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Block coding

We know that for all UD codes H(X)
log s

≤ L(f) = E(|f(X)|), and there exists a (e.g. Shannon-Fano
or achieving optimal average length a Huffman) code satisfying L(f) = E(|f(X)|) < H(X)

log s
+ 1. The

overhead of at most 1 bit is due to the fact that log 1
pi

is not always an integer. This overhead can be
reduced by spreading it out over symbols. That’s why it worth using so called block codes, when the
source symbols are not encoded separately but a few consecutive symbols are regarded as a supersymbol
and encoded together.

A function f : X k → Y∗ is a block code using block size k.
Obviously the lower and upper bounds above remain true for this type of code as well. For all UD codes

H(X1, . . . , Xk)
log s

≤ L(f) = E(|f(X1, . . . , Xk)|)

and there exists a code satisfying

L(f) = E(|f(X1, . . . , Xk)|) <
H(X1, . . . , Xk)

log s
+ 1.

If the random variables are independent and identically distributed then H(X1, X2, . . . , Xk) = kH(X1)
thus the expected codeword length per letter for this code is

1
k

L(f) ≤ 1
k

(
H(X1, . . . , Xk)

log s
+ 1

)
= H(X1)

log s
+ 1

k

So for block codes the upper bound for 1
k
L(f) can be much closer to the lower bound even if the

consecutive symbols (letters) are independent.

Example:
Let X = {a, b}, Y = {0, 1}, suppose that the distribution of the source symbols is P(X = a) = 1

4 ,
P(X = b) = 3

4 and that the consecutive random variables are independent.
Let the code f1 : X → Y∗ be the following: f1(a) = 0, f1(b) = 1. Then L(f1) = 1 and obviously we
cannot do better than that if we encode symbols separately.
Let the code f2 : X 2 → Y∗ be the following: f1(aa) = 111, f1(ab) = 110, f1(ba) = 10, f1(bb) = 0. Because
of independence the probabilities of the blocks are p(aa) = 1

16 , p(ab) = 3
16 , p(ba) = 3

16 , p(bb) = 9
16 . Thus

L(f2) = 27
16 and the expected codeword length per symbol is 1

2L(f2) = 27
32 that is less than 1. The block

code performs better.

Entropy rate of information sources

Def. An information source is a stochastic process, i.e. a sequence of indexed random variables, X =
X1, X2, . . . .
Def. A source X = X1, X2, . . . is memoryless if the Xi’s are independent.
Def. A source is stationary if for every n and k (X1, . . . , Xk) and (Xn+1, . . . , Xn+k) has the same
distribution.
Def. The entropy rate of a source emitting the sequence of random variables X1, X2, . . . is

lim
n→∞

1
n

H(X1, . . . , Xn),



provided that this limit exists.

The above limit trivially exists for stationary memoryless sources defined above. Indeed, if the source is
stationary and memoryless, then H(X1, X2, . . . , Xn) = nH(X1), since in that case the random variables
are independent and identically distributed, so we have limn→∞

1
n
H(X1, . . . , Xn) = limn→∞

1
n
nH(X1) =

H(X1).
In fact, once a source is stationary it always has an entropy, it need not be memoryless.

Theorem 1 If a source X = X1, X2, . . . is stationary then its entropy rate exists and is equal to

lim
n→∞

H(Xn|X1, . . . , Xn−1).

Remark: Note that limn→∞ H(Xn|X1, . . . , Xn−1) can be much smaller than H(X1). Think about a source
with source alphabet {0, 1} that emits the same symbol as the previous one with probability 9/10 and
the opposite with probability 1/10. In the long run we have the same number of 0’s and 1’s, P(X1 =
1) = P(X1 = 0) = 1/2, so H(X1) = 1, while limn→∞ H(Xn|X1, . . . , Xn−1) = H(Xn|Xn−1) = h(0.9) < 1.

Proof. By the source being stationary, we have

H(Xn|X1, . . . , Xn−1) = H(Xn+1|X2, . . . , Xn) ≥ H(Xn+1|X1, X2, . . . , Xn).

Thus the sequence H(Xi|X1, . . . , Xi−1) is non-increasing and since all its elements are non-negative, it
has a limit.
From the Chain rule we can write

1
n

H(X1, . . . , Xn) = 1
n

(
H(X1) +

n∑
i=2

H(Xi|X1, . . . , Xi−1)
)

.

To complete the proof we refer to a lemma of Toeplitz that says that if {an}∞
n=1 is a convergent sequence

of reals with limn→∞ an = a, then defining bn := 1
n

∑n
i=1 ai, we have that {bn}∞

n+1 is also convergent and
limn→∞ bn = a, too. Applying this to an := H(Xn|X1, . . . , Xn−1) the statement follows. □

Note that the proof implies that the sequence 1
n
H(X1, . . . , Xn) is also non-increasing.

Theorem 2 If the stationary source X is encoded with a uniquely decodable block code f : X k → Y∗

using block size k then for the expected codeword length per symbol

H(X)
log s

≤ 1
k

L(f) = 1
k
E(|f(X1, . . . , Xk)|)

and if k is large enough then there exists a code with 1
k
L(f) arbitrarily close to H(X)

log s
.

This follows from the upper and lower bounds for block codes, the definition of entropy rate and the
remark above.

Markov chain, Markov source

Def. A stochastic process Z = Z1, Z2, . . . is Markov (or Markovian) if for every n we have

P(Zn = zn|Z1 = z1, . . . , Zn−1 = zn−1) = P(Zn = zn|Zn−1 = zn−1)



We say that the variables Z1, Z2, . . . form a Markov chain.
Intuitively the above definition means that knowing just the previous Zi tells us everything we could
know about the next one even if we knew the complete past, i.e. given Zk−1 the random variable Zk is
conditionally independent of all preceding random variables. Such situations often occur.
Def. A Markov chain Z is homogenous or time invariant if P(Zn = j|Zn−1 = i) is independent of n.
The possible values of the random variables in a Markov chain are called states.
When the homogenous Markov chain has r states its behavior is described by an r ×r stochastic matrix
(each row is a probability distribution) Π defined by Π[i, j] = P(Z2 = j|Z1 = i).

Theorem 3 The entropy rate of a homogenous stationary Markov chain Z is H(Z) = H(Z2|Z1)

This follows from Theorem 1 above, the Markov property and time invariance.

Def. A general Markov source or Hidden Markov model is a stochastic process X, for which each Xi

can be written as a function of two random variables, namely Xi = F (Zi, Yi) where Z is a homogenous
Markov chain and Y is a stationary and memoryless source that is independent of Z.
A Markov source can model a situation where, for example, Z is a text or speech and Y is the noise.
Example 1. Let Π be the 2 × 2 matrix with first row p, 1 − p and second row 1 − p, p. Then the
stationary distribution is 1

2 , 1
2 , while the entropy of the Markov chain is h(p). Actually, we considered

the case when p = 0.1.
Example 2. Let the 3×3 transition probability matrix Π of a Markov chain Z with three states A, B, C
have first row: 0, 1, 0, second row: 0, 2/3, 1/3, third row: 2/3, 0, 1/3. We determine the entropy of the
source whose outcome is the actual state of this Markov chain.
This needs the calculation of the stationary distribution. Let pA, pB, pC denote the stationary proba-
bilities of the system being in state A, B, C, respectively. Then from the first column we have pA = 2

3c
giving pC = 3

2pA and from the second column we have pB = pA + 2
3pB giving pB = 3pA. (The third

column gives pC = 1
3pB + 1

3pC that gives pB = 2pC , that already follows from the first two equations,
so this is redundant and we do not need to use this third equation.) Using pA + pB + pC = 1 we obtain
pA + 3pA + 3

2pA = 11
2 pA = 1, so pA = 2

11 , pB = 3pA = 6
11 , and pC = 3

2pA = 3
11 . Now we can write

H(Z) = 2
11H(Zn|Zn−1 = A) + 6

11H(Zn|Zn−1 = B) + 3
11H(Zn|Zn−1 = C) =

= 2
11H(0, 1, 0) + 6

11H
(
0, 2

3 , 1
3

)
+ 3

11H
(

2
3 , 0, 1

3

)
=

= 0 + 6
11h(1/3) + 3

11h(1/3) = 9
11h(1/3).

Home-work

Exercise 1: This exercise is similar to the previous example, only the numbers differ. Let the 3 × 3
transition probability matrix Π of a Markov chain Z with three states A, B, C have first row: 7/8, 1/8, 0,
second row: 0, 7/8, 1/8, third row: 1/3, 1/3, 1/3. Determine the entropy of the source whose outcome is
the actual state of this Markov chain.
Exercise 2: Let X1, X2, . . . be a Markov chain for which Prob(X1 = 0) = Prob(X) = 1) = 1

2 and let the
transition probabilities for i ≥ 1 be given by Prob(Xi+1 = 0|Xi = 0) = Prob(Xi+1 = 1|Xi = 0) = 1

2 ,
while Prob(Xi+1 = 0|Xi = 1) = 0 and Prob(Xi+1 = 1|Xi = 1) = 1. Calculate the entropy of the source
whose outcome is the resulting sequence of random variables X1, X2, . . . .


