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Variable length source coding (cont.)

We state and prove the Main Theorem in variable length coding:

Theorem 6 Let us have an information source emitting symbol x(i) ∈ X with probability p(x(i)) =
pi, (i = 1, . . . , r). For any s-ary UD code f : X → Y∗ of this source we have expected codeword length

L(f) =
r∑

i=1
pi|f(x(i))| ≥ Hs(P ) = 1

log s
H(P ) = 1

log s

(
−

r∑
i=1

pi log pi

)
= −

r∑
i=1

pi logs pi,

where P stands for the distribution (p1, . . . , pr). Thus, for a UD code the average codeword length is
bounded from below by the entropy of the distribution governing the system.

For proving the theorem, we use McMillan theorem and the corollary of Jensen’s inequality.
Proof of Theorem 6. We know from the McMillan theorem, that∑r

i=1 s−|f(x(i))| ≤ 1. Set b = ∑r
i=1 s−|f(x(i))|

and qi = s−|f(x(i))|

b
≥ s−|f(x(i))|. Then
r∑

i=1
pi|f(x(i))| = −

r∑
i=1

pi logs(qib) ≥ −
r∑

i=1
pi logs qi = − 1

log s

r∑
i=1

pi log qi.

Observe that ∑r
i=1 qi = 1 and qi ≥ 0 for every i (so (q1, . . . , qr) could be considered a probability

distribution). Thus by Corollary 4 of Jensen’s inequality, we have that −∑r
i=1 pi log qi ≥ −∑r

i=1 pi log pi

and the statement follows. □

We can have equality iff the distribution of dyadic, ie. for all i pi = s−li .
Example:
- s = 2 case: the distribution

(
1
2 , 1

4 , 1
8 , 1

8

)
is dyadic, since the probabilities in the distribution are

2−1, 2−2, 2−3, 2−3. We have seen that the entropy of this distribution is 1.75bits and also we have seen
a perfix code for this distribution with expected codeword length 1.75bits.
- s = 3 case: the distribution

(
1
3 , 1

3 , 1
9 , 1

9 , 1
27 , 1

27 , 1
27

)
is dyadic. Calculate the entropy, and check that the

expected codeword length of the code (0, 1, 20, 21, 220, 221, 222) equals the entropy.
Thus in this special case, we can reach the lower bound, we can find a code f such that L(f) = Hs(P ).
For other source distributions, there isn’t such a code, but there exists a code with expected codeword
length close to the lower bound.

Theorem 7 Let us have an information source emitting symbol x(i) ∈ X with probability p(x(i)) =
pi, (i = 1, . . . , r). There exists an s-ary prefix code for this source with average codeword length less than
Hs(P ) + 1 = H(P )

log s
+ 1.

Proof of Theorem 7. Kraft’s theorem implies that there is a prefix code with codeword lengths⌈
logs

1
p1

⌉
, . . . ,

⌈
logs

1
pr

⌉
, since

1 =
r∑

i=1
pi =

r∑
i=1

slogs pi =
r∑

i=1
s− logs(1/pi) ≥

r∑
i=1

s−⌈logs(1/pi)⌉.

Such a code has average length
r∑

i=1
pi

⌈
logs

1
pi

⌉
<

r∑
i=1

pi(logs

1
pi

+ 1) ≤
r∑

i=1
pi logs

1
pi

+
∑

pi =
r∑

i=1
pi logs

1
pi

+ 1.



Shannon-Fano code
Next we introduce a code construction, called the Shannon-Fano code:
We assume p1 ≥ p2 ≥ · · · ≥ pn > 0. Let w1 = 0 and for j > 1 let wj = ∑j−1

i=1 pi. Let the codeword
f(x(j)) be the s-ary representation of the number wj (which is always in the [0, 1) interval) without
the starting integer part digit 0, and with minimal such length that it is not a prefix of any other such
codeword. The latter condition already ensures that the code is prefix.
This construction is very closely related to the one on which the proof of Theorem 7 was based. Never-
theless, below we give a second proof of Theorem 7 directly using the Shannon-Fano code construction.

The above definition (of Shannon-Fano code) implies that the first |f(x(j))| − 1 digits of f(x(j)) is a
prefix of another codeword and thus it must be the prefix of a codeword coming from a closest number
wh, thus wj−1 or wj+1. This implies

pj = p(x(j)) = wj+1 − wj ≤ s−(|f(x(j))|−1)

or
pj−1 = p(x(j−1)) = wj − wj−1 ≤ s−(|f(x(j))|−1).

By pj−1 ≥ pj in either case the first of the above two inequalities holds. Thus logs pj ≤ −|f(x(j))| + 1
implying

−pj logs pj ≥ pj(|f(x(j))| − 1),
and thus

−
r∑

j=1
pj logs pj + 1 ≥

r∑
j=1

pj|f(x(j))|.

Construct the Shannon-Fano code for three probability distributions.

Examples:

• s = 2, consider the distribution
(

1
2 , 1

4 , 1
8 , 1

8

)

• s = 3, consider the distribution
(

3
8 , 1

6 , 1
8 , 1

8 , 1
8 , 1

12

)

• s = 4, consider the distribution (0.36, 0.17, 0.09, 0.09, 0.07, 0.04, 0.04, 0.04, 0.03, 0.03, 0.02)

In order to get the s-ary representation of the wis, we took the interval [0, 1] and partitioned it into s

parts of the same length
(

1
s

)
. The wis falling into the first partition get a first digit 0, the wis falling

into the second partition get a first digit 1, etc the wis falling into the last partition get a first digit
s − 1. We go on partitioning further the subintervals having more than one wi falling there. And the
corresponding codewords get a new digit. We do this until there are no partition with more than one
wi in it.


