Summary of Lectures

ITC2, Spring 2022

by:
Padmini Mukkamala

Budapest University of Technology and Economics

Last updated: June 16, 2022

The pseudocodes that appear here have been adapted from the Hungarian Course Notes.

http://cs.bme.hu/bsz2/bsz2_jegyzet.pdf

Note: For the final exam, you have to know the proofs of theorems in green and not for the ones in yellow .

Contents

[Lecture Tl

|Permutations, Combinations| L

Binomial Theoreml|

[Cecture 2|
|Graphs: Basic Definitions|

|!somorpEisE| ..

[Paths and connectivity]. v v v v o

[Lecture 5l
Ipartite graphs|

Interval graphs| L

Lecture 6
..

[Lecture 7l

omomorphism, Kuratowski’s Theorem| 0.

TG, v(G]. . .
a(G), p(G)l - - o e

Lecture 8

[Augmenting path algorithm| oo oo oo o
[Halls theorem, Frobenius theoTem| v v v v v i i e e e e e

Le e 9
[Edge chromatic number| e
Maximum flows 1n networks.
[Edmond Karp’s algorithm| o

[Lecture 10|
Is,t-cut, capacity of cuts| L e
lFord-Fulkerson’s theorem|
IModifications of the network flow problem|

[Lecture 11l

|Vertex and edge connectivity| L e

|[Edge-cuts and Fdge-disjoint paths| o oo o
|_Vertex—cuts and Vertex-disjoint Paths] v oo o
[Menger’s Theorems|. o o o o o

w W

3 (S} QNN > o W

o0

12
12
12
12
12
13

14
14
15

16
16
17
17

18
18
18
19

Lecture 121

[Dijkstra’s Algorithm|
[Bellman-Ford Algorithm|

Lecture 13|
DESI . e

Lecture 1

Permutations, Combinations, Binomial Theorem.

Permutations, Combinations

Picking k out of n items.
Experiment | With replacement | Without replacement

Ordered n* nn—1).(n—k+1)

Unordered ("J“,l:*l) (Z)

Binomial Theorem

. . . . —i =i

Relations of Binomial coefficients (7) = (,,",), (3) = (") + (321)-

Proof sketch: (Z) = #lk), = (nfk) But we can also see this with a combinatorial argument.
(Z) is the number of ways to pick k out of n distinct items (no repetition, order doesn’t matter).

But we could also first choose the n — k objects to discard and this gives us another way to count
the number of ways to pick k£ out of n items. But the number of ways to pick n—k out of n objects is (nfk).

For the second equality, combinatorial proof: To count the number of ways to pick k£ out of n distinct
items, we can first count all the subsets which contain the last (n-th) item and then all the subsets which
do not contain n.

Binomial Theorem: (z +y)™ = >, _ (7)x*y" ™" and its proof.

Proof sketch: There are n factors + y, so to get a term in the expansion, we must pick one literal (z
or) from each factor. If the term is 2*y"~*, then we must pick x from exactly k factors and this can
be done in (}) ways.

This result can also be proved using induction on n. Base case n = 0.

Pascal’s triangle: a triangular array of binomial coefficients where genarating the next row uses the equality
n n n+1
(k) + (k—l) = (k)

Lecture 2

Graphs, isomorphism, connected graphs, components.

Graphs: Basic Definitions

Graph: a tuple G = (V, E) where V (also written as V(G)) is the set of vertices and F (also written as
E(@)), is a multiset of pairs of vertices.

Multiple edges: if a pair (u,v) of vertices occurs more than once in F(G), then its called a multiple edge.
Loop: A pair of the form (u,u) € E(G) is called a loop.

Simple graph: if G does not contain any multiple edges or loops.

Complete graph: a simple graph where Yu,v € V(G),u # v, (u,v) € E(G).

Bipartite graph: if there is a partition of the vertex set into two parts, V = V; U Vo, V3 N Vo = ¢ and if
(u,v) € E(G), then u,v belong to different partitions.

Degree: d(v) or the degree of a vertex v is the number of edges incident on it.

Degree sequence: The list of degrees of the vertices of the graph written in increasing order is called its
degree sequence.

Theorem (handshake theorem): Y d(v) = 2|E(G)|.
Proof sketch: when counting the sum of degrees, every edge is counted precisely twice, once for each
vertex incident on it. We assume that loops add 2 to the degree of the vertices they are incident to.

Subgraph: A graph G’ = (V’, E’) is said to be a subgraph of G = (V, E), if V' CV and E’ C E.

Induced subgraph: A graph G’ = (V’, E’) is said to be an induced subgraph of G = (V, E), if V/ C V and
E' CE, and Yu,v € V', (u,v) € E’ if and only if (u,v) € E.

Complement: The complement of a graph G = (V, E), denoted by G, is a graph such that V(G) = V and

(u,v) € E(G) if and only if (u,v) ¢ E.

Isomorphism

Isomorphism: Two graphs G; = (V1, E1) and G2 = (Va, Es) are said to be isomorphic if there is a bijection
(invertible 1-1 function) f: Vi — V4 such that (u,v) € By if and only if (f(u), f(v)) € Es.
Note: Isomorphism preserves degrees, degree sequence, paths, cycles of the graphs.

Paths and connectivity

Walk: A walk in a graph G is a sequence ug, €1, U1, €2, U2, ..., €, u such that e; = (u;—1,u;) € E(G). The
length of the walk is k, the number of edges in it.

Trail: is a walk with no repeating edges e; # e; for i # j.

Closed walk: walk with ug = ug.

Closed trail or circuit: trail with ug = ug.

Path: Walk with no repeating vertex, that is, u; # u; for i # j.

Cycle: Closed trail with no repeating vertex, that is, u; # u; for i # j.

Theorem: if 3 a uv-walk, then 3 a uv-path.
Proof sketch: if no vertex is repeated, then its a path. If a vertex, say u; is repeated, delete the walk
between the first and last occurances of u;. Repeat until no vertex repeats.

Connected graphs: Graph is said to be connected if there is a path between every pair of vertices.
Components: The components of a graph are its maximal connected subgraphs.

Lecture 3

Trees, spanning tree, BF'S.

Trees

Definition: Tree is a connected acyclic graph.

Theorem: the following are equivalent:

1. G is a tree.

2. Yu,v,u # v, there is a unique uv-path.
3. G is maximally acyclic
4. G is minimally connected

(in the last two, maximal and minimal are with respect to addition or deletion of edges and not vertices).
Proof sketch: We will show 1 = 2=3=4=1.

1 = 2: For contradiction, let there be two distinct paths between v and v. If the two paths have no
vertices in common, then that gives us a cycle. If they do have common vertices, pick the first common
vertex u’ of the two paths. The two paths will give us a cycle between v and u/'.

2 = 3: A cycle gives us two paths between the vertices of the cycle, so assuming 2, it is clear that G
is acyclic. Further let (u,v) ¢ E(G). There is a unique u,v-path in G, so adding the edge (u,v) will
induce a cycle, so G is maximally acyclic.

3 = 4: G must be connected, otherwise we could add an edge between components and not induce a
cycle. On the other hand, let (u,v) € E(G) such that removing this edge does not disconnect the graph.
But then there is a u, v-path that does not use the edge (u,v). Then this path with the edge gives us a
cycle in G, which is a contradiction since G is acyclic.

4 = 1: If G has a cycle, then removing any one edge of the cycle will not disconnect the graph. So G
must be acyclic, and hence a tree.

Theorem: every tree with at least 2 vertices has at least 2 leaves.
Proof sketch: Consider the longest path in G. The first and last vertex of the path must be leaves as G
has no cycles and this is the longest path.

Theorem: if v is a leaf of tree G, then G \ v is also a tree.
Proof sketch: Deleting a leaf cannot disconnect the graph or induce cycles.

Theorem: If G is a tree on n vertices, then it has n — 1 edges.
Proof sketch: We use induction on n. Base case, n = 1 is an isolated vertex. For any larger n > 1, we
delete a leaf of the tree and use the previous theorem to realize that the new graph is a tree with n — 1
vertices. The result follows by using the Induction Hypothesis.

Corollary: Any connected graph G with n — 1 edges is a tree.
Proof sketch: If the graph G has a cycle, removing one edge from the cycle will not disconnect the graph.
We repeat this process until G is acyclic. If G was not acyclic to start with, we will get a tree on n
vertices with strictly fewer than n — 1 edges, a contradiction.

Spanning tree: Given any graph G, a spanning tree T' is a subgraph of G such that V(T') = V(G).

Theorem: a graph G has a spanning tree if and only if it is connected.

Proof sketch: If a graph has a spanning tree, then it is clearly connected, because a tree is connected
and the spanning tree is a subgraph of G. On the other hand, if G is connected, we repeat the algorithm
above of picking a cycle in G and removing an edge in it, so that we always get a subgraph of G that
is still connected, but we keep reducing the cycles in it. This process is finite because the graph has
finitely many edges, and when this process ends, we will be left with a acyclic connected subgraph on
V(G), thereby a spanning tree.

Breadth First Search
BFS: Input: G and s (starting vertex). Important lists in the table:

e 4. iteration

b(i): ith vertex seen

d(v): distance from s (d(s) = 0 and initially d(v) = oo,Vv # s) (Note: for a disconnected graph, this
is set to 0 for the new vertex we could not reach from s and from which we restart the BFS).

e p(v): parent of v (this is always empty for s and initially set empty for every other vertex. Note that
if G is disconnected, there will be several vertices without a parent, exactly one for each component).

Note: j denotes the index of the vertex last discovered while k denotes the index of the vertex being currently
explored or expanded.

The BFS algorithm takes at most ¢ - (n + m) steps, where n = |V(G)| and m = |E(G).

Not covered in class but in syllabus (discussed in recitations): can use BFS to check if graph is disconnected.
And if it is, then we restart the BFS from a new unexplored vertex v (with d(v) = 0 and p(v) empty as for s)
to get the BF'S forest. The algorithm works just the same for directed graphs. The BF'S also gives shortest

distance in the directed version, only one has to be careful to note that d(u,v) is not necessarily equal to
d(v,u) in this case.

Lecture 4

Eulerian circuits, Hamiltonian cycles.

FEulerian circuits

Digraph: A digraph, short for directed graph, is a graph in which the edges have directions. Here we denote
the edge from vertex u to v with .

Outdegree: The outdegree of a vertex, denoted by d¥(v), is the number of edges going out of v, that is,
edges of the form v4.

Indegree: The indegree of a vertex, denoted by d~ (v), is the number of edges coming into v, that is, edges
of the form ud.

Trivial component: Trivial components are components of the graph that have no edges. These are also
called isolated vertices.

Eulerian circuit: An Eulerian circuit in a graph G is a closed trail (or circuit) in the graph that goes through
every edge of GG. Since its a trail, we are also saying here that the edge is in the circuit exactly once.
Eulerian trail: An Eulerian trail in a graph G is a trail that goes through every edge of G.

Even graph: A graph is said to be even if the degree of every vertex is even.

Lemma: Every non-trivial even graph contains a cycle.

Proof sketch: Consider a maximal path in the graph. Let u be the first vertex of the path. Since d(u) > 1
and this is a maximal path, it must have another neighbor on the path. This will give us the required
cycle.

Theorem: a graph G has an Eulerian circuit if and only if G is even and has only one non trivial
component.

Proof sketch: If a graph has an Eulerian circuit, then as we walk on this circuit, suppose the edge (u,v)
is traversed from u to v. Then direct the edge (u,v) as w0. This way, we will get a digraph. The Eulerian
circuit tells us that d*(v) = d~ (v) for every vertex. This would imply that d(v) was even in the original
graph.

There are two ways to see the converse, that is, if the graph is even with one non trivial component,
then it has an Eulerian circuit. The first proof is using Induction, the second algorithmic.

Inductive proof: We will use induction on the number of edges in the graph. If m = |E(G)| = 0, then
the graph trivially has an Eulerian circuit. For m > 0, then by the lemma above, we can find a cycle
C in G. Removing the edges of this cycle may disconnect the graph and there might be more than
one component, but each component will in turn be an even graph and with induction hypothesis will
contain an Eulerian circuit. Also, since the original graph had one non-trivial components, all these
components must share a vertex with the cycle. Then to get the Eulerian circuit for G, we walk along
the cycle C' but whenever we reach a vertex belonging to some component, we walk along its Eulerian
circuit before returning to the cycle.

Sketch of the algorithm: We can also see this proof as an algorithm. Pick any starting vertex v. We
start a walk here at v making sure we walk on every edge exactly once. Since the degree of every vertex
is even, the only time we cannot walk further will be if we reach back v and we have walked on all edges
incident onto v. If all the edges have been walked on, then this was the required Eulerian circuit. If not,
we can pick any vertex, all whose edges have not been walked on, and start this process again. In the
end, we will join all these walks to get the required Eulerian circuit.

Corollary: A graph G has an Eulerian trail if and only if it has only one non trivial component and
exactly two vertices of odd degree.

Proof sketch: if a graph has an Eulerian trail, we again create a digraph as above and the result follows.
For the converse, we connect the two odd degree vertices with an edge to get an Eulerian trail. Deleting
this extra edge will give us the required Eulerian trail.

Hamiltonian paths, cycles

Spanning cycle: A spanning cycle in a graph G is a cycle that goes through every vertex of the graph. It is
also called a Hamiltonian cycle.

Traveller’s Dodecahedron game by Sir William Hamilton: finding spanning cycle for any initial path of length
4 in a dodecahedron.

Hamiltonian path: A Hamiltonian path in a graph G is a path that goes through every vertex of the graph.
Hamiltonian graph: Is a graph that contains a Hamiltonian cycle.

Theorem: (Necessary condition for containing a Hamiltonian cycle): If a graph G is Hamiltonian, then
VS C V(G), the graph G \ S has atmost |S| components.

Proof sketch: Let C' be the Hamiltonian cycle in G. Deleting the vertices in S creates some components
in G. The Hamiltonian cycle C' cannot go between these components and must go from any component
to S before travelling to another component. Let us mark all the arrival vertices into S, that is, every
time the cycle goes from a vertex in a component in G \ S to a vertex in S, we will mark this vertex.
We notice that there must be at least as many distinct arrival vertices as components in G \ S.

Theorem: (Necessary condition for containing a Hamiltonian path): If a graph G contains a Hamilto-
nian path, then V.S C V(G), the graph G \ S has atmost |S| + 1 components.

Proof sketch: The Same proof as for the previous statement, only here at most one component need not
have an arrival vertex.

Examples of graphs which satisfy the necessary condition but don’t contain a Hamiltonian cycle. (Peterson
graph is one such).

Minimum degree §(G): is the minimum of all degrees in the graph.

Maximum degree A(G): is the maximum of all degrees in the graph.

Theorem (Dirac’s): (sufficient condition for containing a Hamiltonian cycle): if G is a graph such that
[V(G)| > 3, and §(G) > n/2, then G is Hamiltonian.

Proof sketch: For a proof by contradiction, assume that G satisfies the conditions mentioned in the
theorem, but does not contain a Hamiltonian cycle. Let (u,v) ¢ E(G). If after adding the edge
(u,v), the graph still does not contain a Hamiltonian cycle, then add it. We repeat this process until
adding any further edges will make the graph contain a Hamiltonian cycle. Let this saturated graph
be H. We notice that H also satisfies the conditions in the theorem. We will also note that H must
contain a Hamiltonian path, otherwise we could have added more edges while not creating a Hamiltonian
cycle. Let the vertices on the Hamiltonian path be wuy, ug,...u,. Let I = {i|(u1,u;) € E(H)} and let
J = {i+ 1|(ui,u,) € E(H)}. Since H is not Hamiltonian, u; and w, are not adjacent. So indices in I
and J are between 2 and n, a total of n — 1 indices, while d(uy) + d(uz) > n, so INJ # ¢. From this we
can construct the Hamiltonian cycle. This contradiction will imply that our original assumption, that
G is not Hamiltonian, is false.

Theorem (Ore’s): (sufficient condition for containing a Hamiltonian cycle): if G is a graph such that
|[V(G)| > 3, and for any two non-adjacent vertices u and v, d(u) + d(v) > n, then G is Hamiltonian.

Proof is exactly the same as the proof for Dirac’s.

A cycle graph (graph that is a cycle) has a Hamiltonian cycle, but does not satisfy degree requirements of
Dirac’s or Ore’s theorem. So this is an example of when the conditions of Dirac’s or Ore’s theorem are not
met, but the graph is still Hamiltonian.

Lecture 5

Bipartite graphs, Chromatic number, Interval graphs.

Bipartite graphs

Lemma: Every odd closed walk (a closed walk with an odd number of edges) contains an odd cycle.

Proof sketch: If no vertex repeats in the walk, then it is the required odd cycle. On the other hand, if
a vertex u repeats, and if v is the starting vertex of the closed walk, then u splits the closed walk into
two closed walks and one of them is of odd length, and we can repeat this process with this smaller odd
closed walk until we get an odd cycle.

Theorem: A graph is bipartite if and only if it does not contain any odd cycles (cycles whose length is
odd).

Proof sketch: Given a bipartite graph, any cycle must alternate between the partitions, so every cycle
is even. For the converse, given a graph without any odd cycle, we start at a vertex, say s, and run the
BES algorithm. Then we assign every vertex v to partition 1 if its depth is even and to partition 2 if its
depth is odd. We know that for any edge (u,v) in the graph |d(u) — d(v)| < 1 where d() is the depth
index. The graph will not be bipartite then if there is an edge (u,v) such that d(u) = d(v). But then
walking in the BF'S tree from s to u, then on this edge to v and then in the BF'S tree back from v to s is
an odd closed walk and hence it would imply that the graph has an odd cycle. This is a contradiction,
so the graph is bipartite.

Chromatic number

Clique number w(G): is the size of the largest clique (complete subgraph) in a graph.

Proper coloring: Given a graph G and a coloring f : V(G) — {1, 2, .., k} with k colors is said to be a proper
coloring of G, if neighbors get different colors, that is, (u,v) € E(G), then f(u) # f(v).

Chromatic number x(G): is the minimum number of colors required to obtain a proper coloring of G.
Greedy algorithm for coloring: Take any ordering of the vertices as vy, vs, ...v,,. We color the vertices in the
order of their index using the first available color from a list of colors.

Theorem: For any graph G, x(G) < A(G) + 1.

Proof sketch: In the greedy algorithm, a vertex is connected to at most A(G) vertices before it, so
A(G) + 1 colors is sufficient to give it a proper coloring.

Theorem: For any graph G, x(G) > w(G).
Proof: need a different color for every vertex of a maximum clique.

Zykov’s construction: We iteratively construct graphs Gs, Gy, ... such that Vi, w(G;) = 2, while x(G;) = .
First, we let G3 be a 5-cycle. Then assuming that Gy has been constructed, we construct Gyy1 by taking
k disjoint copies of Gy, call them H;, Ho, ..., H; and we also add a set S of vertices such that for every set
{v1, va, ..., v } of vertices where v; € H;, there is a distinct vertex in S whose only neighbors are {v,va, ..., v% }.
We can see that k colors are not sufficient to color Gy41 because every one of the k colors will appear in
each copy H; and so it is not possible to color S. Also, we can check there will be no triangles.

Interval graphs

Interval graphs: Consider a graph whose vertices are closed finite intervals on the real number line and any
two vertices are adjacent if and only if their corresponding intervals intersect.

Theorem: For any interval graph G, x(G) = w(G).

Proof sketch: order the vertices of G according to increasing leftmost endpoints of their corresponding
intervals. We will use the greedy algorithm with this order of vertices. We will note that if any vertex
v; has k neighbors with index less than ¢, then the intervals corresponding to all these neighbors contain
the leftmost endpoint of the interval corresponding to v, so they all form a clique of k 4+ 1 vertices. So
if the greedy algorithm takes m colors to color, then w(G) = m.

Lecture 6

Planar graphs, Euler’s Formula, Kuratowski’s Theorem, Dual.

Planarity

Drawing: A drawing of a graph in the plane R? is where vertices are represented by points, and edges by
continuous curves that don’t go through any other vertex besides its endpoints.

Planar embedding: A planar embedding of a graph is a drawing of in which none of the edges intersect at
any other point besides their endpoints.

Planar graph: A graph G is said to be planar if it has a planar embedding.

Plane graph: A fixed planar embedding of a planar graph is called a plane graph.

Face (connected regions): Given any plane graph, its vertices and edges divide the plane R? into connected
regions. These are the faces of the plane graph. When a plane graph is connected, then the boundary of
each face is a closed walk (a walk that starts and ends in the same vertex). When it is disconnected, then
there are faces whose boundary consists of more than one closed walk.

Length of a face: is the total length of closed walk(s) bounding the face, denoted by I(F') where F is a face
of the plane graph.

Dual of a plane graph: The dual of a plane graph G is G*, where its vertices are faces and for every edge in
G we draw an edge in G* connecting the faces it bounderies. Note that edges which have the same face on
both sides create a loop at the vertex of that face.

Observation: Dual graphs are planar and connected. n* = f, e* = e and f* =n.

Theorem: For any plane graph G, > I(F;) = 2e.
Proof sketch: if G* is the dual of G, then [(F;) is the degree of vertex corresponding to F; in G*, and
we note that e = e*.

10

Euler’s Formula

Theorem: (Euler’s Formula): For any connected plane graph G, let n = |V(G)|, e = |E(G)| and let f
denote the number of faces. Then, n —e + f = 2.

Proof sketch: We will use induction on n. If n = 1, then graph has only loops e = f — 1. For n > 1
contract an edge (u,v) to form a single vertex. Then we notice that n’ =n —1, ¢’ =e—1, and f' = f.
The result follows using Induction hypothesis for G’.

Theorem: (Euler’s Formula for disconnected graphs): For any plane graph G with & components, let
n = |V(GQ)|, e = |E(G)| and let f denote the number of faces. Then, n —e+ f =k + 1.

Proof sketch: Let the components of G be G4, .., G, then in a planar embedding of G, all these compo-
nents will only share the outer face. Also, n; —e; + f; = 2, summing all these, > n; —> e; + > f; = 2k,
and this givesn —e+ (f +k—1) =2k. > fi = f + k — 1 because the outer face is counted once in each
component, but should be counted just once for G. Simplifying this gives the required equation.

Observation: any graph that can be drawn on the sphere without crossings can be drawn on the plane also
without crossings. In particular, the graphs of the regular polyhedra are planar.

Theorem: There are only 5 regular polyhedra.

Proof sketch: since the polyhedra are planar, we use Euler’s formula and note that if the polyhedra is
k-regular (degree of every vertex is k), and if every face is bounded by [edges, then % =@ % = 2.
But k,0 > 3. So in % + % = % + 1, or % + % > % we can check values of k,[to find the five regular
polyhedra.

Theorem: For any simple planar graph G, e < 3n — 6. Further if G does not have any triangles, then
e <2n —4.

Proof sketch: fix a planar embedding of G. Here, sum of lengths of faces is equal to 2e. Since G is
simple, sum of length of faces is at least 3f, so 3f < 2e. We plug this in Euler’s formula. No triangles
will imply 4f < 2e.

Theorem: K5 and K33 are not planar.
Proof sketch: They have 10 and 9 edges respectively, but if they were planar, then using the previous
theorem, they can have at most 9 and 8 edges respectively thereby giving a contradiction.

Homomorphism, Kuratowski’s Theorem

Subdivision: A subdivision of a graph G is a graph G’ obtained by replacing edges of G with disjoint paths.
We observed that subdivisions of K5 and K3 3 are also not planar, since, if they were planar we could replace
the paths with edges to get a drawing of K5 and K3 3.

Homeomorphic graphs: A graph G is homeomorphic to G’ if some subdivision of G is isomorphic to some
subdivision of G’. (Think of this as the two graphs having the same underlying base graph).

Theorem: (Kuratowski’s Theorem): A graph G is planar if and only if it does not contain a subgraph
homeomorphic to K5 or K3 3.

Strategy for problems: To show that a graph is planar, give a drawing. To show that it is not planar, either
show that it has more than 3n — 6 edges (or 2n — 4 if triangle free), or find a subgraph of the graph that
looks like a subdivision of K5 or K3 3.

11

Theorem: (Fary’s Theorem): Every simple planar graph has a planar embedding with only straight line
edges.

Lecture 7

Vertex/Edge covers T, p, Independent sets «, v, Gallai’s Theorems, Kruskal’s
algorithm.

Homomorphism, Kuratowski’s Theorem

All results/definitions of this lecture are for simple graphs.

7(G), v(G)

Independent set of edges or a Matching: A subset of the edges of a graph is called a matching or an
independent set if no two edges share a common endpoint.

Maximal matching: A matching is said to be maximal if we cannot add any more edges to it to obtain a
larger matching. Maximum matching: A matching is said to be maximum if it is a matching in the graph
with the largest number of edges, that is, there is no other matching in the graph with strictly more number
of edges.

v(G): v(G) is the size (number of edges) of a maximum matching in G.

Vertex cover: A vertex cover is a set S C V(@) of vertices covering all the edges of G. An edge is said
to be covered if at least one of its endpoints is in S. (Minimal and minimum defined as for maximal and
maximum).

7(G): 7(G) is the size (number of vertices) of a minimum vertex cover of G.

Theorem: For any simple graph G, v(G) < 7(G).
Proof sketch: Given any matching in G, a vertex cover will require to contain at least one endpoint of
each edge in the matching.

a(G), p(G)

Independent set of vertices: A subset of the vertices of the graph is said to be an independent set of vertices
if no two vertices in this subset are adjacent (have an edge between them).

a(G): a(Q) is the size (number of vertices) of a maximum independent set in G.

Edge cover: A set S C E(G) of edges covering all the vertices of G is said to be an edge cover of the graph.
A vertex is said to be covered if there is an edge from S incident onto it.

Note: A graph with isolated vertices does not have an edge cover. So whenever we talk about edge covers,
we assume we are talking about a graph without isolated vertices.

p(G): p(G) is the size (number of edges) of a minimum edge cover of G.

Theorem: For any simple graph G, a(G) < p(G).
Proof sketch: We notice that given any independent set of vertices, each vertex in it will require a distinct
edge to cover it.

12

Gallai’s theorems

Theorem: For any set S C V(G), S is an independent set of vertices if and only if V(G) \ S is a vertex
cover.

Proof sketch: if S is an independent set of vertices, every edge is adjacent to atleast one vertex in
V(G)\ S. On the other hand, if S is a vertex cover, V(G) \ S cannot contain any edges.

Theorem: Given a simple graph G and a set of S of k edges. Then,
(a) If S is a matching, then there is an edge cover in G with at most n — k edges.
(b) If S is an edge cover, then there is a matching in G with at least n — k edges.

Proof sketch: (a) S covers 2k vertices. We pick one edge for every vertex that is not covered by .S, this
takes at most n — 2k more edges.

(b) Let H = (V(G), S) be the subgraph of G consisting of only the edges of S. Let H have ¢ components.
Then H has at least n— ¢ edges (why?). Son—c¢ < k or ¢ > n—k. Chose one edge from each component
for the matching to get a matching of size n — k.

Theorem: (Gallai’s Theorem): For any simple graph G,

(a) a(G)+7(G)=n

(b) if G doesn’t have any isolated vertices, then v(G) + p(G) = n.

Proof sketch: (a) If S is a maximum independent set of size a(G), then V(G) \ S is a vertex cover, so
7(G) < n — a(G). Similarly if S is a minimum vertex cover, then V(G) \ S is an independent set of
vertices, so a(G) > n — 7(G). We get the required result by combining both these inequalities.

(b) If S is a maximum independent set of edges size v(G), then there is an edge cover of size at most
n —v(G), so p(G) < n—v(G). Similarly if S is a minimum edge cover of size p(G), then there is a
independent set of edges of size at least n — p(G), so v(G) > n — p(G). We get the required result by
combining both these inequalities.

Kruskal’s algorithm

Minimum weight spanning tree: Given a graph G and an edge weight function w : E(G) — RT U0, a
minimum weight spanning tree is defined as a spanning tree with the least total weight (sum of weights of
the edges of the spanning tree).

Kruskal’s Algorithm for finding the minimum weight spanning tree: Greedy algorithm of always adding
the smallest weight edge that does not form a cycle (so it will connect two components).

Proof sketch: Let ey, ea, ..., e, be an ordering of the edges with increasing weight, that is w(e;) < w(e;11).
Let M; = 0 if e; is not in the spanning tree found by Kruskal’s algorithm, and M; = 1 if it is in it. We
define O; similarly for a minimum spanning tree of the graph. Further if £ is the largest ¢ such that
M; = O; for 1 < i < k, then we pick a minimum spanning tree such that this k is the largest possible.
We now show that k = m, as this will show that the spanning tree returned by the kruskal’s algorithm is
also a minimum weight spanning tree. Let k # m, and M1 # Og41. If exy1 is in the minimum weight
spanning tree, then it does not induce a cycle with the previously picked edges, so it is not possible
that M;;1 = 0. On the other hand, if M;;; = 1 and O;4; = 0, then we can add the edge e;4+1 to the
minimum weight spanning tree. It will create a cycle with only edges e;,j > ¢ + 1, so removing another
edge from the cycle will give us a minimum weight spanning tree with a longer matching sequence, or a
larger k, which is a contradiction.

Input: A connected graph G = (V, E) with n vertices and m edges and a weight function w : E — R.

1. ORDER the edges in the order of increasing weight: w(e;) < w(ez) < ... < w(em)

13

Lecture 8

Matchings in Bipartite graphs, Augmenting path algorithm, Hall’s and
Frobenius’s Theorem

Augmenting path algorithm

We will denote bipartite graphs with G(A, B, F), where A is the first partition, B the second, and E the set
of edges going between them.

M-Augmenting path: Given a bipartite graph G(A4, B, F) and a matching M in it, an M-augmenting path
satisfies the following three conditions:

1. The path starts in an unmatched vertex
2. The path ends in an unmatched vertex

3. The edges of the path alterate between edges not in the matching and edges from the matching.

Notice that if the M-augmenting path starts in the partition A, then it must end in B. If we make this a
directed path starting from the vertex in A, then every edge of the path going from A to B will be an edge
not in the matching, while every edge from a vertex in B to A will be an edge of the matching.
M-alternating path: The definition of M-alternating path is same as above, but it is only required to satisfy
condition 1 and 3.

Hungarian mathematician Kénig Denes’ augmenting path algorithm:

6. if y is matched so that zy € M, then,
7. add y to T
8. add z to S
9. if p(z) = * then set p(z) =y
10. mark z
11. end loop

12. return TU (A \ S) as a minimum vertex cover.

We can now use this as a subroutine to find the maximum matching.

Input: Bipartite graph G(A, B, E).
1. Initialization: Set M = ¢, S = ¢, T = ¢.
2. Run the M-augmenting path subroutine.
3. loop: while there is an augmenting path,
4. swap the edges of the augmenting path in the matching M with the ones not in M
D. run the M-augmenting path algorithm with the new matching.

6. Return M as the maximum matching and T'U (A \ S) as the minimum vertex cover.

Theorem: The set T'U (A \ S) given by the algorithm is the minimum vertex cover.

Proof sketch: there are no edges between S and B\ T, so it is a vertex cover. All vertices in U (A \ S)
are matched, but there is no matching edge between T and A \ S. So, size of this vertex cover is equal
to the size of the matching M.

Halls theorem, Frobenius theorem

Hall’s and Frobenius theorems give sufficient conditions for matchings in bipartite graphs.

Hall’s Theorem: Given a bipartite graph G(A, B, E), there is a matching of A into B (that is, all vertices
of A are matched into B), if and only if V.S C A, |S| < |N(S)|, where N(S) is the neighborhood of S in
B.

Proof sketch: If G has a matching, then the claim is obvious. For the other direction, we prove the
countrapositive of the sentence. So we show that if G does not have a matching of A into B, then there
must be a set S with |S| > |N(S)|. For this, we run the augmenting path algorithm with some maximum
matching. Since A cannot be matched into B, there are some unmatched vertices in A, but there is no
augmenting path. We look at the sets S and T returned by the algorithm. We note that |S| > |T'|, since
S has some unmatched vertices, while all vertices of 7" are matched. But N(S) =T

Frobenius’ Theorem: A bipartite graph G(A, B, E) contains a perfect matching if and only if
1. |A| = |B|, and,
2. VS C A, |S| <|N(S)|, where N(S) is the neighborhood of S in B.

Proof sketch: Corollary of Hall’s.

15

Theorem: Every regular bipartite graph G(A, B, E) has a perfect matching.

Proof sketch: We will show that all conditions of Frobenius’ theorem are met. Let the degree of every
vertex be k. By counting the number of edges in the graph by counting the degrees of vertices in A,
|E| = |A|k. But also, |E| = |Blk, so |A| = |B].

Pick a set S C A of vertices. Let N(S) be its neighborhood. Consider the graph restricted to only the
vertices S and N(S) and the edges between them. All vertices in S here will have degree k, but vertices
in N(S) have degree at most k. So k|S| = number of edges < k|N(S)|.

Lecture 9

Edge chromatic number, Vizing’s theorem, Konig’s theorem, Maximum
flows in networks.

Edge chromatic number

We will consider loopless graphs for the edge coloring problem

Proper edge coloring: A coloring of the edges of a graph is said to be proper if adjacent edges (edges with a
common end point) get different colors.

Observation: In any proper edge coloring of a graph, the edges in one color class form a matching or an
independent edge set.

Xe(G): Xe(G) is defined as the minimum number of colors required in a proper edge coloring of the graph.

(Trivial) Theorem: For any loopless graph, A(G) < x.(G) < 2A(G) — 1.

Proof sketch: the A(G) edges of a vertex with degree A(G) are all adjacent to each other and require
different colors. On the other hand, any edge is adjacent to at most 2A(G) — 2 edges, so 2A(G) — 1
colors are sufficient.

Theorem: (Vizing’s): For any simple graph, x.(G) < A(G) + 1.
Examples: We saw that x.(K2,-1) = xe(Kon) = 2n — 1.
Theorem: (Shannon’s Theorem): For any loopless graph, x.(G) < 3A(G).

Examples: Fat triangle: Triangle with each edge replaced by 3 parallel edges. We see that this requires 9
colors and A(G) = 6.

Theorem: (K&nig’s): For a bipartite graph G(A, B, E) (loopless but not necessarily simple) x.(G) =
A(G).

Proof sketch: By induction on A(G). Base case: If A(G) = 1 then the graph is a matching and one
color suffices to color all edges. Now assuming A(G) > 1, if G is regular, then it must contain a perfect
matching. Deleting the edges of this matching will give a graph with maximum degree A(G) — 1 and by
induction hypothesis, it requires A(G) — 1 colors. We give the perfect matching one additional color to
color edges of G with A(G) colors.

If G is not regular, we will first add isolated vertices to the partition with fewer vertices and make both
partitions contain equal number of vertices. Then, if there is a pair of vertices u € A and v € B, such

16

that d(u) # A(G) and d(v) # A(G), then we connect them by an edge. We repeat this process until the
graph is A(G)-regular. Double counting the edges by counting the degrees of A and B will reveal that
if there is a vertex u € A such that d(u) # A(G), then there must be such a v in the partition B also.

Maximum flows in networks.

Network: A network is a digraph (directed graph) G(V, E), with a non-negative capacity function ¢ : E(G) —
R* U {0}, and two distinguished vertices, s called source, and t, called the sink. It is denoted by the tuple
(G,s,t,c).

We refer to the vertices of the graph that are not source or sink as nodes.

Flow: A flow on a network is a function f : E(G) — R* U {0}, such that,

e (Capacity constraint) 0 < f(e) < ¢(e), and,
e (Conservation of flow) fT(v) = f~(v),Vv € V(G),

where we define f(v) = >, 5 f(e) is the out-flow from a vertex, and f~(v) = >_,_z f(e) is the in-flow
into a vertex.

Value of a flow: The value of a flow is val(f) = f~(t) — f*(t) = fT(s) — f~(s), or the new flow out of the
source and into the sink.

We study the problem of finding the maximum flow in a network. The following is the Edmond-Karp’s
algorithm for finding the maximum flow in a network. We do this by keeping track of possible incre-
ments/decrements in flow using the auxilary graph. We notice that if f(e) is the flow through an edge e,
then we can increase the flow on e by c(e) — f(e), and we can reduce the flow on edge e by f(e).

Auxillary graph: Given a network (G, s,t,c) and a flow f on it, the auxillary graph Hy is a directed graph
on V(G). For each edge e =),

o If f(e) < c(e), then the auxillary graph will contain edge w0 with label ¢(e) — f(e) denoting the amount
flow can be increased. We will call this a forward edge.

o If f(e) > 0, then it will contain the edge v% with label f(e) to denote the amount by which flow on
edge e can be decreased. We will call this is a backward edge.

Flow Augmenting Path: Given a network (G, s, t,c), a flow f, and the corresponding auxillary graph Hy, a
flow augmenting path is a directed path in H; from s to ¢.

We note that if there is a flow augmenting path, then the flow from s to ¢ can be increased by the minimum
value on the edges of this path.

We note further that the augmenting path algorithm was originally discovered by Ford-Fulkerson. The
modification of the algorithm to consider the shortest augmenting flow in the BFS on the auxillary graph is
called the Edmond Karp’s algorithm.

Edmond Karp’s algorithm
Pseudocode for Edmond Karps algorithm:

Edmond Karp’s algorithm for maximum flow in a network. Input: Network (G, s,t, c).
1. For every e € E(G), set f(e) =0. Set S = ¢. (Note: initialization can be with a non-zero flow).
2. Loop:

Construct the Auxillary graph H

4. Run the BFS algorithm on H/ to find a flow augmenting path.
9), If there is a flow augmenting path,
6. Let 6 be the minimum label on the edges of the flow augmenting path.

17

7. For each forward edge on the flow augmenting path, for its corresponding edge e in G,
set f(e) + f(e) + 4.

8. For each backward edge on the flow augmenting path, for its corresponding edge e in G,
set f(e) < f(e) — 4.
9. If there is no flow augmenting path,
10. Update S to be the subset of vertices reachable from s in Hy and end loop.

11. return f,S.

Lecture 10
Minimum cut, Max Flow-Min Cut Theorem, Vertex/Edge-Connectivity.

s, t-cut, capacity of cuts

s,t-cut: Let S C V(G), such that s € S and ¢ ¢ S. Then S is called a s, t-cut.

Capacity of a cut: Given S a s,t-cut, its capacity is gien by) c(e) where the sum is over all edges e such
that e = ud with u € S and v ¢ S.

Flow across a cut S: Given a network and a flow f on it, we define the flow across the cut S as

o fe = D> fle)

e:ﬂ,uES,ngS e:qﬁﬂﬁéSﬂ;ES

the sum of all flow leaving S minus the sum of all flow coming into S.

Observation: Given a flow f and S a s, t-cut, the flow across S equals val(f), the value of the flow out
of s.

Proof sketch: Consider >, o f*(u) — f~(u). Because of conservation of flow, this sum is just val(f)
or f*(s) — f~(s). But also, for every edge e = w0 such that both u,v € S, this edge would count in
fT(u) and also in f~(v) and will therefore cancel off. So the only terms that will remain will be for
edges e = wd such that one endpoint is in S and the other is not. This gives us precisely the flow across
the cut.

Observation: Value of maximum flow < Capacity of minimum cut.
Proof sketch: The flow across any cut is maximum if the edges out of the cut carry as much flow as c(e)
while the edges bring flow in carry 0 flow. But this is the capacity of the cut.

Ford-Fulkerson’s theorem

Theorem: (Ford-Fulkerson, 1956): In every network, the maximum value of a feasible flow equals the
minimum capacity of a source/sink cut.

Proof sketch: We run the Edmond-Karp’s algorithm until there is no augmenting flow path. Then the
algorithm returns a set S of all vertices that can be reached from s in the auxillary graph. Since there
is not augmenting flow path, ¢ ¢ S. Further if e = @0 such that u € S and v ¢ S, then f(e) = c(e),

18

otherwise the auxillary graph would contain a forward edge and v will need to be in S. Similarly, if
e = b such that u ¢ S and v € S, then f(e) = 0, otherwise the auxillary graph would contain a
backward edge from v to v and u will need to be in S. So then the flow across S is its capacity. But then
val(f) = capacity of the cut S. Then this has to be the maximum flow and minimum cut respectively
and their values agree.

Lemma: (Integrality Lemma): if Ve € E(G), c(e) € Z™, then, there exists a maximum flow taking integer
values on all edges, i.e., Ve € E(G), f(e) € Zt.

Proof sketch: the increment § in the Edmond-Karp’s algorithm, if run starting with the 0 flow, will
always be an integer.

MIDTERM SYLLABUS ENDS HERE.

Modifications of the network flow problem

We will consider three modifications of the network flow problem.

Modification 1: multiple sources s1, Sa, ..., S and multiple sinks ¢, to, .., t;.

To solve this problem we add two new nodes, a super source S and a super sink 7. We add edges with
oo capacity from S to each s; and from each t; to T'. Any solution to this will give us a solution to the
original problem.

Modification 2: Some vertices can have a capacity constraint of the maximum flow that can pass through
it, denoted by c(v).

For every v with a capacity c(v), we add two new vertices v;;, and vpyt. Vi, has all the incoming edges
of v, while v,,¢ has all the outgoing edges of v. We also add one edge directed from v;, t0 vy with
capacity c(v). We can easily see that a solution to this problem will give us a solution to the original
problem.

Modification 3: we are given an undirected graph with edge-capacities.

We can solve this problem by constructing a new directed graph G’ with the same vertex set as G.
For each edge e = wv € E(G) with capacity c(e), G’ will have two directed edges, w0 and o7, both
with capacity c(e). Again, its easy to see that a solution to this problem will provide a solution to the
original.

Lecture 11
Vertex/Edge-Connectivity, Menger’s Theorems.

Vertex and edge connectivity

k-connected: A graph G is said to be k-connected, or k vertex-connected, if deleting any k — 1 vertices from
the graph does not disconnect it.

Vertex-connectivity: x(G) or the vertex connectivity number of the graph G (where G is not the complete
graph) is defined as the largest k for which G is k-vertex-connected. Since K, is connected after removal of
any number of vertices, we adopt the convention that x(K,) =n — 1.

19

Observation: «(G) < 0(G).

Proof sketch: deleting all the vertices adjacent to the vertex with minimum degree will either disconnect
the graph, or give one isolated vertex. In the later case, then we know that the graph was a complete
graph and 6(G) =n—1 = k(K,,). In the former case, since we could disconnect the graph with deleting
0(G) vertices, so k(G) < 6(G).

k-edge-connected: A graph G is said to be k-edge-connected, if deleting any k£ — 1 edges from the graph does
not disconnect it.

Edge-connectivity: A(G) or the edge connectivity number of the graph G is defined as the largest k for which
G is k-edge-connected.

Theorem: k(G) < A(G) < 4(G).

Proof sketch: The first inequality is true because we can always remove one end point of each edge in a
disconnecting edge set to disconnect the graph. This way, we are removing at most A(G) edges.

On the other hand, removing all the edges incident on a vertex v with d(v) = d(v) disconnects the graph,
giving the second inequality.

Edge-cuts and Edge-disjoint paths

Lemma: Let (G, s,t,c) be a directed graph with capacity 1 assigned to each edge c(e) = 1Ve € E(Q). If
there is a flow f such that val(f) =d > 0 and f takes a value of 0 or 1 on every edge, then G contains
d edge-disjoint paths from s to .

Proof sketch: We use induction on d. For d = 1, there is one path from s to ¢t. Because of conservation
of flow at every vertex, a path starting at s and walking on only edges with flow 1 must end at ¢. For
d > 1, consider G to be the graph of edges with f(e) = 1. Since there is a non-zero flow from s to ¢,
this graph has a s, t-directed path. Deleting the edges of this path will give us a subgraph of G ¢ with a
flow of d — 1 from s to t.

Note: Gy as defined above may have more edges than the paths we found.

Disconnecting set of edges or an edge cut: Given z,y € V(G), a subset S C E(G) is called a (z,y)-
disconnecting set of edges or an edge cut separating x from y, if deleting the edges in S will disconnect x
from y, i.e. there is no path from z to y.

Edge-disjoint paths: Given z,y € V(G), two z,y-paths are said to be edge-disjoint if they don’t share any
edges.

Theorem: Given a directed graph G with two vertices s,¢ € V(G) and let k¥ € N. Then the following
statements are equivalent:

1. There are k edge-disjoint s, t-paths.
2. There is no (s, t)-disconnecting set of edges of size k — 1
3. (G, s,t,c) has a flow of value at least k, where c(e) = 1Ve € E(Q).

Proof sketch: To see that 1 = 2, if there are k edge-disjoint paths, then a set of £ — 1 edges can only
disconnect at most k — 1 of these paths and there would still be a path from s to t.

To see that 2 = 3, we notice that if we look at the outgoing edges out of any s, t-cut, then these edges
also form a edge-cut or a disconnecting set of edges between s and t. Since they cannot be k — 1 or
less in number, the capacity of any minimum cut is at least k. So by the Ford-Fulkerson theorem, there

must be a flow in G of value at least k.

To see that 3 = 1, we notice that this is the Theorem we proved before.

20

The above theorem is also true for undirected graphs.

Theorem: Given a undirected graph G with two vertices s,t € V(G) and let k£ € N. Then the following
statements are equivalent:

1. There are k edge-disjoint s, t-paths.
2. There is no (z, y)-disconnecting set of edges of size k — 1
3. (G, s,t,¢) has a flow of value at least k, where c(e) = 1Ve € E(G).

Proof sketch: The proof is essentially the same, only we use the Network Flow Modification discussed
in the earlier lecture for undirected graphs and will replacing every edge with two directed edges going
in both directions and with capacity 1.

Local-edge-connectivity: Given a graph G and two vertices x,y € V(G), we define A(z,y) as the minimum
size of a (z,y)-disconnecting set of edges and A (z,y) as the maximum number of edge-disjoint x, y-paths.

Menger’s theorem for local edge connectivity: Given a graph G, Vs,t € V(G), s # t, A(s,t) = N (s,).
Proof sketch: This follows from the previous theorem. For any s # ¢, there are \(s,t) edge-disjoint
paths between s and ¢. Then the size of any edge disconnecting set is at least X' (s, t), so A(s,t) > N (s, t).
On the other hand if we don’t have a disconnecting set of edges of size A(s,t) — 1, then by the previous
theorem, we have a flow of value (s, t) and so there are at least A(s, t) number of edge-disjoint s, t-paths,
s0 A(s,t) < N (s,t).

Vertex-cuts and Vertex-disjoint paths

Disconnecting set of vertices or a vertex cut: Given x,y € V(G), a subset S C V(G) is called a (z,y)-
disconnecting set of vertices or a vertex cut separating x from y, if deleting the vertices in .S will disconnect
x from y, i.e. there is no path from x to y.

Vertex-disjoint paths: Given z,y € V(G), two x,y-paths are said to be vertex-disjoint if they don’t share
any vertices.

Theorem: Given a directed graph G with two vertices s, € V(G) and let k¥ € N. Then the following
statements are equivalent:

1. There are k vertex-disjoint s, t-paths.
2. There is no (z,y)-disconnecting set of vertices of size k — 1
3. (G, s,t,c) has a flow of value at least k, where c(e) = 1Ve € E(G) and c(v) = 1Vv # s, t.

Proof sketch: To see that 1 = 2, if there are k vertex-disjoint paths, then a set of & — 1 vertices can
only disconnect at most k£ — 1 of these paths and there would still be a path from s to ¢.

To see that 2 = 3, we will use the modification of networks discussed earlier to create two vertices v;y,
and vy, for each vertex v and draw a directed edge of capacity 1 between them. We notice that since
all incoming edges come to v;, and all out going edges out of v,,:, the capacity of a cut is minimized
if atleast one neighbor of v,,; is outside the cut, then we put v,y also out of the cut. Similarly if v;,
was not in the cut, but had atleast one incoming edge from the cut, then we can make the capacity of
the cut smaller by putting v, in the partition with s. So then we will notice that we reduce the cut
to only have edges going between v;, and v,,, for different v, and this is precisely a vertex cut. So
if there is no vertex cut of size k — 1, then the capacity of any minimum cut is at least k. So by the
Ford-Fulkerson theorem, there must be a flow in G of value at least k.

To see that 3 = 1, we notice that this is the Theorem we proved before.

21

The above theorem is also true for undirected graphs.

Theorem: Given a undirected graph G with two vertices s,t € V(G) and let k € N. Then the following
statements are equivalent:

1. There are k vertex-disjoint s, t-paths.
2. There is no (z,y)-disconnecting set of vertices of size k — 1
3. (G, s,t,c) has a flow of value at least k, where c(e) = 1Ve € E(G) and c(v) = 1, Vv # s, t.

Proof sketch: it is essentially the same proof as above, only we use the network modification that for
each undirected edge, we will create two directed edges, and then for accounting for the vertex capacity,
we will split every vertex v into v;, and vgy-

Local-vertex-connectivity: Given a graph G and two vertices z,y € V(G), we define k(z,y) as the minimum
size of a (x, y)-disconnecting set of vertices and k’(z,y) as the maximum number of vertex-disjoint z, y-paths.

Menger’s theorem for local vertex connectivity: Given a graph G, Vs,t € V(G), s # t, k(s,t) = £/(s,t).
Proof sketch: This follows from the previous theorem. For any s # ¢, there are x'(s,t) vertex-disjoint
paths between s and t. Then the size of any vertex-cut is at least k'(s,t), so k(s,t) > £/(s,t). On the
other hand if we don’t have a disconnecting set of vertices of size x(s,t)—1, then by the previous theorem,
we have a flow of value k(s,t) and so there are at least k(s,t) number of vertex-disjoint s, ¢-paths, so
k(s,t) < K'(s,t).

Menger’s Theorems

All the previous theorems can be combined to obtain the following statements about vertex and edge-
connectivity numbers of a graph:

Menger’s theorem for connectivity: For any (directed) graph and any k& > 1,

1. G is k-edge connected if and only if there are k (directed) edge-disjoint paths between any two
distinct vertices.

2. G is k-connected (or k-vertex connected) if and only if there are k (directed) vertex-disjoint paths
between any two distinct vertices.

Proof sketch: It follows quite directly from the theorems about local connectivity numbers. If a graph
is k-edge connected, then k — 1 edges cannot disconnect the graph, then for any two vertices s # t,
A(s,t) >k, so N(s,t) > k. And similarly for vertex disjoint paths.

Lecture 12
Dijkstra’s algorithm, Bellman-Ford algorithm.

22

Dijkstra’s Algorithm

Given a weighted graph G = (V, E) with weight function w : F — R* U {0} and a vertex s € V, we want to
find minimum weight s, v-paths for all vertices v € V,v # s. (Here weight of a path is the sum of the weights
of the edges in it).

Definition: Let d(u,v) denote the shortest path between the vertices v and v.

We will solve this using Dijkstra’s algorithm given below. We will keep track of ¢(v) the temporary distances
of vertices v from s, p(v) will denote the parent of v on the (temporary) shortest path. K is a set of processed
vertices. Once a vertex is added to K, t(v) = d(s,v), that is, t(v) will be equal to the length of the shortest
s,v-path. So the algorithm ends when K =V and all vertices have been processed.

Input: G = (V,E) a graph (can be directed), a vertex s € V and a non-negative weight function
w: FE — RTU{0}.

1. t(s) = 0; for all v € Vv # s, if (s,v) € E(G), t(v) < w((s,v)), otherwise, t(v) + oo
2. for all v € Vv # s, if (s,v) € E(G), p(v) < s, otherwise, p(v) < *
. K+ {s}
. loop 1: while K #V
let v be a vertex in V' \ K with minimum ¢(v) value.
loop 2: for every edge e = (v,u),u ¢ K
if t(u) > t(v) + w(e), then:

t(u) < t(v) + w(e)

= =

p(u) v
10. end loop 2

11. K + KU {v}

12. end loop 1

Here edges have been written as (u,v). If Dijkstra’s algorithm is being used on a directed graph, then this
edge should be understood as wb. The key thing to note about the algorithm is that for every vertex added
to K, it updates the distances to all vertices with an incoming edge from this vertex.

Let n = |[V(G)| and m = |E(G). Then, the Dijkstra’s algorithm takes at most ¢ - n? steps for some
constant c. Here we assume that finding the minimum of the list ¢(v) at every stage takes ¢'n steps and
since we repeat the cycle n times, we get the previously stated running time. We also note that every
edge in the graph is relaxed (updating the t(v) value across an edge) at most once, and since number of
edges is bounded by n?, so this running time takes into account that too.

We also note that with better data structures (heaps) to determine the minimum of ¢(v)’s, we can achieve
improvements in the running time of the Dijkstra’s algorithm.

For an example, consider the following graph and the problem of finding shortest paths from A:

23

The following table shows the steps of Dijkstra’s algorithm. The leftmost column shows the new vertex
added to K at every turn. Also the colored distance show final distance which are not going to change since
the vertex has been added to K.

K| S=A[B|C|D|E|F|[pB)]pC)]|pD) |pE)]|pF)
A 0 5| 0| 0| 6| o A * * A *
B 0 5 9 11 | 6 | o© A B B A *
E 0 5 8 |11 | 6 7 A E B A E
F 0 5 8 8 6 7 A E F A E

Since C' and D both have t(v) as 8, their shortest distance cannot change further. So the algorithm can stop
here.

We need the following claim to prove the correctness of the Dijkstra’s algorithm. Notice that we prove
something stronger, namely that once a vertex is added to K, its shortest distance has been discovered, and
for every vertex outside, ¢(v) maintains the shortest distance using only vertices in K.

Claim: At every stage of the running of the Dijkstra’s algorithm, the following two statements are true:
1. Yu € K, t(u) = d(s,u)
2. Yu ¢ K, t(u) is the shortest distance of a s, u path in the subgraph induced on the vertices K U{u}.

Proof: We will use the notation that for any two vertices, if uv is an edge in the graph, then w(uv) is
the weight of the edge as defined by the weight function, but if there is no such edge in the graph, then
we define w(uv) = oo.

We will use induction on the size of K. We initialize with K = {s}, then d(s,s) = t(s) = 0 and for
u # s, t(u) = w(su). These values satisfy both the above conditions.

Let K # V(G) and let the claim be true for K. Now, we suppose that the algorithm picks a new vertex
v ¢ K and we add it to K. Then, we need to check that the claim still holds.

For the first statement, we need to check that ¢(v) = d(s,v). For this, we note that ¢(u) is (by induction)
the shortest path to any vertex using only vertices in K U {u}. And v is the vertex with the smallest ¢()
value from the vertices in V(G)\ K. Since any path to v must exit K, the shortest s, v-path must directly
exit K to v, since if it exits K to another vertex u, then the path to v will be longer. So t(v) = d(s,v).
For seeing that the second statement also holds, we need to check that on the graph induced on K U{u, v},
for any vertex u ¢ K and u # v, the updated ¢(u) is the shortest path. We notice that the way we
update t(u) is , t(u) = min(¢(u), t(v) +w(vw)). Since the only new path in this induced subgraph can be
through v and we are updating ¢ as the shorter of these two paths, we are making sure that ¢(u) remains
the shortest path in K U {u,v}.

From the claim we can see that when the algorithm ends with K = V(G), we will have found the shortest
distances to all vertices.

24

Bellman-Ford Algorithm

Conservative weight function: Given a directed graph G, an edge weight function w : F(G) — R is said to
be conservative if there are no directed cycles with a negative total weight.

Theorem: Given a directed graph G with a conservative edge weight function w : E(G) — R, if there
exists a directed s, v-walk with k edges and total weight ¢, then there exists a directed s, v-path with at
most k edges and total weight at most t.

I didn’t have time in class to do this proof! Recall our proof from Lecture 3 for the statement that
every s,v-walk contains a s,v-path: we found the path by deleting the walk between the first and last
occurance of a vertex that is repeated, and repeating this until no vertex is repeated in the walk. This
argument works here as well and will give us the path with at most k edges. But the catch here is that
in this case we cannot conclude that the total weight is also less than ¢ because we are deleting some
walk and it may have negative total weight. So to fix this proof, we need to ensure that we delete a
cycle every time, and since the flow is conservative, we will be reducing the total weight because there
are no negative weight cycles. For this we simply modify proof by saying that if the s, v-walk is not a
path, then some vertex is repeated in it. Of all such repeats, pick the repeat where the number of edges
between the vertex and its repeat is the smallest. We notice that this has to be a cycle and we can delete
it.

Theorem: Given a directed graph G and a conservative edge weight function, if P is the shortest s, v-
path and u is another vertex on this path, then the part of this path between s and w is a shortest path
between them.

I didn’t have time in class to do this proof!

Definition: #5(v) is the length of the shortest s, v-path using at most k edges.

Theorem: Let G be a directed graph with a conservative edge weight function w : E(G) — R. Let
s,v € V(G), s # v. Then for every k > 1,

tr(v) = min{tx_1(u) + wle) : e = (u,v), e € E(G).

Note: if this set is empty, then there is no path reaching v and we set tx(v) to be co.

This gives us the Bellman-Ford algorithm for finding shortest paths from s.

Input: G = (V, E) a directed graph, a vertex s € V and a weight function w: £ — R.

1. to(s) < 0; for all v € V v # s, to(v) o0

2. forallv € V, v # s, po(v) < *

3. loop 1: for k from 1 ton — 1:
4 tr(s) <0
5 loop 2: for every vertex v € V,v # s:
6. tre(v) + tp—1(v)
7 pr(v) < pr—1(v)
8 loop 3: for every incoming edge e = ub:
9 if t5(v) > ti—1(u) +w(e), then:
10. tr(v) tp—1(u) +w(e)
11. pr(v) +— u

25

12. end loop 3
13. end loop 2
14. end loop 1

15. for every vertex v € V,v # s, d(8,v) < tn—1(v), p(v) < pr_1(v)

The Bellman-Ford algorithm takes at most ¢-n - m steps for some constant ¢ and where n = |V(G)| and
m = |E(G).
We can see this because the relaxing of all edges (updating the t values across an edge) happens n times.

We didn’t cover this in class: The above algorithm can be modified to show if the weight function is
conservative. Then loop 1 runs until n and we check if the values t,,_1(v) = ¢, (v) for all v € V. If yes, then
the weight function is conservative, otherwise not.

Consider the following graph:

We can show the steps of the Bellman-Ford algorithm in the table below. Here k is from ¢ (), the algorithm
proceed with find ¢ then ¢; and so on by relaxing all the edges of the graph with every iteration. This we do
so by fixing the order of vertices for every round. Here the order in which we process vertices is S, A, B,C, D
and this order is fixed in every iteration (every k).

EllS| Al B|[C|D]|pA)]|pB)|pC)]pD)

01|l 0|ooc|oo|oo| o0 * * * *

1106 |oco] 5 | o0 S * S *

211 01| 6 8 4 4 S C A C

3 01| 6 7 4 3 S C A B

41 01| 6 7 4 2 S C A B
Lecture 13

Depth First Search, Topological ordering in DAGs.

DFS
DFS. Input: G and s (starting vertex). Important lists in the table:

e d(v): depth of the vertex v. Initially, d(s) = 1 and d(v) = ,Vv # s. This denotes the order in which
the vertices are visited, so this list generates a preordering of the vertices.

e f(v): finishing index of the vertex v, also called a postordering of the vertices.

26

e p(v): parent of v in the DFS tree
e qa: current active vertex

e D: the maximum depth encountered so far

F: the maximum of finishing indices so far

The DFS algorithm takes ¢(n + m) steps where n = |V(G)| and m = |E(G)|. Also, if there are vertices
with no directed path from s, then we will get a forest after running the algorithm.

Consider the following graph:

27

The DFS algorithm when run on the above graph will give the following results:

v s p g r T Yy z w
dv) [T 8 6 7 3 4 5 2
fo) |8 5 2 6 4 3 1 7
plv) | * r y w w x y s

And the DFS tree will look like:

Lemma: During the running of the DFS algorithm, let w be a vertex that becomes active, that is,
d(u) = * and a < u. Let X C V(G) of all vertices with d() = x. Alsolet S C X be the set of all vertices
with a directed path from w in the subgraph induced by X. Then for every v € S, u will be an ancestor
of v in the DFS tree.

Proof: we can see this with induction on the size of S. If S = ¢, then this is trivially true. Now let
S be non empty. The depth first search algorithm will pick a vertex v from S and a < v. The set
of unexplored vertices that are reachable from v, call S’ will be a strict subset of S, S’ C S, hence
by induction, v will be an ancestor of all such vertices and consequently u will also be an ancestor.
The algorithm will return to u only after processing of v is finished and a new neighbor of u is made
active.When the processing of v is finished, we notice that the vertices of S which don’t have a depth
index are precisely the vertices which didn’t have a directed path from v. So all these vertices will still
have a directed path from u using only vertices with d() = *. So, we repeat can repeat this process of
picking another neighbor of u until all the vertices in S become its descendents.

After running the DFS algorithm, the edges in the graph G can be categorized as follows:
e Tree edges - edges that belong to the tree

e Forward edges - edges b such that u is an ancestor of v in the DFS tree, that is, there is a directed
path from u to v in the DFS tree.

e Back edges - edges w0 such that v is an ancestor of u in the DFS tree, that is, there is a directed path
from v to uw in the DFS tree.

e Cross edges - edges b such that there is no directed path in the DFS tree from u to v or from v to u.

Lemma: We make the following observations for all edges ub in G-
e If its a tree edge, then d(u) < d(v) and f(u) > f(v).
e If its a forward edge, then d(u) < d(v) and f(u) > f(v).

28

e If its a back edge, then d(u) > d(v) and f(v) > f(u).
e If its a cross edge, then d(u) > d(v) and f(u) > f(v).

If ub is a tree edge, then u is the parent, and so d(u) < d(v). Since the only backtracking happens when
a vertex is finished and then the active vertex goes to the parent, so a child always finishes before the
parent. So f(u) > f(v).

If Wb is a forward edge, then u is an ancestor of v. Then there are vertices u = wuy,us, .., uxr = v such
that u; is the parent of w;11. Then since d(u;) < d(u;+1) and f(u;) > f(u;t1), so the result follows.

If b is a backward edge, then v is an ancestor of u. The result follows from similar reasoning as for a
forward edge.

If ud is a cross edge, then first we note that d(u) cannot be less than d(v). Because otherwise, since there
is a edge from u to v, v will be a descendent of u by the Lemma above. So we conclude that d(u) > d(v).
If f(v) = * when u becomes active, then v will be an ancestor of u and we have a directed path from v
to w in the DFS tree. So, f(v) < f(u).

We note briefly here that DFS algorithm can also be run on undirected graphs. We can observe that by
introducting two directed edges wb and o7 for every undirected edge (u,v).

Topological ordering

Given a Directed Acyclic Graph (DAG for short), an ordering of the vertices (vy,vs, ..., v,) is said to be a
topological ordering if for every edge 1717] , © < j. In particular, there are two vertices s (source) and ¢ (sink)
which have only outgoing and incoming edges respectively.

Theorem: A directed graph G has a topological ordering of the vertices if and only if it is acyclic.
Proof sketch: If a directed graph has a topological ordering, say f, then since for every edge w0, f (u) <
f(v), it cannot have a directed cycle.

On the other hand, if the graph does not have any cycles, then we notice that there must be a vertex
which has no incoming edges. Otherwise, we start at any vertex v, and pick a vertex from which it has
an incoming edge, and we repeat this until a vertex repeats on this path, thereby giving us a cycle. Let
us call this vertex with no oncoming edges as v;. We notice that G\ {v; } is also a directed acyclic graph,
and so we can repeat this process and pick another vertex here that has no incoming edges. We will
call this vertex vo. We continue this process until we get the required ordering vq,vs, ..., v,. We notice
that this is a topological ordering of the graph because at any stage i, v; was a source in the graph
G\ {v1,...,vi—1} so all edges outgoing from v; must be to v, j > i.

We use a topological ordering to give a much faster algorithm for finding the shortest and longest paths from
the source vertex s.

Input: DAG G = (V, E) with a topological ordering (s = vy, va,...,v,) and an edge weight function
w: E(G) = R.

1. t(v1) <= 0; for & > 1, t(v;) < o0
2. loop: for i from 2 to n

3. t(v;) < min{t(v;) + w(e) : e = m}

e~

end loop

Notice: if we replace min with max in the algorithm above, then the above algorithm will also compute the
longest paths from s = v;.

29

The above algorithm finds all shortest paths from v; in ¢ - (n + m) steps, where n = |V(G)| and
m = |E(G)|.

We also observe that the DFS algorithm can decide if a graph G is acyclic and if yes, provide us with a
topological ordering.

Theorem: Consider a directed graph G with the DFS algorithm run from vertex s. G is acyclic if and
only if the DFS algorithm does not discover a back-edge. Also, if there were no back-edges, then the
reverse of postordering of the vertices (the vertices ordered with decreasing f(v) value) gives a topological
ordering of the vertices.

Proof sketch: it follows from the properties of all the types of edges discussed earlier, only back edges form
directed cycles. Also, only for back edges ud, f(u) < f(v). For every other kind of edge, f(u) > f(v).

Consider the following graph:

The DFS algorithm when run on the above graph will give the following results:

v s a b ¢ d e [g
dv) |1 2 3 4 5 7 8 6
flv)y |8 6 5 3 1 4 7 2
plv) | * s a b ¢ b s ¢

And we will get the following tree:

Let t(v) denote the minimum distance and T'(v) the maximum. The topological order of vertices is s, f, a, b, e, ¢, g, d.
Then we get the following computations for the algorithm:

v s f a b e ¢ g d
tv) |O 5 4 5 9 9 12 13
T(w) |0 5 4 6 10 11 14 16

30

	Lecture 1
	Permutations, Combinations
	Binomial Theorem

	Lecture 2
	Graphs: Basic Definitions
	Isomorphism
	Paths and connectivity

	Lecture 3
	Trees
	Breadth First Search

	Lecture 4
	Eulerian circuits
	Hamiltonian paths, cycles

	Lecture 5
	Bipartite graphs
	Chromatic number
	Interval graphs

	Lecture 6
	Planarity
	Euler's Formula
	Homomorphism, Kuratowski's Theorem

	Lecture 7
	Homomorphism, Kuratowski's Theorem
	(G),(G)
	(G),(G)
	Gallai's theorems
	Kruskal's algorithm

	Lecture 8
	Augmenting path algorithm
	Halls theorem, Frobenius theorem

	Lecture 9
	Edge chromatic number
	Maximum flows in networks.
	Edmond Karp's algorithm

	Lecture 10
	s,t-cut, capacity of cuts
	Ford-Fulkerson's theorem
	Modifications of the network flow problem

	Lecture 11
	Vertex and edge connectivity
	Edge-cuts and Edge-disjoint paths
	Vertex-cuts and Vertex-disjoint paths
	Menger's Theorems

	Lecture 12
	Dijkstra's Algorithm
	Bellman-Ford Algorithm

	Lecture 13
	DFS
	Topological ordering

