$$
p_{n}(t+1) \geq a_{n}(t) a_{n-1}(t) \cdots a_{2}(t) \cdot 2=a_{n}(t+1) .
$$

Now we continue with the upper bound of (10). Similarly to the proof of Proposition 5.3 in order to estimate the quotient of the size of the free algebra and $p_{n}(t)$ define $\eta_{k}=\frac{\left|\mathbf{F}_{t}(k)\right|}{p_{k}(t)}=\sum_{i=0}^{k-1}\binom{k}{i} \frac{p_{i}(t)}{p_{k}(t)}$. We prove that

$$
\begin{equation*}
\prod_{k=2}^{n} \frac{\sum_{i=0}^{k}\binom{k}{i} p_{i}(t)}{p_{k}(t)}=\prod_{k=2}^{n}\left(1+\eta_{k}\right)<e . \tag{11}
\end{equation*}
$$

From the recurrence formula (6)

$$
\frac{p_{i-1}(t)}{p_{i}(t)}=\frac{1}{i} \cdot \frac{1}{\sum_{j=0}^{i}\binom{k}{j} p_{j}(t-1)} \leq \frac{1}{i} \cdot \frac{1}{\sum_{j=0}^{i}\binom{k}{j}}=\frac{1}{i 2^{i}} .
$$

Then

$$
\binom{k}{i} \frac{p_{i}(t)}{p_{k}(t)}=\binom{k}{i} \prod_{j=i+1}^{k} \frac{p_{j-1}(t)}{p_{j}(t)} \leq \frac{1}{(k-i)!} \cdot 2^{\binom{i+1}{2}-\binom{k+1}{2}} \leq 2^{i-2 k+1},
$$

so $\eta_{k}=\sum_{i=0}^{k-1}\binom{k}{i} \frac{p_{i}(t)}{p_{k}(t)}<2^{1-k}$. Using the inequality $1+x<e^{x}$ we obtain

$$
\prod_{i=2}^{n}\left(1+\eta_{i}\right)<\prod_{i=2}^{n} e^{\eta_{i}}<\prod_{i=2}^{n} e^{2^{1-i}}<e
$$

By proceeding by induction on t we show that $p_{n}(t) \leq a_{n}(t) b_{n}(t)$ if $t \geq 3, n \geq 2$ except $t=4$ and $n=2$. For $t=3$ the inequality $p_{n}(t) \leq$ $a_{n}(t) b_{n}(t)$ obviously holds (see Proposition 5.3). By the recurrence formula (6) and the inequality (11)

$$
\begin{array}{r}
p_{n}(t+1)=n!(t+1) p_{n}(t) p_{n-1}(t) \cdots p_{2}(t) \cdot \prod_{k=2}^{n} \frac{\sum_{i=0}^{k}\binom{k}{i} p_{i}(t)}{p_{k}(t)}< \tag{12}\\
<n!(t+1) p_{n}(t) p_{n-1}(t) \cdots p_{2}(t) e
\end{array}
$$

According to the induction hypothesis we have $p_{j}(t) \leq a_{j}(t) b_{j}(t)$ for any $2 \leq j \leq n$ except the case $t=4, j=2$. In this exceptional case, $p_{2}(4)=1064$ and $a_{2}(4) b_{2}(4)=1024$, hence $p_{2}(4) \leq 2 a_{2}(4) b_{2}(4)$. Applying these estimations we get

$$
\begin{array}{r}
n!(t+1) p_{n}(t) p_{n-1}(t) \cdots p_{2}(t) e<n!(t+1) a_{n}(t) \cdots a_{2}(t) b_{n}(t) \cdots b_{2}(t) \cdot 2 e= \tag{13}\\
=a_{n}(t+1) n!(t+1) e \prod_{i=2}^{n} b_{i}(t) .
\end{array}
$$

Hence,

$$
\begin{equation*}
p_{n}(t+1)<a_{n}(t+1) n!(t+1) e \prod_{i=2}^{n} b_{i}(t) \tag{14}
\end{equation*}
$$

Now, an estimate for the logarithm of the right-hand side of (14) is going to be given. The function $x^{t-2} \log x$ is increasing, thus for the logarithm of $\prod_{i=2}^{n} b_{i}(t)$ we get

$$
\begin{equation*}
\log \left(\prod_{i=2}^{n} b_{i}(t)\right)=\sum_{i=2}^{n} i^{t-2} \log i \leq n^{t-2} \log n+\int_{2}^{n} x^{t-2} \log x \tag{15}
\end{equation*}
$$

where

$$
\begin{align*}
\int_{2}^{n} x^{t-2} \log x \leq \int_{2}^{n} x^{t-2} & \log x+\frac{1}{t-1} x^{t-2}= \tag{16}\\
& =\left[\frac{1}{t-1} x^{t-1} \log x\right]_{2}^{n} \leq \frac{1}{t-1} n^{t-1} \log n
\end{align*}
$$

From (15) and (16) we obtain

$$
\begin{equation*}
\log \prod_{i=2}^{n} b_{i}(t) \leq\left(\frac{1}{n}+\frac{1}{t-1}\right) n^{t-1} \log n=\left(\frac{1}{n}+\frac{1}{t-1}\right) \log b_{n}(t+1) \tag{17}
\end{equation*}
$$

The following inequality also holds

$$
\begin{align*}
\log (n!(t+1) e) & \leq n \log n+\log (t+1)+1= \tag{18}\\
= & \left(\frac{1}{n^{t-2}}+\frac{\log (t+1)}{n^{t-1} \log n}+\frac{1}{n^{t-1} \log n}\right) \log b_{n}(t+1) .
\end{align*}
$$

Taking the logarithm of both sides of (14) and substituting (17) and (18) we obtain that $p_{n}(t+1) \leq a_{n}(t+1) b_{n}(t+1)$ if

$$
\frac{1}{n}+\frac{1}{t-1}+\frac{1}{n^{t-2}}+\frac{\log (t+1)}{n^{t-1} \log n}+\frac{1}{n^{t-1} \log n} \leq 1
$$

This inequality holds, except the cases $(n ; t)=(2 ; 3),(2 ; 4),(2 ; 5),(3 ; 3),(4 ; 3)$ (we suppose that $n \geq 2$ and $t \geq 3$). Calculation says that $p_{n}(t) \leq$ $a_{n}(t) b_{n}(t)$ holds for the remaining four cases, as well.

Hence, for a fixed $t \log _{2} p_{n}(t)=\log _{2} a_{n}(t)+O\left(n^{t-2} \log n\right)$, where

$$
\log _{2} a_{n}(t)=\binom{n+t-1}{t}+\log _{2}\left(\prod_{i_{1}=1}^{n} \prod_{i_{2}=1}^{i_{1}} \cdots \prod_{i_{t-2}=1}^{i_{t-3}} i_{t-2}!\right) .
$$

Now we show that

$$
\begin{equation*}
\log _{2}\left(\prod_{i_{1}=1}^{n} \prod_{i_{2}=1}^{i_{1}} \cdots \prod_{i_{t-2}=1}^{i_{t-3}} i_{t-2}!\right)=\frac{1}{\log 2} \cdot \frac{1}{(t-1)!} \cdot n^{t-1} \log n+O_{t}\left(n^{t-1}\right) \tag{19}
\end{equation*}
$$

which proves the statement.
(19) can be proved by induction on t. For $t=3$ this is the estimate for the superfactorials (see (9)). In the induction step it is shown that

$$
\begin{equation*}
\sum_{i=1}^{n}\left(\frac{1}{(t-1)!} \cdot i^{t-1} \log i+O_{t}\left(i^{t-1}\right)\right)=\frac{1}{t!} \cdot n^{t} \log n+O_{t+1}\left(n^{t}\right) \tag{20}
\end{equation*}
$$

From the monotonicity of the function $x^{t-1} \log x$ and estimating the integral on the standard way we get

$$
\begin{array}{r}
\sum_{i=1}^{n} \frac{1}{(t-1)!} \cdot i^{t-1} \log i=\int_{2}^{n} \frac{1}{(t-1)!} \cdot x^{t-1} \log x+O_{t+1}\left(n^{t-1} \log n\right)= \\
=\frac{1}{t!} \cdot n^{t} \log n+O_{t+1}\left(n^{t-1} \log n\right)
\end{array}
$$

As $\sum_{i=1}^{n} O_{t}\left(i^{t-1}\right)=O_{t+1}\left(n^{t}\right)$, we obtain (20), hence the statement holds.

6. Acknowledgements

The authors are thankful to M. Volkov for turning their attention to this topic and for his useful hints. The research of the authors was supported by the Hungarian National Foundation for Scientific Research Grant K67870.

References

[1] J. Almeida, Finite Semigroups and Universal Algebra, World Scientific, 1994.
[2] J. Berman, Free spectra gaps and tame congruence, Int. J. Algebra Comput. 5 (1995), no. 6, 651-672.
[3] S. Crvenković, I. Dolinka, N. Ruškuc, The Berman conjecture is true for finite surjective semigroups and their inflations, Semigroup Forum 62 (2001), 103114.
[4] S. Crvenković, N. Ruškuc, Log-linear varieties of semigroups, Algebra Universalis 33 (1995), 370-374.
[5] G. Higman, The order of relatively free groups, Proc. internat Conf. Theory of Groups, Canberra 1965, Gordon and Breach Pub., 1967, 153-163.
[6] D. Hobby, R. McKenzie, The structure of finite algebras, Contemporary Mathematics no. 76, Amer. Math. Soc., Providence, 1988.
[7] K. Kátai-Urbán, Cs. Szabó, The p_{n} sequences of semigroup varieties generated by combinatorial 0-simple semigroups, Algebra Universalis, 58 (2008), 435-446.
[8] P. Neumann, Some indecomposable varieties of groups, Quart. J, Math. Oxford 14 (1963), 46-50.
[9] G. Pluhár, J. Wood, The free spectra of varieties generated by idempotent semigroups, Algebra Discr. Math., 2 (2008), 89-100 .
(1) Institute of Mathematics, University of Debrecen, Pf. 12, Debrecen, 4010, Hungary

E-mail address: ghorvath@math.unideb.hu
(2) Bolyai Institute, University of Szeged, Aradi vértanúk tere 1, H-6720 Szeged, Hungary

E-mail address: katai@math.u-szeged.hu
$(3,4,6)$ EÖtvös Loránd University, Department of Algebra and Number Theory, 1117 Budapest, Pázmány Péter sétány 1/c, Hungary

E-mail address: ppp24@cs.elte.hu
E-mail address: plugab@cs.elte.hu
E-mail address: csaba@cs.elte.hu
(5) Central European University, Budapest, Hungary

E-mail address: pongeee@cs.elte.hu

