



## Identifying Similar Sets?

- Signature Idea
  - Hash columns C<sub>i</sub> to signature sig(C<sub>i</sub>)
  - sim<sub>j</sub>(C<sub>i</sub>,C<sub>j</sub>) approximated by
- $sim_{H}(sig(C_i), sig(C_j))$
- Naœe Approach
  - Sample P rows uniformly at random
  - Define sig(C<sub>i</sub>) as P bits of C<sub>i</sub> in sample
  - Problem
    - sparsity  $\rightarrow$  would miss interesting part of columns
    - sample would get only 0's in columns



## Min Hashing

- Randomly permute rows
- Hash h(C<sub>i</sub>) = index of first row with 1 in column C<sub>i</sub>
- Suprising Property

 $P[h(C_i) = h(C_i)] = sim_i(C_i, C_i)$ 

- Why?
  - Both are A/(A+B+C)
  - Look down columns C<sub>i</sub>, C<sub>j</sub> until first non-Type-D row
  - $h(C_i) = h(C_j) \leftrightarrow type A row$

## **Min-Hash Signatures**

- Pick P random row permutations
- MinHash Signature

sig(C) = list of P indexes of first rows with 1 in column C

- Similarity of signatures
  - Let sim<sub>H</sub>(sig(C<sub>i</sub>), sig(C<sub>j</sub>)) = fraction of permutations where MinHash values agree
  - Observe E[sim<sub>H</sub>(sig(C<sub>i</sub>),sig(C<sub>j</sub>))] = sim<sub>J</sub>(C<sub>i</sub>,C<sub>j</sub>)





| Example                                                       |          |                      |                      |
|---------------------------------------------------------------|----------|----------------------|----------------------|
| $C_1 C_2$                                                     |          | C <sub>1</sub> slots | C <sub>2</sub> slots |
| $\mathbf{R}_1$ $\begin{bmatrix} 1 & 0 \end{bmatrix}$          | h(1) = 1 | 1                    | -                    |
| $\mathbf{R}_2 = \begin{bmatrix} 0 & 1 \\ 1 & 1 \end{bmatrix}$ | g(1) = 3 | 3                    | -                    |
|                                                               | h(2) = 2 | 1                    | 2                    |
| $\mathbf{R}_4$ 1 0<br>$\mathbf{R}_5$ 0 1                      | g(2) = 0 | 3                    | 0                    |
|                                                               | h(3) = 3 | 1                    | 2                    |
|                                                               | g(3) = 2 | 2                    | 0                    |
|                                                               | h(4) = 4 | 1                    | 2                    |
| $h(x) = x \mod 5$ $g(x) = 2x + 1 \mod 5$                      | g(4) = 4 | 2                    | 0                    |
| $g(x) = 2x+1 \mod 3$                                          | h(5) = 0 | 1                    | 0                    |
|                                                               | g(5) = 1 | 2                    | 0                    |
|                                                               |          |                      |                      |

