Machine learning and portfolio selections. II.

László (Laci) Györfi¹

¹Department of Computer Science and Information Theory Budapest University of Technology and Economics Budapest, Hungary

September 22, 2007

e-mail: gyorfi@szit.bme.hu www.szit.bme.hu/~gyorfi www.szit.bme.hu/~oti/portfolio

Dynamic portfolio selection: general case

 $\mathbf{x}_i = (x_i^{(1)}, \dots x_i^{(d)})$ the return vector on day i $\mathbf{b} = \mathbf{b}_1$ is the portfolio vector for the first day initial capital S_0

$$\textit{S}_{1} = \textit{S}_{0} \cdot \langle \textbf{b}_{1} \, , \, \textbf{x}_{1} \rangle$$

Dynamic portfolio selection: general case

 $\mathbf{x}_i = (x_i^{(1)}, \dots x_i^{(d)})$ the return vector on day i $\mathbf{b} = \mathbf{b}_1$ is the portfolio vector for the first day initial capital S_0

$$S_1 = S_0 \cdot \langle \mathbf{b}_1 \,,\, \mathbf{x}_1 \rangle$$

for the second day, S_1 new initial capital, the portfolio vector $\mathbf{b}_2 = \mathbf{b}(\mathbf{x}_1)$

$$\textit{S}_{2} = \textit{S}_{0} \cdot \left\langle \textbf{b}_{1} \, , \, \textbf{x}_{1} \right\rangle \cdot \left\langle \textbf{b}(\textbf{x}_{1}) \, , \, \textbf{x}_{2} \right\rangle .$$

Dynamic portfolio selection: general case

 $\mathbf{x}_i = (x_i^{(1)}, \dots x_i^{(d)})$ the return vector on day i $\mathbf{b} = \mathbf{b}_1$ is the portfolio vector for the first day initial capital S_0

$$S_1 = S_0 \cdot \langle \mathbf{b}_1 \,,\, \mathbf{x}_1 \rangle$$

for the second day, S_1 new initial capital, the portfolio vector $\mathbf{b}_2 = \mathbf{b}(\mathbf{x}_1)$

$$S_2 = S_0 \cdot \langle \mathbf{b}_1, \mathbf{x}_1 \rangle \cdot \langle \mathbf{b}(\mathbf{x}_1), \mathbf{x}_2 \rangle$$
.

*n*th day a portfolio strategy $\mathbf{b}_n = \mathbf{b}(\mathbf{x}_1, \dots, \mathbf{x}_{n-1}) = \mathbf{b}(\mathbf{x}_1^{n-1})$

$$S_n = S_0 \prod_{i=1}^n \left\langle \mathbf{b}(\mathbf{x}_1^{i-1}), \, \mathbf{x}_i \right\rangle = S_0 e^{nW_n(\mathbf{B})}$$

with the average growth rate

$$W_n(\mathbf{B}) = \frac{1}{n} \sum_{i=1}^n \ln \left\langle \mathbf{b}(\mathbf{x}_1^{i-1}), \, \mathbf{x}_i \right\rangle.$$

log-optimum portfolio

 $\boldsymbol{X}_1,\boldsymbol{X}_2,\dots$ drawn from the vector valued stationary and ergodic process

log-optimum portfolio $\mathbf{B}^* = \{\mathbf{b}^*(\cdot)\}$

$$\mathbf{E}\{\ln\left\langle \mathbf{b}^{*}(\mathbf{X}_{1}^{n-1})\,,\,\mathbf{X}_{n}\right\rangle\mid\mathbf{X}_{1}^{n-1}\}=\max_{\mathbf{b}(\cdot)}\mathbf{E}\{\ln\left\langle \mathbf{b}(\mathbf{X}_{1}^{n-1})\,,\,\mathbf{X}_{n}\right\rangle\mid\mathbf{X}_{1}^{n-1}\}$$

$$\boldsymbol{\mathsf{X}}_1^{\mathit{n}-1} = \boldsymbol{\mathsf{X}}_1, \ldots, \boldsymbol{\mathsf{X}}_{\mathit{n}-1}$$

Optimality

Algoet and Cover (1988): If $S_n^* = S_n(\mathbf{B}^*)$ denotes the capital after day n achieved by a log-optimum portfolio strategy \mathbf{B}^* , then for any portfolio strategy \mathbf{B} with capital $S_n = S_n(\mathbf{B})$ and for any process $\{\mathbf{X}_n\}_{-\infty}^{\infty}$,

$$\limsup_{n \to \infty} \left(\frac{1}{n} \ln S_n - \frac{1}{n} \ln S_n^* \right) \leq 0 \quad \text{almost surely}$$

Optimality

Algoet and Cover (1988): If $S_n^* = S_n(\mathbf{B}^*)$ denotes the capital after day n achieved by a log-optimum portfolio strategy \mathbf{B}^* , then for any portfolio strategy \mathbf{B} with capital $S_n = S_n(\mathbf{B})$ and for any process $\{\mathbf{X}_n\}_{-\infty}^{\infty}$,

$$\limsup_{n\to\infty} \left(\frac{1}{n} \ln S_n - \frac{1}{n} \ln S_n^* \right) \leq 0 \quad \text{almost surely}$$

for stationary ergodic process $\{\mathbf{X}_n\}_{-\infty}^{\infty}$,

$$\lim_{n\to\infty}\frac{1}{n}\ln S_n^*=W^*\quad \text{almost surely,}$$

where

$$W^* = \mathbf{E} \left\{ \max_{\mathbf{b}(\cdot)} \mathbf{E} \{ \ln \left\langle \mathbf{b}(\mathbf{X}_{-\infty}^{-1}) \,,\, \mathbf{X}_0
ight
angle \mid \mathbf{X}_{-\infty}^{-1} \}
ight\}$$

is the maximal growth rate of any portfolio.

Martingale difference sequences

for the proof of optimality we use the concept of martingale differences:

Definition

there are two sequences of random variables:

$$\{Z_n\}$$
 $\{X_n\}$

- Z_n is a function of X_1, \ldots, X_n ,
- $\mathbf{E}\{Z_n \mid X_1, ..., X_{n-1}\} = 0$ almost surely.

Then $\{Z_n\}$ is called martingale difference sequence with respect to $\{X_n\}$.

A strong law of large numbers

Chow Theorem: If $\{Z_n\}$ is a martingale difference sequence with respect to $\{X_n\}$ and

$$\sum_{n=1}^{\infty} \frac{\mathbf{E}\{Z_n^2\}}{n^2} < \infty$$

then

$$\lim_{n\to\infty}\frac{1}{n}\sum_{i=1}^n Z_i=0 \text{ a.s.}$$

Lemma: If $\{Z_n\}$ is a martingale difference sequence with respect to $\{X_n\}$ then $\{Z_n\}$ are uncorrelated.

Lemma: If $\{Z_n\}$ is a martingale difference sequence with respect to $\{X_n\}$ then $\{Z_n\}$ are uncorrelated.

Proof. Put i < j.

 $\mathbf{E}\{Z_iZ_j\}$

Lemma: If $\{Z_n\}$ is a martingale difference sequence with respect to $\{X_n\}$ then $\{Z_n\}$ are uncorrelated.

$$\mathbf{E}\{Z_iZ_j\} = \mathbf{E}\{\mathbf{E}\{Z_iZ_j \mid X_1,\ldots,X_{j-1}\}\}$$

Lemma: If $\{Z_n\}$ is a martingale difference sequence with respect to $\{X_n\}$ then $\{Z_n\}$ are uncorrelated.

$$\mathbf{E}\{Z_i Z_j\} = \mathbf{E}\{\mathbf{E}\{Z_i Z_j \mid X_1, \dots, X_{j-1}\}\}
= \mathbf{E}\{Z_i \mathbf{E}\{Z_j \mid X_1, \dots, X_{j-1}\}\}$$

Lemma: If $\{Z_n\}$ is a martingale difference sequence with respect to $\{X_n\}$ then $\{Z_n\}$ are uncorrelated.

$$\mathbf{E}\{Z_{i}Z_{j}\} = \mathbf{E}\{\mathbf{E}\{Z_{i}Z_{j} \mid X_{1},...,X_{j-1}\}\}
= \mathbf{E}\{Z_{i}\mathbf{E}\{Z_{j} \mid X_{1},...,X_{j-1}\}\}
= \mathbf{E}\{Z_{i}\cdot 0\}$$

Lemma: If $\{Z_n\}$ is a martingale difference sequence with respect to $\{X_n\}$ then $\{Z_n\}$ are uncorrelated.

$$\mathbf{E}\{Z_{i}Z_{j}\} = \mathbf{E}\{\mathbf{E}\{Z_{i}Z_{j} \mid X_{1}, \dots, X_{j-1}\}\}
= \mathbf{E}\{Z_{i}\mathbf{E}\{Z_{j} \mid X_{1}, \dots, X_{j-1}\}\}
= \mathbf{E}\{Z_{i} \cdot 0\} = 0$$

Lemma: If $\{Z_n\}$ is a martingale difference sequence with respect to $\{X_n\}$ then $\{Z_n\}$ are uncorrelated.

Proof. Put i < j.

$$\mathbf{E}\{Z_{i}Z_{j}\} = \mathbf{E}\{\mathbf{E}\{Z_{i}Z_{j} \mid X_{1}, \dots, X_{j-1}\}\}
= \mathbf{E}\{Z_{i}\mathbf{E}\{Z_{j} \mid X_{1}, \dots, X_{j-1}\}\}
= \mathbf{E}\{Z_{i} \cdot 0\} = 0$$

Corollary

$$\mathbf{E}\left\{\left(\frac{1}{n}\sum_{i=1}^{n}Z_{i}\right)^{2}\right\}$$

Lemma: If $\{Z_n\}$ is a martingale difference sequence with respect to $\{X_n\}$ then $\{Z_n\}$ are uncorrelated.

Proof. Put i < j.

$$\mathbf{E}\{Z_{i}Z_{j}\} = \mathbf{E}\{\mathbf{E}\{Z_{i}Z_{j} \mid X_{1}, \dots, X_{j-1}\}\}
= \mathbf{E}\{Z_{i}\mathbf{E}\{Z_{j} \mid X_{1}, \dots, X_{j-1}\}\}
= \mathbf{E}\{Z_{i} \cdot 0\} = 0$$

Corollary

$$\mathbf{E}\left\{\left(\frac{1}{n}\sum_{i=1}^{n}Z_{i}\right)^{2}\right\} = \frac{1}{n^{2}}\sum_{i=1}^{n}\sum_{j=1}^{n}\mathbf{E}\left\{Z_{i}Z_{j}\right\}$$

Lemma: If $\{Z_n\}$ is a martingale difference sequence with respect to $\{X_n\}$ then $\{Z_n\}$ are uncorrelated.

Proof. Put i < j.

$$\mathbf{E}\{Z_{i}Z_{j}\} = \mathbf{E}\{\mathbf{E}\{Z_{i}Z_{j} \mid X_{1}, \dots, X_{j-1}\}\}
= \mathbf{E}\{Z_{i}\mathbf{E}\{Z_{j} \mid X_{1}, \dots, X_{j-1}\}\}
= \mathbf{E}\{Z_{i} \cdot 0\} = 0$$

Corollary

$$\mathbf{E}\left\{\left(\frac{1}{n}\sum_{i=1}^{n}Z_{i}\right)^{2}\right\} = \frac{1}{n^{2}}\sum_{i=1}^{n}\sum_{j=1}^{n}\mathbf{E}\left\{Z_{i}Z_{j}\right\}$$
$$= \frac{1}{n^{2}}\sum_{i=1}^{n}\mathbf{E}\left\{Z_{i}^{2}\right\}$$

Lemma: If $\{Z_n\}$ is a martingale difference sequence with respect to $\{X_n\}$ then $\{Z_n\}$ are uncorrelated.

Proof. Put i < j.

$$\mathbf{E}\{Z_{i}Z_{j}\} = \mathbf{E}\{\mathbf{E}\{Z_{i}Z_{j} \mid X_{1}, \dots, X_{j-1}\}\}
= \mathbf{E}\{Z_{i}\mathbf{E}\{Z_{j} \mid X_{1}, \dots, X_{j-1}\}\}
= \mathbf{E}\{Z_{i} \cdot 0\} = 0$$

Corollary

$$\mathbf{E}\left\{\left(\frac{1}{n}\sum_{i=1}^{n}Z_{i}\right)^{2}\right\} = \frac{1}{n^{2}}\sum_{i=1}^{n}\sum_{j=1}^{n}\mathbf{E}\left\{Z_{i}Z_{j}\right\}$$
$$= \frac{1}{n^{2}}\sum_{i=1}^{n}\mathbf{E}\left\{Z_{i}^{2}\right\}$$
$$\Rightarrow 0$$

if, for example, $\mathbf{E}\{Z_i^2\}$ is a bounded sequence.

 $\{Y_n\}$ is an arbitrary sequence such that Y_n is a function of X_1, \ldots, X_n

 $\{Y_n\}$ is an arbitrary sequence such that Y_n is a function of X_1,\ldots,X_n

$$Z_n = Y_n - \mathbf{E}\{Y_n \mid X_1, \dots, X_{n-1}\}$$

Then $\{Z_n\}$ is a martingale difference sequence:

 $\{Y_n\}$ is an arbitrary sequence such that Y_n is a function of X_1,\ldots,X_n

$$Z_n = Y_n - \mathbf{E}\{Y_n \mid X_1, \dots, X_{n-1}\}$$

Then $\{Z_n\}$ is a martingale difference sequence:

• Z_n is a function of X_1, \ldots, X_n ,

 $\{Y_n\}$ is an arbitrary sequence such that Y_n is a function of X_1,\ldots,X_n

$$Z_n = Y_n - \mathbf{E}\{Y_n \mid X_1, \dots, X_{n-1}\}$$

Then $\{Z_n\}$ is a martingale difference sequence:

- Z_n is a function of X_1, \ldots, X_n ,
- •

$$\mathbf{E}\{Z_n\mid X_1,\ldots,X_{n-1}\}$$

 $\{Y_n\}$ is an arbitrary sequence such that Y_n is a function of X_1,\ldots,X_n

$$Z_n = Y_n - \mathbf{E}\{Y_n \mid X_1, \dots, X_{n-1}\}$$

Then $\{Z_n\}$ is a martingale difference sequence:

• Z_n is a function of X_1, \ldots, X_n ,

•

$$\mathbf{E}\{Z_n \mid X_1, \dots, X_{n-1}\}
= \mathbf{E}\{Y_n - \mathbf{E}\{Y_n \mid X_1, \dots, X_{n-1}\} \mid X_1, \dots, X_{n-1}\}
= 0$$

almost surely.

Optimality

log-optimum portfolio $\mathbf{B}^* = \{\mathbf{b}^*(\cdot)\}$

$$\mathbf{E}\{\ln\left\langle \mathbf{b}^{*}(\mathbf{X}_{1}^{n-1})\,,\,\mathbf{X}_{n}\right\rangle\mid\mathbf{X}_{1}^{n-1}\}=\max_{\mathbf{b}(\cdot)}\mathbf{E}\{\ln\left\langle \mathbf{b}(\mathbf{X}_{1}^{n-1})\,,\,\mathbf{X}_{n}\right\rangle\mid\mathbf{X}_{1}^{n-1}\}$$

Optimality

log-optimum portfolio $\mathbf{B}^* = \{\mathbf{b}^*(\cdot)\}$

$$\mathbf{E}\{\ln\left\langle \mathbf{b}^{*}(\mathbf{X}_{1}^{n-1})\,,\,\mathbf{X}_{n}\right\rangle\mid\mathbf{X}_{1}^{n-1}\}=\max_{\mathbf{b}\left(\cdot\right)}\mathbf{E}\{\ln\left\langle \mathbf{b}(\mathbf{X}_{1}^{n-1})\,,\,\mathbf{X}_{n}\right\rangle\mid\mathbf{X}_{1}^{n-1}\}$$

If $S_n^* = S_n(\mathbf{B}^*)$ denotes the capital after day n achieved by a log-optimum portfolio strategy \mathbf{B}^* , then for any portfolio strategy \mathbf{B} with capital $S_n = S_n(\mathbf{B})$ and for any process $\{\mathbf{X}_n\}_{-\infty}^{\infty}$,

$$\limsup_{n \to \infty} \left(\frac{1}{n} \ln S_n - \frac{1}{n} \ln S_n^* \right) \leq 0 \quad \text{almost surely}$$

Proof of optimality

$$\frac{1}{n} \ln S_n = \frac{1}{n} \sum_{i=1}^n \ln \left\langle \mathbf{b}(\mathbf{X}_1^{i-1}), \mathbf{X}_i \right\rangle$$

Proof of optimality

$$\frac{1}{n} \ln S_n = \frac{1}{n} \sum_{i=1}^n \ln \left\langle \mathbf{b}(\mathbf{X}_1^{i-1}), \mathbf{X}_i \right\rangle
= \frac{1}{n} \sum_{i=1}^n \mathbf{E} \left\{ \ln \left\langle \mathbf{b}(\mathbf{X}_1^{i-1}), \mathbf{X}_i \right\rangle \mid \mathbf{X}_1^{i-1} \right\}
+ \frac{1}{n} \sum_{i=1}^n \left(\ln \left\langle \mathbf{b}(\mathbf{X}_1^{i-1}), \mathbf{X}_i \right\rangle - \mathbf{E} \left\{ \ln \left\langle \mathbf{b}(\mathbf{X}_1^{i-1}), \mathbf{X}_i \right\rangle \mid \mathbf{X}_1^{i-1} \right\} \right)$$

Proof of optimality

$$\frac{1}{n} \ln S_n = \frac{1}{n} \sum_{i=1}^n \ln \left\langle \mathbf{b}(\mathbf{X}_1^{i-1}), \mathbf{X}_i \right\rangle
= \frac{1}{n} \sum_{i=1}^n \mathbf{E} \left\{ \ln \left\langle \mathbf{b}(\mathbf{X}_1^{i-1}), \mathbf{X}_i \right\rangle \mid \mathbf{X}_1^{i-1} \right\}
+ \frac{1}{n} \sum_{i=1}^n \left(\ln \left\langle \mathbf{b}(\mathbf{X}_1^{i-1}), \mathbf{X}_i \right\rangle - \mathbf{E} \left\{ \ln \left\langle \mathbf{b}(\mathbf{X}_1^{i-1}), \mathbf{X}_i \right\rangle \mid \mathbf{X}_1^{i-1} \right\} \right)$$

and

$$\frac{1}{n} \ln S_n^* = \frac{1}{n} \sum_{i=1}^n \mathbf{E} \{ \ln \left\langle \mathbf{b}^* (\mathbf{X}_1^{i-1}), \mathbf{X}_i \right\rangle \mid \mathbf{X}_1^{i-1} \}
+ \frac{1}{n} \sum_{i=1}^n \left(\ln \left\langle \mathbf{b}^* (\mathbf{X}_1^{i-1}), \mathbf{X}_i \right\rangle - \mathbf{E} \{ \ln \left\langle \mathbf{b}^* (\mathbf{X}_1^{i-1}), \mathbf{X}_i \right\rangle \mid \mathbf{X}_1^{i-1} \} \right)$$

Universally consistent portfolio

These limit relations give rise to the following definition:

Definition

An empirical (data driven) portfolio strategy **B** is called universally consistent with respect to a class \mathcal{C} of stationary and ergodic processes $\{\mathbf{X}_n\}_{-\infty}^{\infty}$, if for each process in the class,

$$\lim_{n \to \infty} \frac{1}{n} \ln S_n(\mathbf{B}) = W^*$$
 almost surely.

$$\mathbf{E}\{\ln\left\langle \mathbf{b}^{*}(\mathbf{X}_{1}^{n-1})\,,\,\mathbf{X}_{n}\right\rangle\mid\mathbf{X}_{1}^{n-1}\}=\max_{\mathbf{b}(\cdot)}\mathbf{E}\{\ln\left\langle \mathbf{b}(\mathbf{X}_{1}^{n-1})\,,\,\mathbf{X}_{n}\right\rangle\mid\mathbf{X}_{1}^{n-1}\}$$

$$\begin{split} \mathbf{E}\{\ln\left\langle\mathbf{b}^{*}(\mathbf{X}_{1}^{n-1})\,,\,\mathbf{X}_{n}\right\rangle\mid\mathbf{X}_{1}^{n-1}\} &= \max_{\mathbf{b}(\cdot)}\mathbf{E}\{\ln\left\langle\mathbf{b}(\mathbf{X}_{1}^{n-1})\,,\,\mathbf{X}_{n}\right\rangle\mid\mathbf{X}_{1}^{n-1}\} \\ \text{fixed integer } k>0 \\ \mathbf{E}\{\ln\left\langle\mathbf{b}(\mathbf{X}_{1}^{n-1})\,,\,\mathbf{X}_{n}\right\rangle\mid\mathbf{X}_{1}^{n-1}\} &\approx \mathbf{E}\{\ln\left\langle\mathbf{b}(\mathbf{X}_{n-k}^{n-1})\,,\,\mathbf{X}_{n}\right\rangle\mid\mathbf{X}_{n-k}^{n-1}\} \end{split}$$

$$\begin{split} \mathbf{E}\{\ln\left\langle\mathbf{b}^{*}(\mathbf{X}_{1}^{n-1})\,,\,\mathbf{X}_{n}\right\rangle\mid\mathbf{X}_{1}^{n-1}\} &= \max_{\mathbf{b}(\cdot)}\mathbf{E}\{\ln\left\langle\mathbf{b}(\mathbf{X}_{1}^{n-1})\,,\,\mathbf{X}_{n}\right\rangle\mid\mathbf{X}_{1}^{n-1}\} \\ \text{fixed integer } k>0 \\ \mathbf{E}\{\ln\left\langle\mathbf{b}(\mathbf{X}_{1}^{n-1})\,,\,\mathbf{X}_{n}\right\rangle\mid\mathbf{X}_{1}^{n-1}\} &\approx \mathbf{E}\{\ln\left\langle\mathbf{b}(\mathbf{X}_{n-k}^{n-1})\,,\,\mathbf{X}_{n}\right\rangle\mid\mathbf{X}_{n-k}^{n-1}\} \\ \text{and} \\ \mathbf{b}^{*}(\mathbf{X}_{1}^{n-1}) &\approx \mathbf{b}_{k}(\mathbf{X}_{n-k}^{n-1}) = \arg\max\mathbf{E}\{\ln\left\langle\mathbf{b}(\mathbf{X}_{n-k}^{n-1})\,,\,\mathbf{X}_{n}\right\rangle\mid\mathbf{X}_{n-k}^{n-1}\} \end{split}$$

$$\mathbf{E}\{\ln\left\langle \mathbf{b}^{*}(\mathbf{X}_{1}^{n-1})\,,\,\mathbf{X}_{n}\right\rangle\mid\mathbf{X}_{1}^{n-1}\}=\max_{\mathbf{b}(\cdot)}\mathbf{E}\{\ln\left\langle \mathbf{b}(\mathbf{X}_{1}^{n-1})\,,\,\mathbf{X}_{n}\right\rangle\mid\mathbf{X}_{1}^{n-1}\}$$

fixed integer k > 0

$$\mathbf{E}\{\ln\left\langle\mathbf{b}(\mathbf{X}_{1}^{n-1})\,,\,\mathbf{X}_{n}\right\rangle\mid\mathbf{X}_{1}^{n-1}\}\approx\mathbf{E}\{\ln\left\langle\mathbf{b}(\mathbf{X}_{n-k}^{n-1})\,,\,\mathbf{X}_{n}\right\rangle\mid\mathbf{X}_{n-k}^{n-1}\}$$

and

$$\mathbf{b}^*(\mathbf{X}_1^{n-1}) \approx \mathbf{b}_k(\mathbf{X}_{n-k}^{n-1}) = \operatorname*{arg\,max}_{\mathbf{b}(\cdot)} \mathbf{E}\{\ln\left\langle \mathbf{b}(\mathbf{X}_{n-k}^{n-1}) \,,\, \mathbf{X}_n\right\rangle \mid \mathbf{X}_{n-k}^{n-1}\}$$

because of stationarity

$$\mathbf{b}_{k}(\mathbf{x}_{1}^{k}) = \underset{\mathbf{b}(\cdot)}{\operatorname{arg max}} \mathbf{E}\{\ln\left\langle \mathbf{b}(\mathbf{x}_{1}^{k}), \mathbf{X}_{k+1} \right\rangle \mid \mathbf{X}_{1}^{k} = \mathbf{x}_{1}^{k}\}$$
$$= \underset{\mathbf{b}}{\operatorname{arg max}} \mathbf{E}\{\ln\left\langle \mathbf{b}, \mathbf{X}_{k+1} \right\rangle \mid \mathbf{X}_{1}^{k} = \mathbf{x}_{1}^{k}\},$$

$$\mathbf{E}\{\ln\left\langle \mathbf{b}^{*}(\mathbf{X}_{1}^{n-1})\,,\,\mathbf{X}_{n}\right\rangle\mid\mathbf{X}_{1}^{n-1}\}=\max_{\mathbf{b}(\cdot)}\mathbf{E}\{\ln\left\langle \mathbf{b}(\mathbf{X}_{1}^{n-1})\,,\,\mathbf{X}_{n}\right\rangle\mid\mathbf{X}_{1}^{n-1}\}$$

fixed integer k > 0

$$\mathbf{E}\{\ln\left\langle\mathbf{b}(\mathbf{X}_{1}^{n-1})\,,\,\mathbf{X}_{n}\right\rangle\mid\mathbf{X}_{1}^{n-1}\}\approx\mathbf{E}\{\ln\left\langle\mathbf{b}(\mathbf{X}_{n-k}^{n-1})\,,\,\mathbf{X}_{n}\right\rangle\mid\mathbf{X}_{n-k}^{n-1}\}$$

and

$$\mathbf{b}^*(\mathbf{X}_1^{n-1}) \approx \mathbf{b}_k(\mathbf{X}_{n-k}^{n-1}) = \argmax_{\mathbf{b}(\cdot)} \mathbf{E}\{\ln\left\langle \mathbf{b}(\mathbf{X}_{n-k}^{n-1}) \,,\, \mathbf{X}_n\right\rangle \mid \mathbf{X}_{n-k}^{n-1}\}$$

because of stationarity

$$\begin{aligned} \mathbf{b}_{k}(\mathbf{x}_{1}^{k}) &= & \underset{\mathbf{b}(\cdot)}{\operatorname{arg\,max}} \, \mathbf{E}\{\ln\left\langle \mathbf{b}(\mathbf{x}_{1}^{k}) \,,\, \mathbf{X}_{k+1} \right\rangle \mid \mathbf{X}_{1}^{k} = \mathbf{x}_{1}^{k}\} \\ &= & \underset{\mathbf{b}}{\operatorname{arg\,max}} \, \mathbf{E}\{\ln\left\langle \mathbf{b} \,,\, \mathbf{X}_{k+1} \right\rangle \mid \mathbf{X}_{1}^{k} = \mathbf{x}_{1}^{k}\}, \end{aligned}$$

which is the maximization of the regression function

$$m_{\mathbf{b}}(\mathbf{x}_1^k) = \mathbf{E}\{\ln \langle \mathbf{b}, \mathbf{X}_{k+1} \rangle \mid \mathbf{X}_1^k = \mathbf{x}_1^k\}$$

Regression function

Y real valued

X observation vector

Y real valued X observation vector Regression function

$$m(x) = \mathbf{E}\{Y \mid X = x\}$$

i.i.d. data:
$$D_n = \{(X_1, Y_1), \dots, (X_n, Y_n)\}$$

Y real valuedX observation vectorRegression function

$$m(x) = \mathbf{E}\{Y \mid X = x\}$$

i.i.d. data: $D_n = \{(X_1, Y_1), \dots, (X_n, Y_n)\}$ Regression function estimate

$$m_n(x) = m_n(x, D_n)$$

Y real valued X observation vector Regression function

$$m(x) = \mathbf{E}\{Y \mid X = x\}$$

i.i.d. data: $D_n = \{(X_1, Y_1), \dots, (X_n, Y_n)\}$ Regression function estimate

$$m_n(x) = m_n(x, D_n)$$

local averaging estimates

$$m_n(x) = \sum_{i=1}^n W_{ni}(x; X_1, \dots, X_n) Y_i$$

Y real valued X observation vector Regression function

$$m(x) = \mathbf{E}\{Y \mid X = x\}$$

i.i.d. data: $D_n = \{(X_1, Y_1), \dots, (X_n, Y_n)\}$ Regression function estimate

$$m_n(x) = m_n(x, D_n)$$

local averaging estimates

$$m_n(x) = \sum_{i=1}^n W_{ni}(x; X_1, \dots, X_n) Y_i$$

L. Györfi, M. Kohler, A. Krzyzak, H. Walk (2002) *A Distribution-Free Theory of Nonparametric Regression*, Springer-Verlag, New York.

Correspondence

$$X \sim \mathbf{X}_1^k$$

Correspondence

$$egin{array}{lll} X & \sim & \mathbf{X}_1^k \ Y & \sim & \ln \left< \mathbf{b} \, , \, \mathbf{X}_{k+1}
ight> \end{array}$$

Correspondence

$$\begin{array}{ccc} X & \sim & \mathbf{X}_1^k \\ Y & \sim & \ln \left\langle \mathbf{b} \,,\, \mathbf{X}_{k+1} \right\rangle \\ m(x) = \mathbf{E}\{Y \mid X = x\} & \sim & m_{\mathbf{b}}(\mathbf{x}_1^k) = \mathbf{E}\{\ln \left\langle \mathbf{b} \,,\, \mathbf{X}_{k+1} \right\rangle \mid \mathbf{X}_1^k = \mathbf{x}_1^k\} \end{array}$$

Partition
$$\mathcal{P}_n = \{A_{n,1}, A_{n,2} \dots\}$$

Partition $\mathcal{P}_n = \{A_{n,1}, A_{n,2} \dots\}$ $A_n(x)$ is the cell of the partition \mathcal{P}_n into which x falls

Partition $\mathcal{P}_n = \{A_{n,1}, A_{n,2} \dots\}$ $A_n(x)$ is the cell of the partition \mathcal{P}_n into which x falls

$$m_n(x) = \frac{\sum_{i=1}^n Y_i I_{[X_i \in A_n(x)]}}{\sum_{i=1}^n I_{[X_i \in A_n(x)]}}$$

Partition $\mathcal{P}_n = \{A_{n,1}, A_{n,2} \dots\}$ $A_n(x)$ is the cell of the partition \mathcal{P}_n into which x falls

$$m_n(x) = \frac{\sum_{i=1}^n Y_i I_{[X_i \in A_n(x)]}}{\sum_{i=1}^n I_{[X_i \in A_n(x)]}}$$

Let G_n be the quantizer corresponding to the partition \mathcal{P}_n : $G_n(x) = j$ if $x \in A_{n,j}$.

Partition $\mathcal{P}_n = \{A_{n,1}, A_{n,2} \dots\}$ $A_n(x)$ is the cell of the partition \mathcal{P}_n into which x falls

$$m_n(x) = \frac{\sum_{i=1}^n Y_i I_{[X_i \in A_n(x)]}}{\sum_{i=1}^n I_{[X_i \in A_n(x)]}}$$

Let G_n be the quantizer corresponding to the partition \mathcal{P}_n : $G_n(x) = j$ if $x \in A_{n,j}$. the set of matches

$$I_n(x) = \{i \leq n : G_n(x) = G_n(X_i)\}$$

Then

$$m_n(x) = \frac{\sum_{i \in I_n(x)} Y_i}{|I_n(x)|}.$$

fix
$$k, \ell = 1, 2, ...$$

 $\mathcal{P}_{\ell} = \{A_{\ell, i}, j = 1, 2, ..., m_{\ell}\}$ finite partitions of \mathbb{R}^d ,

```
fix k, \ell = 1, 2, ...

\mathcal{P}_{\ell} = \{A_{\ell,j}, j = 1, 2, ..., m_{\ell}\} finite partitions of \mathbb{R}^d,

G_{\ell} be the corresponding quantizer: G_{\ell}(\mathbf{x}) = j, if \mathbf{x} \in A_{\ell,i}.
```

```
fix k, \ell = 1, 2, ...

\mathcal{P}_{\ell} = \{A_{\ell,j}, j = 1, 2, ..., m_{\ell}\} finite partitions of \mathbb{R}^d,

G_{\ell} be the corresponding quantizer: G_{\ell}(\mathbf{x}) = j, if \mathbf{x} \in A_{\ell,j}.

G_{\ell}(\mathbf{x}_1^n) = G_{\ell}(\mathbf{x}_1), ..., G_{\ell}(\mathbf{x}_n),
```

```
fix k, \ell = 1, 2, ...

\mathcal{P}_{\ell} = \{A_{\ell,j}, j = 1, 2, ..., m_{\ell}\} finite partitions of \mathbb{R}^d,

G_{\ell} be the corresponding quantizer: G_{\ell}(\mathbf{x}) = j, if \mathbf{x} \in A_{\ell,j}.

G_{\ell}(\mathbf{x}_1^n) = G_{\ell}(\mathbf{x}_1), ..., G_{\ell}(\mathbf{x}_n),

the set of matches:
```

$$J_n = \{k < i < n : G_{\ell}(\mathbf{x}_{i-k}^{i-1}) = G_{\ell}(\mathbf{x}_{n-k}^{n-1})\}\$$

fix $k, \ell = 1, 2, ...$ $\mathcal{P}_{\ell} = \{A_{\ell,j}, j = 1, 2, ..., m_{\ell}\}$ finite partitions of \mathbb{R}^d , G_{ℓ} be the corresponding quantizer: $G_{\ell}(\mathbf{x}) = j$, if $\mathbf{x} \in A_{\ell,j}$. $G_{\ell}(\mathbf{x}_1^n) = G_{\ell}(\mathbf{x}_1), ..., G_{\ell}(\mathbf{x}_n)$, the set of matches:

$$J_n = \{k < i < n : G_{\ell}(\mathbf{x}_{i-k}^{i-1}) = G_{\ell}(\mathbf{x}_{n-k}^{n-1})\}$$

$$\mathbf{b}^{(k,\ell)}(\mathbf{x}_1^{n-1}) = rg \max_{\mathbf{b}} \sum_{i \in J_n} \ln \left\langle \mathbf{b} \,,\, \mathbf{x}_i
ight
angle$$

if the set I_n is non-void, and $\mathbf{b}_0 = (1/d, \dots, 1/d)$ otherwise.

Elementary portfolios

```
for fixed k, \ell = 1, 2, ..., \mathbf{B}^{(k,\ell)} = \{\mathbf{b}^{(k,\ell)}(\cdot)\}, are called elementary portfolios
```

Elementary portfolios

```
for fixed k, \ell = 1, 2, ..., \mathbf{B}^{(k,\ell)} = \{\mathbf{b}^{(k,\ell)}(\cdot)\}, are called elementary portfolios
```

That is, $\mathbf{b}_n^{(k,\ell)}$ quantizes the sequence \mathbf{x}_1^{n-1} according to the partition \mathcal{P}_ℓ , and browses through all past appearances of the last seen quantized string $G_\ell(\mathbf{x}_{n-k}^{n-1})$ of length k.

Then it designs a fixed portfolio vector according to the returns on the days following the occurrence of the string.

Combining elementary portfolios

How to choose k, ℓ

- small k or small ℓ : large bias
- large k and large ℓ : few matching, large variance

Combining elementary portfolios

How to choose k, ℓ

- small k or small ℓ : large bias
- large k and large ℓ : few matching, large variance

Machine learning: combination of experts

N. Cesa-Bianchi and G. Lugosi, *Prediction, Learning, and Games*. Cambridge University Press, 2006.

combine the elementary portfolio strategies $\mathbf{B}^{(k,\ell)} = \{\mathbf{b}_n^{(k,\ell)}\}$

combine the elementary portfolio strategies $\mathbf{B}^{(k,\ell)} = \{\mathbf{b}_n^{(k,\ell)}\}$ let $\{q_{k,\ell}\}$ be a probability distribution on the set of all pairs (k,ℓ) such that for all k,ℓ , $q_{k,\ell} > 0$.

combine the elementary portfolio strategies $\mathbf{B}^{(k,\ell)} = \{\mathbf{b}_n^{(k,\ell)}\}$ let $\{q_{k,\ell}\}$ be a probability distribution on the set of all pairs (k,ℓ) such that for all k,ℓ , $q_{k,\ell}>0$. for $\eta>0$ put $w_{n,k,\ell}=q_{k,\ell}\mathrm{e}^{\eta \ln S_{n-1}(\mathbf{B}^{(k,\ell)})}$

combine the elementary portfolio strategies $\mathbf{B}^{(k,\ell)} = \{\mathbf{b}_n^{(k,\ell)}\}$ let $\{q_{k,\ell}\}$ be a probability distribution on the set of all pairs (k,ℓ) such that for all k,ℓ , $q_{k,\ell}>0$.

for
$$\eta>0$$
 put
$$w_{n,k,\ell}=q_{k,\ell}\mathrm{e}^{\eta\ln S_{n-1}(\mathbf{B}^{(k,\ell)})}$$

 $\quad \text{for } \eta=1\text{,}$

$$w_{n,k,\ell} = q_{k,\ell} e^{\ln S_{n-1}(\mathbf{B}^{(k,\ell)})} = q_{k,\ell} S_{n-1}(\mathbf{B}^{(k,\ell)})$$

combine the elementary portfolio strategies $\mathbf{B}^{(k,\ell)} = \{\mathbf{b}_n^{(k,\ell)}\}$ let $\{q_{k,\ell}\}$ be a probability distribution on the set of all pairs (k,ℓ) such that for all k,ℓ , $q_{k,\ell}>0$.

for $\eta > 0$ put

$$w_{n,k,\ell} = q_{k,\ell} e^{\eta \ln S_{n-1}(\mathbf{B}^{(k,\ell)})}$$

for $\eta = 1$,

$$w_{n,k,\ell} = q_{k,\ell} e^{\ln S_{n-1}(\mathbf{B}^{(k,\ell)})} = q_{k,\ell} S_{n-1}(\mathbf{B}^{(k,\ell)})$$

and

$$v_{n,k,\ell} = \frac{w_{n,k,\ell}}{\sum_{i,j} w_{n,i,j}}.$$

combine the elementary portfolio strategies $\mathbf{B}^{(k,\ell)} = \{\mathbf{b}_n^{(k,\ell)}\}$ let $\{q_{k,\ell}\}$ be a probability distribution on the set of all pairs (k,ℓ) such that for all k,ℓ , $q_{k,\ell}>0$.

for $\eta > 0$ put

$$w_{n,k,\ell} = q_{k,\ell} e^{\eta \ln S_{n-1}(\mathbf{B}^{(k,\ell)})}$$

for $\eta=1$,

$$w_{n,k,\ell} = q_{k,\ell} e^{\ln S_{n-1}(\mathsf{B}^{(k,\ell)})} = q_{k,\ell} S_{n-1}(\mathsf{B}^{(k,\ell)})$$

and

$$v_{n,k,\ell} = \frac{w_{n,k,\ell}}{\sum_{i,j} w_{n,i,j}}.$$

the combined portfolio b:

$$\mathbf{b}_{n}(\mathbf{x}_{1}^{n-1}) = \sum_{k,\ell} v_{n,k,\ell} \mathbf{b}_{n}^{(k,\ell)}(\mathbf{x}_{1}^{n-1}).$$

$$S_n(\mathbf{B}) = \prod_{i=1}^n \left\langle \mathbf{b}_i(\mathbf{x}_1^{i-1}), \mathbf{x}_i \right\rangle$$

$$S_n(\mathbf{B}) = \prod_{i=1}^n \left\langle \mathbf{b}_i(\mathbf{x}_1^{i-1}), \mathbf{x}_i \right\rangle$$
$$= \prod_{i=1}^n \frac{\sum_{k,\ell} w_{i,k,\ell} \left\langle \mathbf{b}_i^{(k,\ell)}(\mathbf{x}_1^{i-1}), \mathbf{x}_i \right\rangle}{\sum_{k,\ell} w_{i,k,\ell}}$$

$$S_{n}(\mathbf{B}) = \prod_{i=1}^{n} \left\langle \mathbf{b}_{i}(\mathbf{x}_{1}^{i-1}), \mathbf{x}_{i} \right\rangle$$

$$= \prod_{i=1}^{n} \frac{\sum_{k,\ell} w_{i,k,\ell} \left\langle \mathbf{b}_{i}^{(k,\ell)}(\mathbf{x}_{1}^{i-1}), \mathbf{x}_{i} \right\rangle}{\sum_{k,\ell} w_{i,k,\ell}}$$

$$= \prod_{i=1}^{n} \frac{\sum_{k,\ell} q_{k,\ell} S_{i-1}(\mathbf{B}^{(k,\ell)}) \left\langle \mathbf{b}_{i}^{(k,\ell)}(\mathbf{x}_{1}^{i-1}), \mathbf{x}_{i} \right\rangle}{\sum_{k,\ell} q_{k,\ell} S_{i-1}(\mathbf{B}^{(k,\ell)})}$$

$$S_{n}(\mathbf{B}) = \prod_{i=1}^{n} \left\langle \mathbf{b}_{i}(\mathbf{x}_{1}^{i-1}), \mathbf{x}_{i} \right\rangle$$

$$= \prod_{i=1}^{n} \frac{\sum_{k,\ell} w_{i,k,\ell} \left\langle \mathbf{b}_{i}^{(k,\ell)}(\mathbf{x}_{1}^{i-1}), \mathbf{x}_{i} \right\rangle}{\sum_{k,\ell} w_{i,k,\ell}}$$

$$= \prod_{i=1}^{n} \frac{\sum_{k,\ell} q_{k,\ell} S_{i-1}(\mathbf{B}^{(k,\ell)}) \left\langle \mathbf{b}_{i}^{(k,\ell)}(\mathbf{x}_{1}^{i-1}), \mathbf{x}_{i} \right\rangle}{\sum_{k,\ell} q_{k,\ell} S_{i-1}(\mathbf{B}^{(k,\ell)})}$$

$$= \prod_{i=1}^{n} \frac{\sum_{k,\ell} q_{k,\ell} S_{i}(\mathbf{B}^{(k,\ell)})}{\sum_{k,\ell} q_{k,\ell} S_{i-1}(\mathbf{B}^{(k,\ell)})}$$

$$\begin{split} S_{n}(\mathbf{B}) &= \prod_{i=1}^{n} \left\langle \mathbf{b}_{i}(\mathbf{x}_{1}^{i-1}), \, \mathbf{x}_{i} \right\rangle \\ &= \prod_{i=1}^{n} \frac{\sum_{k,\ell} w_{i,k,\ell} \left\langle \mathbf{b}_{i}^{(k,\ell)}(\mathbf{x}_{1}^{i-1}), \, \mathbf{x}_{i} \right\rangle}{\sum_{k,\ell} w_{i,k,\ell}} \\ &= \prod_{i=1}^{n} \frac{\sum_{k,\ell} q_{k,\ell} S_{i-1}(\mathbf{B}^{(k,\ell)}) \left\langle \mathbf{b}_{i}^{(k,\ell)}(\mathbf{x}_{1}^{i-1}), \, \mathbf{x}_{i} \right\rangle}{\sum_{k,\ell} q_{k,\ell} S_{i-1}(\mathbf{B}^{(k,\ell)})} \\ &= \prod_{i=1}^{n} \frac{\sum_{k,\ell} q_{k,\ell} S_{i}(\mathbf{B}^{(k,\ell)})}{\sum_{k,\ell} q_{k,\ell} S_{i-1}(\mathbf{B}^{(k,\ell)})} \\ &= \sum_{k,\ell} q_{k,\ell} S_{n}(\mathbf{B}^{(k,\ell)}), \end{split}$$

The strategy $\mathbf{B} = \mathbf{B}^H$ then arises from weighing the elementary portfolio strategies $\mathbf{B}^{(k,\ell)} = \{\mathbf{b}_n^{(k,\ell)}\}$ such that the investor's capital becomes

$$S_n(\mathbf{B}) = \sum_{k,\ell} q_{k,\ell} S_n(\mathbf{B}^{(k,\ell)}).$$

Theorem

Assume that

- (a) the sequence of partitions is nested, that is, any cell of $\mathcal{P}_{\ell+1}$ is a subset of a cell of \mathcal{P}_{ℓ} , $\ell=1,2,\ldots$;
- (b) if $\operatorname{diam}(A) = \sup_{\mathbf{x}, \mathbf{y} \in A} \|\mathbf{x} \mathbf{y}\|$ denotes the diameter of a set, then for any sphere S centered at the origin

$$\lim_{\ell \to \infty} \max_{j: A_{\ell,j} \cap S \neq \emptyset} \operatorname{diam}(A_{\ell,j}) = 0.$$

Then the portfolio scheme \mathbf{B}^H defined above is universally consistent with respect to the class of all ergodic processes such that $\mathbf{E}\{|\ln X^{(j)}|<\infty, \text{ for } j=1,2,\ldots,d.$

L. Györfi, D. Schäfer (2003) "Nonparametric prediction", in *Advances in Learning Theory: Methods, Models and Applications*, J. A. K. Suykens, G. Horváth, S. Basu, C. Micchelli, J. Vandevalle (Eds.), IOS Press, NATO Science Series, pp. 341-356. www.szit.bme.hu/~gyorfi/histog.ps

Proof

We have to prove that

$$\liminf_{n\to\infty}W_n(\mathbf{B})=\liminf_{n\to\infty}rac{1}{n}\ln S_n(\mathbf{B})\geq W^*$$
 a.s

W.l.o.g. we may assume $S_0 = 1$, so that

$$W_n(\mathbf{B}) = \frac{1}{n} \ln S_n(\mathbf{B})$$

We have to prove that

$$\liminf_{n\to\infty}W_n(\mathbf{B})=\liminf_{n\to\infty}rac{1}{n}\ln S_n(\mathbf{B})\geq W^*$$
 a.s

$$W_n(\mathbf{B}) = \frac{1}{n} \ln S_n(\mathbf{B})$$

$$= \frac{1}{n} \ln \left(\sum_{k,\ell} q_{k,\ell} S_n(\mathbf{B}^{(k,\ell)}) \right)$$

We have to prove that

$$\liminf_{n\to\infty} W_n(\mathbf{B}) = \liminf_{n\to\infty} \frac{1}{n} \ln S_n(\mathbf{B}) \ge W^*$$
 a.s

$$W_n(\mathbf{B}) = \frac{1}{n} \ln S_n(\mathbf{B})$$

$$= \frac{1}{n} \ln \left(\sum_{k,\ell} q_{k,\ell} S_n(\mathbf{B}^{(k,\ell)}) \right)$$

$$\geq \frac{1}{n} \ln \left(\sup_{k,\ell} q_{k,\ell} S_n(\mathbf{B}^{(k,\ell)}) \right)$$

We have to prove that

$$\liminf_{n\to\infty} W_n(\mathsf{B}) = \liminf_{n\to\infty} \frac{1}{n} \ln S_n(\mathsf{B}) \ge W^*$$
 a.s

$$W_n(\mathbf{B}) = \frac{1}{n} \ln S_n(\mathbf{B})$$

$$= \frac{1}{n} \ln \left(\sum_{k,\ell} q_{k,\ell} S_n(\mathbf{B}^{(k,\ell)}) \right)$$

$$\geq \frac{1}{n} \ln \left(\sup_{k,\ell} q_{k,\ell} S_n(\mathbf{B}^{(k,\ell)}) \right)$$

$$= \frac{1}{n} \sup_{k,\ell} \left(\ln q_{k,\ell} + \ln S_n(\mathbf{B}^{(k,\ell)}) \right)$$

We have to prove that

$$\liminf_{n\to\infty} W_n(\mathbf{B}) = \liminf_{n\to\infty} \frac{1}{n} \ln S_n(\mathbf{B}) \ge W^*$$
 a.s

$$W_n(\mathbf{B}) = \frac{1}{n} \ln S_n(\mathbf{B})$$

$$= \frac{1}{n} \ln \left(\sum_{k,\ell} q_{k,\ell} S_n(\mathbf{B}^{(k,\ell)}) \right)$$

$$\geq \frac{1}{n} \ln \left(\sup_{k,\ell} q_{k,\ell} S_n(\mathbf{B}^{(k,\ell)}) \right)$$

$$= \frac{1}{n} \sup_{k,\ell} \left(\ln q_{k,\ell} + \ln S_n(\mathbf{B}^{(k,\ell)}) \right)$$

$$= \sup_{k,\ell} \left(W_n(\mathbf{B}^{(k,\ell)}) + \frac{\ln q_{k,\ell}}{n} \right).$$

$$\liminf_{n\to\infty} W_n(\mathbf{B}) \ \geq \ \liminf_{n\to\infty} \sup_{k,\ell} \left(W_n(\mathbf{B}^{(k,\ell)}) + \frac{\ln q_{k,\ell}}{n} \right)$$

$$\liminf_{n\to\infty} W_n(\mathbf{B}) \geq \liminf_{n\to\infty} \sup_{k,\ell} \left(W_n(\mathbf{B}^{(k,\ell)}) + \frac{\ln q_{k,\ell}}{n} \right) \\
\geq \sup_{k,\ell} \liminf_{n\to\infty} \left(W_n(\mathbf{B}^{(k,\ell)}) + \frac{\ln q_{k,\ell}}{n} \right)$$

$$\liminf_{n\to\infty} W_n(\mathbf{B}) \geq \liminf_{n\to\infty} \sup_{k,\ell} \left(W_n(\mathbf{B}^{(k,\ell)}) + \frac{\ln q_{k,\ell}}{n} \right) \\
\geq \sup_{k,\ell} \liminf_{n\to\infty} \left(W_n(\mathbf{B}^{(k,\ell)}) + \frac{\ln q_{k,\ell}}{n} \right) \\
= \sup_{k,\ell} \liminf_{n\to\infty} W_n(\mathbf{B}^{(k,\ell)})$$

$$\lim_{n \to \infty} \inf W_n(\mathbf{B}) \geq \lim_{n \to \infty} \inf_{k,\ell} \left(W_n(\mathbf{B}^{(k,\ell)}) + \frac{\ln q_{k,\ell}}{n} \right) \\
\geq \sup_{k,\ell} \liminf_{n \to \infty} \left(W_n(\mathbf{B}^{(k,\ell)}) + \frac{\ln q_{k,\ell}}{n} \right) \\
= \sup_{k,\ell} \liminf_{n \to \infty} W_n(\mathbf{B}^{(k,\ell)}) \\
= \sup_{k,\ell} \epsilon_{k,\ell}$$

Since the partitions \mathcal{P}_{ℓ} are nested, we have that

$$\sup_{k,\ell} \epsilon_{k,\ell} = \lim_{k \to \infty} \lim_{l \to \infty} \epsilon_{k,\ell} = W^*.$$

Kernel regression estimate

Kernel function $K(x) \ge 0$ Bandwidth h > 0

$$m_n(x) = \frac{\sum_{i=1}^n Y_i K\left(\frac{x - X_i}{h}\right)}{\sum_{i=1}^n K\left(\frac{x - X_i}{h}\right)}$$

Naive (window) kernel function $K(x) = I_{\{\|x\| \le 1\}}$

$$m_n(x) = \frac{\sum_{i=1}^n Y_i I_{\{\|x - X_i\| \le h\}}}{\sum_{i=1}^n I_{\{\|x - X_i\| \le h\}}}$$

Kernel-based portfolio selection

choose the radius $r_{k,\ell} > 0$ such that for any fixed k,

$$\lim_{\ell\to\infty}r_{k,\ell}=0.$$

Kernel-based portfolio selection

choose the radius $r_{k,\ell} > 0$ such that for any fixed k,

$$\lim_{\ell\to\infty}r_{k,\ell}=0.$$

for n > k + 1, define the expert $\mathbf{b}^{(k,\ell)}$ by

$$\mathbf{b}^{(k,\ell)}(\mathbf{x}_1^{n-1}) = \operatorname*{arg\,max}_{\mathbf{b}} \sum_{\left\{k < i < n: \|\mathbf{x}_{i-k}^{i-1} - \mathbf{x}_{n-k}^{n-1}\| \le r_{k,\ell}\right\}} \ln \left\langle \mathbf{b} \;,\; \mathbf{x}_i \right\rangle,$$

if the sum is non-void, and $\mathbf{b}_0 = (1/d, \dots, 1/d)$ otherwise.

Theorem

The kernel-based portfolio scheme is universally consistent with respect to the class of all ergodic processes such that $\mathbf{E}\{|\ln X^{(j)}| < \infty, \text{ for } j=1,2,\ldots,d.$

L. Györfi, G. Lugosi, F. Udina (2006) "Nonparametric kernel-based sequential investment strategies", *Mathematical Finance*, 16, pp. 337-357

www.szit.bme.hu/~gyorfi/kernel.pdf

k-nearest neighbor (NN) regression estimate

$$m_n(x) = \sum_{i=1}^n W_{ni}(x; X_1, \ldots, X_n) Y_i.$$

 W_{ni} is 1/k if X_i is one of the k nearest neighbors of x among X_1, \ldots, X_n , and W_{ni} is 0 otherwise.

Nearest-neighbor-based portfolio selection

choose $p_\ell \in (0,1)$ such that $\lim_{\ell \to \infty} p_\ell = 0$ for fixed positive integers k,ℓ $(n>k+\hat\ell+1)$ introduce the set of the $\hat\ell = \lfloor p_\ell n \rfloor$ nearest neighbor matches:

$$\hat{J}_{n}^{(k,\ell)} = \{i; k+1 \le i \le n \text{ such that } \mathbf{x}_{i-k}^{i-1} \text{ is among the } \hat{\ell} \text{ NNs of } \mathbf{x}_{n-k}^{n-1} \\ \text{in } \mathbf{x}_{n-k}^{k} \}.$$

Nearest-neighbor-based portfolio selection

choose $p_\ell \in (0,1)$ such that $\lim_{\ell \to \infty} p_\ell = 0$ for fixed positive integers k,ℓ $(n>k+\hat\ell+1)$ introduce the set of the $\hat\ell = \lfloor p_\ell n \rfloor$ nearest neighbor matches:

$$\hat{J}_n^{(k,\ell)} = \{i; k+1 \le i \le n \text{ such that } \mathbf{x}_{i-k}^{i-1} \text{ is among the } \hat{\ell} \text{ NNs of } \mathbf{x}_{n-k}^{n-1} \\ \text{in } \mathbf{x}_1^k, \dots, \mathbf{x}_{n-k}^{n-1} \}.$$

Define the portfolio vector by

$$\mathbf{b}^{(k,\ell)}(\mathbf{x}_1^{n-1}) = \argmax_{\mathbf{b}} \sum_{\left\{i \in \hat{\mathcal{I}}_n^{(k,\ell)}\right\}} \ln \left\langle \mathbf{b} \,,\, \mathbf{x}_i \right\rangle$$

if the sum is non-void, and $\mathbf{b}_0 = (1/d, \dots, 1/d)$ otherwise.

Theorem

If for any vector $\mathbf{s} = \mathbf{s}_1^k$ the random variable

$$\|\mathbf{X}_1^k - \mathbf{s}\|$$

has continuous distribution function, then the nearest-neighbor portfolio scheme is universally consistent with respect to the class of all ergodic processes such that $\mathbf{E}\{|\ln X^{(j)}|\}<\infty$, for $j=1,2,\ldots d$.

NN is robust, there is no scaling problem

Theorem

If for any vector $\mathbf{s} = \mathbf{s}_1^k$ the random variable

$$\|\mathbf{X}_1^k - \mathbf{s}\|$$

has continuous distribution function, then the nearest-neighbor portfolio scheme is universally consistent with respect to the class of all ergodic processes such that $\mathbf{E}\{|\ln X^{(j)}|\}<\infty$, for $j=1,2,\ldots d$.

NN is robust, there is no scaling problem

L. Györfi, F. Udina, H. Walk (2006) "Nonparametric nearest neighbor based empirical portfolio selection strategies", (submitted), www.szit.bme.hu/~gyorfi/NN.pdf

empirical log-optimal:

$$\mathit{h}^{(k,\ell)}(\mathbf{x}_1^{n-1}) = \argmax_{\mathbf{b}} \sum_{i \in J_n} \ln \left\langle \mathbf{b} \,,\, \mathbf{x}_i \right\rangle$$

empirical log-optimal:

$$h^{(k,\ell)}(\mathbf{x}_1^{n-1}) = \underset{\mathbf{b}}{\operatorname{arg max}} \sum_{i \in J_n} \ln \langle \mathbf{b} \,, \, \mathbf{x}_i \rangle$$

Taylor expansion: $\ln z \approx h(z) = z - 1 - \frac{1}{2}(z-1)^2$

empirical log-optimal:

$$\mathit{h}^{(k,\ell)}(\mathbf{x}_1^{n-1}) = rg \max_{\mathbf{b}} \sum_{i \in J_n} \ln \left\langle \mathbf{b} \,,\, \mathbf{x}_i \right
angle$$

Taylor expansion: $\ln z \approx h(z) = z - 1 - \frac{1}{2}(z-1)^2$ empirical semi-log-optimal:

$$\tilde{h}^{(k,\ell)}(\mathbf{x}_1^{n-1}) = \arg\max_{\mathbf{b}} \sum_{i \in J_n} h(\langle \mathbf{b} \,,\, \mathbf{x}_i \rangle) = \arg\max_{\mathbf{b}} \{\langle \mathbf{b} \,,\, \mathbf{m} \rangle - \langle \mathbf{b} \,,\, \mathbf{Cb} \rangle\}$$

empirical log-optimal:

$$\mathit{h}^{(k,\ell)}(\mathbf{x}_1^{n-1}) = rg \max_{\mathbf{b}} \sum_{i \in J_n} \ln \left\langle \mathbf{b} \,,\, \mathbf{x}_i \right
angle$$

Taylor expansion: $\ln z \approx h(z) = z - 1 - \frac{1}{2}(z-1)^2$ empirical semi-log-optimal:

$$\tilde{h}^{(k,\ell)}(\mathbf{x}_1^{n-1}) = \arg\max_{\mathbf{b}} \sum_{i \in J_n} h(\langle \mathbf{b} \,,\, \mathbf{x}_i \rangle) = \arg\max_{\mathbf{b}} \{\langle \mathbf{b} \,,\, \mathbf{m} \rangle - \langle \mathbf{b} \,,\, \mathbf{Cb} \rangle\}$$

smaller computational complexity: quadratic programming

empirical log-optimal:

$$h^{(k,\ell)}(\mathbf{x}_1^{n-1}) = rg \max_{\mathbf{b}} \sum_{i \in J_n} \ln \langle \mathbf{b} \,, \, \mathbf{x}_i \rangle$$

Taylor expansion: $\ln z \approx h(z) = z - 1 - \frac{1}{2}(z-1)^2$ empirical semi-log-optimal:

$$\tilde{h}^{(k,\ell)}(\mathbf{x}_1^{n-1}) = \arg\max_{\mathbf{b}} \sum_{i \in J_n} h(\langle \mathbf{b} \,,\, \mathbf{x}_i \rangle) = \arg\max_{\mathbf{b}} \{\langle \mathbf{b} \,,\, \mathbf{m} \rangle - \langle \mathbf{b} \,,\, \mathbf{Cb} \rangle\}$$

smaller computational complexity: quadratic programming

L. Györfi, A. Urbán, I. Vajda (2007) "Kernel-based semi-log-optimal portfolio selection strategies", *International Journal of Theoretical and Applied Finance*, 10, pp. 505-516. www.szit.bme.hu/ \sim gyorfi/semi.pdf

Conditions of the model:

Assume that

- the assets are arbitrarily divisible,
- the assets are available in unbounded quantities at the current price at any given trading period,
- there are no transaction costs,
- the behavior of the market is not affected by the actions of the investor using the strategy under investigation.

NYSE data sets

At www.szit.bme.hu/~oti/portfolio there are two benchmark data set from NYSE:

- The first data set consists of daily data of 36 stocks with length 22 years.
- The second data set contains 23 stocks and has length 44 years.

NYSE data sets

At www.szit.bme.hu/~oti/portfolio there are two benchmark data set from NYSE:

- The first data set consists of daily data of 36 stocks with length 22 years.
- The second data set contains 23 stocks and has length 44 years.

Our experiment is on the second data set.

Kernel based semi-log-optimal portfolio selection with $k=1,\ldots,5$ and $l=1,\ldots,10$

$$r_{k,l}^2 = 0.0001 \cdot d \cdot k \cdot \ell,$$

Kernel based semi-log-optimal portfolio selection with $k=1,\ldots,5$ and $l=1,\ldots,10$

$$r_{k,l}^2 = 0.0001 \cdot d \cdot k \cdot \ell,$$

AAY of kernel based semi-log-optimal portfolio is 128%

Kernel based semi-log-optimal portfolio selection with $k=1,\ldots,5$ and $l=1,\ldots,10$

$$r_{k,l}^2 = 0.0001 \cdot d \cdot k \cdot \ell,$$

AAY of kernel based semi-log-optimal portfolio is 128% double the capital

Kernel based semi-log-optimal portfolio selection with k = 1, ..., 5 and l = 1, ..., 10

$$r_{k,l}^2 = 0.0001 \cdot d \cdot k \cdot \ell,$$

AAY of kernel based semi-log-optimal portfolio is 128% double the capital MORRIS had the best AAY, 20%

Kernel based semi-log-optimal portfolio selection with k = 1, ..., 5 and l = 1, ..., 10

$$r_{k,l}^2 = 0.0001 \cdot d \cdot k \cdot \ell,$$

AAY of kernel based semi-log-optimal portfolio is 128% double the capital MORRIS had the best AAY, 20% the BCRP had average AAY 24%

The average annual yields of the individual experts.

k	1	2	3	4	5
ℓ					
1	20%	19%	16%	16%	16%
2	118%	77%	62%	24%	58%
3	71%	41%	26%	58%	21%
4	103%	94%	63%	97%	34%
5	134%	102%	100%	102%	67%
6	140%	125%	105%	108%	87%
7	148%	123%	107%	99%	96%
8	132%	112%	102%	85%	81%
9	127%	103%	98%	74%	72%
10	123%	92%	81%	65%	69%