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Abstract

Spatialdatamining, i.e., discoveryof interestingcharacteristicend patternsthat may implicitly

existin spatialdatabasess a challengingtaskdueto the hugeamountsof spatialdataandto the
new conceptuahatureof the problemswhich mustaccountfor spatial distance.Clusteringand
region oriented queriesare common problemsin this domain. Several approacheshave been
presentedn recentyears,all of which requireat leastone scanof all individual objects(points).
Consequentlythe computationalcomplexity is at least linearly proportionalto the number of

objectsto answereachquery.In this paper,we proposea hierarchicalstatisticalinformation grid

basedapproactfor spatialdatamining to reducethe costfurther. The ideais to capturestatistical
information associatedwvith spatial cells in such a mannerthat whole classesof queriesand
clusteringproblemscan be answeredwithout recourseto the individual objects.In theory, and
confirmedby empirical studies this approachoutperformsthe bestpreviousmethodby at leastan
order of magnitude, especially when the data set is very large.

1 Introduction

In general,spatialdatamining, or knowledgediscoveryin spatialdatabasess the extractionof
implicit knowledge spatialrelationsand discoveryof interestingcharacteristicand patternsthat
are not explicitly representedn the databasesThesetechniquescan play an importantrole in
understandingpatialdataandin capturingintrinsic relationshipsbetweenspatialand nonspatial
data.Moreover,suchdiscoveredelationshipanbe usedto presentdatain a concisemannerand
to reorganizespatial database$o accommodatelata semanticsand achievehigh performance.
Spatialdatamining haswide applicationsn manyfields, including GIS Systemsjmagedatabase
exploration, medical imaging, etc.[Che97, Fay96a, Fay96b, Kop96a, Kop96b]

The amountof spatialdataobtainedfrom satellite, medicalimagery and other sourceshas been
growing tremendously in recent years. A crucial challenge in spatial data miningefédieacy of
spatialdatamining algorithmsdueto the often hugeamountof spatialdataandthe complexity of
spatial data types and spatial accessingnethods.In this paper,we introducea new statistical
information grid-basedmethod(STING) to efficiently processmany common‘“region oriented”
guerieson a setof points.Regionorientedqueriesare definedlater more preciselybut informally,
they askfor the selectionof regionssatisfyingcertain conditionson density,total area,etc. This
paperis organizedas follows. We first discussrelated work in Section2. We proposeour
statisticalinformation grid hierarchicalstructureand discussthe query typesit can supportin
Sections3 and4, respectively The generalalgorithmaswell asa detailedexampleof processinga



gueryaregivenin Section5. We analyzethe complexity of our algorithmin Section6. In Section

7, we analyze the quality of STING’s result and propose a sufficient condition under which STING
is guaranteedo return the correctresult. Limiting Behaviorof STING is in Section8 and, in
Section9, we analyzethe performanceof our method.Finally, we offer our conclusionsn Section

10.

2 Related Work

Many studieshavebeenconductedn spatialdatamining, suchasgeneralization-basekhowledge
discovery[Kno96, Lu93], clustering-basethethodqdEst96,Ng94,Zha96],andso on. Thosemost
relevantto our work are discussedriefly in this sectionand we emphasizevhat we believeare
limitations which are addressed by our approach.

2.1 Generalization-based Approach

[Lu93] proposedwo generalizatiorbasedalgorithms:spatial-data-dominarand non-spatial-data-
dominantalgorithms.Both of theserequirethat a generalizatiorhierarchyis given explicitly by
expertsor is somehowgeneratecautomatically.(However,sucha hierarchymay not exist or the
hierarchy given by the experts may not be entirely appropriate in some cases.) The quality of mined
characteristicss highly dependenbn the structureof the hierarchy.Moreover,the computational
complexity isO(NlogN), whereN is the number of spatial objects.

Given the abovedisadvantagesthere have beenefforts to find algorithmsthat do not requirea
generalizatiorhierarchy,thatis, to find algorithmsthat can discovercharacteristicslirectly from
data. This is the motivation for applying clustering analysis in sghdtaimining, whichis usedto
identify regions occupied by points satisfying specified conditions.

2.2 Clustering-based Approach

2.2.1 CLARANS

[Ng94] presents apatialdatamining algorithmbasedon a clusteringalgorithmcalled CLARANS
(ClusteringLarge ApplicationsbaseduponRANdomizedSearch)on spatialdata. This is the first
paperthat introducesclusteringtechniquesnto spatialdatamining problemsandit representsa
significant improvementon large data sets over traditional clustering methods.However the
computationaktomplexity of CLARANS is still high. In [Ng94] it is claimedthat CLARANS is
linearly proportionalto the numberof points, but actually the algorithm is inherently at least
guadratic. The reasonis that CLARANS appliesa random search-basednethodto find an
“optimal” clustering. The time taken to calculate the cost differenéddeerthe currentclustering
andoneof its neighborgin which only oneclustermedoidis different)is linear andthe numberof
neighborsthat needsto be examinedor the currentclusteringis controlledby a parameteicalled
maxneighborwhich is definedas max(250,1.25%K(N - K)) whereK is the numberof clusters.
This meansthat the time consumedat eachstep of searchingis O(KN?). It is very difficult to



estimate how many steps need to be taken to reach the local opbotwme,cancertainlysaythat
the computationalcomplexity of CLARANS is Q(KN?). This observationis consistentwith the
resultsof our experimentsand thosementionedin [Est96] which show that the performanceof
CLARANS is close to quadratic in the number of points.

Moreover, the quality of the results can not be guaranteetN is largesincerandomizedsearch
is usedin the algorithm. In addition, CLARANS assumesghat all objectsare storedin main
memory. This clearly limits the size of the database to which CLARANS can be applied.

2.2.2BIRCH

Anotherclusteringalgorithmfor large datasets,called BIRCH (Balancediterative Reducingand
Clustering using Hierarchies),is introducedin [Zha96]. The authors employ the conceptsof
ClusteringFeatureandCF tree.Clusteringfeatureis summarizingnformationabouta cluster.CF
treeis a balancedree usedto storethe clusteringfeatures.This algorithm makesfull useof the
availablememoryand requiresa single scanof the dataset. This is done by combining closed
clusterstogetherand rebuilding CF tree. This guaranteeghat the computationcomplexity of
BIRCH is linearly proportionalto the numberof objects.We believe BIRCH still hasone other
drawback:This algorithmmay not work well whenclustersare not “spherical”’ becausét usesthe
concept of radius or diameter to control the boundary of a cluster

2.2.3 DBSCAN

Recently, [Est96] proposeda density basedclustering algorithm (DBSCAN) for large spatial
databasesTwo parameter€Eps and MinPts are usedin the algorithmto control the density of
normal clusters. DBSCAN is able to separate‘noise” from clustersof points where “noise”
consistsof pointsin low density regions.DBSCAN makesuse of an R* tree to achievegood
performanceThe authorsillustratethat DBSCAN canbe usedto detectclustersof any shapeand
canoutperformCLARANS by a large margin (up to severalordersof magnitude) However,the
complexity of DBSCAN is O(NlogN). Moreover, DBSCAN requiresa human participant to
determinethe global parameterEps. (The parameteMinPts is fixed to 4 in their algorithm to
reducethe computationalcomplexity.) Before determiningEps, DBSCAN hasto calculatethe
distancebetweera point andits kth (k = 4) nearesheighbordor all points.Thenit sortsall points
accordingto the previouscalculateddistancesand plots the sortedk-dist graph. This is a time
consumingprocessFurthermorea userhasto examinethe graphandfind thefirst “valley” of the
graph. The corresponding distance is chosen as the value of Bjpe sesliltingclusteringquality
is highly dependenbn the EpsparameterWhenthe point setto be clustereds the responsesetof
objects satisfying some qualification, then the determinatidépsmustbe doneeachtime andthe
cost of DBSCAN will be higher. (In [Est96], the cost quoted did not include this overhead.)

Moreover, all algorithmsdescribedabove have the commondrawbackthat they are all query-
dependenapproachesThatis, the structuresusedin theseapproachesre dependenbn specific
guery. They are built oncefor eachqueryandare generallyof no useto answerfurther queries.
Therefore theseapproacheseedto scanthe datasetsat leastoncefor eachquery, which causes

! We could not verify this since we do not have BIRCH source code.



the computationadomplexitiesof all aboveapproacheto beatleastO(N), whereN is the number
of objects.

In this paper,we proposea statisticalinformationgrid-basedapproachcalled STING (STatistical

INformation Grid) to spatialdatamining. The spatialareais divided into rectangularcells. We

have severaldifferent levels of suchrectangularcells correspondingo different resolutionand

these cells form a hierarchical structure. Each cell at a high level is partitofoech a numberof
cells of the next lowelevel. Statisticalinformationof eachcell is calculatedandstoredbeforehand
and is used to answer queries. The advantages of this approach are:

» It is a query-independentipproachsince the statisticalinformation exists independentlyof
queries.It is a summaryrepresentatiorof the datain eachgrid cell, which can be usedto
facilitate answering a large class of queries.

» Thecomputationatomplexityis O(K), whereK is the numberof grid cellsat the lowestlevel.
Usually,K << N, whereN is the number of objects

* Query processing algorithms using this structure are trivial to parallelize the computing.

* Whendatais updated,we do not needto recomputeall information in the cell hierarchy.
Instead, we can do an incremental update.

3 Grid Cell Hierarchy

3.1 Hierarchical Structure

We divide the spatialareainto rectanglecells (e.g., using latitude and longitude) and employ a
hierarchicalstructure Let the root of the hierarchybe at level 1; its childrenat level 2, etc. A cell
in leveli correspondso the union of the areasof its childrenatleveli + 1. In this papereachcell
(exceptthe leaves)has4 children and eachchild correspondgo one quadrantof the parentcell.
Theroot cell at level 1 correspondso the whole spatialarea(which we assumas rectangularfor
simplicity). The size of the leaf level cells is dependenbn the densityof objects.As a rule of
thumb,we choosea size suchthat the averagenumberof objectsin eachcell is in the rangefrom
severaldozendo severathousandsln addition,a desirablenumberof layerscould be obtainedby
changing the number of cells that form a higher level cell. In this paper, we willastbeldefault
value unless otherwise specifidd.this paper,we assumeur spaceis of two dimensionsalthough
it is very easyto generalizethis hierarchy structure to higher dimensionalmodels. In two
dimensions, the hierarchical structure is illustrated in Figure 1.

2 Some strategies can be applied when constructing the hierarchical structure t&Kenslnghich are
beyond the scope of this paper.
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Figure 1. Hierarchical Structure

For eachcell, we have attribute-dependerand attribute-independerparametersThe attribute-
independent parameter is:

* n 0 number of objects (points) in this cell

As for the attribute-dependenparametersye assumethat for eachobject, its attributeshave
numericalvalues.(We will addresshe categoricalcasein future research.yor each numerical
attribute, we have the following five parameters for each cell:

« mU mean of all values in this cell

» s[J standard deviation of all values of the attribute in this cell

* min the minimum value of the attribute in this cell

* maxd the maximum value of the attribute in this cell

» distribution the type of distribution that the attribute value in this cell follows

The parameterdistribution is of enumerationtype. Potential distribution types are: normal,
uniform, exponentialandsoon. The valueNONE is assignedf the distributiontype is unknown.
The distribution type will determinea “kernel” calculationin the genericalgorithm as will be
discussed in detail shortly.

3.2 Parameter Generation

We generate the hierarchy of cells with tressociategharametersvhenthe datais loadedinto the
databaseParameters, m, s, min, andmaxof bottomlevel cells are calculateddirectly from data.
The value of distribution could be either assignedoy the userif the distribution type is known
beforehandor obtainedby hypothesidestssuchas x*test. Parametersf higherlevel cells canbe
easilycalculatedrom parameter®f lower level cell. Let n, m, s, min, max dist be parametersf
currentcell andn;, m, s, min, max, anddist be parameterof correspondindower level cells,
respectively. Tha, m, s, min, andmaxcan be calculated as follows.

n=|Zq
Zmr\

n

m=



\/Z(sz +mP)n

S= i -m2
n

min = min(min)

max= max( max)

The determinationof dist for a parentcell is a bit more complicated.First, we set dist as the

distributiontype followed by mostpointsin this cell. This canbe doneby examiningdist andn;.

Then, we estimate theuimberof points,sayconfl, thatconflict with the distributiondeterminedy

dist m, ands according to the following rule:

1. If dist # dist, m = mands = s, thenconflis increased by an amountref

2. If dist # dist, buteithermy = mor § = s is not satisfied thensetconfl to n (This enforcedist
will be set to NONE later);

3. If dist =dist, m = mands = s, thenconflis increased by O;

4. If dist = dist, but eithem = mor s = sis not satisfied, theconflis set ton.

Finally, if confl is greater than a threshdldThis threshold is a small constant, say Ov@&ich is
n

setbeforethe hierarchicalstructureis built), thenwe setdist as NONE; otherwise,we keepthe
original type. For example, the parameters of lower level cells are as follows.

i 1 2 3 4

n; 100 50 60 10
m 20.1 19.7 21.0 20.5
S 2.3 2.2 2.4 2.1

min 4.5 55 3.8 7

max 36 34 37 40
dist | NORMAL NORMAL NORMAL NONE

Table 1: Parameters of Children Cells
Then the parameters of current cell will be

n=220

m= 20.27
s=2.37

min= 3.8
max= 40

dist= NORMAL

Thedistributiontypeis still NORMAL basedon thefollowing: Sincethereare 210 pointswhose
distributiontypeis NORMAL, distis first setto NORMAL. After examiningdist, m, ands of

each lower level cell, we find oabnfl = 10. Sodistis kept as NORMAL onnfl =0.045 < 0.05).

We only needto go throughthe datasetoncein orderto calculatethe parameterg@ssociatedvith
the grid cells at the bottom level, the overall compilation tinti@ésrly proportionalto the number
of objects with a small constant factor. (And only hasgdoneoncell notfor eachquery.)With



this structurein place,the responsdime for a query is much fastersinceit is O(K) insteadof
O(N). We will analyze performance in more detail in later sections.

4 Query Types

If the statistical information stored in the STING hierarchical structure isuifitientto answera
query, therwe haverecourseo the underlyingdatabaseTherefore we cansupportany querythat
canbe expressedy the SQL-like languagedescribedater in this section.However,the statistical
informationin the STING structurecananswermmanycommonlyaskedgueriesvery efficiently and
we often do not needto accesshe full databaseEven when the statistical information is not
enough to answer a query, we can still narrow the set of possible choices.

STING canbe usedto facilitate severalinds of spatialqueries.The mostcommonlyaskedquery
is region query which is to selectregionsthat satisfy certain conditions(Ex1). Another type of

query selectsregionsand returnssomefunction of the region, e.g., the rangeof someattributes
within the region (Ex2). We extend SQL so that it can be used to describe such Gheriesnal

definition is in Appendix. The following are several query examples.

Ex1. Select the maximal regions that have at leasthb@d@eger unit areaandat least70% of the
house prices are above $400K and with total area at least 100 units with 90% confidence.

SELECT REGION

FROM house-map

WHERE DENSITY IN (100¢0)

AND price RANGE (400000») WITH PERCENT (0.7, 1)
AND AREA (100,)

AND WITH CONFIDENCE 0.9

Ex2. Selectthe rangeof age of housesin those maximal regionswhere there are at least 100
houseser unit areaand at least70% of the houseshave price between$150K and $300K with
area at least 100 units in California.

SELECT RANGE(age)

FROM house-map

WHERE DENSITY IN (100¢0)

AND price RANGE (150000, 300000) WITRERCENT (0.7, 1)
AND AREA (100,)

AND LOCATION California

5 Algorithm

With the hierarchicalstructureof grid cells on hand,we canusea top-downapproachio answer
spatialdatamining queries.For eachquery, we begin by examiningcells on a high level layer.
Note that it is not necessary to start with the root; we may begin from an intermediate layer (but
do not pursue this minor variation further due to lack of space).



Startingwith the root, we calculatethe likelihood that this cell is relevantto the query at some
confidencdevel usingthe parametersf this cell (exactlyhow this is computeds describedater).
This likelihood can be defined as the proportion of objectsin this cell that satisfy the query
conditions.(If the distributiontype is NONE, we estimatethe likelihood using somedistribution-
free techniques instead.) After we obtain the confidémtegval, we labelthis cell to berelevantor
not relevantat the specifiedconfidencelevel. When we finish examiningthe current layer, we
proceedto the next lower level of cells and repeatthe sameprocess.The only differenceis that
insteadof goingthroughall cells,we only look at thosecellsthatare childrenof therelevantcells
of the previouslayer. This procedurecontinuesuntil we finish examiningthe lowest level layer
(bottomlayer). In mostcasestheserelevantcells and their associatedtatisticalinformation are
enoughto give a satisfactoryresultto the query. Then,we find all the regionsformedby relevant
cells andreturn them. However,in rare casesPeoplemay want very accurateresultfor special
purposesg.g. military), this information are not enoughto answerthe query. Then, we needto
retrieve those data that fall into tredevantcells from database and do some further processing.

After we havelabeledall cells as relevantor not relevant we can easily find all regionsthat
satisfy the density specifiedby a breadth-firstsearch.For eachrelevant cell, we examinecells
within a certain distance (how to choose this distance is discussed below) from thefaamtent
cell to seeif the averagedensitywithin this small areais greaterthanthe densityspecified.If so,
this area is marked and adllevantcells we just examined are put intgq@eue. Eachtime we take
one cell from the queue and repeat the same procedure thatapily thoserelevantcellsthatare
not examinedbeforeare enqueuedWhenthe queueis empty, we haveidentified oneregion. The
distancewe useaboveis calculatedfrom the specifieddensityand the granularity of the bottom

level cell. The distanced = max(l,,/L) wherel, c, andf arethe sidelengthof bottomlayer cell,
TC
the specifieddensity,anda small constanthumbersetby STING (It doesnot vary from a queryto
another) respectively Usually, | is the dominanttermin max(l, , /L) . As a result, this distance
TC

canonly reachthe neighborcells. In this case we just needto examineneighboringcells andfind
regionsthat are formedby connectectells. Only whenthe granularityis very small, this distance
could cover a numberof cells. In this case,we needto examineevery cell within this distance
instead of only neighboring cells.

For example,if the objectsin our databasere housesand price is oneof the attributes,thenone
kind of querycould be “Find thoseregionswith areaat leastA wherethe numberof housesper
unit areais at leastc and at least3% of the houseshave price betweena and b with (1 - a)
confidence” wher@ < b. Here,a could be « andb could be +o. This query can be written as

SELECT REGION

FROM house-map

WHERE DENSITY IN [, )

AND price RANGE R, b] WITH PERCENT %, 1]
AND AREA [A, »)

AND WITH CONFIDENCE 1



We beginfrom the top layer that hasonly onecell and stop at the bottom level. Assumethat the
pricein eachbottomlayer cell is approximatelynormally distributed.(For otherdistributiontypes
theideais essentialljthe sameexceptthatwe usedifferentdistributionfunctionandlookuptable.)
Note that price in a higher level cell could have distribution type as NONE.

For eachcell, if thedistributiontype is normal,we first calculatethe proportionof housesvhose
price is within the rangeg[ b]. The probability that a price is betwea@ndb is

p=P(a< prices<b)
a-m_ price—-m_b-m
< <
S S S

a—mSZSb—m)
S

= P( )

:P(

wherem ands arethe meanandstandarddeviationof all pricesin this cell respectively Sincewe
assumaall pricesareindependengiven the meanand variance,the numberof houseswith price
betweena andb hasa binomial distributionwith parameters and p, wheren is the numberof

houses. Now we consider the following cases accordingrt, andn(1 - p).

1. Whenn < 30, we canusebinomial distribution directly to calculatethe confidenceinterval of
the numberof houseswhoseprice falls into [a, b], and divide it by n to get theconfidence
interval for the proportion.

2. Whenn>30,np =5,andn(1- p) = 5, the proportionthat the price falls in [a, b] hasa
normal distribution N( P, /p(1- p)/ n) approximately. Then 100(1 - o)% confidence

interval of the proportion i + zy2+/ P(L= P) / n = [pa, pal.

3. Whenn > 30butn p < 5, the Poissondistributionwith paramete = n p is approximately
equal to the binomial distributiomith parameters and p. Therefore we canusethe Poisson
distribution instead.

4. Whenn>30butn(1- p) <5, we cancalculatethe proportionof housegX) whoseprice is

not in [a, b] using Poissondistribution with parameterA = n(1 - pP), and1 - X is the
proportion of houses whose price is & ).

For acell, if thedistributiontypeis NONE, we canestimatethe proportionrange[p,, p,] thatthe
price falls in p, b] by some distribution-free techniques, such as Chebyshev’s inequality [Dev91].

O 0O g ¢ s O
1. If mO[a b], then[p,, p,] = [0, minEmaxd 5 > ;
& Ha-m)“ (b-m)
2. If m=aorm=hb, then py, p;] =[O0, 1];
3. fm0O(ab), then[p,, p,] = naxd—— 5> _1-— S _ df
. IfmO(a b), then[p,, p,] = tmax[L - 1= , .
Pu: Pe %m 0 (@-m?" (b-m? OF



Oncewe havethe confidenceinterval or the estimatedrange[p:, p.], we can label this cell as
relevantor not relevantLet Sbe the area of cells at bottom layeipdix n < Sx ¢ x 3%, we label
this cell amot relevantotherwise, we label it aglevant

Eachtime whenwe finish examininga layer, we go down onelevel and only examinethosecells
that form the relevantcells at higher layer. After we labeledthe cells at bottom layer, we scan
thoserelevantcells andreturnthoseregionsformedby at leasttA Sadjacentelevantcells. This
can be done i@(K) time.

The above algorithm is summarized in Figure 2.

Statistical Information Grid-based Algorithm:

1. Determine a layer to begin with.

2. For eachcell of this layer, we calculatethe confidenceinterval (or
estimated range) of probability that this cell is relevant to the qu

3. From theinterval calculatedabove,we label the cell asrelevantor

not relevant.

If this layer is the bottom layer, go to Step 6; otherwise, go to St
We go down the hierarchystructureby one level. Go to Step2 for
those cells that form threlevantcells of the higher level layer.

6. If the specificationof the queryis met, go to Step8; otherwise,go to
Step 7.

7. Retrieve those data fall into the relevant cells and do further
processingReturnthe resultthat meetthe requirementf the query
Go to Step 9.

8. Findtheregionsof relevantcells. Returnthoseregionsthat meetthe
requirement of the query. Go to Step 9.

9. Stop.

ok

Figure 2. STING Algorithm

6 Analysis of the STING Algorithm

In abovealgorithm,Stepl takesconstantime. Steps2 and 3 requirea constantime for eachcell
to calculatethe confidenceinterval or estimateproportionrangeandalsoa constantime to label
the cell asrelevantor not relevant This meanghatwe needconstantime to processeachcell in
Steps2 and 3. Thetotal time is lessthanor equalto the total numberof cellsin our hierarchical
structure Notice that the total numberof cellsis 1.3, whereK is the numberof cells at bottom
layer. We obtainthe factor 1.33 becauseéhe numberof cells of a layeris alwaysone-forthof the
numberof cells of the layer one level lower. So the overall computationcomplexity on the grid
hierarchystructureis O(K). Usually, the numberof cells neededto be examinedis much less,
especiallywhenmanycells at high layersarenot relevant In Step8, thetime it takesto form the
regionsis linearly proportionalto the numberof cells. The reasonis that for a given cell, the
number of cells needto be examinedis constantbecauseboth the specified density and the
granularitycanberegardedasconstantsiuring the executionof a queryandin turn the distances
alsoa constansinceit is determinedy the specifieddensity.Sincewe assumesachcell at bottom
layer usuallyhasseveraldozengo severalthousand®bjects,K << N. So, the total complexityis
still O(K).Usually,we do not needto do Step7 andthe overall computationatomplexityis O(K).

10



In the extremecasethat we needto go to Step7, we still do not needto retrieveall datafrom
databaseTherefore,the time requiredin this stepis still lessthan linear. So, this algorithm
outperforms other approaches greatly.

7 Quality of STING

STING makes use of statistical information to approximatethe expectedresults of query.
Therefore, it could be imprecise since data pointsesarbitrarily located.However,underoneof
the following two conditions,STING canguaranteghe accuracyof its result.Let A andc be the
minimum areaand densityspecifiedby query,respectivelyLet R andl be a regionsatisfyingthe
conditions specified by the query and the side length of bottom level cell, respectively.

Definition 1. Let F be a region. The width of F is definedasthe side length of the maximum
square that can fit iR.

1. Let W bethewidth of R If W? - 4OW/I0+1)I* > A, thenR mustbe returnedoy STING. The
reasoris thatthe squarewith sidelengthW coversmorethanW/1% - 4(CW/I0+1) bottomlevel
cells entirely. Since all these cells will be detected, STING is able to return R.

Definition 2. Let § and $; be two squares.The distancebetweenS, and S; is defined as the
maximum distance between verticesSpandS;.

2. If atleastVI’Osquareswith sidelengthof 2J2 canfit in R andthereexistsa tree on those
squares such that the distance between the parent square and its child iﬁaf;itmvheref is
TC

the small constantsetby the system then R mustbe returnedby STING. The reasonis that
each of those squares covers at least one bottom level cell entirely. Therefore, STING is able to
discover R.

The aboveis the sufficient conditionfor STING to return accurateresults.However,in most of

othercases STING is alsoableto return correctanswerswith high confidence.The worst case
scenariofor STING would be a clusterof pointsright at the cornersof four cellsin the centerof

the map. We use the following strategy to solve this problem.

1. We makethe size of bottom level cell nearzero suchthat eachbottomlevel cell containsat
mostonedatapointif notwo pointscollocate We only instantiatea cell if thereis at leastone
data point in it.

2. Weintelligently constructthe hierarchicalstructuresuchthat the numberof instantiatedcells
in a higher layer is at most half of that in one level lower.

3. Weonly keepa certainnumberof top levelson line andthe restlayersare kept off-line. If an
off-line layer is neededwe can dynamicallyload it in. However,usersrarely requiressuch
precision.

Pursuit of this extension is beyond the scope of this paper and will be dealt with in future work.

11



8 Limiting Behavior of STING is Equivalent to DBSCAN

The regions returned by STING are an approximationof the result by DBSCAN. As the
granularityapproachegero, the regionsreturnedby STING approachthe resultof DBSCAN. In
orderto compareto DBSCAN, we only usethe numberof points heresince DBSCAN can only
cluster points accordingto their spatial location. (i.e., we do not considerconditionson other
attributes.)DBSCAN hastwo parametersEpsandMinPts. (Usually, MinPtsis fixed to k.) In our
MinPts+1_ k+1

TEpS  TEpS
approximatethe resultof DBSCAN. The reasonis that the densityof any areainsidethe clusters
detectecby DBSCAN is at least S+ 1
TEpS
points(excludingitself) within distanceEps.In STING, for eachcell, if n < Sx ¢, thenwe labelit

asnot relevant otherwise we labelit asrelevantwheren andS arethe numberof pointsin this
cell andthe areaof bottomlayer cell, respectively Whenwe form the regionsfrom relevantcells,

case, STING hasonly one parameterthe densityc. We setc = in orderto

sincefor eachcore point thereare at leastMinPts

+
the examiningdistanceis setto be d = max(l,,}k—l) . When the granularity is very small,
TC

[k+1 . :
—— becomeghe dominantterm. As the granularityapproachegero, the areaof eachcell at
TC

bottom layer goesto zero. So, if thereis at leastone pointin a cell, this cell will be labeledas
relevant Now whatwe needto dois to form the regionto be returnedaccordingto distanced and

+ +
densityc. We canseethatd = k+l_ kk +11 = Eps.For eachrelevantcell, we examinethe
TIC
T
TEpS

areaaroundit (within distanced) to seeif the densityis greaterthanc. This is equivalentto check
if the numberof points (including itself) within this areais greaterthanc x T = k + 1. As a
result, the result of STING approaches that of DBSCAN when the granularity approaches zero.

9 Performance

We run severalteststo evaluatethe performanceof STING. The following testsare run on a
SPARC 10 machine with Solaris 2.4 operating system (192 MB memory).

9.1 Performance Comparison of Two Distributions

To obtain performancemetric of STING, we implementedthe house-priceexamplediscussedn
Section 5. Ex1 is the query that we posed. We generated two data sets, both of whi€l®|@0e
datapoints (houses).The hierarchicalstructurehassevenlayersin this test. First, we generatea
dataset (DS1) suchthat the price is normally distributedin eachcell (with similar mean).The
hierarchicalstructuregeneratiortime is 9.8 seconds(Generatiomeedsto be doneoncefor each
data set. All the queries for the same data set can use the same structure. Therdéonet mexd
to generatat for eachquery.)It takesSTING 0.20 secondto answerthe query giventhe STING
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structureexists.The expectedesultandthe resultreturnedby STING arein Figure 3a and 3b,

respectively.

Figure 3a. Expected result of DS1 Figure 3b. STING's result of DS1

From Figure 3a and 3b, we canseethat STING's resultis very closeto the expectedone.In the
seconddata set (DS2), the pricesin eachbottom layer cell follow a normal distribution (with

different mean)but they do not follow any known distribution at higher levels. The hierarchical
structuregenerationtime is 9.7 secondslt takesSTING 0.22 secondto answerthe query. The
expected result and the result returned by STING are in Figure 4a and 4b, respectively.

Figure 4a. Expected result of DS2 Figure 4b. STING's result of DS2

Once again, we can see that the STING'’s result is very closed to the expected one.

9.2 Benchmark Result
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Currently, clusteringbasedapproacheareanimportantcategoryof spatialdatamining problems.
Three extant systemsare CLARANS [Ng94], BIRCH [Zha96], and DBSCAN [Est96]. We
compare the performance of these three with STING.

In the following tests,we only comparethe time for clustering.However,if the clusteringdatais

the result of some query, then all other algorithms (other than STING) have at least three phases:
1. Find query response.

2. Build auxiliary structure.

3. Do clustering.

The reportednumbersfor the other methodsdo not include computationof Phasel, but STING

only takesone stepto answerthe whole query. Therefore, STING actually comparesetterthan

that the measurements presented here indicate.

We usethe benchmarlchosenby EsterM. et al. in [Est96], hnamelySEQUOIA 2000 [Sto93], to
comparethe performanceof STING and other approachesWe successfullyran CLARANS and
STING with datasizebetweenl252and12512.STING hasgeneratiortime andquerytime. The
generation time is the time consumed to generate the hierarchical structure and thienguetiie
time used to answer a specific query. In the test, the STING hierarchy structure has six layers.

Due to unavailability of DBSCAN source code, we are unable to run this algorithm. We
discoveredthat CLARANS is approximately15 times fasterin our configurationthan in the
configurationspecifiedin [Est96]for all datasizes.We estimatehat DBSCAN alsorunsroughly
15 times faster and show the estimatedrunning time of DBSCAN in the following table as a
function of point set cardinality. All times are in units of seconds.

Number of Points | 1256 2503 3910 5213 6256 12512
CLARANS 49 200 457 785 1238 5538
DBSCAN 0.2 0.4 0.7 1.0 1.2 2.86
(projected)

STING (query) 0.1 0.11 0.11 0.12 0.12 0.14
STING 1.25 1.32 1.40 1.48 1.55 1.62
(generation)

Table 2: Performance tests for CLARANS, DBSCAN, and STING
Furthermore BIRCH outperformsCLARANS about20 to 30 times[Zha96]. So STING will also

outperformBIRCH by a very large margin. We plot the query responsdaime for DBSCAN and
STING in Figure 5 because DBSCAN is the fastest one among all existing algorithms.
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Figure 5. Performance Comparison between STING and DBSCAN

10 Conclusion

In this paper, we present a statistical information grid-based approach to spatminitzgalt has
much less computational cost than other approaches. The I/O cossiadewe canusuallykeep
the STING datastructurein memory.Both of thesewill speedup the processingof spatialdata
query tremendouslyln addition, it offers us an opportunity for parallelism(STING is trivially

parallelizable).All theseadvantage®enefitfrom the hierarchicalstructureof grid cells and the
statistical information associated with them.
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Appendix

The following is the specification of our extended SQL in BNF notation.

<query> ::=
<region-query> ::=

<object-query> ::=

<attr-query> ::=

<from-clause> ::=
<relations> ::=
<classes> ::=
<region-conds> ::=
<region-cond> ::=
<object-conds> ::=
<object-cond> ::=
<attr-funcs> ::=
<attr-func> ::=
<stat-func> ::=
<func-conds> ::=
<density> ::=
<func> ::=

<obj-func> ::=
<area> ::=
<location> ::=
<confidence> ::=
<namelist> ::=
<polygonlist> ::=
<polygon> ::=
<points> ::=
<point> ::=
<left-paren> ::=
<right-paren> ::=

<region-query> | <object-query> | <func-query>
SELECT REGION

FROM <from-clause>

WHERE <region-conds>

SELECT object

FROM <from-clause>

WHERE <object-conds>

SELECT <attr-funcs>

FROM <from-clause>

WHERE <attr-conds>

<relations> | <classes>

relation-name | relation-name, <relations>

class-name | class-name, <classes>

<region-cond> | <region-cond> AND <region-conds>
<density> | <func> | <area> | <location> | <confidence>
<object-cond> | <object-cond> AND <object-conds>
<obj-func> | <location>

<attr-func> | <attr-func>, <attr-funcs>

attr-name | <stat-func>(attr-name)

MAX | MIN | RANGE | AVERAGE | M | COU NT | ...
<region-conds> | <object-conds>

DENSITY IN <left-paren>number, number<right-paren>
<obj-func> [WITH PERCENT
<left-paren>percentage, percentage<right-paren>]
<attr-func> RANGE <left-paren>number, number<right-paren>
AREA <left-paren>number, number<right-paren>
LOCATION <namelist> | LOCATION <polygonlist>
WITH CONFIDENCE percentage

name | name; <namelist>

<pdygon> | <polygon>; <polygonlist>

<points>

<point> | <point>, <points>

(coordinate, coordinate)

T

T
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