
A NOTE ON SYSTEMS OF RECTANGULAR ISLANDS:
THE CONTINUOUS CASE

ZSOLT LENGVÁRSZKY, PÉTER PÁL PACH

Abstract. A real-valued height function f is defined on a closed
rectangle R. A rectangle S is an f -island if there exists an open
set G containing S such that f(x) < infS f for every x ∈ G \ S.
The set of all f -islands is called a system of (rectangular) islands.
The discrete version of this notion was introduced by G. Czédli. A
system of islands H is laminar that is for any two P,Q ∈ H either
P ⊆ Q or Q ⊆ P or P ∩Q = ∅. In this paper, we prove that there
exists a maximal system of islands of cardinality ℵ0 and the size
of a maximal laminar system is either countable or continuum.
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1. introduction

The concept of systems of rectangular islands was introduced by G.
Czédli [1] with motivations from coding theory coming from a paper
of S. Földes and N. M. Singhi [2]. Let R be a closed m by n rectangle
with vertices at (0, 0), (m, 0), (m,n) and (0, n), where m and n are
positive integers. A real number is written in each cell. Let S be a
rectangle (which has vertices with integer coordinates, sides parallel to
the coordinate axes, S ⊆ R), and let s be the least element (or one
of the least elements) of S. If in every cell neighbouring S there is a
smaller number than s then S is called a rectangular island.

For the size of maximal systems of rectangular islands, upper- and
lower bounds were established in [1] and [5]. These results can be
summarized as follows: If H is a maximal system of rectangular islands
on an m by n rectangle then

m+ n− 1 ≤ |H| ≤ bmn+m+ n− 1c/2,
where both the upper- and the lower bounds are sharp. Several papers
have been published on the subject since, investigating various exten-
sions and generalizations (see G. Pluhár [7], and E. K. Horváth, Z.
Németh, and G. Pluhár [3]). In this note, we examine the continuous

1



2 ZSOLT LENGVÁRSZKY, PÉTER PÁL PACH

version by allowing the members of H to have vertices with non-integer
coordinates. Now, we give the definition of the system of islands in the
continuous case. A real-valued height function f is defined on R. Let
S be a rectangle (which has sides parallel to the coordinate axes) and
s be the infimum of f on S. If there exists an open set G containing
the (closed) rectangle S such that f(x) < s for every x ∈ G \ S, then
S is an f -island. For a real function f , the set of all f -islands is called
a system of (rectangular) islands.

One of the most useful properties of a system of rectangular islands
is laminarity. A system of subsets H of a set S is called laminar if
for any two P,Q ∈ H either P ⊆ Q or Q ⊆ P or P ∩ Q = ∅. As in
the discrete case, in the continuous case a system of islands is always
laminar.
Lemma 1. If H is a rectangular island system then H is laminar.
Proof. Let f be a height function and H the system of its islands.
Assume indirectly that there exist S1, S2 ∈ H such that S1 * S2,
S2 * S1 and S1 ∩ S2 6= ∅. As S1 and S2 are f -islands there exist open
sets G1 and G2 such that S1 ⊆ G1, S2 ⊆ G2 and infSi

f = si > f(x) for
every x ∈ Gi \ Si (i = 1, 2). By the assumption, the set S1 ∩ (G2 \ S2)
is nonempty. Let y1 ∈ S1 ∩ (G2 \ S2). Then s2 > f(y1) ≥ infS1 f = s1.
Similarly, there exists y2 ∈ S2∩(G1\S1) and s1 > f(y2) ≥ infS2 f = s2.
Thus s2 > s1 and s1 > s2 is a contradiction. �

Every continuous maximal laminar system of rectangles H contains
infinitely many rectangles. Also, the total number of rectangles in
[0, 1]2 is continuum, hence we have

ℵ0 ≤ |H| ≤ 2ℵ0 .

Our aim is to determine what cardinality a maximal laminar system
can have. One can easily find examples where the cardinality of H is
continuum.
Example 1. The height function f(x, y) = −max(x, y) gives the is-
land system H = {[0, a]× [0, a] : 0 ≤ a ≤ 1}.

Now, we present a countable maximal laminar system of closed in-
tervals, then we prove that every countable maximal laminar system is
a system of rectangular islands for some function f . Hence, there is an
analogy in that both in the discrete- and the continuous cases we have
a big gap between the size of the largest- and the size of the smallest
maximal system of rectangular islands. Later we show that contrary to
the discrete case, no other cardinalities can occur, i.e. the cardinality
of a maximal laminar system is either countable or continuum.
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2. Maximal systems of islands

We consider the one-dimensional case from which higher dimensional
examples can easily be obtained. At first, we construct a countable
maximal system H of closed intervals satisfying the laminar property.

Proposition 2. There exists a maximal system of closed intervals H
on [0, 1] such that for any two A,B ∈ H either A ⊆ B or B ⊆ A or
A ∩B = ∅, and H is countable.

Proof. We define H, a set of closed intervals, as follows. For an interval
A with endpoints aA < bA let (aAn ) and (bAn ) be sequences such that (aAn )
is strictly decreasing, (bAn ) is strictly increasing, aA1 = (3aA+bA)/4, bA1 =
(aA + 3bA)/4, limn→∞ a

A
n = aA, and limn→∞ b

A
n = bA. Furthermore,

define
Af = {aAn : n = 1, 2, ...} ∪ {bAn : n = 1, 2, ...},

Ag = {(aAn+1, a
A
n ) : n = 1, 2, ...} ∪ {(aA1 , bA1 )} ∪ {(bAn , bAn+1) : n = 1, 2, ...},

and
Ah = {[aAn , bAn ] : n = 1, 2, ...}.

For a set of intervals I, let

If =
⋃
A∈I

Af , Ig =
⋃
A∈I

Ag, and Ih =
⋃
A∈I

Ah.

We define the sets Fn, Gn and Hn recursively by letting

F0 = {0, 1}, G0 = {(0, 1)}, H0 = {[0, 1]},
and for n > 0 by letting

Fn = Gf
n−1, Gn = Gg

n−1 and Hn = Gh
n−1.

Finally, we set

H =
∞⋃
n=1

Hn.

Now, we show that H is a laminar system. Let A ∈ Hm and B ∈ Hn,
1 ≤ m ≤ n. By the construction, if m ≤ n then for every D ∈ Gn

there exists a (unique) C ∈ Gm such that D ⊆ C. Then A = [aCp , b
C
p ]

for some C ∈ Gm−1, and B = [aDq , b
D
q ] for some D ∈ Gn−1. We either

have D ⊆ C or D ∩ C = ∅, and the latter implies A ∩ B = ∅. Assume
D ⊆ C. One possibility is that D = C (when m = n), in which case
we are done because Ch itself has the laminar property. Otherwise,
D ⊆ (aCr+1, a

C
r ) for some r or D ⊆ (aC1 , b

C
1 ) or D ⊆ (bCr , b

C
r+1) for some

r. The first case can happen with r < p or r ≥ p. If r < p then D ⊆ A
which implies B ⊆ A. If r ≥ p then D and A are disjoint, and so are B
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and A. The case when D ⊆ (bCr , b
C
r+1) is similar. In the remaining case

when D ⊆ (aC1 , b
C
1 ), we clearly have D ⊆ A, and again B ⊆ A follows.

Note that H is not maximal with respect to the laminar property,
however, any maximal laminar system which contains H is countable.
For an interval A the union of the intervals in Ah covers A except for
the endpoints of A. Similarly, the union of the intervals in Ag covers
A except for countably many numbers in A (which are aAn , bAn , aA and
bA). It follows that for every n the intervals in Gn cover [0, 1] except
for countably many numbers in [0, 1], and the same is true for Hn.
Note also that the lengths of the intervals in Gn are bounded by 2−n,
and the lengths of the intervals in Hn are bounded by 2−n+1. We use
these observations to show if H∪{[x, y]} has the laminar property then

x, y ∈ F =
∞⋃
n=0

Fn. Indeed, if x /∈ F then for every n we have that x

belongs to the interior of some An ∈ Hn. For a sufficiently large n the
length of An will be smaller than that of [x, y] implying a nontrivial
intersection for An and [x, y]. The case when y /∈ F is similar.

By Zorn’s lemma, there exists a maximal laminar system H contain-
ing H. Since each Hn consists of countably many intervals, their union
H contains countably many intervals, as well. The set F is also count-
able since each Fn is countable. There are countably many intervals
[x, y] with both x and y in F , therefore H is countable. �

Before proving that the size of a maximal laminar system is either
countable or continuum, we show that there exists a countable maximal
system of islands.

Proposition 3. Every maximal laminar system H of cardinality ℵ0 is
a maximal island system.

Proof. Let H = (In)
∞
n=1 be a maximal system of closed intervals in [0, 1]

satisfying the laminar property. We show that these are the islands
generated by the following height function:

f(x) =
∞∑
n=1

1

3n
χIn(x),

where χIn(x) is the characteristic function of In. First, we prove that
each Ik = [aIk , bIk ] is an f -island. Let us denote the interval [aIk −
ε, bIk + ε] ∩ [0, 1] by Iεk (where ε > 0). We can choose ε > 0 such that
for all 1 ≤ j ≤ k either Ij ⊆ Ik or Ik ⊆ Ij or Iεk and Ij are disjoint. If
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x ∈ Ik, then f(x) ≥
∑

n:Ik⊆In

1
3n
. If x ∈ Iεk \ Ik, then

f(x) ≤
∑

n:Ik(In

1

3n
+

∞∑
n=k+1

1

3n
<

∑
n:Ik(In

1

3n
+

1

3k
=

∑
n:Ik⊆In

1

3n
,

hence Ik is an f -island. Therefore, the system of f -islands contains
H. As H is a maximal laminar system we have that it is equal to the
island system corresponding to f . �

By slightly modifying the construction in Proposition 2 and with a
little more work we can obtain an explicit example—one that itself is
a maximal continuous island system of countable size.

Higher dimensional examples are obtained by expanding the one-
dimensional construction as follows: if H is a maximal continuous is-
land system on the one dimensional [0, 1] interval, then

H(n) = {A× [0, 1]n−1 : A ∈ H}

is a maximal continuous island system on the n-dimensional cube [0, 1]n.
Obviously, H(n) has the same cardinality as H. It is also fairly obvi-
ous that if f is a height function of H, then f̃(x, y) = f(x) (where
(x, y) ∈ [0, 1] × [0, 1]n−1) is a height function of H(n), so H(n) is an
island system. We show that it is a maximal laminar system, hence it
is a maximal island system, too. Suppose that for an n-dimensional
brick A ⊆ [0, 1]n we have A /∈ H(n). Let the projection of A to the first
coordinate be A(1), and the projection of A to the last n − 1 coordi-
nates be A(2). Then either A(1) /∈ H or A(2) 6= [0, 1]n−1. If the former
holds, then for some B ∈ H there must be a nontrivial intersection
between A(1) and some C ∈ H. However, the intersection of A and
C× [0, 1]n−1 is also nontrivial. Otherwise, we can assume A(1) ∈ H and
A(2) 6= [0, 1]n−1. By the maximality of H we have some D ∈ H such
that D is a proper subinterval of A(1), and the intersection of A and
D × [0, 1]n−1 is nontrivial.

The following proposition shows that no cardinality can occur as the
size of a maximal laminar system other than ℵ0 or continuum.

Proposition 4. If H is a maximal system of closed intervals on [0, 1]
such that for every A,B ∈ H either A ⊆ B or B ⊆ A or A ∩ B = ∅
then the cardinality of H is ℵ0 or continuum.

Proof. We have seen that ℵ0 ≤ |H| ≤ 2ℵ0 , and there are maximal
sets of intervals satisfying the laminar property of sizes both ℵ0 and
continuum. We prove that no other cardinality can occur.
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Let C be a maximal chain in H. Let Ji (i ∈ S) be intervals in C. We
show that J =

⋂
i∈S

Ji is either a single point or J itself is an interval in

C. The chain C consists of closed intervals, hence if J is not a point,
then it is a proper closed interval. We shall prove that in the latter
case H∪{J} satisfies the laminar property and C ∪{J} is a chain. Let
I ∈ H. If I ∩ J 6= ∅ then I ∩ Ji 6= ∅ for all i ∈ S. As H is a laminar
system, for every i ∈ S either Ji ⊆ I or I ⊆ Ji holds. If there exists
an i ∈ S such that Ji ⊆ I, then J ⊆ I. If I ⊆ Ji for every i ∈ S, then
I ⊆

⋂
i∈S

Ji = J . Hence H ∪ {J} is a laminar system and consequently

J ∈ H. Assume that I ∈ C. Then either I ⊆ J or there exists an i ∈ S
such that Ji ⊆ I. We have I ∩ J 6= ∅ in both cases, thus J ⊆ I or
I ⊆ J . Therefore, C ∪ {J} is a chain. As C is maximal, we have J ∈ C.

We prove that the cardinality of C is countable or continuum. Let R
denote the set of right endpoints of the intervals in C and let b be a right
limit point of R. As C is a chain,

⋂
b∈J∈C

J is a non-empty closed interval,

hence either b =
⋂
C = inf R or

⋂
b∈J∈C

J = [a, b] for some 0 ≤ a < b.

Hence we get that [a, b] ∈ C and b ∈ R or b = inf R. Let clR be the
closure of R and x ∈ clR \R. Then either x is a left but not right limit
point of R or x = inf R. For every x that is not a right limit point of R,
there exists a y > x rational number such that (x, y)∩R = ∅. Clearly,
for distinct left (but not right) limit points the corresponding rational
number y is different, therefore the cardinality of the set of left but not
right limit points is countable.

Hence, it follows that clR \R is countable. It is well-known that the
cardinality of a closed set in R is either countable or continuum, hence
|R| ≤ ℵ0 or |R| = 2ℵ0 . The same holds for L, the set of left endpoints
of the elements of C, as well. If the cardinality of L or R is continuum
then the cardinality of C is continuum, too. If |L| ≤ ℵ0 and |R| ≤ ℵ0
then |C| ≤ |L| · |R| ≤ ℵ0. Therefore the cardinality of a maximal chain
is countable or continuum.

For showing that |H| = ℵ0 or |H| = 2ℵ0 we shall distinguish two cases
depending on the length of the maximal chains in H. At first, if the
cardinality of a maximal chain is continuum, then clearly |H| = 2ℵ0 .
Secondly, suppose that every chain has only countably many elements.
For an r ∈ [0, 1] the laminar property implies that the set Cr = {I :
r ∈ I ∈ H} is a chain, hence its cardinality is countable. Every proper
interval contains a rational point, thus H =

⋃
r∈[0,1]∩Q

Cr, and we have
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that H is the union of countably many sets of countable size, hence |H|
is countable, as well. �

3. Further remarks

The statement of Proposition 2 remains true if we replace closed
intervals by open ones. Indeed, the entire argument will be valid if we
modify the definition of Ah to be

Ah = {(aAn , bAn ) : n = 1, 2, ...}.

If we allow open or half-open intervals, there exist some simpler con-
structions. For example, the collection of dyadic intervals(

k

2n
,
k + 1

2n

)
with k = 0, 1, ..., 2n − 1, and n = 0, 1, 2, ... form a maximal laminar
system. Similarly, half-open intervals as well as mixed intervals (closed
or open or half-open) could be used.

In his original paper, G. Czédli [1] introduced island systems for
rectangles, but at least two additional shapes were considered by others.
G. Pluhár, E. K. Horváth, and Z. Németh [3] investigated triangles
(on a triangular grid), and in E. K. Horváth, G. Horváth, Z. Németh,
and Cs. Szabó [4] and also in [6], the case of squares was examined.
Allowing objects other than rectangles seems even more compelling in
the continuous case. However, we do not have an argument to show
that in the plane there exists a countable set of, say, circles that would
form a maximal island system.
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