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Variable length source coding (cont.)

Question: Why do we care about variable length and not simply use |X | codewords of length ⌈logs |X |⌉
each?
Answer: Average length may be better, see this example. Let the probabilities of emitting the symbols be
p(x(1)) = 1/2, p(x(2)) = 1/4, p(x(3)) = 1/8, p(x(4))) = 1/8. The code f(x(1)) = 0, f(x(2)) = 10, f(x(3))) =
110, f(x(4)) = 111 has average length 1 · 1/2 + 2 · 1/4 + 3 · 1/8 + 3 · 1/8 = 1.75 < 2 = log2 4.

Aim: to minimize the expected codelength: E |f(X)| = ∑r
i=1 pi ·

∣∣∣f(x(i))
∣∣∣

However, of course we cannot assign short codewords to all source symbols and still have a uniquely
decodable code.

Next we state and prove two basic theorems that belong together: they sort of complement each other.
(One could certainly look at them as the two parts of a single theorem.)

Kraft-McMillan inequality

Theorem 1 (McMillan): If C = (f(x(1)), . . . , f(x(r)) is a UD code over an s-ary alphabet, then
r∑

i=1
s−|f(x(i))| ≤ 1.

Theorem 2 (Kraft): If the positive integers l1, . . . , lr satisfy
r∑

i=1
s−li ≤ 1.

then there exists an s-ary prefix code with codeword lengths l1, . . . , lr.

Corollary 3 For any uniquely decodable code, there exists a prefix code with the same codeword length.

That means that the class of uniquely decodable codes does not offer any further choices for the set of
codeword lengths than the class of prefix codes. I.e. it is enough to search for the shortest code among
the prefix codes.

Proof of McMillan’s theorem. Consider(
r∑

i=1
s−|f(x(i))|

)k

=
∑

v∈Ck

s−|v| =
k·lmax∑

l=1
Als

−l,

where Al is the number of ways we can have an l length string of code symbols that are concatenations
of k codewords from our code, and lmax is the length of the longest codeword f(x(i)). Since the code is
UD, we cannot have more than sl different source strings resulting in such an l length string, so Al ≤ sl.
Thus the right hand side is at most k · lmax giving (∑r

i=1 s−|f(x(i))|)k ≤ k · lmax. Taking kth root and limit
as k → ∞, the result follows. □



Proof of Kraft’s theorem. (We proved the theorem by labeling nodes in an s-ary tree and deleting
subtrees from the tree to ensure that the code will be prefix. We showed that at least one leaf will
remain at the end to label it for the last codeword. Here is another proof:)
Arrange the lengths in nondecreasing order, i.e., l1 ≤ · · · ≤ lr. Define the numbers w1 := 0 and for
j > 1 let

wj :=
j−1∑
i=1

slj−li .

This gives wj = slj
∑j−1

i=1 s−li < slj
∑j

i=1 s−li ≤ slj , thus the s-ary form of wj has at most lj digits.
Let f(x(j)) be the s-ary form of wj "padded" with 0’s at the beginning if necessary to make it have
length exactly lj for every j. This gives a code, we show it is prefix. Assume some f(x(j)) is just the
continuation of another f(x(h)). (Then lj > lh, so j > h.) Thus cutting the last lj − lh digits of f(x(j)) we
get f(x(h)). This "cutting" belongs to division by slj−lh (plus taking integer part), so this would mean
wh =

⌊
wj

slj −lh

⌋
=
⌊
slh
∑j−1

i=1 s−li
⌋

= slh
∑h−1

i=1 s−li +
⌊
slh
∑j−1

i=h s−li
⌋

≥ wh + 1, a contradiction. □

Jensen’s inequality and its consequences
We will need the following simple tool that has a lot of important consequences and that is often very
useful when proving theorems in information theory. Recall from calculus the notion of convexity of a
function first.
Def.: A function g : [a, b] → R is convex if for every x, y ∈ [a, b] and λ ∈ [0, 1] we have

g(λx + (1 − λ)y) ≤ λg(x) + (1 − λ)g(y).

We say that g is strictly convex if we have strict inequality whenever 0 < λ < 1 and x ̸= y.
Jensen’s inequality: Let g be a convex function and Z is a random variable. Then

g (E(Z)) ≤ E (g(Z))

Moreover, if g is strictly convex, then equality holds if and only if Z = E(Z) with probability 1, i.e. Z
is not random but a constant.
Proof. A convex function is always above its tangent, thus

g(x) ≥ g(x0) + c · (x − x0)

for all x and x0, where c is the rise of the tangent. It is true if x0 = EZ and remains true if we put the
random variable Z in the place of x

g(Z) ≥ g(E(Z)) + c · (Z − E(Z))

taking the expected value of both sides and using the linear property of expected value (E(aX + bY ) =
aEX + bEY )

E (g(Z)) ≥ g(E(Z)) + cE (Z − E(Z)) = g(E(Z))
□

Corollary 4 If P = (p1, . . . , pk) and Q = (q1, . . . , qk) are two probability distributions, then

k∑
i=1

pi log pi

qi

≥ 0,

and equality holds iff qi = pi for every i.



Convention: To make the formulas above always meaningful, we use the "calculation rules" (for a ≥
0, b > 0) 0 log 0

a
= 0 log a

0 = 0 and b log b
0 = +∞, b log 0

b
= −∞.

Proof. Let Z be a random variable such that it takes the value qi

pi
with probability pi. The function

− log x is convex, thus by Jensen’s inequality

k∑
i=1

pi log pi

qi

=
k∑

i=1
pi

(
− log qi

pi

)
≥ − log

(
k∑

i=1
pi

qi

pi

)
= − log

(
k∑

i=1
qi

)
= 0.

The condition of equality also follows from the corresponding condition in Jensen’s inequality. □

Theorem 5
0 ≤ H(X) ≤ log r,

where r = |X |. H(X) = 0 iff X takes a fix value with probability 1, H(X) = log r iff X is uniformly
distributed.

Proof. 0 ≤ H(X) is clear by log pi ≤ 0 for all x(i) ∈ X , since 0 ≤ pi ≤ 1. Equality can occur iff pi = 1
for some i, then all other probabilities should be zero.
Applying the Corollary above to qi = 1/r ∀i gives H(X) ≤ log r and also the condition for equality.


