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Abstract. In the secure neural network inference (SNNI) problem, a
service provider offers inference as a service with a pre-trained neural
network (NN). Clients can use the service by providing an input and
obtaining the output of the inference with the NN. For reasons of privacy
and intellectual property protection, the service provider must not learn
anything about the input or the output, and the client must not learn
anything about the internal parameters of the NN. This is possible by
applying techniques like multi-party computing (MPC) or homomorphic
encryption (HE), although with a significant performance overhead.
One way to improve the efficiency of SNNI is by selecting NN architec-
tures that can be evaluated faster using MPC or HE. For this, it would be
important to predict how long SNNI with a given NN takes. This turns
out to be challenging. Traditional predictors for NN inference time, like
the number of parameters in the NN, are poor predictors of SNNI execu-
tion time, since they ignore the characteristics of cryptographic protocols.
This paper is the first to address this problem. We propose three different
prediction methods for SNNI execution time, and investigate experimen-
tally their strengths and weaknesses. The results show that the proposed
methods offer different advantages in terms of accuracy and speed.

Keywords: Privacy-preserving machine learning, Multi-party computation, Ho-
momorphic encryption, Neural networks, Performance prediction

1 Introduction

Compared to traditional statistical methods, approaches based on artificial Neu-
ral Networks (NNs) offer distinct advantages. They possess the ability to au-
tonomously learn patterns and capture intricate structures within data, all with-
out necessitating an exhaustive comprehension of the underlying phenomena. As
a result, NNs can be successfully applied in a variety of fields [1].

To achieve good accuracy, often huge NNs are used with millions or even
billions of tuneable parameters. Training such NNs requires large amounts of
training data, significant computational resources, and a high level of expertise.
This makes the idea of Machine Learning as a Service (MLaaS) attractive: in
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Fig. 1. Overview of the SNNI problem

MLaaS, the training is performed by a specialized service provider. After the
service provider has trained the NN, it can offer inference as a service to clients.
A client provides an input, and receives the NN’s output on the given input.

Such a service may lead to concerns of confidentiality and privacy [26]. The
client’s input may be sensitive personal information that the client does not want
to share with the service provider. On the other hand, the parameters of the NN
are the intellectual property of the service provider, which the service provider
may not want to share with the client. This leads to the secret NN inference
(SNNI) problem, as shown in Fig. 1: how to compute the output of the NN on
a given input such that (1) the input and the output remain the client’s secret
and (2) the parameters of the NN remain the service provider’s secret.

In recent years, several cryptographic protocols have been proposed for solv-
ing the SNNI problem [20], using different cryptographic primitives, especially
from the field of secure multi-party computation (MPC) and homomorphic en-
cryption (HE). These cryptographic protocols lead to significant overhead [7].
One reason why SNNI tends to be very slow is that NNs optimized for traditional
(i.e., non-secure) inference may make secure evaluation using MPC or HE very
inefficient. For example, the ReLU function, defined as f(x) = max(0, x), is used
extensively in modern NNs and is very fast in traditional evaluation. However,
if x is secret-shared between multiple parties or if x is (homomorphically) en-
crypted, then computing f(x) in a secure way becomes challenging, requiring a
sophisticated protocol. Thus, to make SNNI faster, it is important to select NNs
that can be efficiently evaluated in a secure manner. For this, it would be useful
if we could predict how long SNNI with a given NN would take. Unfortunately,
we have currently no way to tell how long SNNI will take on a given NN, other
than by actually running it, which may be too costly.

The aim of this paper is to remedy this problem by proposing methods for
quickly predicting the approximate runtime of a given SNNI approach on a given
NN. We devise three different methods for this purpose: one based on analytical
models for different types of NN layers, one using a dedicated NN for each
layer of the original NN, and one using a recurrent neural network (RNN). We
perform controlled experiments to evaluate the strengths and weaknesses of the
three methods. Our results show that they have complementary advantages and
disadvantages in terms of accuracy and speed.

2 Preliminaries

Neural networks. A feed-forward NN is a sequence of layers. Layer j = 1, . . . , L
realizes a function fj : Rnj → Rnj+1 . The input of layer 1 is the input of the NN,
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Table 1. Parameters determining the size of different types of layers

Symbol Meaning
Related layers

FC CONV MP/AvP ReLU BN

NI , NO number of inputs / outputs ✓
CI , CO number of input / output channels ✓
HI , WI input height / width ✓ ✓
HO, WO output height / width ✓ ✓
HF , WF filter height / width ✓ ✓
N number of neurons ✓
C number of channels ✓ ✓
H, W height / width of both input & output ✓

the output of layer L is the output of the NN. The output of layer j = 1, . . . , L−1
is the input of layer j+1. The layers can be of different types, depending on the
function they realize. Some commonly used layer types are the following (the
dimension parameters are explained in Table 1; for a positive integer N , the
notation [N ] is a shorthand for {1, . . . , N}):
Fully-connected (FC) computes the function y = x⊺W + b, where x ∈ RNI is the
input, W ∈ RNI×NO and b ∈ RNO are parameters, and y ∈ RNO is the output.
Convolutional (CONV) computes the function

y[h′, w′, c′] =
∑

c∈[C],a∈[HF ],b∈[WF ]

x[h′s+ a,w′s+ b, c] · k[c, a, b, c′],

where x ∈ RHI×WI×CI is the input, k ∈ RCI×HF×WF×CO and s ∈ R+ are
parameters, and y ∈ RHO×WO×CO is the output.
Max pooling (MP) computes the function

y[h,w, c] = max{x[hs+ a,ws+ b, c] : a ∈ [HF ], b ∈ [WF ]},

where x ∈ RHI×WI×C is the input and y ∈ RHO×WO×C is the output.
Average pooling (AvP) computes the function

y[h,w, c] =
1

|HF ||WF |
·

∑
a∈[HF ], b∈[WF ]

x[hs+ a,ws+ b, c],

where x ∈ RHI×WI×C is the input and y ∈ RHO×WO×C is the output.
ReLU activation computes the function y[j] = max(0, x[j]), where x ∈ RN is
the input and y ∈ RN is the output.
Batch normalization (BN) computes the function y[h,w, c] = µ[c]·x[h,w, c]+θ[c],
where x ∈ RH×W×C is the input, µ ∈ RC and θ ∈ RC are parameters, and
y ∈ RH×W×C is the output.

Secure NN inference. Current SNNI approaches make use of various cryp-
tographic primitives, particularly additive secret sharing (A-SS), oblivious trans-
fer (OT), garbled circuits (GC), and homomorphic encryption (HE). Based on
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the primitives, sophisticated protocols can be built for specific layer types [20].
For different types of NN layers, different protocols may be the most appropri-
ate. Current SNNI approaches evaluate the NN layer by layer, employing the
protocol deemed most appropriate per layer.

The evaluation of linear layers – such as FC, CONV, and AvP – only re-
quires additions and multiplications. These operations are directly supported by
additive secret-sharing (using Beaver’s multiplication algorithm), as well as by
most fully homomorphic encryption schemes.

The evaluation of nonlinear layers – such as MP and ReLU – is more compli-
cated and requires other cryptographic primitives to securely implement the used
basic nonlinear operations like comparisons. One possibility is to build Boolean
circuits for these nonlinear operations, and apply Yao’s Garbled Circuits proto-
col or the Goldreich-Micali-Wigderson protocol to securely evaluate the Boolean
circuits. In any case, the secure evaluation of nonlinear layers typically requires
a large amount of computation and communications.

3 Problem Statement

Our aim is to predict the execution time of a given SNNI protocol for different
NNs. The input to the prediction process is the description of a feed-forward
NN, given as a sequence of layer descriptions. Each layer description specifies
the type and size of a layer. The size of the layer may be characterized by one
number (e.g., for a ReLU layer) or by a tuple of numbers (e.g., for a CONV
layer). The output is an estimate of the time it takes to execute SNNI for one
sample, using the given NN.

This prediction functionality can be used, for example, in the context of Neu-
ral Architecture Search (NAS). When designing an SNNI service, the service
provider can use NAS to identify a NN architecture realizing a good trade-off
between accuracy and SNNI time. NAS can be very time-consuming if many
candidate architectures have to be evaluated. If SNNI time can be quickly pre-
dicted, architectures that would lead to too high SNNI time can be immediately
discarded, thus accelerating the search.

For the prediction to be useful, it should ideally be both quick and accurate.

4 Prediction Approaches

We consider three prediction approaches. A possibility is to calculate the SNNI
execution time from the time needed to evaluate individual layers, and using
different models for each layer type1. Considering the used model, we have mul-
tiple promising options. We can use an analytical model per layer, based on
the approximate amount of computation and communication performed in the

1 In this paper, we focus on the layer types described in Section 2. In future work, our
approach could be extended to other layer types, such as those used in transformer
architectures (e.g., multi-head attention).
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given layer. Alternatively, we can use an NN2 per layer, based on various fea-
tures of the given layer. Finally, we consider using a single model to predict the
SNNI execution time as a whole. Since the length of the input description is not
fixed, a recurrent neural network (RNN) is suitable for this. These approaches
are described in more detail in the following subsections.

4.1 Per-layer-type Analytical Model

SNNI execution time can be estimated as T =
∑L

i=1 Ti, where Ti denotes the
execution time of layer i, 1 ≤ i ≤ L. To estimate Ti, we observe that all protocols
for all types of layers follow the same high-level scheme:

1. The input and the parameters of the layer are prepared. Depending on the
specific protocol, this preparation can mean different activities (e.g., encryp-
tion, secret sharing, garbling), but the execution time of this step is linear
in the size of the input and the size of the parameter set of the layer.

2. The actual evaluation of the layer takes place. Again, depending on the
protocol, this can take many forms, but the execution time is in all cases
linear in the number of steps of the normal (non-secure) evaluation of the
layer. For example, calculating the dot product of two d-dimensional vectors
in a linear layer takes O(d) time in the non-secure evaluation, and it also
requires O(d) amount of computation and O(d) amount of data transfer
using MPC or HE, only with different constants.

3. The output of the layer may need to be extracted. Depending on the cryp-
tographic protocol, this may involve decryption, re-sharing, conversion to a
different number representation etc. In any case, the time for this is linear
in the output size.

This leads to the following formula: Ti = c1·Sin+c2·Spar+c3·Nop+c4·Sout+c5.
Here, Sin, Spar, and Sout denote the size of the input, of the parameter set, and
of the output, respectively; Nop is the number of operations in the non-secure
evaluation of the layer; and c1, . . . , c5 are non-negative coefficients that depend
on the protocol and on the system configuration. The values of Sin, Spar, Nop,
and Sout can be estimated for different types of layers as in Table 2 [6, 2].

As shown in Fig. 2, for each layer of the original NN, we extract the raw
features (e.g., NI and NO for a FC layer) and calculate the composite features
(Sin, Spar, Nop, Sout). These composite features are normalized and fed into a
linear regression model to get the correct weighting. The resulting predicted time
per layer is then aggregated for all layers.

4.2 Per-layer-type NN

The analytical models introduced above rely on simplifying assumptions that
may not always hold in practice. Sophisticated SNNI protocols may use opti-
mizations that break the linearity assumptions used in the analytical model.

2 Note that this is not the same as the original NN of Fig. 1. The NN of Fig. 1 is a
large and complex NN, evaluated securely. Here, we mean multiple (one per layer of
the original NN), relatively small NNs, evaluated without secrecy constraints.
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Table 2. Factors determining the execution time of different types of layers. The
dimension parameters are explained in Table 1.

Layer Sin Spar Nop Sout

FC NI (NI + 1)NO 2NINO +NO NO

CONV [3] HIWICI CIHFWFCO 2CIHFWFHOWOCO HOWOCO

MP/AvP HIWIC 0 HFWFHOWOC HOWOC
ReLU N 0 N N
BN HWC 2C 2HWC HWC
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NN for SNNI Layer 1 Layer 𝑖 Layer 𝐿

Raw features

Composite features

Normalization

Linear regression

Σ

Predicted SNNI execution time

Fig. 2. Prediction using an analytical model per layer of the original NN

E.g., OT extension protocols lead to non-uniform cost for OTs (the first OTs
are expensive, later OTs are cheaper). As a result, the analytical models cannot
fully capture the complexity of the dependence of SNNI execution time on the
size of the layers. To achieve more accurate prediction of SNNI execution time
for a given layer, we propose using NNs. We train a separate NN for each layer
type of the original NN. For this purpose, we use NNs with fully-connected lay-
ers and ReLU activation function, and we use the raw features of Table 1. The
approach is visualized in Fig. 3.

To improve prediction accuracy, we leverage hyperparameter tuning tech-
niques like grid search and randomized search [8] to systematically optimize the
NN configurations. Through adjustments in hyperparameters such as the learn-

Raw features

NN

Σ

Predicted SNNI execution time

NN for SNNI Layer 1 Layer 𝑖 Layer 𝐿

Fig. 3. Prediction using one NN per layer of the original NN
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Fig. 4. Prediction using a single RNN

ing rate, number of hidden layers, as well as the number of neurons per layer,
we aim to identify the most suitable NN setup.

4.3 RNN for Whole SNNI Execution Time

Recurrent Neural Networks (RNNs) are designed to handle sequential data. They
maintain a form of memory, enabling them to capture temporal dependencies
and patterns over extended sequences [25]. In our context, the execution of each
layer in the SNNI process occurs sequentially. The runtime of one layer can be
influenced by preceding layers, reinforcing the suitability of RNNs.

As sketched in Fig. 4, we consider the whole SNNI as one sample, with each
layer of the NN representing a discrete step, executed sequentially. The feature
for each step corresponds to the features of the layer. Since we aggregate features
from different types of layers, each layer has a feature length equal to the total
features of all layers. Only some of these features are relevant to the particular
layer, with the remaining being zero. As a result, each sample is represented by
a sparse matrix. Moreover, due to varying layer lengths across different NNs, we
apply padding to standardize the samples to the maximum step length.

First, we implement a masking layer in our RNN, a crucial step in handling
sequences of varying lengths. This layer employs a mask value to skip steps,
enabling the model to effectively ignore padding values (represented by zeros)
and to concentrate on the actual information in each sequence. This ensures that
the model learns meaningful patterns and dependencies in the data without being
influenced by the padding.

We integrate Long Short-Term Memory (LSTM) Networks into our RNN
architecture. LSTM is a variant of RNNs equipped with a memory cell capable of
retaining information across extensive sequences. This empowers them to grasp
complex temporal relationships and patterns [12, 10]. LSTMs can process input
sequences with differing lengths, aligning with our scenario, where the lengths of
layers vary across NN architectures. Next, we incorporate multiple FC layers with
ReLU activation into the RNN to thoroughly process nonlinear relationships.

To determine the optimal combination of hyperparameters, including the
number of layers, units per layer, and learning rate, we leverage automated
hyperparameter tuning.



8 Eloise Zhang and Zoltán Ádám Mann
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Fig. 5. Overview of the experimentation process

5 Experiments

Our experiments involve three phases: data generation, model tuning and train-
ing, and evaluation (see Fig. 5). The subsequent paragraphs give details of each
phase. The data and scripts of our experiments are publicly available3.

Data generation. To train our prediction models, we first acquire data of
SNNI execution time for various layer sizes for each layer type. This process en-
tails the creation of comprehensive NNs for profiling SNNI execution time. When
crafting these NNs, we deliberately diversify their composition by incorporating
layers with varying configurations. This provides us with a richer dataset in a
given amount of SNNI time.

To run SNNI on the created NNs, we first compile them into code for the
appropriate protocol, using a configuration file. The code is further customized to
align with a specific monitoring protocol. Then, we instrument the code to track
runtime and the influencing factors shown in Table 2 for each layer. Afterwards,
we compile and link the code to generate an executable for SNNI. Following this
preparatory phase, we execute the secure protocol on the NNs and capture the
relevant metrics. The result is a comprehensive dataset containing layer-specific
descriptions of the neural network architecture, along with the corresponding
execution times. We split this dataset, allocating 80% of it for training, and the
remaining 20% for testing purposes.

Model tuning and training. From the training dataset, we construct layer-
type-specific datasets for the per-layer prediction approaches. This involves ex-
tracting the layer-specific data from the training dataset, grouping the data by
layer type, and splitting the data into features, representing the characteristics
of each layer, and labels, representing the time for executing each layer.

Models are trained for each method from Section 4. The RNN is trained
using the whole training dataset. For training the analytical models and NNs
per layer type, the corresponding layer-type-specific training datasets are used.

3 https://github.com/Eloise2000/SNNI-Performance-Evaluator
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To enhance the performance of the NN and RNN models, we use hyperpa-
rameter tuning. This involves conducting multiple trials with the RandomSearch
tuner from the Keras Tuner library4 to explore a range of hyperparameters, in-
cluding learning rate, batch size, and network architecture parameters. After
each trial, we extract the hyperparameters that result in the lowest validation
loss, ensuring optimal model performance. The complexity of the search space
varies across different layer types, as more complex layers may require more hid-
den layers in the prediction NNs. To uphold computational efficiency, we restrict
the number of hidden layers to a maximum of 5. For more information on the
explored hyperparameter values, please consult our online repository. Lastly, we
conduct model fitting for all three models, fine-tuning the model parameters to
achieve the best fit with the training data and minimize prediction errors.

Evaluation. As with the training dataset, also the testing dataset is re-
grouped into a set of layer-type-specific datasets.

We assess the effectiveness of our prediction methods through a comprehen-
sive evaluation process. For the per-layer prediction approaches, we evaluate the
prediction performance for each type of layer independently, using the layer-
type-specific testing datasets. We employ 5-fold cross-validation during testing
for the analytical model. In addition, we assess the prediction performance of
all methods on complete NNs, using the complete testing dataset. The results
of these evaluations are presented in Section 5.2.

5.1 Experimental Setup

We use the EzPC framework5 and the state-of-the-art SNNI library Cheetah6

for executing SNNI. We use the Athos compiler to compile our tensorflow2-
based NNs into code compatible with SNNI. The input dimensions are fixed
to 224x224x3, a common image size in the ImageNet dataset. For CONV, MP,
and AvP layers, we use square kernels with odd width (1, 3, 5, 7), a prevalent
practice. As possible values for the number of filters, we use powers of 2, ranging
from 16 to 1024. For execution, both model weights and input data are converted
from floating-point to fixed-point representation. We use a bitlength of 41 and a
precision of 12 bits, a commonly used configuration [21]. Our prediction models
are evaluated on three popular NNs: SqueezeNet, ResNet-50, and DenseNet-
121. SqueezeNet is a compact deep learning architecture designed for efficient
image classification, achieving high accuracy with a significantly reduced model
size [15]. ResNet-50 is known for its effectiveness in training very deep networks
[11]. DenseNet-121, characterized by dense connections between layers, offers
advantages in feature propagation and parameter efficiency [13].

Our experiments are conducted on two virtual machines, each equipped with
8 GB of RAM. The experiments are carried out in two distinct technical settings.
In the LAN configuration, the server and client processes operate on separate

4 https://github.com/keras-team/keras-tuner
5 https://github.com/mpc-msri/EzPC
6 https://github.com/Alibaba-Gemini-Lab/OpenCheetah
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Table 3. Results for different types of layers. C: Client, S: Server. tlayer: average SNNI
time for the given type of layer in our dataset. MAE : mean absolute error of predicted
value. R2 : coefficient of determination. tpred: average time needed for the prediction.

LAN experiment WAN experiment

Layer Method tlayer
[ms]

MAE
[ms]

R2 tpred
[ms]

tlayer
[ms]

MAE
[ms]

R2 tpred
[ms]

FC C
Analytical

459
72 0.958 4

491
85 0.953 4

NN 105 0.952 153 83 0.968 139

FC S
Analytical

448
71 0.957 4

472
82 0.953 4

NN 105 0.952 152 90 0.965 138

CONV C
Analytical

2549
1402 0.642 4

2745
1449 0.646 4

NN 165 0.989 154 135 0.996 164

CONV S
Analytical

2159
1401 0.521 4

2350
1455 0.544 4

NN 73 0.998 154 74 0.998 167

MP C
Analytical

3211
286 0.995 3

3757
576 0.992 2

NN 296 0.990 149 374 0.983 164

MP S
Analytical

3300
314 0.995 2

3855
597 0.992 3

NN 221 0.995 158 284 0.987 188

AvP C
Analytical

727
111 0.960 3

909
170 0.958 3

NN 106 0.965 158 132 0.960 152

AvP S
Analytical

766
128 0.954 3

939
182 0.952 3

NN 113 0.967 153 114 0.971 145

ReLU C
Analytical

1523
202 0.986 2

1655
214 0.985 2

NN 195 0.985 160 210 0.984 185

ReLU S
Analytical

1796
351 0.937 2

1936
357 0.943 2

NN 303 0.947 145 343 0.934 175

BN C
Analytical

821
94 0.942 2

1076
163 0.894 2

NN 62 0.976 166 84 0.948 163

BN S
Analytical

582
90 0.878 2

831
163 0.825 2

NN 53 0.955 146 86 0.915 170

machines, connected via a local network. Additionally, we simulate a WAN set-
ting using the Linux Traffic Control (TC) subsystem. The bandwidth between
server and client is approximately 7 Gbits/s for LAN and 380 Mbits/s for WAN.
Round-trip times are about 0.5ms for LAN and 10ms for WAN, respectively.

5.2 Results

Comparison per layer type. Table 3 shows the results for two prediction
methods: the analytical model and the NN-based approach, across various layer
types. The NN-based approach consistently achieves R2 (coefficient of determi-
nation) values exceeding 0.9, indicating a robust correlation between predicted
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Table 4. Results of the three prediction methods (Analytical, NN per layer, RNN ) for
different NNs. NN is the NN that SNNI is applied to. tSNNI is the duration of SNNI on
the NN. Error is given as the absolute error of the predicted value, and as the absolute
error divided by the actual value. tpred is the time needed for running the prediction.

LAN experiment WAN experiment

NN Method tSNNI

[s]
Error
[s]

Error
[%]

tpred
[ms]

tSNNI

[s]
Error
[s]

Error
[%]

tpred
[ms]

SqueezeNet
Client

Analytical
104.0

5.5 5.3 21
113.7

7.5 6.6 23
NN 0.6 0.6 1647 8.1 7.12 1521
RNN 0.3 0.3 2994 4.9 4.3 3116

SqueezeNet
Server

Analytical
104.0

5.1 4.9 22
113.7

6.9 6.1 23
NN 1.6 1.5 1728 8.0 7.0 1576
RNN 4.4 4.2 2817 5.5 4.8 3717

ResNet-50
Client

Analytical
559.8

158.7 28.3 35
587.7

156.0 26.5 63
NN 3.3 0.6 2473 0.7 0.1 1966
RNN 10.5 1.9 3051 10.4 1.7 3083

ResNet-50
Server

Analytical
559.8

161.1 28.8 38
587.7

158.8 27.0 57
NN 19.3 3.4 2264 4.7 0.8 2284
RNN 5.2 0.9 2950 30.5 5.2 3977

DenseNet-121
Client

Analytical
504.0

12.2 2.4 30
546.7

8.6 1.6 31
NN 6.7 1.3 2274 12.1 2.2 1804
RNN 12.0 2.4 3427 6.5 1.2 2999

DenseNet-121
Server

Analytical
504.0

6.1 1.2 30
546.7

3.5 0.64 30
NN 18.0 3.6 2217 30.7 5.6 2051
RNN 20.4 4.0 2985 21.6 3.9 3881

and actual execution times. In most cases, the analytical model demonstrates
comparable performance to the NN approach, also yielding good results.

For CONV layer, the analytical model yields much worse results than the NN-
based approach. Beside Cheetah, we also experimented with the SNNI library
Crypten [17]. With Crypten, the analytical model achieved good results also for
CONV layers, with R2 values consistently above 0.99 (not shown here due to page
limitation). This shows the potential of the analytical model for specific protocols
while also indicating variations in performance across different protocols.

On the other hand, the NN-based method incurs higher prediction times
than the analytical model. This trade-off between prediction accuracy and com-
putational cost should be taken into consideration when selecting a prediction
method. It is also possible to combine the advantages of the two approaches by
using the NN-based approach for layers where the analytical model performs less
effectively, while relying on the analytical model for others.

Even with the NN-based approach, prediction times remain consistently un-
der 0.2 seconds. The prediction time is always lower – in most cases significantly
lower – than the average SNNI execution time. This quick response time allows
clients to efficiently select SNNI services based on predicted inference durations.
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Whole-NN comparison. Table 4 shows the results on entire NNs using all
three prediction methods. The analytical model exhibits less than 6% error on
two of the NNs, and an error of 28-29% on the third one. The NN- and RNN-
based approaches both demonstrate high predictive accuracy with consistently
less than 5% error.

The relatively poor performance of the analytical model on the ResNet-50
NN may be due to the high proportion of CONV layers in this NN and the
already mentioned weakness of the analytical model on CONV layers.

The analytical model excels in speed, leading to a trade-off between accu-
racy and prediction time. The NN-based approach takes approximately 70 times
more time than the analytical model. For RNN, this figure rises to about 100
times. Nevertheless, even with the slowest RNN model, the prediction time only
amounts to roughly 3 seconds, which is still significantly less than the SNNI
time, making it practical and feasible for use.

6 Related Work

To the best of our knowledge, this is the first work to address the problem of
predicting SNNI execution time. Related work can be identified in two areas: (i)
in SNNI and (ii) in predicting normal (i.e., non-secure) NN inference time.

Work on SNNI. In recent years, the SNNI problem was the subject of in-
tensive research. We refer the reader to the recent survey [20] about SNNI in
general. SNNI approaches use several cryptographic techniques, such as homo-
morphic encryption [5], additive secret sharing [19], garbled circuits [23], and
oblivious transfer [18]. State-of-the-art SNNI approaches, like Cheetah [14], typ-
ically use a combination of these techniques, so that for different types of layers
of the NN, the most efficient protocol can be applied.

Due to the overhead of the used cryptographic techniques, the efficiency
of SNNI remains a concern. This is especially critical in resource-constrained
environments [22, 27]. Some papers used neural architecture search (NAS) to
tune the architecture of the NN so that SNNI becomes faster. For example,
NASS searches possible NN architectures while at the same time also optimizing
the parameters of homomorphic encryption for SNNI [4]. Delphi uses NAS to
decide which ReLU layers to replace with a more SNNI-friendly square activation
function [21]. Also CryptoNAS uses NAS to reduce the number of ReLUs in a
NN, since the secure evaluation of ReLU is quite time-consuming [9].

Such NAS-based SNNI optimization approaches could significantly benefit
from our approach. Without a way to predict SNNI execution time, they resort
to either performing the time-consuming SNNI execution or using some far-
fetched proxy, like the number of ReLUs, instead of SNNI execution time.

Work on NN inference time prediction. Some previous papers used
simple models to approximate the inference time of NNs, with the aim of finding
good resource allocations for the NNs or parts of them. For example, Shafi
et al. [24] profile the execution time of NN inference using different hardware
configurations and develop an analytical model of how inference time depends
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on different hardware parameters. Collage [16] uses profiling to determine the
execution cost of ML workloads, and then employs dynamic programming to
find the optimal allocation of the workload to available ML backends.

Predicting inference time only makes sense if the prediction is significantly
faster than performing the actual inference. Since normal (i.e., non-secure) infer-
ence is much faster than secure inference, only very simple models make sense for
predicting normal inference time. However, for predicting secure inference time,
also more sophisticated models could be reasonably applied. As our work shows,
such more sophisticated models indeed lead to better prediction accuracy.

7 Conclusions

This paper addressed the problem of predicting the execution time of secure
neural network inference, which has various important applications in the de-
ployment of secure machine learning services. We proposed three different ap-
proaches to solve this problem: using an analytical model, using a NN per layer
of the original NN, and using a RNN. Our experiments showed that the three
approaches lead to different trade-offs between prediction time and prediction
accuracy, with the analytical model being the fastest and the other two ap-
proaches being more accurate. Important paths for future research include the
extension of our models with parameters of the system configuration, and the
prediction of other cost metrics, such as energy consumption.
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9. Ghodsi, Z., Veldanda, A.K., Reagen, B., Garg, S.: CryptoNAS: Private inference
on a ReLU budget. Advances in Neural Information Processing Systems 33, 16961–
16971 (2020)
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