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Abstract. Let us call a set of positive integers a multiplica-
tive k-Sidon set, if the equation a1a2 . . . ak = b1b2 . . . bk does not
have a solution consisting of distinct elements of this set. Let
Gk(n) denote the maximal size of a multiplicative k-Sidon sub-
set of {1, 2, . . . , n}. In this paper we prove that π(n) + π(n/2) +

c1n
2/3/(log n)4/3 ≤ G3(n) ≤ π(n)+π(n/2)+c2n2/3 logn

log logn for some
constants c1, c2 > 0. It is also shown that π(n)+n3/5/(log n)6/5 ≤
G4(n) ≤ π(n) + (10 + ε)n2/3. Furthermore, for every k the order
of magnitude of Gk(n) is determined and an upper bound, similar
to the previously mentioned ones, is given. This problem is related
to a problem of Erdős-Sárközy-T. Sós and Győri: They examined
how many elements of the set {1, 2, . . . , n} can be chosen in such a
way that none of the 2k-element products is a perfect square. The
maximal size of such a subset is denoted by F2k(n). As a conse-
quence of our upper estimates for Gk(n) the upper estimates for
F2k(n) are strengthened because Gk(n) ≥ F2k(n). Moreover, by a
new construction we also sharpen their lower bound for F8(n).

1. Introduction

A set A ⊆ N is called a Sidon set, if for every s the equation x+y = s
has at most one solution with x, y ∈ A. A multiplicative Sidon set is
analogously defined by requiring that the equation xy = s has at most
one solution in A. To emphasize the difference, throughout the paper
the first one will be called an additive Sidon set. There are many results
on the maximal size of an additive Sidon set in {1, 2, . . . , n} and about
the infinite case, as well. Moreover, a natural generalization of additive
Sidon sets is also studied, they are called Bh[g] sequences: A sequence
A of positive integers is called a Bh[g] sequence, if every integer n has
at most g representations n = a1 + a2 + · · · + ah with all ai in A and
a1 ≤ a2 ≤ · · · ≤ ah. Note that an additive Sidon sequence is a B2[1]
sequence.
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In this paper our aim is to generalize the multiplicative Sidon sequen-
ces and give some bounds on the maximal size of them. A set A ⊆ N
is going to be called a multiplicative k-Sidon sequence, if the equation
a1a2 . . . ak = b1b2 . . . bk does not have a solution in A consisting of
distinct elements. With other words, A is k-Sidon, if the equation
a1a2 . . . ak = b1b2 . . . bk does not have a ”nontrivial solution” in A.

In [10] I investigated the equation a1a2 . . . ak = b1b2 . . . bl, and proved
that for k 6= l there is no density-type theorem, which means that a
subset of {1, 2, . . . , n} not containing a ”nontrivial solution”, that is, a
solution consisting of distinct elements, can have size c · n. However,
a Ramsey-type theorem can be proved: if we colour the integers by
r colours, then the equation a1a2 . . . ak = b1b2 . . . bl has a nontrivial
monochromatic solution. The case when k = l is much more interest-
ing, in this paper this is going to be investigated.

Let Gk(n) denote the maximal size of a multiplicative k-Sidon se-
quence in {1, 2, . . . , n}. Erdős studied the case k = 2. In [3] he gave
a construction with π(n) + c1n

3/4/(log n)3/2 elements, and proved that
the maximal size of such a set is at most π(n) + c2n

3/4. 31 years later
Erdős [4] himself improved this upper bound to π(n)+c2n

3/4/(log n)3/2.
Hence, in the lower- and upper bounds of G2(n) not only the main
terms are the same, but the error terms only differ in a constant factor.
In this paper our aim is to asymptotically determine Gk(n), and give
lower- and upper bounds on the error term, as well.

Our question about the solvability of a1a2 . . . ak = b1b2 . . . bk is not
only a natural generalization of the multiplicative Sidon sequences, but
it is also strongly connected to the following problem from combina-
torial number theory: Erdős, Sárközy and T. Sós [5] examined how
many elements of the set {1, 2, . . . , n} can be chosen in such a way
that none of the 2k-element products from this set is a perfect square.
The maximal size of such a subset is denoted by F2k(n). Note that
the functions F and G satisfy the inequality F2k(n) ≤ Gk(n) for every
n and k because if the equation a1 . . . ak = b1 . . . bk has a solution of
distinct elements, then the product of these 2k numbers is a perfect
square. Erdős, Sárközy and T. Sós proved the following estimates for
k = 3:

π(n) +π (n/2) + c
n2/3

(log n)4/3
≤ F6(n) ≤ π(n) +π (n/2) + cn7/9 log n.

Besides, they noted that by improving their graph theoretic lemma
used in the proof the upper bound π(n) + π(n/2) + cn2/3 log n could
be obtained, so the lower and upper bounds would only differ in a log-
power factor in the error term. Later Győri [7] improved this graph
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theoretic lemma, and gained the desired bound. Furthermore, Erdős,
Sárközy and T. Sós gave the following estimates for k = 4:

π(n) + c1n
4/7/(log n)8/7 ≤ F8(n) ≤ π(n) + c2n

3/4 log n.

Moreover, they proved the upper bound F2k(n) ≤ π(n)+cn3/4/(log n)3/2

for even k ≥ 2 and F2k(n) ≤ π(n) + π(n/2) + cn7/9 log n for odd k ≥ 3.
In this paper these bounds are going to be improved as a consequence
of my upper estimates for Gk(n). For k = 3 Győri’s previously men-
tioned upper bound’s error term is strengthened by a log log n factor,
and for k = 4 the exponent of n is decreased from 3/4 to 2/3 in the
error term of the estimate of Erdős, Sárközy and T. Sós. For k = 4 the
lower bound F8(n) ≥ π(n) + cn4/7/(log n)8/7 given by Erdős, Sárközy
and T. Sós is also improved with the help of a new construction, it is
going to be proved that F8(n) ≥ π(n) + n3/5/(log n)6/5.

2. Preliminary lemmas

Throughout the paper the maximal number of edges of a graph not
containing a cycle of length k is conventionally denoted by ex(n,Ck),
and let us use the notation ex(u, v, C2k) for the maximal number of
edges of a C2k-free bipartite graph, where the number of vertices of
the two classes are u and v. (Note that every graph appearing in this
paper is simple.)

Lemma 2.1. Let n ∈ N. Then
1

3
n3/2 < ex(n,C4) <

n

4
(1 +

√
4n− 3),

if n is large enough.

Proof. Reiman [11] proved the upper bound, and he also constructed a
C4-free graph with n = p2 +p+1 vertices and 1

2
p(p+1)2 ∼ 1

2
n3/2 edges

for any prime p. From this the lower bound can be derived easily by
looking the largest prime p such that p2 +p+ 1 ≤ n, taking the C4-free
graph for p2 +p+1 and adding n−p2−p−1 isolated vertices to it. �

Lemma 2.2. Let n ∈ N. Then

ex(n,C6) < 0.6272n
4
3 ,

if n is large enough.

Proof. This is the second statement of Theorem 1.1 in [6]. �

Lemma 2.3. Let n ∈ N. Then

ex(n,C2k) < 100kn
k+1
k .

Proof. This is a special case of Theorem 1. (setting l = k) in [2]. �
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Lemma 2.4. Let u, v ∈ N. Then

ex(u, v, C6) ≤ 21/3(uv)2/3 + 16(u+ v).

Proof. This is Theorem 1.2 in [6]. �

Lemma 2.5. Let u, v ∈ N satisfying v ≤ u. Then

ex(u, v, C6) < 2u+ v2/2.

Proof. This is Theorem 1. in [7]. �

Lemma 2.6. Let u, v ∈ N. Then for every k ≥ 2

ex(u, v, C2k) ≤ (2k − 3)[(uv)
k+1
2k + u+ v], if k is odd,

and
ex(u, v, C2k) ≤ (2k − 3)[u

k+2
2k v

1
2 + u+ v], if k is even.

Proof. This is Corollary 2. in [9]. �

Lemma 2.7. There exists some c > 0 constant such that for large
enough n there exists a graph with n vertices and girth 8 having at
least cn4/3 edges.

Proof. This is a consequence of Theorem 1. in [1]. In the previously
mentioned theorem it is proved that for each prime power q there exists
a (q+ 1)-regular graph of girth 8 having n = 2(q3 + q2 + q+ 1) vertices.
Therefore, the number of edges in this graph is (q3+q2+q+1)(q+1) ∼
2−4/3n4/3. Moreover, the prime powers are dense enough to guarantee
the existence of a graph with n vertices and girth 8 having at least
cn4/3 edges for all large enough n. �

Lemma 2.8. Let us denote by Ni(x) the number of positive integers
n ≤ x satisfying Ω(n) ≤ i. (Here, Ω(n) denotes the number of prime
factors of n with multiplicity.) For every δ > 0 there exists some
constant C = C(δ) such that for 1 ≤ i ≤ (1− δ) log log x we have

Ni(x) < C(δ) · x

log x
· (log log x)i−1

(i− 1)!
.

Proof. Let πi(x) = |{n : n ≤ x,Ω(n) = i}|. Landau [8] proved that for
every η > 0 there exists some D = D(δ) such that for every 1 ≤ i ≤
(1− η) log log x the following inequality holds:

πi(x) < D(η) · x

log x
· (log log x)i−1

(i− 1)!
.
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Let δ > 0 be arbitrary and 1 ≤ i ≤ (1−δ) log log x. By using the result
of Landau an upper bound for Ni(x) can be given:

Ni(x) =
i∑

j=0

πj(x) ≤
i∑

j=0

D(1 + δ) · x

log x
· (log log x)j−1

(j − 1)!
=

= D(1 + δ) · x

log x
· (log log x)i−1

(i− 1)!

i∑
j=0

j(j + 1) . . . (i− 1)

(log log x)i−j
≤

≤ D(1+δ)· x

log x
·(log log x)i−1

(i− 1)!

i∑
j=0

(1−δ)i−j ≤ 2D(1 + δ)

δ
· x

log x
·(log log x)i−1

(i− 1)!
,

hence for constant C(δ) = 2D(1+δ)
1−δ the required inequality holds. �

Lemma 2.9. Let n ∈ N. Every m ≤ n positive integer can be written
in the form

m = uv, v ≤ u,

where u ≤ n2/3, or u is a prime.

Proof. This is Lemma I. in [3]. �

Similarly, an even sharper statement can be proved.

Lemma 2.10. Let n be a positive integer and 1 < g < n1/6 an arbitrary
real number. Every m ≤ n can be written in the form

m = uv (u, v ∈ N),

where one of the following conditions holds:
(a) v ≤ u ≤

√
n · g,

(b)
√
n · g < u ≤ n2/3 such that Ω(u) ≤ logn

2 log g
,

(c) n2/3 < u is a prime.

Proof. Let the prime factorization of m be m = q1q2 . . . qr. We may
suppose that n2/3 > q1 ≥ q2 ≥ · · · ≥ qr, otherwise (c) holds. Starting
with q1 we make two products out of the prime factors in such a way
that we always add the next prime to the product which is smaller.
Accordingly, at first q1 forms one of the products, and the value of the
other (empty) product is 1. In the next step the other product is going
to be q2, then q3 goes to the product containing q2 because q1 ≥ q2, so
the two products are going to be q1 and q2q3. Hereafter, we continue
dividing the prime factors in the above described way. If we manage
to adject all the qi in such a way that none of the obtained products
are bigger than

√
n · g, then (a) holds. Otherwise, let i be the smallest
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index such that by adjecting qi one of the products would be bigger
than

√
n · g. It was possible to divide the primes q1, . . . , qi−1 into two

parts in such a way that in both parts the product of the primes is at
most

√
n · g. Let us call the two products A and B, then the inequality

A ≤ B ≤
√
n · g

holds. It is known that Aqi >
√
n · g, that is, A >

√
n · g
qi

.

Since
A2 ≤ AB ≤ m

qi
≤ n

qi
,

we have that
n · g2

q2i
< A2 ≤ n

qi
,

which yields qi > g2. As qi is the ith biggest prime divisor

n ≥ m ≥ q1q2 . . . qi ≥ g2i,

so

i ≤ log n

2 log g
.

Hence, (b) holds with u = Aqi, if Aqi ≤ n2/3. If Aqi > n2/3, then

qi ≥
ABq2i
n
≥ (Aqi)

2

n
> n1/3,

so the value of i can be only 1 or 2. Since A ≤ B, so A = 1, that is, the
inequality Aqi > n2/3 yields that qi > n2/3 is the biggest prime divisor
of the number n. Therefore, i = 1 and q1 > n2/3, so (c) holds.

�

Let us denote by Gk(n) the possible maximal size of a subset of
{1, 2, . . . , n} such that no 2k distinct elements taken from this subset
satisfy the equation a1a2 . . . ak = b1b2 . . . bk.

3. The equation s1s2s3 = t1t2t3

Theorem 3.1. For every ε > 0 there exists an N = N(ε) such that if
n > N = N(ε), then

(1) π(n) + π(n/2) + cn2/3/(log n)4/3 ≤ G3(n) ≤

≤ π(n) + π(n/2) +

(
24/3e

3
+ ε

)
· n2/3 · log n

log log n
,

where c > 0 is a constant.
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Proof. At first the lower bound is going to be proved. By Lemma 2.7.
there exists a graph G such that the vertices of G are the odd primes
not greater than

√
n, the girth of G is at least 8 and for the number

of edges of G we have lG ≥ c(π(
√
n))4/3. Let A = {p |

√
n < p ≤

n, p is prime} ∪ {2q |
√
n < q ≤ n/2, q is prime} ∪ {uv | uv ∈ E(G)}.

Now A ⊆ {1, 2, . . . , n}, and we show that the equation

(2) s1s2s3 = t1t2t3 (s1, s2, s3, t1, t2, t3 ∈ A)

has no solution consisting of distinct elements. We will refer to the edge
uv of G by the product uv. At first assume that one of the variables
in a solution of (2) is an edge of G, for instance, s1 = uv ∈ E(G).
Then v is a prime, so it divides the right hand side as well, so it can
be assumed that t1 = vw ∈ E(G), where w 6= u. Now w divides the
left hand side, therefore it can be assumed that s2 = wz ∈ E(G), and
so on... By continuing this method, we get a cycle of length at most 6,
which is a contradiction. So in a solution of s1s2s3 = t1t2t3 only odd
primes and odd primes multiplied by 2 can occur. In this case exactly
3 of the 6 variables would be divisible by 2 and none of them by 4,
which is contradiction again. Furthermore, for the size of the set A we
have

|A| ≥ π(n)− π(
√
n) + π(n/2)− π(

√
n) + c(π(

√
n))4/3 ≥

≥ π(n) + π(n/2) + cn2/3/(log n)4/3.

For the upper bound assume that for A ⊆ {1, 2, . . . , n} equation (2)
has no solution consisting of distinct elements.

Let g(n) = e
logn

log logn . Let A = {a1, . . . , al}, where 1 ≤ a1 < a2 <
· · · < al ≤ n. Applying Lemma 2.10. for n and g = g(n) we obtain
that the elements of the set A can be written in the form ai = uivi,
where ui and vi are positive integers, and one of the following conditions
holds:

(i) n2/3 < ui is a prime,
(ii)
√
n · g(n) ≤ ui ≤ n2/3 and Ω(ui) ≤ logn

2 log g(n)
,

(iii) vi ≤ ui ≤
√
n · g(n).

If any 1 ≤ i ≤ l can be written as uivi in more than one way, then we
choose such an ui and vi that vi is minimal. The number of elements
of A for which ui = vi can be estimated from above by the number of
square numbers in {1, 2, . . . , n}, hence
(3) |{i|1 ≤ i ≤ l, ui = vi}| ≤

√
n.

For proving the upper estimate let us assume that vi 6= ui for every
ai ∈ A. Then adding

√
n to the obtained upper bound we gain an upper
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estimate for an arbitrary set A. Assume that (2) has no such solution
where s1, s2, s3, t1, t2, t3 are distinct. Let G = (V,E) be a graph where
the vertices are the integers not greater than n2/3 and the primes from
the interval (n2/3, n]:

V (G) = {a ∈ N|a ≤ n2/3} ∪ {p|n2/3 < p ≤ n, p is a prime}.
Then the number of the vertices of G is |V (G)| = π(n)+[n2/3]−π(n2/3).
The edges of G will correspond to the elements of A: For each 1 ≤ i ≤ l
let uivi be an edge, and denote it by ai: E(G) = {uivi|1 ≤ i ≤ l}.
In this way distinct edges are assigned to distinct elements of A. In
the graph G there are no loops because we have omitted the elements
where ui = vi, moreover |E(G)| = |A| = l. Furthermore, G contains no
hexagons. Indeed, if x1x2x3x4x5x6x1 is a hexagon in G, then

s1 = x1x2, t1 = x2x3, s2 = x3x4, t2 = x4x5, s3 = x5x6, t3 = x6x1

would be a solution of (2), contradicting our assumption.
Now our aim is to estimate from above the number of edges of G.

At first let us partition the edges of G into some parts. Let G0 be the
subgraph that contains such uivi edges of G for which max(ui, vi) ≤√
n:

E(G0) = {uivi|ui ≤
√
n}.

Let K1 be a positive integer, which is going to be determined later, and
for every 1 ≤ h ≤ K1 let Gh be the subgraph which contains those uivi
edges of G for which the inequality

√
n · g(n)

h−1
K1 < ui ≤

√
n · g(n)

h
K1

holds:

E(Gh) = {uivi|
√
n · g(n)

h−1
K1 < ui ≤

√
n · g(n)

h
K−1}.

The graphs G0, G1, . . . , GK1 contain all of the edges of G that satisfy
(iii).

Out of the remaining edges those are divided into K2 parts which
satisfy (ii), where K2 will also be determined later. For these uivi
edges

√
n ≤ ui ≤ n2/3 and Ω(ui) ≤ logn

2 log g(n)
hold. For 1 ≤ h ≤ K2

let GK1+h be the subgraph which contains such uivi edges of the graph
G\(G0∪· · ·∪GK1) which satisfy the inequality n

1
2
+h−1

6K2 ≤ ui < n
1
2
+ h

6K2 :

E(GK1+h) = {uivi|n
1
2
+h−1

6K2 ≤ ui < n
1
2
+ h

6K2 } \ ∪K1
j=0E(Gj).

Finally, let GK1+K2+1 be the graph which is obtained by deleting the
edges of G0, G1, . . . , GK1+K2 from G. For the edges uivi in GK1+K2+1

we have n2/3 < ui. That is, ui is a prime, and these edges satisfy (i):

E(GK1+K2+1) = {uivi|n2/3 ≤ ui, ui is prime}.
So we divided the graph G into K1 +K2 + 2 parts.
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Denote by lh the number of edges of Gh (0 ≤ h ≤ K1 + K2 + 1).
In the remaining part of the proof we estimate the lh number of edges
separately, and at the end we add up these estimates. There are at
most [n1/2] vertices of G0 that are endpoints of some edges because
uivi ∈ E(G0) implies vi < ui ≤ n1/2. Hence, by Lemma 2.2. for large
enough n

(4) l0 ≤ 0.6272(n1/2)4/3 = 0.6272n2/3

holds.
Now let 1 ≤ h ≤ K1. If any ai = uivi is an edge of the graph Gh,

then
√
n · g(n)

h−1
K1 < ui ≤

√
n · g(n)

h
K1 , and so vi = ai

ui
≤ n

ui
≤

√
n

g(n)
h−1
K1

.

Thus Gh is a bipartite graph with bipartition Uh and Vh, where

Uh ⊆
{

[
√
n · g(n)

h−1
K1 ] + 1, . . . , [

√
n · g(n)

h
K1 ]
}
,

and
Vh ⊆

{
1, 2, . . . ,

[√
n/g(n)

h−1
K1

]}
.

(We delete those vertices of Gh which are not endpoints of any edge.)
By Lemma 2.4. the following inequality holds for the number of edges
of Gh:

(5) lh ≤ 21/3(|Uh||Vh|)2/3 + 16(|Uh|+ |Vh|) ≤

≤ 21/3n
2
3 g(n)

2
3K1 +16([

√
n·g(n)

h
K1 ]−[

√
n·g(n)

h−1
K1 ])+16

√
n/g(n)

h−1
K1 .

By adding up the upper estimates of lh for 1 ≤ h ≤ K1:

(6)
K1∑
h=1

lh ≤ 21/3K1n
2
3 g(n)

2
3K1 + 16

K1∑
h=1

([
√
n · g(n)

h
K1 ]− [

√
n · g(n)

h−1
K1 ])+

+16

K1∑
h=1

√
n

g(n)
h−1
K1

≤ 21/3K1n
2
3 g(n)

2
3K1 +16

√
n·g(n)+16·

1− 1
g(n)

1− 1
g(n)1/K1

·
√
n

because one of the summas is a telescopic sum and the other is the sum
of the members of a geometric series of K1 elements. Furthermore, we
get the asymptotically best estimate, if we choose the value of K1 in
such a way that K1g(n)

2
3K1 is minimal. Examining the function K1 →

K1g(n)
2

3K1 we get that it attains the smallest value for K1 = 2 log g(n)
3

,

where its value is 2e
3

log g(n). Therefore, let K1 =
⌈
2 log g(n)

3

⌉
, and note
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that the ceiling gives us an error of neglectable size:

(7) K1g(n)
2

3K1 <

(
2 log g(n)

3
+ 1

)
g(n)1/ log g(n) =

2e

3
· log g(n) + e.

Since K1 ≤ log g(n), so

(8) 16 ·
1− 1

g(n)

1− 1
g(n)1/K1

·
√
n ≤ 16

1− 1/e3/2
·
√
n.

Therefore, from (6) with the choice of K1 =
⌈
2 log g(n)

3

⌉
by considering

(7) and (8) we obtain the following upper bound:

(9)
K1∑
h=1

lh ≤
24/3e

3
·n2/3 log g(n)+21/3e·n2/3+16

√
n·g(n)+

16

1− 1/e3/2
·
√
n ≤

≤ 24/3e

3
· n2/3 · log n

log log n
+ c1n

2/3,

where c1 is an arbitrary constant bigger than 21/3e.
Now let 1 ≤ h ≤ K2. If any ai = uivi is an edge of GK1+h, then

n
1
2
+h−1

6K2 < ui ≤ n
1
2
+ h

6K2 ,

and so
vi =

ai
ui
≤ n

ui
≤ n

1
2
−h−1

6K2 .

This means thatGh is such a bipartite graph where the two independent
classes of vertices UK1+h and VK1+h satisfy the following conditions:

UK1+h ⊆
{[
n

1
2
+h−1

6K2

]
+ 1, . . . ,

[
n

1
2
+ h

6K2

]}
,

and
VK1+h ⊆

{
1, 2, . . . ,

[
n

1
2
−h−1

6K2

]}
,

furthermore for every ui element of UK1+h

(10) Ω(ui) ≤
log n

2 log g(n)
=

1

2
· log log n

also holds. (We delete those vertices of GK1+h which are not endpoints
of any edge.)

Let us denote by Ns+1(x) the number of the numbers which are less
or equal than x and can be written as the product of at most s + 1
primes:

Ns+1(x) = |{a ∈ N|a ≤ x and Ω(a) ≤ s+ 1}|.
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Let s =
⌊
1
2
· log log n

⌋
− 1. By Lemma 2.8. there exists such a c′

constant depending on c with which the following inequality holds:

(11) Ns+1(x) ≤ c′ · x

log x
· (log log x)s

s!
.

Applying inequality (11) for x = n
1
2
+ h

6K2 we have

(12)

|UK1+h| ≤ Ns(n
1
2
+ h

6K2 ) ≤ c′ · n
1
2
+ h

6K2

(1
2

+ h
6K2

) log n
· (log log n

1
2
+ h

6K2 )s

s!
≤

≤ 2c′ · n
1
2
+ h

6K2

log n
· (log log n)s

s!
.

To estimate the obtained expression we give an upper bound for log logn
s

.
Let η > 0 be arbitrary. If n is large enough, then

log log n

s
=

log log n⌊
1
2
· log log n

⌋
− 1
≤ 2 + η.

Using this and the s! ≥ (s/e)s inequalities we have

(13)
(log log n)s

s!
≤ (log log n)s

(s/e)s
= ((2 + η)e)(1/2) log logn =

= (log n)
1
2
log((2+η)e) < (log n)9/10,

if 0 < η is chosen to be sufficiently small, because for η = 0 the value
of the exponent of log n is smaller than 0.9. Substituting (log logn)s

s!
<

(log n)9/10 into (12) we get

|UK1+h| ≤ 2c′ · n
1
2
+ h

6K2

(log n)1/10
.

Furthermore, it is clear that

|VK1+h| ≤ n
1
2
−h−1

6K2 .

By Lemma 2.4. for the number of edges of GK1+h the following
inequality holds:

(14) lK1+h ≤ 21/3(|UK1+h||VK1+h|)2/3 + 16(|UK1+h|+ |VK1+h|) ≤

≤ 2(c′)2/3n
2
3
+ 1

9K2 /(log n)1/15 + 16

(
2c′ · n

1
2
+ h

6K2

(log n)1/10
+ n

1
2
−h−1

6K2

)
.
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Summing up the upper bounds of lh for 1 ≤ h ≤ K2:

(15)
K2∑
h=1

lK1+h ≤ 2(c′)2/3K2n
2
3
+ 1

9K2 /(log n)1/15+

+ 16

K2∑
h=1

(
2c′ · n

1
2
+ h

6K2

(log n)1/10
+ n

1
2
−h−1

6K2

)
.

In this expression summing the geometric progression n
1
2
+ h

6K2 (1 ≤ h ≤
K2) we have

(16)
32c′

(log n)1/10
·
K2∑
h=1

n
1
2
+ h

6K2 =
32c′

(log n)1/10
· n

2
3
+ 1

6K2 − n
1
2
+ 1

6K2

n
1

6K2 − 1
.

In the estimate (15) the largest term is 2(c′)2/3K2n
2
3
+ 1

9K2 /(log n)1/15,
therefore in order to obtain the best upper bound we have to choose
the value of K2 in such a way that K2n

1
9K2 is minimal. Examining the

function K2 → K2n
1

9K2 we get that it obtains the smallest value for
K2 = logn

9
, where the value of the function is e logn

9
. Accordingly, let

K2 =
⌈
logn
9

⌉
, and note that the upper integer part gives us an error of

neglectable size:

K2n
1

9K2 <

(
log n

9
+ 1

)
n

1
9K2 ≤ e log n

9
+ e.

With this choice of K2 the value of (16):

(17)
32c′

(log n)1/10
· n

2
3
+ 1

6K2 − n
1
2
+ 1

6K2

n
1

6K2 − 1
≤ c2 · n2/3,

where c2 > 0 is arbitrary. The sum of the other geometric progression
appearing in (15) is less than n1/2 log n, hence with this choice of c2 the
inequality (15) yields that

(18)
K2∑
h=1

lK1+h ≤
2e(c′)2/3

9
n2/3(log n)14/15 + c3 · n2/3,

where c3 > c2 is arbitrary.
Finally, GK1+K2+1 is also a bipartite graph, the two independent

vertex classes are the primes from the interval (n2/3, n] and the positive
integers less than n1/3. (We delete again the vertices of degree 0.) If
p ∈ (n/2, n], then the vertex corresponding to p is the endpoint of at
most one edge: The one corresponding to p · 1 because 2p > n, so
p cannot be connected with an integer bigger than 1. Delete the 1p
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edges and the p vertices for n/2 < p ≤ n from the graph GK1+K2+1,
and let the remaining graph be G′K1+K2+1. Note that the number of
deleted edges is at most π(n) − π(n/2). The graph G′K1+K2+1 does
not contain any hexagons either, and all of its edges join a prime from
(n2/3, n/2] with a positive integer less than n1/3. Therefore, it is a
bipartite graph whose independent vertex classes R and S satisfy the
following conditions:

R ⊆ {p|n2/3 < p ≤ n/2, p is a prime} and

S ⊆ {a ∈ N|a < n1/3}.
By Lemma 2.5. for the number of edges of G′K1+K2+1 the inequality

l′K1+K2+1 ≤ 2|R|+ |S|2/2 ≤ 2(π(n/2)− π(n2/3)) + n2/3/2

holds. Accordingly,

(19) lK1+K2+1 ≤ π(n)− π(n/2) + l′K1+K2+1 ≤ π(n) + π(n/2) + n2/3/2.

Adding up the inequalities (4), (9), (18), (19):

(20) l =

K1+K2+1∑
h=0

lh ≤ 0.6272n2/3 +
24/3e

3
· n2/3 · log n

log log n
+ c1n

2/3+

+
2e(c′)2/3

9
n2/3(log n)14/15 + c3 · n2/3 + π(n) + π(n/2) + n2/3/2 ≤

≤ π(n) + π(n/2) +

(
24/3e

3
+ ε

)
· n2/3 · log n

log log n
,

where ε > 0 is arbitrary and n is large enough. Remember that the
error coming from the square numbers is O(n1/2) by (3), so this upper
bound holds for any set A, if n is large enough. Consequently, the
statement of the theorem is proved.

�

4. The equation s1s2s3s4 = t1t2t3t4

Now we give an upper bound for G4(n), moreover for G2k(n) for
every k ≥ 2.

Theorem 4.1. For every k ≥ 2 and ε > 0 there exists some N =
N(k, ε) such that for n > N we have

G2k(n) ≤ π(n) + (c+ ε)n2/3,

where c = 10 for k = 2, c = 18 for k = 3 and c = 4k − 3 for k > 3.
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Proof. Let

A = {a1, . . . , al}, where 1 ≤ a1 < a2 < · · · < al ≤ n.

Assume that in A the equation

(21) s1s2 . . . s2k = t1t2 . . . t2k (s1, . . . , s2k, t1, . . . , t2k ∈ A)

does not have a solution consisting of distinct elements. By applying
Lemma 2.9. for n we get that the elements of A can be written in the
form

ai = uivi,

where ui and vi are positive integers for which one of the following
conditions holds:

(i) n2/3 < ui is a prime,
(ii) vi ≤ ui ≤ n2/3.

If for some 1 ≤ i ≤ l there are more possibilities for ai to be written
as a product satisfying the above conditions, then choose ui and vi in
such a way that vi is minimal. Similarly as in the proof of Theorem
3.1., the number of elements of A such that ui = vi can be estimated
from above by the number of square numbers in {1, 2, . . . , n}, hence
(22) |{i | 1 ≤ i ≤ l, ui = vi}| ≤

√
n.

At first for the upper estimate we shall assume that vi 6= ui for every
ai ∈ A. Then adding

√
n to the obtained upper bound we gain an

upper estimate for an arbitrary set A.
Assume that (21) has no such solution where s1, ..., s2k, t1, ..., t2k are

distinct. Let G = (V,E) be a graph where the vertices are the integers
not greater than n2/3 and the primes from the interval (n2/3, n]:

V (G) = {a ∈ N|a ≤ n2/3} ∪ {p|n2/3 < p ≤ n, p is a prime}.
The number of the vertices of G is |V (G)| = π(n) + [n2/3]− π(n2/3).

The edges of G correspond to the elements of A. For each 1 ≤ i ≤ l
let uivi be an edge. This edge will be denoted by ai = uivi:

E(G) = {uivi|1 ≤ i ≤ l}.
This way distinct edges are assigned to distinct elements of A. The
graph G has no loops because we have omitted the elements where
ui = vi, moreover |E(G)| = |A| = l. From the assumption that (21)
has no solution consisting of distinct elements, it follows that there is
no cycle of length 4k in the graph G.

Since if x1x2 . . . x4kx1 is a cycle in G, then

si = x2i−1x2i, ti = x2ix2i+1 (1 ≤ i ≤ 2k)

would be a solution of (21) (x4k+1 := x1), contradicting our assumption.
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Now our aim is to estimate the number of edges of G from above.
For this we partition the edges of G into some parts.

Let G0 be the subgraph that contains such uivi edges of G for which
vi ≤ ui ≤

√
n:

E(G0) = {uivi|ui ≤
√
n}.

Let G1 be the subgraph which contains the uivi edges satisfying√
n < ui ≤ n2/3. In the case when k = 2 the edges of G1 have to be

split into two parts in order to obtain a good estimate: Let G′1 and
G′′1 be the subgraphs which contain such uivi edges of G1 that satisfy√
n < ui ≤ n7/12 and n7/12 < ui ≤ n2/3, respectively:

E(G′1) = {uivi |
√
n < ui ≤ n7/12}

and
E(G′′1) = {uivi | n7/12 < ui ≤ n2/3}.

The graphs G0 and G1 contain all the edges satisfying (ii).
Let G2 be the graph that we get after deleting the edges of G0 and

G1 from G. For the elements of A corresponding to the edges of the
graph G2 we have n2/3 < ui, hence ui is a prime number, and these
edges satisfy (i):

E(G2) = {uivi | n2/3 ≤ ui, ui is a prime}.

So we divided the graph G into 3 (4 in the case k = 2) parts.
Denote by lh the number of edges of Gh (0 ≤ h ≤ 2). In the remain-

ing part of the proof we estimate the lh number of edges separately,
then we add them up.

The graph G0 has at most [
√
n] vertices of positive degree, since for

uivi ∈ E(G0) we have vi < ui ≤
√
n. Therefore, by Lemma 2.3. the

number of edges of G0 satisfies the inequality

(23) l0 ≤ 200k · n
1
2
+ 1

4k .

If uivi is an edge of the graph G1, then

vi =
n

ui
≤ n√

n
=
√
n.

This means that the sizes of the independent vertex classes of the bi-
partite graph G1 are at most n2/3 and n1/2. By Lemma 2.6. for the
number of edges of G1 we obtain the upper bound:

(24) l1 ≤ (4k − 3)(n
2
3
· 1
2
+ 1

2
· 2k+2

4k + n
2
3 + n

1
2 ) =

= (4k − 3)n
1
3
+ k+1

4k + (4k − 3)n2/3 + (4k − 3)n1/2.
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When k = 2 this estimate is not sharp enough, so we give upper bounds
for the number of edges of G′1 and G′′1 separately by using Lemma 2.6.:

l′1 ≤ 5(n
7
12
· 1
2
+ 1

2
· 3
4 + n

7
12 + n

1
2 ) = 5n2/3 + 5n7/12 + 5n1/2,

l′′1 ≤ 5(n
2
3
· 1
2
+ 5

12
· 3
4 + n

2
3 + n

5
12 ) = 5n2/3 + 5n31/48 + 5n5/12.

Here, when l′′1 was estimated, we used the observation that if uivi is an
edge of G′′1, then vi ≤ n/ui ≤ n5/12. So in the case k = 2 we get that

(25) l1 = l′1 + l′′1 ≤ 10n2/3 + 5n7/12 + 5n1/2 + 5n31/48 + 5n5/12.

Finally, let us look at the graph G2, which is bipartite, as well and the
two independent vertex classes are the set of the primes in (n2/3, n] and
the set of the positive integers less than n1/3. (We omit the vertices
with degree 0.) So G2 is a bipartite graph with independent vertex
classes R and S satisfying

R ⊆ {p | n2/3 < p ≤ n, p is a prime} and

S ⊆ {a ∈ N | a < n1/3}.
The graph G2 does not contain a cycle of length 4k, and it can be
shown that it does not contain k pairwise edge-disjoint 4-cycles either.
Assume to the contrary that yi,1yi,2yi,3yi,4yi,1 (1 ≤ i ≤ k) are edge-
disjoint 4-cycles in G2. Then the product of the numbers yi,1yi,2 and
yi,3yi,4 is equal to the product of the numbers yi,2yi,3 and yi,4yi,1 for
every 1 ≤ i ≤ k. Therefore, the equation s1 . . . s2k = t1 . . . t2k has
a solution consisting of distinct elements of A, which contradicts our
assumption. So G2 does not contain k edge-disjoint 4-cycles, so after
deleting at most 4(k − 1) edges it can be guaranteed that there are no
more 4-cycles in the graph at all. (If it contains a 4-cycle, we delete
the edges of it, if it still contains a 4-cycle, we delete those edges too,
and so on. After the (k − 1)-th step it will not contain any 4-cycle.)
Let us denote the remaining graph by G′2. For the number of edges in
G′2 we have l′2 ≥ l2 − 4(k − 1).

Now we define a graph H on S. The edges of H are obtained in the
following way: Take the points of R one by one, and for every vertex
v ∈ R take a maximal matching of the neighbours of v. Let these be
the edges of H. If the degree of v is 0 or 1, then we do not get any
edge, if the degree of v is even, then we get d(v)/2 edges and if it is
odd, then we get (d(v)− 1)/2 = bd(v)/2c edges. If ab is an edge in H,
then this edge is drawn for a common G′2−neighbour of a and b. This
common neighbour is unique, since in G′2 there is no 4-cycle. So, by
this process, for different vertices of R we have different edges in H. If
d(v) ≥ 2, then d(v)/3 ≤ bd(v)/2c, so the number of edges of H is at
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least 1/3 times the number of such edges of G′2 which have an endpoint
in R with degree at least 2. Hence,

l′2 ≤ |R|+ 3lH ,

where lH denotes the number of edges of H. We show that H does
not contain a 2k-cycle: Suppose to the contrary that u1u2 . . . u2ku1
is a cycle in H. Then, by the definition of H, there exist vertices
v1, v2, . . . , v2k ∈ R for which uivi, viui+1 (where u2k+1 = u1) are all
edges of G2. Hence, the numbers si = uivi, ti = viui+1 form a solution
of equation (21) consisting of distinct elements of A, which contradicts
our assumption. So H is a C2k-free graph having [n1/3] vertices, hence
by Lemma 2.3. we obtain that

lH ≤ (100k)n
1
3(1+ 1

k).

Therefore,

(26) l2 ≤ |R|+ 3lH + 4(k − 1) ≤ π(n) + (300k)n
1
3(1+ 1

k) + 4(k − 1).

Summarizing the results, namely, adding up the inequalities (23),
(24) and (26):

l = l0 + l1 + l2 ≤ (200k · n
1
2
+ 1

4k ) + ((4k − 3)n
1
3
+ k+1

4k + (4k − 3)n2/3+

+ (4k − 3)n1/2) + (π(n) + (300k)n
1
3(1+ 1

k) + 4(k − 1)) ≤
≤ π(n) + (4k − 3 + ε)n2/3

holds for every k ≥ 4, if ε > 0 and n is sufficiently large. If k = 3, then
we get the upper bound k ≤ π(n) + (18 + ε)n2/3. If k = 2, then for
estimating k1 we use (25):

l = l0 + l1 + l2 ≤ (400 · n
1
2
+ 1

8 ) + (10n2/3 + 5n7/12 + 5n1/2 + 5n31/48+

5n5/12) + (π(n) + (300 · 2)n
1
3(1+ 1

2) + 4) ≤
≤ π(n) + (10 + ε)n2/3,

where ε > 0 and n is sufficiently large. These upper bounds are valid for
any A, since the error term coming from (22) is negligible. Therefore,
we proved the desired statement. �

Now we give a lower estimate for G4(n).

Theorem 4.2. If n is large enough, then the inequality

G4(n) ≥ π(n) + n3/5/(log n)6/5

holds.
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Proof. Let n ∈ N,

S = {p | p ≤ n2/5(log n)1/5, p is a prime} and

T = {p | n2/5(log n)1/5 < p ≤ n, p is a prime}.
At first we construct a bipartite graph G0, where the two independent
vertex classes are S and T , so the set of the vertices is V (G0) = S ∪ T.
In order to do this, let us take take a C4-free graph H on S, whose
number of edges satisfies the following inequality:

1

3
π(n2/5(log n)1/5)3/2 ≤ lH ≤

2

5
π(n2/5(log n)1/5)3/2.

Note that such a graph exists according to Lemma 2.1. Now, we make
the edges of H correspond injectively to such vertices of T which are
in the interval

(
n2/5(log n)1/5, n3/5/(log n)1/5

]
. It can be done, since∣∣T ∩ (n2/5(log n)1/5, n3/5/(log n)1/5

]∣∣ =

= π(n3/5/(log n)1/5)− π(n2/5(log n)1/5) ≥ 2

5
π(n2/5(log n)1/5)3/2,

if n is sufficiently large. If the edge uv ∈ E(H) corresponds to the
vertex w ∈ T , then displace the uv edge with the uwv cherry. To
different uv edges different w ∈ T vertices belong, moreover the in-
equalities uw ≤ n and vw ≤ n hold because u, v ≤ n2/5(log n)1/5 and
w ≤ n3/5/(log n)1/5. Let us call the obtained bipartite graph G0. In
G0 two vertices from S have at most one common neighbour, and they
have exactly one, if there is an edge between them in H. Accordingly,
the number of edges of G0 is

|E(G0)| = 2|E(H)| ≥ 2

3
π(n2/5(log n)1/5)3/2.

We claim that there is no cycle of length 4 and 8 in G0. Every second
vertex of a 4-cycle would be in S and every second in T . However, in
this case the two vertices from S would have two common neighbours
from T , which is not possible by the construction of this graph. On
the other hand, if x1x2x3x4x5x6x7x8x1 would be a 8-cycle in G0, where
x1, x3, x5, x7 ∈ S, x2, x4, x6, x8 ∈ T , then x1x3x5x7x1 would be a 4-cycle
in H because for every i ∈ {1, 3, 5, 7} the vertex xi+1 is the common
neighbour of xi and xi+2 in G0 (x9 := x1).

Now, let us start to examine the number of edges of G0. In the graph
G0 the degree of every vertex of T is 0 or 2. Denote by T1 ⊆ T the
set of vertices of degree 0 and by T2 ⊆ T the set of vertices of degree
2. Because of the bijective correspondence between the edges of H and
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the vertices of T2 we have

|T2| = |E(H)| ≥ 1

3
π(n2/5(log n)1/5)3/2.

Let G be the bipartite graph which is obtained from G0 by adding 1
to S and connecting it with all of the vertices of T1. That is, the two
independent vertex classes are going to be S ∪ {1} and T : V (G) =
S ∪ {1} ∪ T, and the set of the edges of the graph is E(G) = E(G0) ∪
{1x | x ∈ T1}. We claim that the set A = {xy | xy ∈ E(G)} satisfies
the conditions: A ⊆ {1, 2, . . . , n} and the equation s1s2s3s4 = t1t2t3t4
does not have a solution consisting of distinct elements from A.

From the construction it follows that A ⊆ {1, 2, . . . , n}, moreover if
n is large enough, then

|A| = |E(G)| = |T |+ |T2| ≥

≥ π(n)− π(n2/5(log n)1/5) +
1

3
π(n2/5(log n)1/5)3/2 ≥

≥ π(n) + n3/5/(log n)6/5,

since for different xy edges of G the product xy is also different. Now,
it is going to be proved that the equation

(27) s1s2s3s4 = t1t2t3t4

does not have a solution of distinct elements of A. The set A has only
one element which is divisible by the prime p ∈ T1, namely p. This
means that if p would occur on one of the sides, then it would have
to occur on the other side as well, which is impossible. Therefore, the
primes of T1 cannot occur on either of the sides of the equation, that
is, the numbers s1, s2, s3, s4, t1, t2, t3, t4 all correspond to some edges of
G0, so each of them can be written as the product of a prime of S and
one of T2. Moreover, if the equation (27) would hold, then the set of
edges corresponding to the variables would be a union of cycles. Since
the graph is bipartite, this would be only possible, if they would form
two cycles of length 4 or one of length 8. However, G0 does not contain
either C4 or C8, so this is impossible, as well. Therefore, the desired
statement is proved.

�

Summing up the lower- and upper bounds of Theorems 4.1. and 4.2
obtained for G4 we get the following result:

Corollary 4.3. For arbitrary ε > 0 there exists such an N = N(ε)
that for every n > N the following inequality holds:

π(n) + n3/5/(log n)6/5 ≤ G4(n) ≤ π(n) + (10 + ε)n2/3.
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5. Corollaries

Erdős proved the following theorem about the size of the multiplica-
tive 2-Sidon sequences:

Theorem (Erdős, [4]). There exist such c1 and c2 positive constants
for which the inequality

π(n) + c1
n3/4

(log n)3/2
≤ G2(n) ≤ π(n) + c2

n3/4

(log n)3/2

holds.

Now, by using Erdős’s previously mentioned theorem and with the
help of Theorems 3.1. and 4.1. some estimates about Gk(n) standing
for arbitrary k are going to be proved.

Corollary 5.1. Let 3 ≤ k be a positive integer and ε > 0 be arbitrary.
Then there exists such an N = Nk(ε) with which for every N < n the
inequality

Gk(n) ≤ π(n) + (ck + ε)n2/3

holds, if k is even and

Gk(n) ≤ π(n) + π(n/2) + (ck + ε) · n2/3 · log n

log log n
,

if k is odd.
Here c4 = 10, c6 = 18, ck = 2k − 3 for even 6 < k and ck = 24/3e

3
for

odd 3 ≤ k.

Proof. According to Theorem 4.1. the statement holds, if k is even.
For odd k the inequality is going to be proved by induction.
By Theorem 3.1. the statement stands for k = 3. Let us assume that

the inequality is already proved for an odd k bigger than 3. That is,
for every ε > 0 there exists such an Nk = Nk(ε) bound that if n > Nk

and for a set A ⊆ {1, 2, . . . , n}

|A| ≥ π(n) + π(n/2) +

(
24/3e

3
+ ε

)
n2/3 log n

log log n

holds, then 2k distinct elements of A can be chosen for which s1 . . . sk =
t1 . . . tk. Now let n > Nk, A ⊆ {1, 2, . . . , n}, and assume that

|A| ≥ π(n) + π(n/2) +

(
24/3e

3
+ ε

)
n2/3 log n

log log n
.
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If n is large enough, then this yields that

|A| ≥ π(n) + π(n/2) +

(
24/3e

3
+ ε

)
n2/3 · log n

log log n
≥

≥ π(n) + C2n
3/4/(log n)3/2,

therefore according to the result of Erdős about the 2-Sidon sequences
the equation

sk+1sk+2 = tk+1tk+2

has a solution of distinct elements in A. Let us fix one such solution.
Applying the induction hypothesis for the set A\{sk+1, sk+2, tk+1, tk+2},
if n is large enough, then 2k pairwise distinct elements can be chosen
for which

s1 . . . sk = t1 . . . tk.

The numbers s1, . . . , sk+2, t1, . . . , tk+2 are pairwise distinct, and

s1 . . . sk+2 = t1 . . . tk+2,

so we proved the statement for k+2. Therefore, the theorem is proved.
�

Remark. It is easy to check that for even k the set {p | 1 ≤ p ≤
n, p is a prime} and for odd k the set {p |

√
n < p ≤ n, p is a prime}∪

{2q |
√
n < q ≤ n/2, q is a prime} is a multiplicative k-Sidon sequence.

This means that Corollary 5.1 implies that Gk(n) is asymptotically π(n)
for even k and π(n) + π(n/2) for odd k.

Erdős, Sárközy and T. Sós examined that at most how many elements
of a set can be chosen in such a way that the product of any 2k of them
is not a square. They proved the following theorem about the maximal
size, F2k(n), of such sets:

Theorem (Erdős, Sárközy, T. Sós, [5]). Let 1 < k be a positive in-
teger. There exists such a constant c > 0 that the following inequalities
hold:

F2k(n) ≤ π(n) + cn3/4/(log n)3/2,

if k is even and n is large enough, and respectively

F2k(n) ≤ π(n) + π(n/2) + cn7/9 log n,

if k is odd and n is large enough.

For k = 3 Győri strengthened this result by proving the following
theorem:
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Theorem (Győri, [7]). There exists such a constant c > 0 that the
following inequality holds:

F6(n) ≤ π(n) + π(n/2) + cn2/3 log n.

Moreover, this result implies that a similar upper bound can be given
for F2k(n), when n is odd. However, by using Corollary 5.1. we can
prove a stronger statement than the previously quoted one of Erdős,
Sárközy and T. Sós and note that for odd k it is even slightly stronger
than the result of Győri:

Corollary 5.2. Let 3 ≤ k be a positive integer and ε > 0 be arbitrary.
Then there exists such an N = Nk(ε) with which for every N < n one
of the following inequalities holds depending on the parity of k:

F2k(n) ≤ π(n) + (ck + ε)n2/3, if k is even,

and

F2k(n) ≤ π(n) + π(n/2) + (ck + ε) · n2/3 · log n

log log n
, if k is odd.

Here c4 = 10, c6 = 18, ck = 2k − 3 for even 6 < k and ck = 24/3e
3

for
odd 3 ≤ k .

Proof. If the equation

s1 . . . sk = t1 . . . tk (s1 . . . , sk, t1, . . . , tk ∈ A)

has a solution of distinct elements, then x = s1 . . . sk and sk+i = ti give
a solution of the equation

s1 . . . s2k = x2.

Therefore, F2k(n) ≤ Gk(n) holds for every n. So, Corollary 5.1. yields
the desired statement.

�

Moreover, the lower bound of F8(n) given by Erdős, Sárközy és T.
Sós is also developed in this paper. They showed that F8(n) ≥ π(n) +
cn4/7/(log n)8/7, and we increase the exponent of n to 3/5 in the error
term.

Corollary 5.3. If n is sufficiently large, then the following inequality
holds:

F8(n) ≥ π(n) + n3/5/(log n)6/5.

Proof. The construction occuring in the proof of Theorem 4.2. is also
appropriate for proving this problem. That proof can also be applied
here with some little changes. �
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