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Dynamic portfolio selection: general case

Xj = (X’-(l), . .x,.(d)) the return vector on day /
b = b is the portfolio vector for the first day

initial capital Sg

S1 =50 (b1, x1)
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Dynamic portfolio selection: general case

Xj = (X’-(l), . .x,.(d)) the return vector on day /
b = b is the portfolio vector for the first day

initial capital Sg

S1=50- (b1, x1)
for the second day, S; new initial capital, the portfolio vector
b2 = b(Xl)
52 = 5() . <b1, X1> . <b(X1), X2> .
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Dynamic portfolio selection: general case

(1) (d)

xj = (x;"/,...x; ") the return vector on day /

b = b is the portfolio vector for the first day
initial capital Sg

S1="50 (b1, x1)
for the second day, S; new initial capital, the portfolio vector
b2 = b(Xl)
52 = 5() . <b1, X1> . <b(X1), X2> .
nth day a portfolio strategy b, = b(x, . ..,x,_1) = b(x]™?)

n

S5n=5% H <b(ngl)7 X;> — Spe"Wn(B)

i=1
with the average growth rate

n

W,(B) = %Z In <b(x’f1) : x,~> .

i=1
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log-optimum portfolio

X1, Xz, ... drawn from the vector valued stationary and ergodic
process

log-optimum portfolio B* = {b*(-)}

E{In (B°(X]%). o) | X7 1} = maxE(in (b(X] ). Xo) | X 1}

Xt =Xyq,..., Xp1
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Optimality

Algoet and Cover (1988): If S;; = S,(B*) denotes the capital after
day n achieved by a log-optimum portfolio strategy B*, then for
any portfolio strategy B with capital S, = S,(B) and for any
process {X,}>,

n—oo

) 1 1
lim sup < InS, — —In 5,’;) <0 almost surely
n n
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Optimality

Algoet and Cover (1988): If S;; = S,(B*) denotes the capital after
day n achieved by a log-optimum portfolio strategy B*, then for
any portfolio strategy B with capital S, = S,(B) and for any
process {X,}>,

n—oo

. 1 1

lim sup < InS, — —In 5,’;) <0 almost surely
n n

for stationary ergodic process {X,}>°,,

o1
lim =InS; = W* almost surely,
n—oo N

where
W*=E {T(a)x E{ln(b(X_%), Xo) | X_3 }}

is the maximal growth rate of any portfolio.
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Martingale difference sequences

for the proof of optimality we use the concept of martingale
differences:

Definition

there are two sequences of random variables:

{Zo}  {Xa}

@ Z, is a function of Xi,..., X,
o E{Z,| X1,...,Xs—1} = 0 almost surely.

Then {Z,} is called martingale difference sequence with respect to

{Xa}.
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A strong law of large numbers

Chow Theorem: If {Z,} is a martingale difference sequence with
respect to {X,} and

o0

E{Z?
Z {2n} < 00
n
n=1

then

1
n"lﬂon;Z'_O as.
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A weak law of large numbers

Lemma: If {Z,} is a martingale difference sequence with respect
to {X,} then {Z,} are uncorrelated.
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A weak law of large numbers

Lemma: If {Z,} is a martingale difference sequence with respect
to {X,} then {Z,} are uncorrelated.
Proof. Put i <.

E{ZiZ;}

Gybrfi

Machine learning and portfolio selections. II.



A weak law of large numbers
Lemma: If {Z,} is a martingale difference sequence with respect
to {X,} then {Z,} are uncorrelated.
Proof. Put i <.

E{ZZ} = E{E{ZZ|X.,...,Xi_1}}

Gybrfi
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A weak law of large numbers

Lemma: If {Z,} is a martingale difference sequence with respect
to {X,} then {Z,} are uncorrelated.
Proof. Put i <.
E{ZiZ;} = E{E{Z;Zj| X1,...,Xj_1}}
= E{ZE{Z| X1,..., Xj_1}}

Gybrfi
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A weak law of large numbers

Lemma: If {Z,} is a martingale difference sequence with respect
to {X,} then {Z,} are uncorrelated.
Proof. Put i <.

E{ZZ} = E{E{ZZ|X.,...,Xi_1}}

= E{ZE{Z | X1,...,X;—1}}
= E{Z 0}
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A weak law of large numbers

Lemma: If {Z,} is a martingale difference sequence with respect
to {X,} then {Z,} are uncorrelated.
Proof. Put i <.

E{ZZ} = E{E{ZZ|X.,...,Xi_1}}

= E{ZE{Z| X,...,Xj_1}}
— E{Z-0}=0
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A weak law of large numbers

Lemma: If {Z,} is a martingale difference sequence with respect
to {X,} then {Z,} are uncorrelated.
Proof. Put i <.
E{ZZ} = E{E{ZZ|X..... X1}
= E{ZE{Z[X,....X;-1}}
= E{Z,-0}=0

Corollary
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A weak law of large numbers

Lemma: If {Z,} is a martingale difference sequence with respect
to {X,} then {Z,} are uncorrelated.
Proof. Put i <.
E{ZZ} = E{E{ZZ|X..... X1}
= E{ZE{Z[X,....X;-1}}
= E{Z,-0}=0

Corollary

n 2 n n
E (},Zz,-) = LYY E(zz)

i=1 j=1

Gyorfi Machine learning and portfolio selections. II.



A weak law of large numbers

Lemma: If {Z,} is a martingale difference sequence with respect
to {X,} then {Z,} are uncorrelated.
Proof. Put i <.

E{Z;Z;} = E{E{ZZ | X1,...,Xj—1}}
= E{ZIE{Z_/ |X17"'7)<j—1}}
= E{Z-0}=0

Corollary

n 2 n n
E (},Zz,-) = LYY E(zz)

i=1 j=1

1 < )
= ;ZE{Z;}
i=1
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A weak law of large numbers

Lemma: If {Z,} is a martingale difference sequence with respect
to {X,} then {Z,} are uncorrelated.
Proof. Put i <.
E{ZiZ;} = E{E{Z;Zj| X1,...,Xj_1}}
= E{ZE{Z| X1,..., Xj_1}}

= E{Z-0}=0
Corollary
1 n 2 1 n n
E (nzz;) = —> D EzZz}
i=1 i=1 j=1
1 o )
= Y E(Z}
i=1
— 0

if, for example, E{Z?} is a bounded sequence.
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Constructing martingale difference sequence

{Y,} is an arbitrary sequence such that Y, is a function of
X1, .. X,
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Constructing martingale difference sequence

{Y,} is an arbitrary sequence such that Y, is a function of
X1, .. X,
Put

Zn=Yn—E{Yn| Xt,..., Xn_1}

Then {Z,} is a martingale difference sequence:
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Constructing martingale difference sequence

{Y,} is an arbitrary sequence such that Y, is a function of
X1,y Xn
Put
Zn=Yn—E{Y,| X1,..., Xn_1}
Then {Z,} is a martingale difference sequence:

@ Z, is a function of Xi,..., X,
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Constructing martingale difference sequence

{Y,} is an arbitrary sequence such that Y, is a function of
X1,y Xn
Put
Zn=Yn—E{Y,| X1,..., Xn_1}
Then {Z,} is a martingale difference sequence:
@ Z, is a function of Xi,..., X,

E{Z,| X1,..., Xo_1}
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Constructing martingale difference sequence

{Y,} is an arbitrary sequence such that Y, is a function of
X1,y Xn
Put
Zn=Yn—E{Y,| X1,..., Xn_1}
Then {Z,} is a martingale difference sequence:
@ Z, is a function of Xi,..., X,

E{Z, | X1,..., Xn_1}
= E{Y,—E{Y, | Xt,..., Xo_1} | X1, ..., Xp_1}
=0

almost surely.
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Optimality

log-optimum portfolio B* = {b*(-)}

E(In (b"(X{ 1), Xo) | X7} = maxE{In ((X] ™), X,) | X{ )
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Optimality

log-optimum portfolio B* = {b*(-)}

E(In (b"(X{ 1), Xo) | X7} = maxE{In ((X] ™), X,) | X{ )

If S = S,(B*) denotes the capital after day n achieved by a
log-optimum portfolio strategy B*, then for any portfolio strategy
B with capital S, = S,(B) and for any process {X,}>,

1 1
lim sup < InS, — = In S,f) <0 almost surely
n n

n—oo
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Proof of optimality
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Proof of optimality

—InS,

72|n< b(Xi 1) >
_ 7ZE{In< b(Xi 1) ,->\x§—1}

n

£ (n(bXi ), %)~ Efin (b(X{ 1), X} | X))

i=1
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Proof of optimality

1

Jnse = 33 (bek ). x)

_ % Z E{In <b(x;—1) : X,-> | X7}
i=1

+ ,172": (In <b(Xi_1), Xi> — E{In <b(X£_1), Xi> | Xi_l})
i=1

and

st = iZE{In<b*(X£1),X;>|X§1}

S x) et ) )




Universally consistent portfolio

These limit relations give rise to the following definition:

Definition

An empirical (data driven) portfolio strategy B is called
universally consistent with respect to a class C of stationary
and ergodic processes {X,}>, if for each process in the class,

n—oo

1
lim - InS,(B) = W* almost surely.
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Empirical portfolio selection

E{In (B°(X]™%). Xu) | X{1} = max E{in (b(X] ). Xo) | X{ 1}
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Empirical portfolio selection

E{In (B°(X]™%). Xu) | X{1} = max E{in (b(X] ). Xo) | X{ 1}

fixed integer k > 0
E{ln (b(X7™1), Xpn) | X771} ~ E{In(b(X"~}), X,) | X773}
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Empirical portfolio selection

E{ln (b*(X{71), X,) | X]7'} = max E{ln (b(X{™1), X,) | X7~}
fixed integer k > 0
E{ln (b(X7™1), Xpn) | X771} ~ E{In(b(X"~}), X,) | X773}
and
b*(XT™1) ~ by (X""}) = argmax E{In (b(X""}), X,) | X"~}
b(")
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Empirical portfolio selection

E{In (B°(X]™%). Xu) | X{1} = max E{in (b(X] ). Xo) | X{ 1}

fixed integer k > 0
E{ln (b(X7™1), Xpn) | X771} ~ E{In(b(X"~}), X,) | X773}
and
b*(X7™1) & b (XI71) = argb(n)lax E{In(b(X"~}), X,) | X"~}

because of stationarity
bi(xf) = argmaxE{In <b(x’1<)7 Xk+1> | Xk =xk}
b(")
= argmax E{In (b, X,41) | X¥ = xk},
b
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Empirical portfolio selection

E{ln (b*(X{71), X,) | X]7'} = max E{ln (b(X{™1), X,) | X7~}
fixed integer k > 0

E{in (b(X{ "), Xa) | X{ '} ~ E{In (b(X]7}), X,) | X774}
and

b*(X{™1) & b (X"}) = argmax E{In (b(X"~}), X,) | X"~}
b(-)
because of stationarity

be(xf) = argb(n;ax E{In <b(x’1<)7 Xk+1> | Xk =xk}

= argmax E{In (b, X,41) | X¥ = xk},
b

which is the maximization of the regression function

mp(xf) = E{In (b, Xyy1) | X§ = x{}
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Regression function

Y real valued
X observation vector
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Regression function

Y real valued
X observation vector
Regression function

m(x) =E{Y | X = x}
iid. data: D, = {(X1, Y1),...,(Xn, Yn)}
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Regression function

Y real valued
X observation vector
Regression function

m(x) =E{Y | X = x}

i.i.d. data: D, = {(X1, Y1),..., (Xn, Ya)}
Regression function estimate

mp(x) = mu(x, Dp)
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Regression function

Y real valued
X observation vector
Regression function

m(x) =E{Y | X = x}

i.i.d. data: D, = {(X1, Y1),..., (Xn, Ya)}
Regression function estimate

mp(x) = mu(x, Dp)

local averaging estimates
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Regression function

Y real valued
X observation vector
Regression function

m(x) =E{Y | X = x}

i.i.d. data: D, = {(X1, Y1),..., (Xn, Ya)}
Regression function estimate

mp(x) = mu(x, Dp)

local averaging estimates

n

mp(x) = Z Wii(x; X1, ..., Xn)Yi

i=1

L. Gyorfi, M. Kohler, A. Krzyzak, H. Walk (2002) A
Distribution-Free Theory of Nonparametric Regression,
Springer-Verlag, New York.
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Correspondence
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Correspondence
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Correspondence

X ~ Xk
Y ~ In{b, Xi41)
m(x) =E{Y | X =x} ~ my(x{) =E{In(b, Xey1) | X{ = x{}
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Partitioning regression estimate

Partition P, = {An,17 An,2 . }
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Partitioning regression estimate

Partition P, = {An,17 An,2 . }
An(x) is the cell of the partition P, into which x falls
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Partitioning regression estimate

Partition P, = {An,17 An,2 . }
An(x) is the cell of the partition P, into which x falls

Yo Yilxiean o0l
>oim1 Ixean)

mp(x) =
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Partitioning regression estimate

Partition P, = {An,17 An,2 . }
An(x) is the cell of the partition P, into which x falls

Yo Yilxiean o0l
>oim1 Ixean)

mp(x) =

Let G, be the quantizer corresponding to the partition Pp:
Gn(X) =jifxe A”J'
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Partitioning regression estimate

Partition P, = {An,17 An,2 . }
An(x) is the cell of the partition P, into which x falls

Yo Yilxiean o0l
>oim1 Ixean)

mp(x) =

Let G, be the quantizer corresponding to the partition Pp:
Gn(X) =jifxe A”J'
the set of matches

In(x) ={i < n: Gy(x) = Gp(Xi)}
Then

™) = 6o
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Partitioning-based portfolio selection

fix k,0=1,2,...
Pe=A{Acj,j =1,2,..., mg} finite partitions of R,
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Partitioning-based portfolio selection

fix k0 =1,2,...
Pe=A{Acj,j =1,2,..., mg} finite partitions of R,
Gy be the corresponding quantizer: Gy(x) = j, if x € Agj.
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Partitioning-based portfolio selection

fix k0 =1,2,...

Pe=A{Acj,j =1,2,..., mg} finite partitions of R,

Gy be the corresponding quantizer: Gy(x) = j, if x € Agj.
GZ(XQ) = GZ(Xl)v R Gf(xn),
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Partitioning-based portfolio selection

fix k0 =1,2,. ..

Pe=A{Acj,j =1,2,..., mg} finite partitions of R,

Gy be the corresponding quantizer: Gy(x) = j, if x € Agj.
Ge(x7) = Ge(x1), - - -, Ge(xn),

the set of matches:

Jn=1{k <i<n:G(xiZ}) = Gu(x""L)}

Gybrfi
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Partitioning-based portfolio selection

fix k,0 =1,2,. ..

Pe=A{Acj,j =1,2,..., mg} finite partitions of R,

Gy be the corresponding quantizer: Gy(x) = j, if x € Agj.
GZ(XQ) = GZ(Xl)v R Gf(xn),

the set of matches:

Jn={k<i<n:G(xi}) = G(x"~1)}
b(k’é)(xi'*l) = arg max Z In(b, x;)

i€dy
if the set I, is non-void, and by = (1/d,...,1/d) otherwise.
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Elementary portfolios

for fixed k,£=1,2,...,
B0 = {b(k0(.)}, are called elementary portfolios
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Elementary portfolios

for fixed k,£=1,2,...,

B0 = {b(k0(.)}, are called elementary portfolios

That is, bﬁ,k’é) quantizes the sequence xi’*l according to the
partition Py, and browses through all past appearances of the last
seen quantized string Gg(xZ:i) of length k.

Then it designs a fixed portfolio vector according to the returns on
the days following the occurence of the string.
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Combining elementary portfolios

How to choose k, ¢

@ small k or small £: large bias

@ large k and large ¢: few matching, large variance
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Combining elementary portfolios

How to choose k, ¢

@ small k or small £: large bias

@ large k and large ¢: few matching, large variance

Machine learning: combination of experts

N. Cesa-Bianchi and G. Lugosi, Prediction, Learning, and Games.
Cambridge University Press, 2006.
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Exponential weighing

combine the elementary portfolio strategies B(k:¥) = {bﬁ,”)}
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Exponential weighing

combine the elementary portfolio strategies B(k:¥) = {bﬁ,”)}
let {gk ¢} be a probability distribution on the set of all pairs (k, ¢)
such that for all k, 4, qx¢ > 0.
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Exponential weighing

combine the elementary portfolio strategies B(k:¥) = {bﬁ,”)}

let {gk ¢} be a probability distribution on the set of all pairs (k, ¢)
such that for all k, 4, qx¢ > 0.

for n > 0 put

Wi ke = qkce"" Sn-1(BX9)
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Exponential weighing

combine the elementary portfolio strategies B(k:¥) = {bﬁ,”)}

let {gk ¢} be a probability distribution on the set of all pairs (k, ¢)
such that for all k, 4, qx¢ > 0.

for n > 0 put

Wi ke = qkce"" Sn-1(BX9)

forn=1,

Wi ke = Qi o™ So-1(BHY) Gk Sn—1(BU)
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Exponential weighing

combine the elementary portfolio strategies B(k:¥) = {bﬁ,”)}

let {gk ¢} be a probability distribution on the set of all pairs (k, ¢)
such that for all k, 4, qx¢ > 0.

for n > 0 put

Wi ke = qkce"" Sn-1(BX9)

forn=1,

Wi ke = Qi o™ So-1(BHY) Gk Sn—1(BU)

and
Whn, k¢

Vnkt =
ZI,_] W”’
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Exponential weighing

combine the elementary portfolio strategies B(k:¥) = {bi,k’“)}

let {gk ¢} be a probability distribution on the set of all pairs (k, ¢)
such that for all k, 4, qx¢ > 0.

for n > 0 put

Wi ke = qkce"" Sn-1(BX9)

forn=1,

Wi ke = Qi o™ So-1(BHY) Gk Sn—1(BU)

and
Whn, k¢

Vnkt =
ZI,_] W”’

the combined portfolio b:

bn(x{ ") = Z Vin,k, b e)( .

P
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Sa(B) = f[ <bi(X§_1) : Xi>

i=1
1 ke Wikt <b§k’£)(X’f1) : x,->

p Dk, Wikt
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5,8) = TT(bitxi ). x)

i=1
D e Wikt <b§k’£)(x’f1) ’ x,->
i=1 Zk,é Wi k¢

N Lk heSi-1(BUY) <b§k’€)(xi_1)7 Xi>
i=1 Zk,e k0 Si—1(B(K:0)

]
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et Wikt < b{“9(xi ™), Xi>

H

Zk,g Wi k¢
k), i—
_ f[ Lt e Si-1(BE) <bf i, Xi>
i=1 2 ke Gk, 0Si_1(Bk0)

_ H e Qe Si(BED)
T 2kt Gk,Si- 1(B(k:0)
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et Wikt < b{“9(xi ™), Xi>

H

Zk,g Wi k¢
k), i—
_ f[ Lt e Si-1(BE) <bf i, Xi>
i=1 2 ke Gk, 0Si_1(Bk0)

_ H e Qe Si(BED)
Zszkésl 1(B(k€))

- Z qk,ZSn
k,t
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The strategy B = B then arises from weighing the elementary
portfolio strategies B(k*) = {bgk’e)} such that the investor's capital
becomes

Sn(B) = Z quSn(B(k’Z)).
k.t
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Assume that

(a) the sequence of partitions is nested, that is, any cell of Py, is
a subset of a cell of Py, £ =1,2,..

(b) if diam(A) = supy yea [|x — y|| denotes the diameter of a set,
then for any sphere S centered at the origin

lim max diam(Ag;)=0.
€—>OO_j:Ag’jﬂ575® ( E’J)
Then the portfolio scheme B defined above is universally

consistent with respect to the class of all ergodic processes such
that E{|In XU)| < o0, for j =1,2,...,d.

Gybrfi
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L. Gyorfi, D. Schafer (2003) " Nonparametric prediction”, in
Advances in Learning Theory: Methods, Models and Applications,
J. A. K. Suykens, G. Horvath, S. Basu, C. Micchelli, J. Vandevalle
(Eds.), I0S Press, NATO Science Series, pp. 341-356.
www.szit.bme.hu/“gyorfi/histog.ps
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We have to prove that

liminf W,(B) = liminf E InS,(B) > W*  as.
n—oo n

n—oo

W.l.o.g. we may assume Sg = 1, so that

W,(B) = ~inS,(B)
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We have to prove that

liminf W,(B) = liminf E InS,(B) > W*  as.
n—oo n

n—oo

W.l.o.g. we may assume Sg = 1, so that

W,(B) = ~inS,(B)

1
= —1In quVZSn(B(k’z))

n
k£
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We have to prove that
1
liminf W,(B) = liminf —=InS,(B) > W* as.
n—oo n—oo n

W.l.o.g. we may assume Sg = 1, so that

W,(B) = ~inS,(B)

1
= ;In quVZSn(B(k’z))
k.l

> 1 In (sup qkygS,,(B(k’f)))
n k¢
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We have to prove that
Iinrr_1)ior2>f Wp(B) = IinrliC)rlf % InS,(B) > W*  as.
W.l.o.g. we may assume Sg = 1, so that
W,(B) = ~inS,(B)

1
= ;In quVZSn(B(k’z))
k.l

1 In (sup qkygS,,(B(k’f)))
n k¢

1
- = (k:€)
nsku,? (In gke+InS,(B ))

v

Gyorfi Machine learning and portfolio selections. II.



We have to prove that
Iinrr_1)ior2>f Wp(B) = IinrliC)rlf % InS,(B) > W*  as.
W.l.o.g. we may assume Sg = 1, so that
W,(B) = ~inS,(B)

1
= ;In quVZSn(B(k’z))
k.l

1 In (sup qkygS,,(B(k’f)))
n k¢

1
- = (k:€)
nsku,? (In gke+InS,(B ))

v

|
_ sup<Wn(B(k,e>)+W>.
k¢ n
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Thus

|
liminf W,(B) > liminfsup (Wn(B(kvf)) + W)

n—oo n—oo g n
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Thus

|
liminf W,(B) > liminfsup (Wn(B(kvf)) + W)

n—oo n—oo g n

|
> supliminf <Wn(|3(kvf)) + W)

k’e n—oo n
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Thus

lim inf W,(B)

n—oo

Y

|
liminf sup (Wn(B(k’Z)) + W)

n—oo k,@

|
sup lim inf (Wn(BW)) v W)

k,f n—oo

n

n

sup lim inf W, (B(9)

k,ﬁ n—oo

Gybrfi

Machine learning and portfolio selections. II.



Thus

Y

|
liminf W,(B) liminf sup (Wn(B(kvf)) + W)

n—oo n—oo g n

|
> supliminf <Wn(|3(kvf)) + W)

k’e n—oo n

= supliminf W,(B*9)
k,ﬁ n—oo
= Supe€gy
k.,
Since the partitions P, are nested, we have that

supexe = lim lim e = W™

k£ k—o0 [—00
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Kernel regression estimate

Kernel function K(x) > 0
Bandwidth h > 0

n x=X;
Sr YK (555)
n x—X;
S K (5
Naive (window) kernel function K(x) = Ifjxj<1}

_ i Vil xi<m
D1 lexil<hy

mp(x) =

mp(x)
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Kernel-based portfolio selection

choose the radius rx o > 0 such that for any fixed k,

lim ree = 0.
l—00
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Kernel-based portfolio selection

choose the radius rx o > 0 such that for any fixed k,

li =0.
Jim rioe =0
for n > k + 1, define the expert b(kt) by

bk (x7~1) = arg max Z In(b, x;),

{k<i<n|lx{Z,—xI"}I<nce}

if the sum is non-void, and by = (1/d,...,1/d) otherwise.
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The kernel-based portfolio scheme is universally consistent with
respect to the class of all ergodic processes such that
E{|InXV)| < o0, for j=1,2,...,d.

L. Gyorfi, G. Lugosi, F. Udina (2006) " Nonparametric kernel-based
sequential investment strategies”, Mathematical Finance, 16, pp.
337-357

www.szit.bme.hu/“gyorfi/kernel.pdf
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k-nearest neighbor (NN) regression estimate

n

mp(x) = Z Whi(x; X1, ..., Xn)Yi.
i=1

Wi is 1/k if X; is one of the k nearest neighbors of x among
X1,...,X,, and W,; is 0 otherwise.
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Nearest-neighbor-based portfolio selection

choose py € (0,1) such that lim;_ p =0
for fixed positive integers k,¢ (n > k + ¢+ 1) introduce the set of
the ¢ = | pgn| nearest neighbor matches:

3,(,1(’@ = {i; k+ 1 <i < nsuch that x;:i is among the / NNs of ij
in xi‘,...,xﬁ:i .
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Nearest-neighbor-based portfolio selection

choose py € (0,1) such that lim;_ p =0
for fixed positive integers k,¢ (n > k + ¢+ 1) introduce the set of
the ¢ = | pgn| nearest neighbor matches:

3,(,“) = {i; k+ 1 <i < nsuch that x;:i is among the / NNs of ij
in xi‘,...,xﬁ:i .

Define the portfolio vector by

b(kvﬁ) Xn_l = | b, X
(x{77) arg;nax Z n( )
{ieJW')}

if the sum is non-void, and by = (1/d,...,1/d) otherwise.
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If for any vector s = sk the random variable
k
X5 — s

has continuous distribution function, then the nearest-neighbor
portfolio scheme is universally consistent with respect to the class
of all ergodic processes such that E{|In XU)|} < oo, for
j=12...d.

NN is robust, there is no scaling problem
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If for any vector s = sk the random variable
k
X5 — s

has continuous distribution function, then the nearest-neighbor
portfolio scheme is universally consistent with respect to the class
of all ergodic processes such that E{|In XU)|} < oo, for
j=12...d.

NN is robust, there is no scaling problem

L. Gyorfi, F. Udina, H. Walk (2006) " Nonparametric nearest
neighbor based empirical portfolio selection strategies”,
(submitted), www.szit.bme.hu/“gyorfi/NN.pdf
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Semi-log-optimal portfolio

empirical log-optimal:

h(k,E)(xg—l) = arg maXZ In(b, x;)
iEJn
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Semi-log-optimal portfolio

empirical log-optimal:

h(k,E)(xg—l) = arg maXZ In(b, x;)
iEJn

Taylor expansion: Inz &~ h(z) = z — 1 — 3(z — 1)? empirical
semi-log-optimal:

E(k’g)(x'l’*l) = arg maxz h({b, x;)) = argmax{(b, m)—(b, Cb)}
i€Jn b

smaller computational complexity: quadratic programming

L. Gyorfi, A. Urbén, |. Vajda (2007) " Kernel-based

semi-log-optimal portfolio selection strategies”’, International

Journal of Theoretical and Applied Finance, 10, pp. 505-516.
www.szit.bme.hu/~gyorfi/semi.pdf
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Conditions of the model:

Assume that
@ the assets are arbitrarily divisible,

@ the assets are available in unbounded quantities at the current
price at any given trading period,

@ there are no transaction costs,

@ the behavior of the market is not affected by the actions of
the investor using the strategy under investigation.
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NYSE data sets

At www.szit.bme.hu/~oti/portfolio there are two benchmark
data set from NYSE:
@ The first data set consists of daily data of 36 stocks with
length 22 years.
@ The second data set contains 23 stocks and has length 44
years.
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NYSE data sets

At www.szit.bme.hu/~oti/portfolio there are two benchmark
data set from NYSE:
@ The first data set consists of daily data of 36 stocks with
length 22 years.
@ The second data set contains 23 stocks and has length 44
years.
Our experiment is on the second data set.
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Experiments on average annual yields (AAY)

Kernel based semi-log-optimal portfolio selection with
k=1,....,5and /=1,...,10

re; =0.0001-d k-,
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Experiments on average annual yields (AAY)

Kernel based semi-log-optimal portfolio selection with
k=1,....,5and /=1,...,10

re; =0.0001-d k-,

AAY of kernel based semi-log-optimal portfolio is 128%
double the capital

MORRIS had the best AAY, 20%

the BCRP had average AAY 24%

Gyorfi Machine learning and portfolio selections. II.



The average annual yields of the individual experts.

k 1 2 3 4 5
l
1] 20% | 19% | 16% | 16% | 16%
2| 118% | 77% | 62% | 24% | 58%
3| 71% | 41% | 26% | 58% | 21%
41103% | 94% | 63% | 97% | 34%
5| 134% | 102% | 100% | 102% | 67%
6 | 140% | 125% | 105% | 108% | 87%
7| 148% | 123% | 107% | 99% | 96%
8 | 132% | 112% | 102% | 85% | 81%
9| 127% | 103% | 98% | 74% | 72%
10 | 123% | 92% | 81% | 65% | 69%
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