Sample exercises for the exam of Analysis of Matrices

1. Compute the characteristic polynomial and a minimal rank one decomposition of the matrix

$$
A=\left[\begin{array}{ccc}
3 & 1 & -3 \\
-7 & -2 & 9 \\
-2 & -1 & 4
\end{array}\right]
$$

2. Create a complete biorthogonal system from these vectors (if it is possibe).

$$
v^{T}=\left[\begin{array}{lll}
2 & 5 & -3
\end{array}\right], \quad u=\left[\begin{array}{l}
3 \\
2 \\
5
\end{array}\right]
$$

3. Compute the determinant. adjoint, and inverse of the matrix

$$
\left[\begin{array}{ccc}
3 & -3 & 3 \\
-1 & 5 & 2 \\
-1 & 3 & 0
\end{array}\right]
$$

4. Compute the characteristic polynomial, the minimal polynomial and the eigenvectors of the following matrix:

$$
\left[\begin{array}{ccc}
0 & 0 & 1 \\
1 & 0 & -3 \\
0 & 1 & 3
\end{array}\right]
$$

5. Compute the inverse of the matrix

$$
A=\left[\begin{array}{llll}
1 & 2 & 0 & 0 \\
0 & 1 & 2 & 0 \\
0 & 0 & 1 & 2 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

6. What is the Moore-Penrose pseudo-inverse of this matrix?

$$
A=\left[\begin{array}{lll}
1 & 1 & 0 \\
0 & 0 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

7. How do the solutions of this linear system depend on parameter λ ?

$$
\left[\begin{array}{cccc}
2 & 5 & 1 & 3 \\
4 & 6 & 3 & 5 \\
4 & 14 & 1 & 7 \\
2 & -3 & 3 & \lambda
\end{array}\right] \cdot\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right]=\left[\begin{array}{l}
2 \\
4 \\
4 \\
7
\end{array}\right]
$$

8. Determine the interpolation polynomials for this matrix (Lagrange or Hermite, whichever can be used).

$$
A=\left[\begin{array}{ccc}
0 & 0 & 1 \\
1 & 0 & -3 \\
0 & 1 & 3
\end{array}\right]
$$

9. Compute the matrix e^{A} when

$$
A=\left[\begin{array}{ccc}
1 & 1 & -1 \\
-3 & -3 & 3 \\
-2 & -2 & 2
\end{array}\right]
$$

10. Determine the solution of the system of differential equations $\dot{x}=A x$, $x(0)=x_{0}$ when

$$
A=\left[\begin{array}{ccc}
1 & 1 & -1 \\
-3 & -3 & 3 \\
-2 & -2 & 2
\end{array}\right]
$$

11. What is the Jordan normal form of the matrix

$$
A=\left[\begin{array}{ccc}
1 & 1 & -1 \\
-3 & -3 & 3 \\
-2 & -2 & 2
\end{array}\right]
$$

12. For this nilpotent matrix determine its Jordan normal form.

$$
A=\left[\begin{array}{cccc}
2 & -1 & 1 & -1 \\
-3 & 4 & -5 & 4 \\
8 & -4 & 4 & -4 \\
15 & -10 & 11 & -10
\end{array}\right]
$$

