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Abstract

A system of linear equations over a finite field Fq is said to be common if, among all two-
colorings of Fn

q , the uniform random coloring minimizes the number of monochromatic solutions
asymptotically. The notion of common systems of linear equations was introduced by Saad and
Wolf, as an analogue to the well-studied notion of common graphs.

Fox, Pham and Zhao characterized the common systems consisting of one equation. We study
systems consisting of two equations over the binary field F2. We characterize, up to a finite number
of cases, which systems with an odd number of variables are common. Our characterization answers
a question by Kamčev, Liebenau and Morrison in the affirmative way whether there exist common
systems of equations that are not translation invariant.

1 Introduction

The study of monochromatic solutions of systems of equations in colored arithmetic structures is one
of the central topics in additive combinatorics. An 1892 result of this type by Hilbert [6] is often cited
as the very first result in Ramsey theory, preceding Ramsey’s Theorem [11] itself. Theorems by Van
der Waerden [15] and Rado [10] are other famous examples of statements of this kind. However, these
results only concern the existence of a monochromatic solutions, and they do not deal with the number
of solutions, or with the structure of the solution set.

The problem that we study here originates from the quantitative question concerning Ramsey type
results in graph theory: the notion of common graphs. This notion is closely related to one of the
most well-known open problems in extremal combinatorics—Sidorenko’s Conjecture. A graph H is
common if, whenever the edges of Kn are colored in two colors, the number of monochromatic copies
of H is asymptotically minimized for the uniformly random coloring. In other words, as n tends to
infinity, the proportion of morphisms from H to Kn which are monochromatic tends to at least 2|E(H)|−1

regardless of a two-coloring of the edges of Kn. Goodman [5] proved that the triangle is common and
Erdős [3] conjectured that all cliques are common. Burr and Rosta [1] extended the conjecture of
Erdős and conjectured that every graph is common. Sidorenko [13] disproved the latter conjecture, by
proving that a triangle with a pendant edge is not common. The conjecture of Erdős’ was disproved
by Thomason [14], who proved that no clique on at least four vertices is common. More generally, any
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graph containing K4 is not common [7]. We note that Sidorenko’s Conjecture asserts that quasirandom
graphs minimizes densities of bipartite graphs, and so if true, it would imply that all bipartite graphs
are common.

We study the notion of common systems of linear equations over Fq, which was introduced by Saad
and Wolf [12]. Given a system L and a subset A ⊆ Fn

q , we denote by sol(L;A) the set of elements

x ∈ Ak with L(x) = 0. The set A should be understood as one of the color classes while the other
color class is Fn

q \ A. We say that a system L is non-degenerate if each variable is constrained by at
least one of the equations.

Definition 1. Let L be a non-degenerate, full rank system of m linear equations over k variables, on
Fq. We say that L is common if, for any positive integer n and any A ⊆ Fn

q we have

|sol(L;A)|+ |sol(L;Fn
2 \A)| ≥ |sol(L;Fn

2 )|
2k−1

. (1)

Otherwise, we say that L is uncommon.

Cameron, Cilleruelo and Serra [2] proved that every linear equation with non-zero coefficients on
an odd number of variables is common. Saad and Wolf [12] proved that any equation with an even
number of variables such that the coefficients can be split into pairs adding up to zero is common.
The characterization of the common systems of a single linear equation was given by Fox, Pham and
Zhao [4], who showed that an equation is common if and only if it belongs to one of the classes previously
described. An immediate corollary of the just mentioned results is that every linear equation over the
two element field F2 is common.

Kamčev, Liebenau and Morrison [8, 9] gave several results concerning common systems L of two
or more linear equations. Some of these results give conditions on subsystems induced by L, which
imply that L is uncommon; a system L induces a subsystem if the subsystem is implied by L. For
example, Kamčev et al. [9] showed that if L induces a subsystem of two equations on four variables,
then L is uncommon. Consequently, if every solution of L contains an arithmetic progression of length
four formed by the same variables, then L is uncommon. Kamčev et al. [9] also posed several open
questions. In particular, they asked whether there exists a system of linear equations of rank at least
two that is common but not translation invariant.

2 Our results

Our results concern systems of two linear equations over the binary field F2. Since the only non-zero
coefficient in F2 is 1, every linear system of two equations can be written in the form

x1 + x2 + · · ·+ xr = x′1 + x′2 + · · ·+ x′s = x′′1 + x′′2 + · · ·+ x′′t

for some values of r, s, t. We denote this system by Lr,s,t.
In this work, we consider the case that the number r + s + t of variables is odd only. While we

have also obtained results for the case when the sum is even, the analysis used in the proof is more
complicated and we intend to complete them and included to the journal version of this work. We
discuss the differences between the even and the odd cases when we sketch the proof of our main result
in Section 3. In the odd case, our main result is a characterization of common systems up to a finite
number of triples (r, s, t):

Theorem 2. (a) If all r, s and t are odd, then Lr,s,t is common.

(b) If r is odd, s and t are even and t ≥ 2r + s, then Lr,s,t is uncommon.

(c) There exists a constant C such that if r is odd, s and t are even, s ≤ t < 2r + s and t ≥ C, then
Lr,s,t is common.
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The remaining cases can be obtained by permuting r, s and t.

The constant C in Theorem 2(c) arises from an estimate in a certain bound in the proof, and could
potentially be just an artifact of the proof. In fact, numerical computations for small cases suggest
that the statement holds with C = 0.

The significance of the condition t ≥ 2r + s is that it is the threshold at which the random coloring
becomes locally uncommon. In Case (b), the coloring that violates (1) can be obtained by changing
the color of relatively few elements of the uniformly random coloring.

The systems described in Case (c) are common, have rank two and are not translation invariant
(since it contains the equation x1 + · · ·+xr +x′1 + · · ·+x′s = 0, with an odd number of variables, adding
the same non-zero vector to all variables of a solution yields a non-solution). Hence, this answers
the aforementioned question of Kamčev, Liebenau and Morrison. In fact, we can show that L1,2,2 is
common using a Cauchy-Schwarz argument.

3 Sketch of the proof

Similarly to [4], the two main techniques employed in our arguments are using a Fourier transform and
replacing the original integer optimization problem by its linear relaxation.

Let L = Lr,s,t be a system of two linear equations over the binary filed, and let k = r+s+ t. Further,
let Fn

2 = R ∪B be a coloring of the elements of Fn
2 , i.e., the elements of one of the colors form the set

R and of the other color the set B. For simplicity, we denote the variables as x = (x1, x2, . . . , xk). The
number of monochromatic solutions can be written as

|sol(L,R)|+ |sol(L,B)| =
∑

x∈sol(L,Fn
2 )

(
k∏

i=1

1R(xi) +
k∏

i=1

1B(xi)

)
(2)

where 1R and 1B are the indicator functions for the sets R and B.

A system L is common if and only if the equation (2) has a value at least 2n(k−2)−(k−1) for any n
and any function 1R : Fn

2 → {0, 1} and 1B = 1 − 1R, which is equivalent to (1) with A = R (if (2)
drops below 2n(k−2)−(k−1) for one n, it fails for infinitely many n’s by a multiplicative factor). It can
be observed that, if the system L is common, then the same inequality also holds if 1R is replaced by
any function f : Fn

2 → [0, 1], and 1B by 1− f , i.e., it holds that

∑
x∈sol(L,Fn

2 )

(
k∏

i=1

f(xi) +
k∏

i=1

(1− f)(xi)

)
≥ 2n(k−2)−(k−1) (3)

for all functions f : Fn
2 → [0, 1]. The reason is as follows. If the function f is a counterexample for (3),

then it is possible to obtain a partition FN
2 = R ∪B with N � n by adding each (y1, y2, . . . , yN ) ∈ FN

2

to R independently with probability f(y1, y2, . . . , yn). With high probability, this partition will not
satisfy (1).

A key step in deciding whether all functions f satisfy (3) is to consider the Fourier transform of (3).
For each y ∈ Fn

2 , we define the Fourier coefficient

f̂(y) = 2−n
∑
x∈Fn

2

(−1)〈x,y〉f(x).
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With this transformation, the condition (3) for L being common is transformed to

21−r−s−t ≤f̂(0)r+s+t + (1− f̂(0))r+s+t

+
(
f̂(0)r − (f̂(0)− 1)r

) ∑
y∈Fn

2 \{0}

f̂(y)s+t

+
(
f̂(0)s − (f̂(0)− 1)s

) ∑
y∈Fn

2 \{0}

f̂(y)t+r

+
(
f̂(0)t − (f̂(0)− 1)t

) ∑
y∈Fn

2 \{0}

f̂(y)r+s, (4)

where f̂ is the Fourier transform of any function f : Fn
2 → [0, 1]. This is the crucial point at which the

parity of r+s+ t becomes important: the Fourier transform of the terms corresponding to the product
of f contain a term,

∑
y 6=0

∑
z 6∈{0,y} f̂(y)rf̂(z)sf̂(y + z)t, which cancels out with a similar term coming

from the product of 1− f . When r+ s+ t is even, these terms add up rather than cancel out, bringing
an additional layer of complexity to the equation.

Using the transformation to (4), the proof of Theorem 2(a) is easy: the last three lines of (4) are
trivially non-negative and the inequality in the first line holds by convexity of xr+s+t. Theorem 2(b) is
proven by giving an explicit description of a function that violates our inequality. Finally, Theorem 2(c),
which is the most complex case, is established using Parseval’s identity in combination with a fine case
analysis.
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[6] D. Hilbert, Über die Irerducibilität ganzer rationaler Functionen it ganzzahligen Coefficienten. Journal für
die Reine und Angewandte Mathematik 110 (1892), 104–129.
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