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Solution of the Home work
Let the source alphabet be X = {a, b, c} and the initial dictionary contain the letters a, b and c with
their indexes (1, 2 and 3 respectively). Using the Lempel-Ziv-Welch algorithm
(a) encode the sequence cabcbcbcb
(b) decode the sequence 3, 4, 5, 6, 7, 1



Quantization

In many practical situations the source variables are real numbers, thus have a continuum range. If we
want to use digital communication we have to discretize, which means that some kind of "rounding" is
necessary.
Def. Let X = X1, X2, . . . be a stationary source, where the Xi’s are real-valued random variables.
A (1-dimensional) quantized version of this source is a sequence of discrete random variables (another
source) Q(X1), Q(X2), . . . obtained by a map Q : R → R where the range of the map is finite. The
function Q(.) is called the quantizer.

Goal: Quantize a source so that the caused distortion is small.
How can we measure the distortion? We will do it by using the quadratic distortion measure D(Q)
defined for n-length blocks as

D(Q) = 1
n

E

(
n∑

i=1
(Xi − Q(Xi))2

)
,

where E(.) means expected value.
Since our Xi’s are identically distributed we have

D(Q) = E((X − Q(X))2).

(Here X is meant to have the same distribution as all the Xi’s.)
Let the range of Q(.) be the set {x1, . . . , xN}, where the xi’s are real numbers. Q(.) is uniquely defined
by the values x1, . . . , xN and the sets Bi = {x : Q(x) = xi}. Once we fix x1, . . . , xN , we will have the
smallest distortion D(Q) if every x is "quantized" to the closest xi, i.e.,

Bi = {x : |x − xi| ≤ |x − xj| ∀j ̸= i}.

(Note that this rule puts some values into two neighboring Bi’s (considering x1 < x2 < · · · < xN , we
have x = 1

2(xi + xi+1) in both Bi and Bi+1). This can easily be resolved by saying that all these values
go to (say) the smaller indexed Bi.)
If now we consider the Bi’s fixed then the smallest distortion D(Q) is obtained if the xi values lie in the

barycenter of the Bi, which is E(X|Bi) := E(X|X ∈ Bi) =
∫

Bi
xf(x)dx∫

Bi
f(x)dx

, where f(x) is the density function

of the random variable X. (We will always assume that f(x) has all the "nice" properties needed for
the existence of the integrals we mention.)
We proved the previous claim, i.e. smallest distortion is achieved for given quantization intervals Bi

when Q(x) = E(X|Bi) for x ∈ Bi. Here you can find a different proof for the statement:
This holds for all Bi separately, so it is enough to show it for one of them. By the linearity of expectation

E((X − c)2) = E(X2) − c(2E(X) − c),

and this is smallest when c(2E(X) − c) is largest. Since the sum of c and 2E(X) − c does not depend
on c, one can see simply from the inequality between the arithmetic and geometric mean (a+b

2 ≥
√

ab
with equality iff a = b) that this product is largest when c = E(X). (At least this is the case if we can
assume that both c and 2E(X) − c are non-negative and so the inequality a+b

2 ≥
√

ab can be used. If
this is not the case, we can still easily obtain that c(2E(X) − c) is maximized by c = E(X) by looking
at the derivatives.)



Lloyd-Max algorithm
The above suggests an iterative algorithm to find a good quantizer: We fix some quantization levels
x1 < · · · < xN first and optimize for them the Bi domains by defining them as above: let yi = xi+xi+1

2
for i = 1, . . . , N − 1 and

B1 := (−∞, y1], Bi := (yi, yi+1], i = 2, . . . , N − 1, BN = (yN−1, ∞).

Notice that in general there is no reason for the xi’s to be automatically the barycenters of the domains
Bi obtained in the previous step. So now we can consider these domains Bi fixed and optimize the
quantization levels with respect to them by redefining them as the corresponding barycenters:

xi :=
∫

Bi
xf(x)dx∫

Bi
f(x)dx

.

Now we can consider again the so-obtained xi’s fixed and redefine the Bi’s for them, and so on. After
each step (or after each "odd" step when we optimize the Bi domains for the actual xi’s) we can check
whether the current distortion is below a certain threshold. If yes we stop the algorithm, if no, then we
continue with further iterations.
The distortion is non-increasing in each step, therefore it converges to somewhere since it is non-negative.
The problem is that not necessarily to the global optimum, the limit might as well be a local optimum.
To solve this the algorithm can be started from different initial quantization levels and then the one
with smallest distortion is chosen.
It should be clear from the above that if either of the two steps above changes the xi quantization levels
or the Bi domains, then the quantizer before that step was not optimal. It is possible, that no such
change is attainable already and the quantizer is still not optimal.
A quantizer is called a Lloyd-Max quantizer if the two steps of the Lloyd-Max algorithm have no effect
on them.
Example
Let X be a random variable that takes its values on the finite set {1, 2, 3, 4} with uniform distribution.
(That is P (X = 1) = P (X = 2) = P (X = 3) = P (X = 4) = 1/4.) Let N = 2 that is we are allowed to
use two values for the quantization. There are three different quantizers for which neither of the above
steps can cause any improvement, but only one of them is optimal.
These three quantizers can be described by

Q1(1) = 1, Q1(2) = Q1(3) = Q1(4) = 3;

Q2(1) = Q2(2) = 1.5, Q2(3) = Q2(4) = 3.5;

Q3(1) = Q3(2) = Q3(3) = 2, Q3(4) = 4.

Home-work 1:
Calculate the distortion of the above three quantizers.

Remember that we call a quantizer a Lloyd-Max quantizer if the two steps of the Lloyd-Max algorithm
have no effect on them. In the previous example we have seen that a Lloyd-Max quantizer is not
necessarily optimal. Fleischer gave a sufficient condition for the optimality of a Lloyd-Max quantizer. It
is in terms of the density function f(x) of the random variable to be quantized. In particular, it requires
that log f(x) is concave.

Home-work 2: Let X be a random variable with density function

f(x) =
{

3x2

8 , if x ∈ [0, 2]
0, otherwise.



The source is quantized by a 2-level quantizer. Starting from the initial levels 1
2 and 3

2 , give the first
iteration (first two steps) of the Lloyd-Max algorithm.

The above condition of Fleischer is satisfied by the density function of a random variable uniformly
distributed in an interval [a, b]. Thus a corollary of Fleischer’s theorem is that there is only one Lloyd-
Max quantizer with N levels for the uniform distribution on [a, b]. It is not hard to see that this should
be the uniform quantizer: the one belonging to Bi = {x : a+(i−1) b−a

N
≤ x ≤ a+i b−a

N
} and quantization

levels at the middle of these intervals. (The extreme points of the intervals belonging to two neighboring
Bi’s can be freely decided to belong to either of them.)


