
Probability - quick reminder

lecture notes: https://www.stat.berkeley.edu/~aldous/134/gravner.pdf

Why do we need probability theory?
We always assume that the data we get is coming from some distribution, so there is some law in

the background, that we will model using notions used in probability theory.

Definitions
An experiment is any action or process whose outcome is subject to uncertainty.

The sample space of an experiment, S, is the set of all possible outcomes.

An event is any collection of outcomes of (a subset of) S.

An event is simple or compound if it consists of one outcome or more than one outcome, respec-
tively.

Example: experiment is flipping a coin twice, then S = {hh, ht, th, tt}, "the first is head" is an
event, hh is a simple event, while the first is head= {hh, ht} is a compound event.

Making new events from old:

The union of events A and B, denoted A ∪ B, is the event that consists of all that outcomes that
are either in A or B or both (the inclusive or)

The union of events Ai (i ∈ N) is the event that consists of all that outcomes that are in at least
on of the A′

is.

The intersection of events A and B, denoted A ∩ B, is the event that consists of all the outcomes
for which both A and B occur. (and we can also consider the countable intersection)

The complement of an event A, denoted A, is the set of all outcomes in not in A (but are in S)

The null set or empty set, denoted is the set with nothing in it. Two sets A and B are mutually
exclusive or disjoint if there is nothing in their intersection (i.e. A ∩ B =)

Some notation
We can intersect/union together more than two sets sets at a time

20⋂
i=1

Ai = A1 ∩ A2 ∩ · · · ∩ A19 ∩ A20

or ∞⋃
i=1

Ai = A1 ∪ A2 ∪ · · ·

The sets are basically questions we can ask about something random...but how do we talk about
the chances that those things will occur?

We need a function that takes events as input, and as output gives us a number between 0 and 1.
This is our probability function P (·).

Probability - basic notions - definition of probability

Here are the rules any probability function has to satisfy;

https://www.stat.berkeley.edu/~aldous/134/gravner.pdf


1. For any event A, P (A) ≥ 0

2. P (S) = 1

3. let A1, A2, . . . be a countably infinite collection of disjoint sets; then P (A1∪A2∪· · · ) = ∑∞
i=1 P (Ai)

Here are some things you can make sure are true using only the stuff from the previous few lines:

1. P (∅) = 0

2. P (⋃n
i=1 Ai) = ∑n

i=1 P (Ai) if A1, . . . , An are all disjoint

3. P (A) = 1 − P (A) for any A

4. if A ⊂ B then P (A) ≤ P (B)

5. (in particular) for any A, P (A) ≤ 1

6. for any A and B (not necessarily disjoint), P (A ∪ B) = P (A) + P (B) − P (A ∩ B)

Conditional Probability

Motivation:
Sometimes the probabilities of events change with the set of available information that we have.

Example: Let A = {Google’s share price increases tomorrow}. Then P (A) ≈ 0.5

But if we let C = {the government bans access to google.com}, what’s P (A given C)?

The notation: we’ll write P (A given C) like P (A|C). And here’s the formula:

P (A|C) = P (A ∩ C)
P (C)

Remarks:

1. It helps to think of this in the context of Venn diagrams

2. C ̸= ∅, otherwise we’re dividing by 0 using this definition

3. sometimes we’ll use P (A|C)P (C) = P (A ∩ C)

4. it is strongly related to Bayes’ theorem that we skip now

Example
Using P (A|C)P (C) = P (A ∩ C) is useful in situations where there is some sort of sequential thing

going on, or there are several stages of some random process.

Example: you’re only interested in if the stock market goes up or down. The events that it goes
up on Monday, Tuesday, Wednesday, Thursday and Friday are A1, A2, A3, A4 and A5, respectively. The
changes that it goes up or goes down only depend on what happened the day before (unless it’s a
Monday in which case let’s assume it goes up or down with probability 0.5). Say there’s a 75% chance
that it does the same thing as it did the day before. This means that there is a 25% chance it does the
opposite. What’s the probability the market goes up every day of the week?



P (goes up every day) = P (A5 ∩ A4 ∩ · · · ∩ A1)
= P (A5|A4 ∩ A3 ∩ A2 ∩ A1) · P (A4|A3 ∩ A2 ∩ A1) · P (A3|A2 ∩ A1) · P (A2|A1) · P (A1)
= P (A5|A4) · P (A4|A3) · P (A3|A2) · P (A2|A1) · P (A1)
= (0.75) · (0.75) · (0.75) · (0.75) · (0.5)

Independence

Motivation + definition
When we were talking about conditional probability before we usually talked about examples where

either P (A) > P (A|B) or P (A) < P (A|B). Quite often we’ll assume that this isn’t true when we’re
putting together statistical models, though.

Two events A and B are independent if P (A|B) = P (A).

Two events A and B are dependent if P (A|B) ̸= P (A)

Equivalently:

Events A and B are independent if

P (A ∩ B) = P (A)P (B)

this one is less intuitive but more general; it holds when we’re talking about events that might have
probability 0. It also extends more easily to when we talk about independence between more than two
things at a time.

A1, . . . An are mutually independent if for every k = 1, 2, . . . , n and every subset of indices you
can make with such a k i1, . . . , ik

P (Ai1 ∩ · · · ∩ Aik
) = P (Ai1) × · · · × P (Aik

)

Note that this is stronger than pairwise independence.

Random variables

Motivation
Even though sometimes one might think of a random variable X as just a random number, technically

they’re actually functions. We’ll define random variables in a more technical way so that a) you won’t
be totally confused when you get to measure-theoretic probability and b) we can classify rvs further
(which helps us with modelling and doing stuff in statistics).

Definitions:
A random variable (rv) is a function whose domain is the sample space S and whose range is a

subset of the real numbers R

A Bernoulli (or indicator) rv is one that maps into {0, 1}

Example: Let S be the set of outcomes of how many gas pumps are active at each of two gas stations.
Let’s say the first gas station has five pumps, and the second has 6 pumps. Then S = {1, 2, 3, 4, 5} ×
{1, 2, 3, 4, 5, 6}.

Let X be the sum of the number of active gas pumps, then we can write X as X(s1, s2) = s1 + s2.
But Y can be the absolute difference between the number of gas pumps active, or U be the maximum

number of gas pumps active.



We can classify rvs by what their range is.
A discrete rv is one whose range is finite or countably infinite.
A continuous rv is one whose a) range is a union of real intervals, and b) has no mass on any single

number (i.e. if we call our rv X then for any number c, P (X = c) = 0)
(Note: If you’ve taken a real analysis course before, you might know about the different types

of infinity. For this class, we won’t be doing analysis; all this helps to recognize certain probability
models/distributions. Also, when we do stuff with discrete random variables we’re typically using sums
and differences. If we’re doing stuff with continous rvs, then we’re probably going to be using integrals
and derivatives.)

Examples
Our last gas station example was a collection of discrete random variables.
Examples of continuous rvs: tomorrows return for a stock, or a randomly selected persons height.

Distribution of discrete variables

First we work with a general discrete rvs. We need to do this before we start using specific discrete
rvs (i.e. Binomial, Poisson, etc.)

A probability distribution is a function that shows how the total probability of 1 is distributed
among the possible values of a rv (say X).

A probability mass function is a probability distribution for a discrete random variable. For each
possible number x that X can take on, it gives you P (X = x).

1. we talked about probability function on S before. How does that relate to this probability function
on the range of X? Well, for a discrete rv: P (X = x) = P ({s ∈ S : X(s) = x})

2. All those rules we talked about still apply. Check as many as you want to.

3. For the probability mass function we have that it it non-negative (zero except for a countably
infinite set) and the sum of the values is 1. And it exactly characterizes the discrete probability
mass functions.

4. Knowing the distribution allows you to do essentially anything you want to (i.e. find the probability
of any event, compute moments, etc)

When we’re dealing with random variables and we want to specify a distribution, typically it isn’t
feasible to just pick numbers for the probability of each outcome...what if there are an infinite amount?
Fortunately there are many probability distributions where we only have to specify one or two param-
eters, and then it fills out the rest.

A parameter (for a discrete rv) is a quantity that can change (certain) distribution (probability
mass) functions P (X = x) = p(x). Let’s say there is only one parameter in our situation, and call it α.
To make this dependence on α explicit, sometimes we write our pmf as pα(x) or p(x; α).

Example: We observe the gender of newborns in a hospital until a boy (B) is born. So S =
{B, GB, GGB, GGGB, . . .}. There are a countably inifinite number of possible situations. What if we
just assume that there is one probability that an individual birth results in a boy, and all births are
independent from one another? Let’s call P (B) = p.

X = number of births observed. Then p(x) = (1 − p)x−1p, x > 0
If our assumptions are true, we just have to pick a good value for p. This distribution is called the

geometric distribution of paramter p.

The cumulative distribution function (cdf): FX(x) = P (X ≤ x) = ∑
k≤x p(k)

Instead of going from pmf to cdf, we can also go from cdf to pmf also: For any a and b, with a ≤ b

P (a ≤ X ≤ b) = FX(b) − FX(a−)



By a=b, we get the pmf.
Note: FX(x−) = limϵ→0 FX(x − ϵ)

Note: A lot of times FX(x−) = FX(x − 1)

Expectation and variance

Let X be a discrete rv with range D and pmf p(x). The expected value or mean of X, E(X) is

E(X) =
∑
x∈D

x · p(x)

We say it exists if it exists and finite.

Motivation:
Say we have X. We can make a new rv Y = h(X) with some function h(·). It would be true that

E(Y ) could be found using the formula above, but we would need pY (y) to do that. We would have to
find that from pX(x). That’s a pain. Good news though: we don’t have to find the new distribution,
though.

Say we start out with X and pX(x). Then for any function h(·),

E(Y ) = E[h(X)] =
∑

x

h(x)pX(x)

(we’re assuming here that these expected values exist i.e. that they’re finite)
This is called the law of the unconscious statistician (LOTUS).
A lot of times h(·) is a linear transformation. In this case

E[aX + b] = aE(X) + b

where a and b are constants
Here’s the definition of population variance. Let D be the range of a rv X. Let µ = E(X) (it’s

easier to write it this way). Then the variance of X, call it σ2(X) is:

σ2(X) =
∑
x∈D

(x − µ)2 · p(x) = E[(X − µ)2]

Standard deviation is just the square root of this.
This is an average again, but we’re not taking the average of X. We’re taking the average of a

nonlinear transformation of X: (X − µ)2.
Sometimes we use this formula:

σ2(X) = E(X2) − [E(X)]2

We also have this:

σ2(aX + b) = a2σ2(X)

Introduction of binomial distribution - motivation

Many experiments conform either exactly or approximately to the following list of requirements:

1. The experiment consists of a sequence of n trials (n is nonrandom)

2. Each trial results in one of two outcomes (success or failure)

3. Trials are independent of one another



4. The probability of a success is the same for all trials

An experiment for which these conditions are satisfied is called a binomial experiment

A binomial rv is the random variable denoting the number of successes for such an experiment
For a binomial rv, the pmf is

p(x; n, p) = P (X = x) =
(

n

x

)
px(1 − p)n−x x = 0, 1, . . . , n

and the cdf is
FX(x) = P (X ≤ x) =

x∑
k=0

p(k; n, p)

Example
A basketball player is a 70% free-throw shooter. He has to make both of two shots to win the game

for his team. What is the probability he makes one shot? What is the probability he doesn’t win the
game for his team?

P (he makes one) = p(1; 2, 0.7)

P (loses) = P (X < 2) = P (X ≤ 1) = p(0; 2, 0.7) + p(1; 2, 0.7)
Mean, Variance:
A few things about the binomial distribution

1. if n = 1, it’s called a Bernoulli distribution/rv

2. in general, EX = np and V (X) = np(1 − p)

proofs are left as exercise

Motivation:
A lot of discrete rvs arise from simple experiments consisting of trials with a finite number of possible

outcomes (e.g. binomial, multinomial, hypergeometric, negative binomial, etc). This one doesn’t, but it
arises from taking a limit of a binomial rv.

To make it precise, if p = λ
n
, then binomial distribution tends to the Poission distribution, where a

rv X is said to have a Poisson distribution with parameter λ > 0 if its pmf is

p(x; λ) = e−λλx

x! x = 0, 1, . . .

Continuous random variables

Our discrete rvs had a finite or countably infinite number of possible values it could take on. Now
we’ll talk about continuous rvs. They can take on a whole interval/range of possible values.

Definitions:
Let X be a continuous rv. The probability density function pdf of X is the function f(x) such

that for any a ≤ b

P (a ≤ X ≤ b) =
∫ b

a
f(x)dx

...it also has these properties

1. f(x) ≥ 0 for all x

2.
∫∞

−∞ f(x)dx = 1



The cumulative distribution function (cdf) for a cts rv X is this function

F (x) =
∫ x

−∞
f(s)ds

Properties:

1. limx→−∞ F(x)= 0

2. limx→∞ F(x)= 1

3. monotone increasing

4. (in general: continuous from the right)

If X is continuous with pdf and cdf f(x) and F (x), respectively, then

f(x) = d

dx
F (x)

(because of the fundamental theorem of calculus)

Example of continous rv No. 1: the uniform distribution on the interval [a, b]:

f(x) = f(x; a, b) = (b − a)−1, a ≤ x ≤ b

assuming a ≤ x ≤ b...

F (x) =
∫ x

−∞
f(s)ds =

∫ x

a

1
b − a

ds = 1
b − a

(s)|s=x
s=a = x − a

b − a



Here is an important thing to remember about continuous rvs:

P (X = c) =
∫ c

c
f(x)dx = lim

ϵ→0

∫ c+ϵ

c−ϵ
f(x)dx = 0

so for any a, b

P (a ≤ X ≤ b) = P (a < X < b) = P (a < X ≤ b) = P (a ≤ X < b)
(we don’t have to be careful about our inequalities like we do with discrete rvs...)

Let X be a cts rv with pdf f(x) and cdf F (x). Then for any a

P (X > a) = 1 − FX(a)

P (a ≤ X ≤ b) = P (a < X ≤ b) = FX(b) − FX(a)
A percentile η(p) associated with some percent p of a cts rv X is some number such that

p = F [η(p)] =
∫ η(p)

−∞
f(s)ds

i.e. it’s some number such that p % of the data is behind it

Note: quantiles are just special cases of percentiles (e.g. quartiles = 25th,50th,75th percentiles)
(e.g. deciles = 10th,20th,30th,40th,50th,60th,70th,80th,90th percentiles)

Note: the median is the 50th percentile
A cts rv X is symmetric if there is some point c such that

f(c − s) = f(c + s)

for all s

Normal distribution
A good example for continuous rv is the normal distribution that is the most important one in all

of probability and statistics."
a cts rv X has a normal distribution with parameters µ and σ2 if it has the pdf

f(x; µ, σ2) = 1√
2πσ2

exp
[
−(x − µ)2

2σ2

]

where −∞ < µ < ∞, σ2 > 0 and −∞ < x < ∞
shorthand: X ∼ N (µ, σ2)
Here’s a picture of two examples of this function

f(x; µ, σ2) = 1√
2πσ2

exp
[
−(x − µ)2

2σ2

]

−10 −5 0 5 10

0.
0

0.
2

0.
4

some Gaussian densities

x

f(
x)

mu=5, sigma=1
mu=−.25, sigma=3



Expectation, variance:

The expected value of a cts rv X with pdf f(x) is

E[X] =
∫ ∞

−∞
xf(x)dx

and the expectation of any function h(X) (LOTUS) is

E[h(X)] =
∫ ∞

−∞
h(x)f(x)dx

The variance of a cts rv with mean µ is

σ2[X] = E[(X − µ)2]

and this works again too:
σ2[X] = E[X2] − (E[X])2

Propositions
And these are true still as well:

E[aX + b] = aE[X] + b

σ2[aX + b] = a2σ2[X]

A special instance of the normal distribution is the standard normal distribution. You just set
µ = 0 and σ2 = 1

f(z; 0, 1) = 1√
2π

exp
[
−z2

2

]
where −∞ < z < ∞

shorthand: Z ∼ N (0, 1)

It’s convention to use capital Z when we’re talking about standard normal rvs
When we’re talking about probabilities, we can “do algebra" inside the parentheses. E.g:

P (a ≤ µ + Zσ ≤ b) = P

(
a − µ

σ
≤ Z ≤ b − µ

σ

)

or
P
( 1

X
> −c

)
= P

(
X >

1
−c

)
with X, c > 0 for the last one.

We’ll generalize this a bit later, but if

X ∼ N (µ, σ2)

then
aX + b ∼ N (aµ + b, a2σ2)

That’s why we go back and forth between X = µ + σZ and Z = X−µ
σ

a lot. They are both normal, but
sometimes one will have more convenient parameters than the other.

Joint distributions - Definition

When multiple rvs vary together, we need a joint distribution to fully describe them.
For discrete rvs, we have the joint probability mass function

p(x, y) = P (X = x ∩ Y = y)



also, if A is a two-dimensional set:

P [(X, Y ) ∈ A] =
∑∑
(x,y)∈A

p(x, y)

The marginal probability mass functions can be obtained from the joint via summation...

pX(x) =
∑

y

p(x, y)

and
pY (y) =

∑
x

p(x, y)

Let X and Y be two cts rvs. Then f(x, y) is the joint probability density function if for any A

P [(X, Y ) ∈ A] =
∫∫

A
f(x, y)dxdy

also:

1.
∫∫

S f(x, y)dxdy = 1

2. f(x, y) ≥ 0

We say
P [(X, Y ) ∈ A] =

∫∫
A

f(x, y)dxdy

...but doing this in practice is more difficult. We need to be very careful when we find the bounds
of integration since we’re dealing with more than one random variable!!!

We can obtain marginal pdfs via integration

fX(x) =
∫

y
f(x, y)dy

fY (y) =
∫

x
f(x, y)dx

Propositions
Let X and Y be jointly distributed random variables with pmf p(x, y) or pdf f(x, y) (according to

whether the rvs are discrete or continuous). Then

E[h(X, Y )] =
∑

x

∑
y

h(x, y)p(x, y)

if they’re jointly discrete, or

E[h(X, Y )] =
∫ ∞

−∞

∫ ∞

−∞
h(x, y)f(x, y)dxdy

if they are continuous.

Note: even though h(X, Y ) is a random variable itself, and it has a new density, we don’t have to
use that to find it’s expected value. (LOTUS)

Two random variables are independent, if the cdf of their joint distribution is the product of the
cdf’s.

Let X1, X2, . . . , Xn be independent random variables and assume that all the expected values we
write down exist. Then

E[h1(X1)h2(X2) · · · hn(Xn)] = E[h1(X1)] × · · · × E[hn(Xn)]



Covariance and correlation

The covariance between two rvs X and Y is

Cov(X, Y ) = E[(X − EX)(Y − EY )]

if these are jointly cts, then

Cov(X, Y ) =
∫ ∞

−∞

∫ ∞

−∞
(x − µX)(y − µY )f(x, y)dxdy

if discrete then
Cov(X, Y ) =

∑
x

∑
y

(x − µX)(y − µY )p(x, y)

If Cov(X, Y ) > 0 that means (X − µX) and (Y − µY ) tend to be the same sign (both negative, or
both positive).

If Cov(X, Y ) < 0 that means (X − µX) and (Y − µY ) tend to be opposite signs (ones positive and
the other is negative, and vice versa)

Remember that this is a probability weighted average. If a covariance is positive, for example, that
tells you they have the same sign on average.

Covariance formula
Cov(X, Y ) = E[XY ] − E[X]E[Y ]

It is sometimes easier to use this formula! For example, if you have the first two derivatives of a
moment generating function.

Proposition
The following is called bilinearity. If a and b are constants, X, Y and Z are three rvs...

Cov(X + Y, Z) = Cov(X, Z) + Cov(Y, Z)

Cov(X, Y + Z) = Cov(X, Y ) + Cov(X, Z)

Cov(aX, Y ) = Cov(X, aY ) = a Cov(X, Y )
What’s Cov(X, X)?

Cov(X, X) = E[(X − EX)(X − EX)]
= E[(X − EX)2]
= σ2[X]

Correlation - Motivation
“It would appear that the relationship example A is quite strong since Cov(X, Y ) = 1875, whereas

in the example B Cov(X, Y ) = − 2
75 would seem to imply quite a weak relationship."

This isn’t true, though. You can’t compare covariances. The number depends on the scale. For in-
stance, if you compared the covariance between prices of one item with another item, it totally depends
on whether you’re talking about dollars or cents.

You can see this formally just using bilinearity. For any X, Y , and a, b ̸= 1, Cov(aX, bY ) =
ab Cov(X, Y ) ̸= Cov(X, Y ).

That’s why we talk about correlation

Corr(X, Y ) = Cov(X, Y )
σ(X)σ(Y )



It might help to think about it like this:

Corr(X, Y ) = Cov
[

X

σ(X) ,
Y

σ(Y )

]
.

A few more things

1. if a and c have the same sign, Corr(aX + b, cY + d) = Corr(X, Y )

2. −1 ≤ Corr(X, Y ) ≤ 1

3. if X and Y are independent, then Corr(X, Y ) = 0

4. if Corr(X, Y ) = 0, X and Y can still be dependent

5. | Corr | = 1 if and only if Y = aX + b for some scalars a, b with a ̸= 0

Proof of 3
Prove that “independence" is stronger than “uncorrelated." That is prove that independence implies

Corr(X, Y ) = 0.

Cov(X, Y ) = E[XY ] − E[X]E[Y ] = E[X]E[Y ] − E[X]E[Y ] = 0

So Corr(X, Y ) = 0.


