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Abstract. Models of possible attacks and defenses can help assess and
improve an organization’s cybersecurity posture. However, existing mod-
els for analyzing cybersecurity fail to adequately model the temporal as-
pects of attacks and defenses. For example, game-theoretic models typi-
cally assume that the players (here, the attacker and the defender) take
turns, and the effect of an action realizes immediately. In reality, attacker
and defender actions may start asynchronously at any time and may have
very different duration. This has important consequences. For example,
whether the defender can successfully thwart an attack may depend on
whether the defender can finish implementing a mitigation action before
the attack would reach its goal.
This paper proposes a new, formal model of cybersecurity attacks and
defense, with a special focus on the time dimension. The model allows
reasoning about temporal aspects, such as how the duration of defensive
actions impacts their ability to prevent attacks. Based on the proposed
formal model, we develop a simulator that supports easy experimentation
and what-if analysis with different attack and defense strategies.
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1 Introduction

In a globally connected digital ecosystem, any organization is potentially exposed
to cyberattacks from all over the world [13]. Cyberattacks can cause huge harm,
from financial losses to reputational damage to loss of human lives. Therefore,
effective defense against cyberattacks has become a major priority [1]. Frequent
news about successful cyberattacks show that our current defense practices are
insufficient, highlighting the need for more research into effective ways for de-
fending against cyberattacks. Effective defense requires the timely detection and
mitigation of cybersecurity risks, making automation necessary in the detection
and mitigation of such risks [8]. To enable effective machine reasoning on security
risks, machine-readable formal models are needed that capture the relevant in-
formation about IT systems [9]. In recent years, many different models have been
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devised for cybersecurity risks. Popular families of security models include vari-
ants of attack graphs, stochastic (Bayesian, Markovian etc.) models, and game
theoretical models [6]. A common deficiency in existing cybersecurity models is
the lack of appropriately capturing time. Security models typically have either
no explicit notion of time, or only operate with logical time, i.e., the notion of
events succeeding each other (e.g., an attack moving from one state to the next).
What is typically missing is the consideration of physical time, i.e., the actual
duration of actions (e.g., how long it takes to perform an attack).

Capturing physical time and, in particular, the duration of attacks and of
mitigation actions is very important [7]. For example, whether an attack can
be foiled could depend on when exactly the attack is detected and whether
a mitigation action can be implemented before the attack finishes [16]. Most
existing security models do not capture the duration of attack and defense actions
and thus do not support reasoning about the implications of these durations.

To address this problem, this paper introduces TIM (Time Is Money), a
new formal security model1 that captures physical time. TIM combines features
from several classes of traditional security models. Similar to attack graphs,
TIM works on a graph structure, modeling how attacks propagate from node
to node in the network. As in stochastic models, TIM features probabilistic
events. Inspired by game theoretic models, TIM casts cybersecurity as a game
between a defender and a set of attackers. This combination of features makes
TIM comprehensive and particularly powerful in modeling cybersecurity.

A formal security model can be used in many ways, e.g., as a sound basis
for simulating the interplay of attack and defense actions in a system, captured
as a model with the given modeling constructs. We propose a simulator called
simTIM to simulate TIM models. Performing such simulations and analyzing the
results can help identify security issues and improve the security of the system.

The contributions of this paper are as follows. 1. We describe TIM as a for-
mal model, defining the formalisms used to express different aspects relevant for
cybersecurity, including physical time. 2. We demonstrate with a running exam-
ple how TIM can be used to model different elements of realistic cyberattacks
and mitigation actions. 3. To operationalize TIM, we present a simulator called
simTIM that can simulate attacks and defenses captured as a TIM model.

TIM can become a solid basis for an ecosystem of powerful cybersecurity
analysis tools, using physical time in the modeling of attacks and defenses.

2 Requirements

Based on an analysis of typical patterns in cyberattacks and defenses, we first
identified a set of important aspects. Our aim is to develop a formal model that
incorporates these aspects. This leads to the following list of requirements that
a good model for cybersecurity should satisfy:

1 TIM is ametamodel, i.e., a model that defines the constructs that other, more specific
models can use. To simplify the language, we refer to TIM as a model.



R1: Systems consist of nodes and links, through which attacks can propagate
R2: Nodes may exhibit different vulnerabilities and host assets of different value
R3: A set of attackers tries to attack the system that a defender tries to defend
R4: Attacks may comprise multiple steps, which can be either local, expanding

the attacker’s access within a node, or compromising further nodes
R5: Attackers only know the publicly exposed parts of the system initially, but

may discover further parts through their activities
R6: Ongoing attacks are not known to the defender, but some adversarial ac-

tivities might be detected (e.g., by an intrusion detection system)
R7: The defender can implement mitigation actions, which might preclude or

thwart certain attacks
R8: Both defender and attacker actions take time and are associated with costs
R9: The defender has finite resources, posing a limitation on the number of

defensive actions that can be run in parallel

3 Related work

While several models of cybersecurity have been proposed, few of them incorpo-
rate some notion of time. Here we review papers that do incorporate time, and
we summarize in Table 1 to what extent they satisfy the requirements of Sec. 2.

Models widely used in cybersecurity, such as attack graphs [14], the Cyber
Kill Chain2, or MITRE ATT&CK3 focus on the succession of steps, without an
explicit notion of their duration. Some researchers have extended these models
with some relevant notion of time. Hoffmann [5] proposes a stochastic extension
to the Cyber Kill Chain, which allows reasoning about the duration of each
phase of the chain, as well as the whole duration of the chain. However, that
paper does not take into account many important aspects of cybersecurity, such
as the network topology and nodes’ different characteristics. Outkin et al. [11]
proposes a Markovian model based on MITRE ATT&CK, in which the duration
of attack steps can be estimated. However, that model ignores the duration of
defensive actions, although that aspect can substantially impact the outcomes.

Game theory is often used to model cybersecurity. In the seminal FlipIt ap-
proach [12], attacker and defender compete to take control over a resource. The
players’ aim is to maximize the fraction of time in which they are in control of
the resource. FlipIt oversimplifies several aspects of cybersecurity, e.g., it does
not support multi-step attacks. Also its handling of time is simplistic, as players’
actions are assumed to take effect immediately. Several extensions have been pro-
posed for FlipIt, some of which also extend its handling of time. Merlevede et al.
[10] suggest an extension that takes into account the time when gains and dam-
ages are realized by discounting future gains and damages. However, that work
also suffers from most of FlipIt’s oversimplification. Zhang et al. [15] develop
a model in which an attacker tries to infect and destruct nodes in a network,
while the defender tries to repair infected nodes. Differential equations govern the

2 https://www.lockheedmartin.com/en-us/capabilities/cyber/cyber-kill-chain.html
3 https://attack.mitre.org



Table 1. Overview of the extent to which existing approaches satisfy the requirements
of Sec. 2. ✓: requirement is satisfied; (✓): partially satisfied; –: not at all satisfied

Work R1 R2 R3 R4 R5 R6 R7 R8 R9

Clempner [3] – – ✓ – – – ✓ (✓) ✓
Farhang & Grossklags [4] – – (✓) – – ✓ (✓) ✓ –
Hoffmann [5] – – – (✓) (✓) – – (✓) –
Merlevede et al. [10] – – (✓) – – – (✓) (✓) –
Outkin et al. [11] – – (✓) (✓) – ✓ ✓ (✓) –
van Dijk et al. [12] – – (✓) – – – (✓) (✓) –
Zhang et al. [15] ✓ – (✓) (✓) – – (✓) (✓) –

Żychowski & Mańdziuk [17] ✓ – (✓) (✓) ✓ – (✓) (✓) –

TIM (this work) ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

temporal development of the number of infected, repaired, and destructed nodes.
However, the model misses important characteristics of real-world cybersecurity,
such as the different vulnerabilities that nodes may exhibit or the unobservabil-
ity of some nodes and actions. To model and analyze security, Clempner [3]
uses Stackelberg Security Games, defined as a continuous-time Markov process,
working with physical time. Using reinforcement learning, the approach can dy-
namically adapt to changes in the environment. However, the approach misses
important characteristics of cybersecurity, such as unobservability and vulnera-
bilities. Żychowski and Mańdziuk [17] work with sequential Stackelberg Security
Games, where the defender is assumed to follow a statically chosen strategy
which is known to the attacker – an assumption that significantly limits the
practical relevance of such models. The authors show how their approach can be
applied to an extended version of FlipIt with multiple resources. However, action
durations are not modelled. Farhang and Grossklags [4] explicitly consider the
time needed by the attacker to carry out an attack and the time needed by the
defender to detect and react to attacks. However, their model misses important
aspects, such as the propagation of attacks through different nodes in a network.
Also, their work makes unrealistic assumptions, e.g., that the attacker performs
actions periodically, with a fixed and known periodicity.

4 Proposed model: TIM

In the following subsections, we describe the different constructs of TIM, illus-
trate them on a running example, and show how they satisfy the above require-
ments. Table 2 gives an overview of the used mathematical notation.

4.1 System, nodes, links, properties

The considered system S is represented as a directed graph S = (N,L). N is a
finite set of nodes. Nodes may represent any tangible or intangible assets, such as
servers, routers, or software application components. L is a finite set of directed
links. Each link connects two nodes. The notation n1n2 ∈ L is used to denote



Table 2. Notation overview

Notation Description

N / L Set of all nodes / links in the system
Π Set of all properties that nodes may have
Rπ Set of possible values of property π
π(n) Value of property π for node n

Π̂ Set of possible property assignments for a node
π̂(n) List of property assignments of node n

X / X(att) Set of all actors / attackers

Ω(node) / Ω(link) Set of access options for nodes / links
ωx(y) Access of actor x to node or link y
A Set of all possible actions

A(node) / A(link) Set of all possible node actions / link actions
A(x) Set of possible actions that actor x may initiate
φa / ψa Precondition / postcondition of action a
ca / da / pa Cost / duration / success probability of action a
A Actions being executed

A(attack) Set of all possible actions of attackers
ϱ(a, π̂(n)) Probability that action a applied to node n is detected
D(a, π̂) / G(a, π̂) One-off damage / gain of action a on a node with properties π̂
δ(ω, π̂) / γ(ω, π̂) Damage / gain per time from a node with access ω and properties π̂

Dtotal
[0,T ] Total damage incurred in the [0, T ] time interval

G[0,T ](x) Gain of attacker x in the [0, T ] time interval
Cx,[0,T ] Cost incurred by actor x’s actions in the [0, T ] time interval
Mx Maximum number of concurrent actions for actor x

a link from node n1 ∈ N to node n2 ∈ N . Π is a finite set of node properties.
Every property π ∈ Π is a function π : N → Rπ, where Rπ is the set of possible
values of the property. For a property π ∈ Π and a node n ∈ N , π(n) ∈ Rπ is the
value of the property for the given node. Every Rπ contains the special element
undef; π(n) = undef means that π is not defined for n. Let Π̂ = ×(Rπ : π ∈ Π)
denote the set of possible assignments of properties for a node. For a node n ∈ N ,
π̂(n) = (π(n) : π ∈ Π) ∈ Π̂ is the list of property assignments of n.

Running example. Fig. 1 shows a simple example system, comprising two
nodes connected by a link. Node n1 is a web server, running version 5.7.0 of
the Apache Tapestry web application framework (https://tapestry.apache.org/),

Property Value
Name Web server
WebApp framework name Apache Tapestry
WebApp framework version 5.7.0
Endpoint protection Sophos

Property Value
Name Database
DBMS name MySQL
DBMS version 8.0.28
Data sensitivity High
Data amount 10 million

n1 n2

Fig. 1. Example system. Undefined properties are not shown



and using Sophos endpoint protection software (https://www.sophos.com/en-
us/products/endpoint-antivirus). Node n2 is a database server, running Oracle
MySQL (https://www.mysql.com/) database management system (DBMS), ver-
sion 8.0.28. The database contains 10 million sensitive data records. This is a
simple example of a typical two-tier system, in which the web application run-
ning on node n1 uses data from the database on n2 to serve client queries.

Link to requirements. Nodes and links can be used to satisfy R1, while
properties can be used to satisfy R2.

4.2 Actors and their access to nodes and links

X denotes the set of actors that may perform actions on the system. X consists
of a defender, denoted as defender ∈ X, and 0 or more attackers forming the
set X(att) = X \ {defender}. Different actors may have different possibilities for
accessing different parts of the system. For an actor x ∈ X, this is formalized
as follows. For a node n ∈ N , let ωx(n) ∈ Ω(node) = {none, visible, user, admin}
denote the access of actor x to node n. The option none means that the actor
is not aware of the given node, while visible means that the actor knows basic
information, such as the IP address, of the node, allowing the actor to, for
example, send ping requests to the node. The options user and admin mean that
the actor has user-level and administrator-level access to the node, respectively.
For a link l ∈ L, let ωx(l) ∈ Ω(link) = {none, visible} denote the access of actor
x to link l. Here, none means that the actor is unaware of the link, while visible
means that the actor is aware of the link.

Running example. Let X = {defender, attacker}. Node n1 is exposed over
the internet, and thus is visible to the attacker (ωattacker(n1) = visible), but
the attacker has no access to the other node (ωattacker(n2) = none) or the link
(ωattacker(n1n2) = none). The defender is assumed to have the highest level of
access to both nodes (ωdefender(n1) = ωdefender(n2) = admin) and to the link
(ωdefender(n1n2) = visible).

Link to requirements. The set of actors can be used to model the defender
and the attackers, as required byR3. The actors’ access to nodes can be modeled
through the ωx(n) values, thus satisfying R5.

4.3 Possible actions

A is the set of possible actions. There are two types of actions: node actions and
link actions. Thus, A = A(node) ∪ A(link), where A(node) is the set of possible
node actions, A(link) is the set of possible link actions, and A(node) ∩A(link) = ∅.
For an actor x ∈ X, A(x) ⊆ A denotes the set of actions that x may initiate.

An action a ∈ A is represented as a tuple a = (φa, ψa, ca, da, pa). φa is the
precondition, which is an SMT (satisfiability modulo theories) formula [2] on the
set Vφa

of variables. For a node action, Vφa
contains the properties of the node

and the actor’s access to the node. For a link action, Vφa
contains the properties

of the start and end node of the link and the actor’s access to the start and end
node of the link. ψa is the postcondition, consisting of a set of assignments. Each



assignment assigns to a variable in Vψa
a value from its respective domain. For

a node action, Vψa
contains the properties of the node and the actor’s access

to the node. For a link action, Vψa contains the properties of the end node of
the link and the actor’s access to the end node of the link. ca ∈ R≥0 is the cost
of performing action a, da ∈ R≥0 is the time it takes to perform action a, and
pa ∈ [0, 1] is the success probability of action a. The next subsection explains
how actions are executed, which also defines the semantics of the above elements.

Running example. Apache Tapestry version 5.7.0 is affected by an unau-
thenticated remote code execution vulnerability4. A potential attack exploiting
this vulnerability to gain administrator access to a web server is formalized as
an action aTapestry ∈ A(node) ∩ A(attacker). The pre- and postconditions are:

φaTapestry = (“WebApp framework name” = “Apache Tapestry”∧
“WebApp framework version” ∈ {5.4.5, 5.5.0, 5.6.2, 5.7.0}∧
ωx(n) ̸= none),

ψaTapestry = (ωx(n) = admin).
Performing this attack incurs costs of caTapestry = 300 USD, takes about daTapestry =
1 day, and has a success probability of paTapestry = 0.2.

Link to requirements. In line with R4, an attack can be mapped to one
or more actions in TIM. Node actions can model privilege escalation. Link ac-
tions can model compromising further nodes, allowing the propagation of at-
tacks (R1). Vulnerabilities (R2) are mapped to preconditions of attack actions,
as shown in the example above. The ca and da attributes of an action model its
costs and duration, satisfying R8.

4.4 Execution of actions

A is the set of actions that have already started but not finished yet. Elements
in A are tuples (x, a, y, tstart), where x ∈ X is the actor that started the action,
a ∈ A(x) is a possible action of x, y ∈ N ∪ L is the node or link to which the
action is applied (if a ∈ A(node), then y ∈ N ; otherwise, y ∈ L), and tstart ∈ R≥0

is the time when the action was started. At time t ∈ R≥0, the action is in A if and
only if it has already been started but not finished yet, i.e., tstart ≤ t < tstart+da.

At any point in time t ∈ R≥0, any actor x ∈ X can select an action a ∈ A(x),
and initiate the execution of a, provided that the necessary conditions are met
(see below). The actor also specifies the node (if a is a node action) or the link
(if a is a link action) to which the action should be applied. The actor’s access to
the given node or link must not be none. The execution starts if the precondition
φa of a is met. If a is a node action that should be applied to node n, then this
means that φa is true for the properties of n and x’s access to n. On the other
hand, if a is a link action that should be applied to link n1n2, then this means
that φa is true for the properties of n1 and n2 and x’s access to n1 and n2.

If the precondition is met, the tuple (x, a, y, tstart) is put in A, where x is
the actor that started the action, a is the action, y is the node (if a is a node

4 https://nvd.nist.gov/vuln/detail/CVE-2021-27850



action) or link (if a is a link action) to which the action is applied, and tstart is
the starting time of the action. In addition, the cost ca is incurred for actor x.

If at any time in the [tstart, tstart+da) interval, the value of φa becomes false,
then the action aborts, and is removed from A. Otherwise, at time tstart+da, the
tuple (x, a, y, tstart) is removed from A. With probability pa, the action success-
fully terminates; with probability 1− pa, the action terminates without success.
If the action successfully terminates, then the postcondition ψa is applied. That
is, if a is a node action applied to node n ∈ N , then properties of n and x’s
access to n are set according to ψa. If a is a link action applied to link n1n2 ∈ L,
then properties of n2 and x’s access to n2 are set according to ψa.

Running example. The attacker can apply action aTapestry to node n1. Since
the precondition is fulfilled, the action can start. If the action successfully ter-
minates, the attacker’s access to node n1 is elevated from visible to admin.

Link to requirements. The execution of actions satisfies R4, as well as
the propagation of attacks stipulated by R1. Executing actions incurs costs and
takes a predefined amount of time, satisfying R8. In line with R7, the defender
may execute actions that change the properties of nodes in such a way that
the precondition of some attacker actions is not fulfilled, thus precluding future
attacks or interrupting ongoing attacks.

4.5 Detection of malicious activities

An action may have consequences on the system – e.g., changing an attribute of
a node – that other actors may notice if they have access to the affected part of
the system. However, we assume that the fact that an action a is being performed
by an actor is not visible to other actors. (An actor with administrator privileges
might be able to observe some activities of other actors, but may still not be able
to tell if those activities are part of an attack / defense action a. For example,
the administrator may be able to see that a user runs a script called “script.sh”,
without being able to tell that this script is performing a specific attack.) The
only exception is if the defender has put specific monitoring measures (e.g., an
intrusion detection system) in place to detect malicious actions.

Let A(attack) = ∪{A(x) : x ∈ X(att)} denote the set of possible actions of

attackers. Let ϱ : A(attack)× Π̂ → [0, 1] denote the detection probability function.
Let x ∈ X(att) be an attacker that starts an action a ∈ A(x) at time tstart,
applying it to a node n ∈ N or to a link n′n ∈ L. In both cases, ϱ(a, π̂(n)) is
the probability that the defender detects sometime between tstart and tstart + da
that a is being executed. If the execution of the action is detected, the detection
time follows a random distribution with cumulative distribution function Fa with
Fa(0) = 0 and Fa(1) = 1: for any 0 ≤ t ≤ da, the probability that the execution
of the action is detected by tstart + t is Fa(t/da) · ϱ(a, π̂(n)).

Running example. While the aTapestry attack is executing on node n1, the
Sophos endpoint protection software may be able to detect the suspicious activ-
ity. ϱ(aTapestry, π̂(n1)) = 0.8, meaning that the probability of detecting the attack
sometime during its execution is 80%. Note that the detection probability de-
pends not only on the attack, but also on properties of the node that the attack



is performed on – in this example, the fact that Sophos endpoint protection is
deployed to the node has major influence on the detection probability.

Link to requirements. In accordance with R6, ongoing attacks are gen-
erally unknown to the defender. Nevertheless, the defender might succeed in
detecting some activities of the attacker (from which the defender might poten-
tially be able to infer some of the aims pursued by the attacker).

4.6 Dynamic behavior

At time t = 0, the model starts with an initial set of nodes, links, property
assignments, actors, access of actors to nodes and links, possible actions, and
with A = ∅. As time goes by, all these may change, either because of an action
of an actor, or something else. E.g., a node may disappear because of a hardware
failure, a new attacker may appear, or a new vulnerability is discovered, leading
to a new possible action. If necessary for the sake of clarity, we put the time
in a left-side subscript to denote the value of a variable at that point in time.
E.g., tN denotes the set of nodes at time t. We omit this subscript when no
distinction between different points in time is needed.

At any time, actors can execute actions as described in Sec. 4.4. Actors are
free to choose when they execute actions. They may do this in a time-driven
manner (e.g., deciding periodically what to do) or in an event-driven manner
(e.g., starting the next action when the previous action finished).

By default, actors do not know about each other’s actions. They may see
the results of other actors’ actions through changes in the system, e.g., through
changed properties. The defender may detect attackers’ activities through the
mechanism described in Sec. 4.5. If there are multiple attackers, they might
communicate with each other through mechanisms outside the model.

A TIM model can operate for an arbitrarily long time. It may or may not
reach a stable state in which no actor can, or is willing to, perform any further ac-
tions. Since the execution of actions and the detection of attacks is probabilistic,
the model’s operation is in general not deterministic.

Running example. We show two possible scenarios. In the first scenario,
the attacker first gains administrator access to n1 using the aTapestry attack.
Using the administrator access to node n1, the attacker can perform a second
node action on n1, a port scan (or simply using a network tool like netstat),
leading to the discovery of link n1n2 and of node n2. Using a vulnerability of
the MySQL database5, the attacker can go on to compromise node n2 remotely
from n1 using a link action, gaining administrator access to n2 and thus also to
the sensitive data stored in the database on n2.

In the second scenario, the defender detects the attack on node n1 as de-
scribed in Sec. 4.5. Performing a vulnerability scan and realizing that n2 (along
with the sensitive data stored on that node) is at risk, the defender applies the
node action of upgrading MySQL on n2 to a newer version. This precludes the
attacker from compromising n2.

5 https://nvd.nist.gov/vuln/detail/CVE-2022-21457



Link to requirements. The dynamic behavior of TIM is related to many of
the requirements. Especially the propagation of attacks, starting from exposed
endpoints, through multiple steps toward other nodes (R4 and R5) is clearly
linked, as exemplified by the first scenario above. The defender’s mitigation
possibilities (R7) are also related and illustrated by the second scenario.

4.7 Optimization objectives

A successful attack leads to damage for the defender and a gain for the attacker.
These two may differ. E.g., in a successful ransomware attack, the attacker’s gain
is the ransom, while the damage for the defender may include, beyond the paid
ransom, also the costs for managing the situation, for upholding operations with
alternative means, for recovering from the incident, and reputational damage.

In terms of the temporal characteristics of damage/gain, we differentiate
between two behaviors, as in [8]. One-off : the successful attack leads to one-time
damage/gain. E.g., a data breach leads to a one-off fine for the defender and a
one-off income for the attacker from selling the stolen data. Time-proportional :
the successful attack leads to a misbehavior, and damage/gain is incurred as
long as the misbehavior persists. E.g., a denial-of-service attack makes a service
unavailable; the longer the service is unavailable, the higher the damage/gain.

To model the different types of damage and gain, we introduce four functions.
D,G : A(attack)× Π̂ → R≥0 capture one-off damage and gain, respectively, while

δ, γ : Ω(node) × Π̂ → R≥0 capture time-proportional marginal damage and gain,
respectively. For an attacker x ∈ X(att), action a ∈ A(x), and a node n ∈ N ,
D(a, π̂(n)) is the amount of one-off damage that x generates by successfully
performing attack a on node n, given n’s properties π̂(n). Similarly, G(a, π̂(n))
is the one-off gain of x from successfully performing attack a on node n. For
time-proportional damage/gain, δ(ωx(n), π̂(n)) is the amount of damage that x
generates via node n per unit time, and γ(ωx(n), π̂(n)) is the gain of x from n
per unit time. Note that δ and γ do not depend on a specific attack, but rather
on the situation – the attacker’s access to the node and the properties of the
node – resulting from one or more attack(s).

The total damage created by all attackers in the whole system in the [0, T ]
time interval is computed as follows. Let 0 < t1 < t2 < . . . < tk < T be the
points in time at which at least one property of at least one node or the access
of at least one attacker to at least one node changed. In addition, let t0 = 0 and
tk+1 = T . For 0 ≤ i ≤ k, the properties of any node as well as the access of any
actor to the node remain constant in the [ti, ti+1) interval, which we denote by

ti
π̂(n) and ti

ωx(n), respectively. Let 0 < τx,1 ≤ τx,2 ≤ . . . ≤ τx,ℓx ≤ T be the
points in time at which attacker x successfully finished an attack, let ax,j be the
attack that x successfully finished at time τx,j and let nx,j be the node on which



that attack successfully finished. Then, the total damage in [0, T ] is

Dtotal
[0,T ] =

∑
n∈N

∑
x∈X(att)

k∑
i=0

δ
(
ti
ωx(n), ti π̂(n)

)
· (ti+1 − ti)+

+
∑

x∈X(att)

ℓx∑
j=1

D
(
ax,j , τx,j

π̂(nx,j)
)
.

Similarly, the gain of attacker x ∈ X(att) in [0, T ] is

G[0,T ](x) =
∑
n∈N

k∑
i=0

γ
(
ti
ωx(n), ti π̂(n)

)
· (ti+1 − ti) +

ℓx∑
j=1

G
(
τj
ωx(n), τj π̂(nx,j)

)
.

For an actor x ∈ X, the cost incurred by x’s actions in the [0, T ] time interval
is Cx,[0,T ] =

∑
a∈Ax,[0,T ]

ca, where Ax,[0,T ] is the multiset6 of actions initiated by

x in the [0, T ] time interval.
The objective of the defender is to minimize Dtotal

[0,T ] + Cdefender,[0,T ]. The ob-

jective of an attacker x ∈ X(att) is to maximize G[0,T ](x)− Cx,[0,T ].
Running example. In the first scenario described in Sec. 4.6, assume that

the attacker executes the aTapestry attack twice (the first attack is unsuccessful),
thus compromising node n1 (i.e., obtaining admin access to n1) after two days
and incurring 600 USD costs. After 5 further days, the attacker manages to com-
promise also n2, incurring further 800 USD for attack execution. Compromising
n1 leads to neither damage nor gain. However, compromising n2 that stores
large amounts of sensitive data allows the attacker to gain a one-off ransom
of 100,000 USD. The defender incurs no costs for action execution, but suffers
a one-off damage of 150,000 USD (paying the ransom plus additional recovery
costs). Thus, the overall balance is 100,000− 600− 800 = +98,600 USD for the
attacker and −150,000 USD for the defender.

In the second scenario, the attacker again incurs 600 USD costs in compro-
mising n1. There is no vulnerability on n2 to exploit, thus no further costs are
incurred for the attacker, and there is also no gain, leading to an overall balance
of −600 USD. For the defender, upgrading MySQL costs 500 USD, and there
are no further costs nor damages. Thus, the defender’s balance is −500 USD.

Link to requirements. The optimization objectives drive attacker and de-
fender behavior, as required by R3 and R7. The cost of actions, as stipulated
by R8, is taken into account by both attacker and defender objectives.

4.8 Capacity constraints

For an actor x0 ∈ X, letMx0
∈ R+∪{∞} be the maximum number of concurrent

actions that x0 can execute. If Mx0
= ∞, then there is no constraint on the

number of concurrent actions that x0 can execute. Otherwise, the constraint
|{(x, a, y, tstart) ∈ A : x = x0}| ≤ Mx0 must hold at all times. When an actor
tries to start a new action (cf. Sec. 4.4), this condition is also checked, and the
action can only be started if it does not lead to a violation of this constraint.

6 If an action was invoked by the actorm times, then it occursm times in this multiset.



Running example. We make the conservative assumption that the attacker
has unlimited resources (Mattacker = ∞), while the defender’s capacity is strictly
limited (Mdefender = 1). This assumption does not impact the scenarios described
before, as it does not constrain the attacker, and the defender only performs a
single action. It should be noted though that while the defender is busy upgrading
MySQL, it would not be able to deal with other risks, should anything else arise.

Link to requirements. The construct of capacity constraints satisfies R9.

5 Simulation

We present simTIM, a proof-of-concept implementation of a simulator to simu-
late TIM models. simTIM is written in Python and is publicly available7.

Some parts of the implementation are straight-forward. Nodes, links, ac-
tors, and actions are implemented by corresponding classes in simTIM’s object-
oriented design. Specific action types are sub-classes of an abstract Action class.
Access types for nodes and links are implemented as Enum classes. Node prop-
erties are implemented as dictionaries with key–value pairs of type string.

The challenging part is the implementation of the temporal behavior of TIM.
TIM actors could start an action at any time; also the detection of an attack
could happen at any time. To create a manageable implementation of this be-
havior, we use the concept of discrete-event simulation. The finish of an action
is considered an event. The currently running (i.e., started but not yet finished)
actions are kept in a queue, sorted according to their finish time. When an action
of actor x finishes, x is notified about this (also including whether the action
finished successfully or not), allowing x to start new actions in an event-driven
manner. This makes sense because an actor can only observe their own actions,
not the actions of other actors. To also allow time-triggered actions, simTIM
introduces a special action called WaitAction, which finishes successfully with
probability 1 after a given amount of time. Just as with any other action, when
a WaitAction of actor x finishes, x is notified about this, allowing x to start new
actions. This way, an actor can schedule actions in a time-driven way, e.g., at
regular times, or at a specified amount of time after another action finished.

Also the detection of attacks (Sec. 4.5), is implemented using a special action
type called DetectAction. When an attack action is launched, simTIM decides
probabilistically, according to the detection probability ϱ(a, π̂(n)), if the attack
will be detected. If yes, the cumulative distribution function Fa is used to deter-
mine randomly after how much time the action will be detected. If the attack
is to be detected in t time, simTIM creates a DetectAction belonging to the
defender, which finishes successfully with probability 1 after t time. When this
happens, the defender is notified about the attack, in accordance with the be-
havior described in Sec. 4.5.

Different attacker and defender strategies can be implemented in simTIM by
specifying what new actions the actors start upon the finish of various actions

7 https://github.com/zoltanmann/simTIM
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Fig. 2. Violin plots showing the distribution and the mean of the damage, depending
on the duration of various actions (in hours). The default duration is 4 hours each for
the two attack actions and 8 hours for the defensive action.

(including the finish of a WaitAction and, for the defender, of a DetectAction).
Since the simulation is probabilistic, it makes sense to re-run it several times and
collect statistics of the resulting metrics (see Sec. 4.7) to assess how successful the
attacker and defender strategies are. For example, we implement the strategies
sketched in Sec. 4.6. The attacker tries to first perform the Tapestry attack on n1,
then a port scan to find n2, and finally the MySQL attack to compromise n2 and
gain access to the sensitive data. If the defender detects the Tapestry attack on
n1, it tries to upgrade MySQL on n2 to protect the sensitive data. The resulting
distribution of the damage, for different durations of various actions, is shown in
Fig. 2. As shown in the first plot, when the defensive action of upgrading MySQL
is fast (taking 1 to 4 hours), the defender can thwart the attack in most cases;
but as the defensive action becomes more time-consuming, the attack succeeds
more and more often, leading to much higher average damage. The two other
plots show that increasing the duration of the attack actions significantly lowers
the probability of a successful attack and thus also the average damage. The
effect of increasing the duration of the Tapestry attack is less pronounced in this
regard than that of increasing the duration of the remote MySQL attack; this
is because increasing the duration of the Tapestry attack also tends to delay
the detection of the attack by the defender. These results show once more the
importance of the time dimension in cybersecurity.

6 Conclusions and future work

Existing cybersecurity models do not offer adequate support for reasoning about
time, although the duration of attacker and defender actions may have significant
impact. This paper introduced TIM, the first model to remedy this problem.
TIM combines a game-theoretic model of attacker and defender actions with a
model of the network to be defended. TIM can model the timing implications of
multi-step attacks, including both lateral movement across nodes and privilege
escalation within nodes. As shown in Table 1, TIM satisfies all requirements of
Section 2, thus significantly going beyond what is possible using state-of-the-
art cybersecurity modeling approaches. This way, TIM enables sound reasoning
about time aspects of cyber attacks and defense mechanisms. We demonstrated



the use of TIM by applying it to a small but realistic example. In addition,
we presented simTIM to simulate TIM models and showed how it can be used
to statistically analyze and visualize the impact of the duration of attacker and
defender actions on the damage created by attacks, demonstrating the usefulness
of both TIM and simTIM.

Further theoretical work may determine optimal defense strategies in the
TIM model for different types of systems. Further empirical work may compare
different attack and defense strategies using simTIM. Both types of work help
gain a better understanding of what strategies work best in what situation.
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8. Mann, Z.Á.: Urgency in cybersecurity risk management: toward a solid theory. In:
IEEE 37th Computer Security Foundations Symposium (CSF). pp. 589–602 (2024)
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