COLIBRI: Optimizing Multi-Party Secure Neural
Network Inference Time for Transformers*

Daphnee Chabal®, Tim Muller!, Eloise Zhang', Dolly Sapra', Cees de Laat!,
and Zoltan Adam Mann?

! University of Amsterdam, Amsterdam, the Netherlands
2 University of Halle-Wittenberg, Halle, Germany

Abstract. Secure Neural Network Inference (SNNI) protocols enable
privacy-preserving inference by ensuring the confidentiality of inputs,
model weights, and outputs. However, large neural networks, particularly
Transformers, face significant challenges in SNNI due to high computa-
tional costs and slow execution, as these networks are typically optimized
for accuracy rather than secure inference speed. We present COLIBRI,
a novel approach that optimizes neural networks for efficient SNNI us-
ing Neural Architecture Search (NAS). Unlike prior methods, COLIBRI
directly incorporates SNNI execution time as an optimization objective,
leveraging a prediction model to estimate execution time without re-
peatedly running costly SNNI protocols during NAS. Our results on
Cityscapes, a complex image segmentation task, show that COLIBRI
reduces SNNI execution time by 26-33% while maintaining accuracy,
marking a significant advancement in secure Al deployment.

Keywords: Secure Neural Network Inference - Privacy-Preserving Al -
Neural Architecture Search - Transformers - Visual Segmentation - Secure
Inference.

1 Introduction

In many real-world Artificial Intelligence (AI) applications, multiple stakeholders
are involved, leading to specific security and privacy requirements [1]. In this
paper, we focus on the situation where a company — the model holder — trains a
neural network and then offers inference with this neural network as a service. A
client can provide an input to the neural network and request inference on this
input. The client’s input and inference output may contain sensitive information
that must be protected from unauthorized access. Additionally, the weights of the
neural network constitute the model owner’s intellectual property and must also
be protected. As illustrated in Fig. 1, Secure Neural Network Inference (SNNT)
protocols enable inference, fulfilling all the aforementioned secrecy requirements.

* This paper was published in the Proceedings of the 40th IFIP International Con-
ference on ICT Systems Security and Privacy Protection (IFIP SEC), pp. 17-31,
2025

2

D. Chabal et al.

Client Server
input trained
(e.g. image) neural network
E—— Secure Neural (e.g. visual transformer)
client’s secret Network Inference Remains the
output (SNNI) protocol server’s secret
(i.e. inference result)

Fig. 1. Overview of the Secure Neural Network Inference (SNNI) process.

A significant challenge with SNNI is its high computation and communi-
cation demand [17]. SNNI requires complex cryptographic protocols that need
substantial resources for the secure execution of even simple operations. Despite
recent significant advancements making SNNT protocols more efficient [12], se-
cure inference remains significantly slower than standard inference [10]. Another
challenge is the increasing size and complexity of neural networks developed by
the AT community to handle larger inputs and achieve higher accuracy [7].

A more subtle challenge is the mismatch between AI and SNNI objectives.
For the Al community, achieving high accuracy is paramount, while keeping costs
low is secondary. In SNNI, however, reducing secure inference time is critical,
as excessive delays could render services impractical. Functions like SoftMax
and ReLU, which minimally affect model size or standard inference time, are
computationally expensive in secure execution [19].

This paper introduces COLIBRI, an innovative approach to creating trans-
former architectures with state-of-the-art accuracy and reduced SNNI execution
time. COLIBRI uses neural architecture search (NAS), which automatically iden-
tifies the best neural architecture for a task by exploring candidate architectures.
Previous NAS-based approaches to accelerate SNNI [13,19,21] optimized proxies
such as the number of ReLU operations rather than explicitly targeting SNNI
execution time. COLIBRI is the first approach to optimize explicitly for SNNI
execution time in a given hardware/software configuration. This is important
because bottlenecks in SNNI depend heavily on the hardware and software used
(e.g. network bandwidth [15] and GPU availability [8]).

Relying on proxies for optimization can yield suboptimal results, while COL-
IBRI directly targets SNNI execution time for better outcomes. However, explic-
itly optimizing SNNI execution time during NAS is challenging due to the need
to evaluate numerous neural architectures. Running the costly SNNI process for
each candidate would result in prohibitive computational costs for NAS, requir-
ing thousands of GPU days. To address this, COLIBRI employs a prediction
model to estimate SNNI execution time for candidate architectures in a given
setup, avoiding the need for actual SNNI execution during NAS.

We implemented COLIBRI using the HR-NAS search algorithm [5] for vi-
sual transformers and the CrypTen SNNI protocol [9]. Because the COLIBRI

COLIBRI 3

approach is orthogonal to how NAS algorithms and SNNI protocols work, COL-
IBRI is adaptable to different choices for implementation, making it versatile for
various Al tasks. Our implementation achieves efficient SNNI for large transform-
ers in visual segmentation tasks, which are more complex than simpler bench-
marks (e.g., image classification [4,21]). Empirical results show that COLIBRI-
generated visual transformers reduce SNNT execution time by 26-33% compared
to baseline NAS approaches, while maintaining accuracy.

2 Preliminaries

Secure Neural Network Inference (SNINI) protocols enable collaborative
AT inference without sharing confidential data, as shown in Fig. 1. Clients en-
crypt input data, while model holders protect the secrecy of trained weights,
ensuring secure execution of the inference process. Only the client receives the
output, with cryptographic guarantees provided by secure multi-party compu-
tation (MPC) or homomorphic encryption (HE) [12].

SNNI protocols simulate neural network operations using cryptographic func-
tions, tailored to each layer type. Linear layers (e.g., fully connected or convo-
lutional) are relatively efficient, while non-linear operations like SoftMax and
ReLU are computationally intensive under MPC/HE [12]. Our implementation
uses CrypTen [9], an MPC-based SNNI protocol, though COLIBRI is compatible
with any SNNI protocol.

Neural Architecture Search (NAS) [16] automates the discovery of opti-
mal neural network architectures by exploring a space of possible architectures.
NAS evaluates performance metrics like accuracy and computational efficiency,
to retain or prune architectures from the search space. NAS uses methods like
evolutionary algorithms or gradient-based optimization to perform the search.
Modern NAS approaches often use a supernet — a large, over-parameterized neu-
ral network that encompasses numerous potential architectures [2]|. For example,
in HR-NAS [5], the supernet consists of 51 search blocks, and each search block is
composed of Search Units (SUs). A Search Unit (SU) represents possible architec-
ture paths, such as mini-Transformers or convolution-based sequences. Pruning
reduces each search block to at most one SU, while iteratively shrinking dimen-
sions (e.g., matrix sizes, channels, tokens, strides) within SUs. Supernet training
combines pruning and training, lowering computational costs. In HR-NAS, the
size of search units is penalized, while their contribution to task accuracy is
rewarded [5]. The process outputs a trained neural network.

Predicting SNNI time can be done with a prediction model, accounting
for the SNNI protocol and hardware/software configuration [20]. The model uses
formulas to predict execution time for various layer types. In an offline phase,
parameters in the formulas are fine-tuned using measured SNNI execution times
across layer types and sizes. This calibration captures how layer types and sizes
influence execution time for the given configuration.

4 D. Chabal et al.

Required Inputs COLI BRI Output
training and testing »| Neural Architecture
ML dataset Search (NAS) > N
AIgorithm . 1 optimized i
SNNI protocol N e T ready-to-use
b. |agreed on by client and server calibration of Transformer
SNNI model

execution time
c. physical setup > prediction

Fig. 2. Overview of the COLIBRI approach.

3 Owur Approach

By combining NAS with SNNI and a prediction model for predicting SNNI exe-
cution time of candidate neural architectures, COLIBRI offers a first-of-its-kind
approach that directly minimizes predicted SNNI execution time in the given
client /server setup during NAS, going beyond existing methods that merely aim
at reducing the use of allegedly expensive operations like ReLU or SoftMax.
As shown in Fig. 2, COLIBRI takes three inputs: (a) the training and testing
datasets for an Al task to be performed by the neural network, (b) the chosen
SNNI protocol that client and server will use for secure inference, and (c) the
used client/server setup, including hardware and software. The output of COL-
IBRI is a trained Neural Network, optimized for high accuracy and low SNNI
execution time in the given client-server setup, ready to be used for secure in-
ference. COLIBRI is adaptable to various SNNI protocols, NAS algorithms, Al
tasks, and Neural Network types. In our implementation, we used the CrypTen
SNNI protocol [9] and the HR-NAS [5] search algorithm for visual transformers.
A central part of COLIBRI is the prediction model that is used to predict SNNI
execution time for a neural network in a given hardware/software setup.

3.1 SNNI execution time prediction model

The SNNI execution time prediction model helps the NAS algorithm optimize
Neural Network architectures by minimizing SNNI execution time, avoiding the
need to execute the costly SNNI protocol for all candidate architectures. This
explicit optimization is a key advantage of COLIBRI over traditional NAS meth-
ods, which often rely on metrics like parameter count or FLOPs, poorly corre-
lating with SNNI execution time. COLIBRI’s prediction model builds on the
analytical prediction approach from [20] (see Table 1). Typically, SNNI proto-
cols execute the secure inference process layer by layer. Similarly, our prediction
model predicts the SNNI execution time per layer, summing these to estimate the
total SNNI execution time. The secure execution time T; of layer 7 is calculated
as:

Ti:CI'Sin+62'Spar+CS'Nop+C4'Sout+C5- (1)

COLIBRI 5

Table 1. Factors contributing to SNNI execution time for different layer types [20].
N;/No: number of inputs/outputs; C;/Co: number of input/output channels; Hy /W:
input height/width; Ho/Wo: output height/width; Hr /W filter height/width; N:
number of neurons; C: number of channels; H/W: height/width of input and output

Layer type Sin Spar Nop Sout
Fully connected Nr (N1 +1)No 2NrNo + No No
Convolutional HiW;Cr CtHFWrCo 2CTHrpWrHoWoCo HoWoCo
MaxPool / AveragePool H;W;C 0 HrWrHoWoC HoWoC
Batch normalization HWC 2C 2HWC HWC
ReLU N 0 N N

Here, Sin, Spar, and S,y are the input, parameter, and output sizes, respec-
tively, of layer i, and NN, is the number of operations in non-secure inference
with layer 7. These parameters are estimated for different types of layers as pre-
sented in Table 1. The coefficients ¢y, ..., c; capture how factors like input size
and parameter size affect a layer’s secure execution time. These values depend
on the SNNI protocol, layer type, and client /server hardware and network setup.

COLIBRI’s prediction model consists of sub-models for each supported neu-
ral network layer type, following Equation (1). The coefficients ¢y, ...,c; and
the calculations of Siy, Spar; Sout, and Nop vary by layer type, as summarized in
Table 1. This model enables fast and accurate SNNI execution time predictions.

The prediction model used in COLIBRI can be calibrated for various SNNI
protocols and different hardware and software properties of the client, the server,
and the network connection between them. Here, the calibration is done by
adjusting the coefficients ci,...,c5 in each layer-type-specific sub-model. To
achieve this, c¢1,...,c5 are derived from a regression analysis of actual SNNI
execution times, measured when running the specific SNNI protocol in the given
client/server setup. The calibration phase involves creating neural networks with
layers of different types and sizes and measuring the per-layer SNNI execution
time by running the protocol in the specific client/server setup. The linear re-
gression model is trained with non-negative coefficients (from Equation (1)) for
each layer type to derive cy,...,cs.

The simple structure of the prediction model ensures fast and accurate predic-
tions, as validated in [20]. Trained on actual SNNI execution times, the model
reliably captures protocol and setup impacts, enabling the NAS algorithm to
make informed decisions about candidate architectures.

3.2 NAS algorithm

Using the calibrated prediction model, NAS aims to produce a Neural Network
optimized for high accuracy and low SNNI execution time. The NAS algorithm
trains and prunes a supernet iteratively. Pruning is done incrementally, removing
the least promising parts of the supernet. Typically, in NAS algorithms, the met-
rics that form the basis for pruning decisions are combined into a loss function.
Thus, in COLIBRI, the output of the SNNI execution time prediction model

6 D. Chabal et al.

is integrated into the loss function. In the following discussion, we describe the
change required for a representative NAS algorithm, HR-NAS [5].

The original loss function of HR-NAS is:
L= Etask + Lcost (2)
Where L;.sk represents the standard loss used in training for the specific ma-
chine learning task. The second term, Lo, is an L1 penalty term that captures
the complexity of the neural network architecture. This penalty term aims to
drive the overall complexity of the supernet to a minimum, and is defined as:
Lecost = AFLOPs * ZieSU A - |Oli| (3)
Where SU is the set of search units in the supernet, and for every search unit
1, 4; is its computational cost, while «; is a trainable parameter, denoting the
importance factor of search unit 4 in maintaining or enhancing the model’s ac-
curacy. ArLops is an empirically determined coefficient for the L1 penalty.

In HR-NAS, the computational cost for every search unit, denoted as 4;, is
measured in FLOPs alongside a resource-aware term that quantifies the search
unit’s overall cost. Pruning search unit ¢ during the NAS would reduce the
computational cost of the model by A;. This value can be determined based
on the shape of the search unit (i.e., the shape of its designated input matrix,
its number of channels and kernel sizes for convolutional units, and number of
tokens for Transformer units) in addition to the resource-aware factor reflecting
the search unit’s computational demands. In COLIBRI, the L..s penalty term
is modified to integrate the predicted SNNI execution time, as follows:

ﬁcco(s)tLIBRI = Asec ZieSU I - o] (4)
Here, I is the predicted SNNI execution time of search unit 7, generated by the
prediction model. While the «; coefficient remains semantically the same as in
the original penalty term, the Appops coefficient is renamed to Age. to reflect
the switch in the computational cost metric from non-secure inference cost in
FLOPs to SNNI execution time in seconds. Compared to the loss of HR-NAS in
(3), the loss of COLIBRI in (4) leads to different relative penalties for various
search units. Operations such as ReLU that are expensive in secure inference
have relatively higher values of I'; and thus a higher penalty in the loss.

The NAS algorithm in COLIBRI, utilizing the loss LSQMBRL is summarized
as pseudocode in Algorithm 1. The process starts by initializing the supernet
Mg, where © represents the trainable weights. The model is trained over FE
epochs. For each epoch, the loss function (Liask + Leost) is computed (line 3),
and the supernet is trained with this loss function (line 4). After each epoch, and
for every Search Unit, the importance factor «; is computed (line 7), while the
prediction model is used to compute I (line 6). At every pre-defined pruning
interval (pri) epochs, the least important search units with the smallest «; are
removed (line 10), while the remaining SU; are pruned by an amount r; (line
12). r; is relative to the height and width of the input of a given search unit.
The process repeats until the model is fully trained and optimized for fast SNNI
execution. The final optimized model is returned by the algorithm (line 17).

After NAS finishes, the resulting Neural Network is deployed. Client and
server can collaboratively execute the chosen SNNI protocol, achieving secure

COLIBRI 7

Algorithm 1: COLIBRI Neural Architecture Search
Input
— supernet Mg (where © are the trainable weights),
— set of search units SU,
— prediction model Predy,
— number E of epochs for training,
— pruning interval pri,
— relative pruning amount r (%).

Output: A trained model optimized for fast SNNI execution time.

1 epoch = 0;
2 while epoch < FE do
3 Me train() ;
4 foreach i in SU do
5 Compute I'; = Predy,(4);
6 Calculate a;, the importance factor for ;
7 end
8 Calculate Liask and Leost for one epoch;
9 if epoch%pri == 0 then
10 Remove SU; with min(a);
11 foreach remaining j in SU do
12 ‘ Prune j by amount r;;
13 end
14 end
15 epoch+ = 1;
16 end

17 return optimized Mo

inference with high accuracy and low SNNI execution time, as optimized by
COLIBRI. The neural network can be reused for secure inference multiple times.

4 Experiments

We evaluated COLIBRI using visual transformers on the Cityscapes dataset [3],
which reflects the complexity of real-world Al tasks like high-resolution urban
scene segmentation. By optimizing for accuracy and SNNI execution time, COL-
IBRI proves effective for real-world applications.

Furthermore, we used two Virtual Machines to simulate the two parties per-
forming SNNI with COLIBRI’s output model. The same setup was used to
calibrate the prediction model and measure SNNI execution time. To ensure
robustness, experiments were conducted in two setups, requiring separately cal-
ibrated prediction models, to compare COLIBRI and HR-NAS outputs. Setup
1 consisted of two identical virtual machines, each having 32GB of RAM with 8
double-thread CPU cores; the machines communicated with 7Gbps bandwidth
(10ms ping time). Setup 2 consisted of two physical servers, each with 64GB of

8 D. Chabal et al.

RAM and 8 double-thread CPU cores, and 10Gbps bandwidth (5ms ping time).
Both Setup 1 and 2 machines ran the Debian 5.10 Linux OS and operated on
8 double-thread CPU cores. We implemented COLIBRI with CrypTen [9] 0.4.1,
HR-NAS [5], and Python 3.9.2.

NAS training was conducted in a high-performance environment to handle
the computational demands of training and hyperparameter tuning. Nodes with
1-2 GPUs (Tesla A40 or A10), 60-68 single-thread CPU cores, and 50GB RAM
were used. NAS training for every Transformer was set at epochs E = 500,
with iterative supernet pruning set at pri = 20. For the A coefficient in the
loss function, we experimented with two different values. The first value, Agec =
0.00014, was empirically determined to correspond to the original Apyopg used
in HR-NAS [5]. The second value, A\jec = 0.00028, was chosen because COLIBRI
uses A in units of seconds instead of FLOPs, which influences the effect of A on
the final loss term.

Prediction model calibration. To perform the calibration of the predic-
tion model, three types of neural networks were created, each with different
combinations of layers, resulting in a total of 30 neural networks, each consisting
of 15 to 40 layers. Every layer has a random selection (from a predefined pool
of viable options) of hyper-parameters, including kernel size, stride, padding,
and number of input and output channels. All of these layers were converted to
their secure counterpart for the CrypTen protocol [9]. SNNT execution time of
each layer of these neural networks was measured when executing the protocol in
Setup 1 and Setup 2 separately. To ensure reliable data collection, each neural
network was assigned one of ten random seeds to initiate the protocol, while
inference time on each neural network was measured 5 times. The accuracy of
these neural networks was irrelevant for the prediction model, so training was
omitted. The linear regression for predictions was created using the scikit-learn
1.5.2 module in Python and saved into usable files with joblib 1.4.2. To evaluate
the regression model, Mean Absolute Scaled Error (MASE) and R? scores were
used.

Comparison methodology and metrics. To evaluate the performance
of COLIBRI, we compare the Transformers generated by COLIBRI with those
produced by the original NAS algorithm, HR-NAS [5], under similar conditions.
A key advantage of HR-NAS is its stable block structure; pruning affects only
search units within blocks, not the blocks themselves. As a result, models gen-
erated by both HR-NAS and COLIBRI have the same number of search blocks
and a similar number of layers, differing only in layer dimensions and function
types. This allows a direct comparison of their effectiveness without the con-
founding factor of architecture depth. Transformers produced by COLIBRI and
HR-NAS are compared based on three main characteristics: size (# of parame-
ters), accuracy on the AT task, and SNNI execution time. For the task of image
segmentation, accuracy is measured per input image with two metrics: mean
Intersection over Union (mloU) and mean Accuracy (mAcc).

COLIBRI 9

Table 2. Evaluation of Prediction model in Setup 2.

Average Average
Layer type Real SNNI Predicted SNNI R?> MASE
time (s) time (s)
Fully Connected 0.26 0.26 0.99 0.02
Convolutional 0.79 0.79 0.99 0.05
MaxPool 15.47 15.54 0.99 0.03
AveragePool 0.002 0.002 0.81 041
Batch normalization 0.2 0.12 0.98 0.37
ReLU 7.03 6.86 0.97 0.08

Table 3. Results for the image segmentation dataset Cityscapes. Average over 20
inferences. Best SNNI execution times per setup are marked bold.

QUOKKA Confidence SNNI time SNNI time Accuracy (%) Accuracy drop

. (s) (s) from plaintext
option Threshold CLIENT SERVER (%)

5 Results

Prediction model validation. The regression models developed for each layer
type demonstrated high predictive accuracy for SNNI execution times. Each
regression model was trained using the measured execution times specific to the
corresponding layer type (see Table 2).

The low MASE values across all layer types indicate minimal prediction errors
relative to the actual execution times. Additionally, R? scores are consistently
close to 1.0, highlighting the models’ effectiveness in capturing the variance in
the measured SNNI execution times. These results confirm that the predicted
execution times closely align with the real SNNI execution times, validating the
accuracy of our regression approach for modeling SNNI execution times across
different layer types.

Table 2 shows that among all layer types, ReLU and MaxPool are more time-
consuming to compute using SNNI. For ReLU, this is consistent with findings
in [19]. MaxPool has been less tested in the context of SNNI work, which often
excludes it in favor of convolutional, ReLU, and fully connected layers [12].
Our MaxPool measurements (and predictions) are, however, in line with [20].
Indeed, like ReLU, MaxPool is not trivially computed in a secure protocol as no
information can be revealed on which value of a matrix is the maximum, thus
requiring complex cryptographic primitives [18].

SNNI execution time. Given the particular complexity of the segmen-
tation task and the size of the images in Cityscapes, SNNI with CrypTen on
relevant visual transformers takes several minutes per image in our inference
setup. To ensure that the evaluation does not take a prohibitively long time, we
limited the evaluation to a randomly selected subset of the Cityscapes testing
dataset. We opted for randomly selecting 5 images and running inference four
times on each of them. This led to 20 results for each combination of technical

10 D. Chabal et al.

A Transformer by HR-NAS o Transformer by COLIBRI

A,
888.1 A A
ah 3122 A A A AA

33% 26%
speedup speedup

LR] L] L]
6546{ ¢ . e o g2005]

Secure Neural Network
Inference runtime (s)

6‘6 Gé 70 7’2 7‘4 7‘6 78 E‘O éﬁ 6‘8 7‘0 7‘2 7‘4 7‘6 7‘3 80
mloU in Setup 1 mioU in Setup 2

Fig. 3. Measured SNNI execution time and accuracy metric mIOU.

setup and tested transformer, allowing us to investigate variance across different
images as well as variance between different runs on the same image.

Our results showed that accuracy and SNNI execution time differed little
between images and between different runs on the same image. The results are
shown in Fig. 3. Overall, our experiments show that COLIBRI-generated Trans-
formers have consistently lower SNNI execution time than HR-NAS-generated
Transformers. The average speedup of COLIBRI-generated Transformers over
HR-NAS-generated Transformers is 33% in Setup 1 and 26% in Setup 2. A
Mann-Whitney U test with « = 0.001 confirmed that the difference in SNNI
execution time between transformers generated by COLIBRI versus HR-NAS
is statistically significant. Moreover, the COLIBRI-generated Transformer was
faster than the HR-NAS-generated Transformer on each image.

The validity of COLIBRI was further demonstrated when looking at task
accuracy. Here, we aimed at accuracy retention rather than accuracy drop.
Fig. 3 shows some variation between images, but a Mann-Whitney U test with
a = 0.001 confirmed that there is no statistically significant difference be-
tween COLIBRI-generated Transformers and HR-NAS-generated Transformers
in terms of accuracy. This holds true for both of the considered accuracy metrics
and for both of the considered technical setups. Thus, overall, we can state that
COLIBRI leads to significantly faster transformers without affecting accuracy.
Further details of the experimental results are given in Table 3. An interesting
phenomenon that can be observed from this table is that for Setup 1, transform-
ers created by COLIBRI are larger (i.e., have more parameters) than the trans-
former created by HR-NAS. Still, secure inference with the COLIBRI-generated
transformers is faster than with the HR-NAS-generated transformer. This once
again demonstrates that size is a poor predictor of SNNI execution time, and
that COLIBRI’s way of explicitly optimizing for SNNI execution time achieves
the desired effect.

Overall, the experimental results demonstrate the efficacy of using COLIBRI
over another NAS algorithm. This not only proves the feasibility of SNNI exe-
cution time prediction in NAS but also highlights the potential of this approach
to produce Neural Networks optimized for secure inference.

COLIBRI 11

6 Discussion

High SNNI execution time. Despite the speedup achieved by COLIBRI,
SNNI execution time is about 10 minutes in Setup 1 and about 3 minutes in Setup
2. The appropriateness of this duration may vary depending on the specific use
case. Notably, these times are achieved on a complex segmentation task with
large images, exceeding the complexity of typical benchmarks used in SNNI
evaluations. If desired, SNNI execution time can be mitigated in several ways:
upgrading the technical setup (e.g., higher CPU capacity, increased bandwidth,
reduced network latency) or using a faster SNNI protocol than CrypTen, such
as [8], which offers improved efficiency.

Applying COLIBRI to different types of SNNI protocols. COLIBRI
is compatible with other and newer SNNI protocols, which may differ signifi-
cantly from CrypTen. For instance, some involve more than two parties [6], pro-
tect against malicious adversaries [18], or separate input-independent operations
into an offline preprocessing phase [8]. Investigating the speedups COLIBRI can
achieve with such protocols would be an interesting avenue for future research.

Varying technical setups. COLIBRI fine-tunes neural network architec-
tures for fast SNNI in a specific client/server setup, making it ideal for scenarios
where the setup is consistent and used repeatedly. If the inference setup differs
from the one used for calibrating COLIBRI’s prediction model, the neural net-
work will still function accurately and securely, but SNNI execution time may be
suboptimal. One way to address this is to run COLIBRI multiple times, creating
networks optimized for various setups. During inference, the network optimized
for the setup closest to the current conditions can be used. Future research could
focus on automating this process to enhance efficiency and effectiveness.

7 Related work

Recent advances in Secure Neural Network Inference (SNNI) focused on improv-
ing computational efficiency by simplifying non-linear layers like SoftMax and
ReLU, which are computational bottlenecks in secure protocols. Existing ap-
proaches primarily target two strategies: (1) reducing or removing these layers
entirely to simplify inference [18], or (2) applying polynomial approximations to
linearize them, thereby streamlining the underlying MPC protocol [10]. While
effective, these methods focus narrowly on layer-specific optimizations and over-
look broader architectural inefficiencies.

Some efforts have employed neural compression techniques, such as knowl-
edge distillation and NAS, to reduce neural network complexity without compro-
mising accuracy. These approaches have largely focused on Convolutional Neural
Networks (CNNs) [14], with limited exploration of Transformers. For Transform-
ers, methods like MPCFormer [10] and SecFormer [11] leverage knowledge dis-
tillation and approximate SoftMax layers, while MPCViT [19] and PriViT [4]
reduce reliance on costly non-linear functions. SAL-ViT [21] employs NAS to

12 D. Chabal et al.

optimize attention heads, but all these approaches lack a comprehensive strat-
egy for minimizing overall SNNI execution time. Additionally, they often focus
on simplified tasks or benchmarks, limiting real-world applicability.

COLIBRI introduces a novel direction by targeting a previously overlooked
variable: predicted SNNI execution time during neural network design. Unlike ex-
isting methods, COLIBRI integrates a calibrated prediction model directly into
the NAS process, enabling optimization of architectures specifically for SNNI
execution time. This approach is compatible with existing techniques for accel-
erating non-linear layers but shifts the focus to holistic architectural optimiza-
tion. To maintain consistency, we employed HR-NAS [5], ensuring the number
of SoftMax and ReLLU layers remains constant by keeping the search unit struc-
ture fixed. Instead, COLIBRI prunes layer dimensions based on predicted SNNI
execution time, providing targeted and flexible optimization.

COLIBRI’s Contribution While prior work has evaluated SNNI on rel-
atively small tasks, COLIBRI addresses the challenges of complex, real-world
applications. By optimizing speed and accuracy for tasks like image segmenta-
tion while accounting for hardware and network factors, COLIBRI sets a new
benchmark for SNNI acceleration research. A comparison of COLIBRI with re-
lated methods is provided in Table 4.

We are the first to apply these techniques to visual transformers in complex
image segmentation tasks, such as Cityscapes, surpassing the simpler bench-
marks typically used for SNNI evaluation. COLIBRI’s adaptability to various
protocols and hardware setups represents a significant advancement in the field.

8 Conclusions

This paper has introduced COLIBRI, a novel approach for automatically creat-
ing neural networks — particularly Transformers — with high accuracy and low
SNNI execution time. By integrating an SNNI execution time prediction model
into NAS, COLIBRI enables the design of architectures explicitly optimized for
fast secure inference without running the full SNNI protocol during NAS. This
makes COLIBRI scalable and efficient for complex tasks.

Table 4. Summary of approaches related to COLIBRI. KD: Knowledge Distillation

Supports Low

Compression Optimization
complex compute

Approach

technique target segmentation setup
MPCFormer [10] KD - No No
SecFormer [11] KD - No No
MPCVit [19] NAS/KD # of attention heads No Yes
PriViT [4] KD - No -
SAL-VIT [21] NAS Hybrid attention costs No Yes

COLIBRI NAS Predicted SNNI time Yes Yes

COLIBRI 13

Our work opens a new avenue of research into SNNI execution time predic-
tion during NAS, emphasizing the importance of explicitly considering SNNI
execution time when optimizing AI models. Departing from previous works that
only targeted the number of allegedly expensive functions, such as ReLU, in
their NAS strategy, COLIBRI enables the creation of Transformers optimized
for a specific SNNI setup.

In the future, we aim to investigate COLIBRI performance with different
underlying SNNI protocols and NAS algorithms, as well as with different physical
setups. It can be beneficial to assess memory utilization and communication
overhead within SNNI protocols to inform future modifications.

References

1. Chan, K.Y., Abu-Salih, B., Qaddoura, R., Ala’M, A.Z., Palade, V., Pham, D.S.,
Del Ser, J., Muhammad, K.: Deep neural networks in the cloud: Review, applica-
tions, challenges and research directions. Neurocomputing (2023)

2. Chitty-Venkata, K.T., Emani, M., Vishwanath, V., Somani, A.K.: Neural architec-
ture search for transformers: A survey. IEEE Access 10 (2022)

3. Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler, M., Benenson, R.,
Franke, U., Roth, S., Schiele, B.: The Cityscapes dataset for semantic urban scene
understanding. In: Proceedings of the IEEE Conference on CVPR (2016)

4. Dhyani, N., Mo, J., Cho, M., Joshi, A., Garg, S., Reagen, B., Hegde, C.: PriViT: Vi-
sion transformers for fast private inference. arXiv preprint arXiv:2310.04604 (2023)

5. Ding, M., Lian, X., Yang, L., Wang, P., Jin, X., Lu, Z., Luo, P.: HR-NAS: Search-
ing efficient high-resolution neural architectures with lightweight transformers. In:
Proceedings of the IEEE/CVF Conference on CVPR (2021)

6. Dong, Y., Xiaojun, C., Jing, W., Kaiyun, L., Wang, W.: Meteor: improved secure
3-party neural network inference with reducing online communication costs. In:
Proceedings of the ACM Web Conference (2023)

7. Gholami, A., Yao, Z., Kim, S., Mahoney, M.W., Keutzer, K.: Al and memory wall.
RiseLab Medium Post (2021)

8. Jawalkar, N., Gupta, K., Basu, A., Chandran, N., Gupta, D., Sharma, R.: Orca:
FSS-based secure training and inference with GPUs. In: IEEE Symposium on Se-
curity and Privacy (SP). IEEE (2024)

9. Knott, B., Venkataraman, S., Hannun, A., Sengupta, S., Ibrahim, M., van der
Maaten, L.: CrypTen: Secure multi-party computation meets machine learning.
Advances in Neural Information Processing Systems (NeurIPS) 34 (2021)

10. Li, D., Shao, R., Wang, H., Guo, H., Xing, E.P., Zhang, H.: MPCFormer:
fast, performant and private transformer inference with MPC. arXiv preprint
arXiv:2211.01452 (2022)

11. Luo, J., Zhang, Y., Zhang, J., Mu, X., Wang, H., Yu, Y., Xu, Z.: SecFormer: Fast
and accurate privacy-preserving inference for transformer models via SMPC. arXiv
preprint arXiv:2401.00793 (2024)

12. Mann, Z.A., Weinert, C., Chabal, D., Bos, J.W.: Towards practical secure neu-
ral network inference: The journey so far and the road ahead. ACM Computing
Surveys 56(5) (2023)

13. Mishra, P., Lehmkuhl, R., Srinivasan, A., Zheng, W., Popa, R.A.: Delphi: A cryp-
tographic inference system for neural networks. In: 29th USENIX Security Sym-
posium. USENIX Association (2020)

14

14.

15.

16.

17.

18.

19.

20.

21.

D. Chabal et al.

Peng, H., Huang, S., Zhou, T., Luo, Y., Wang, C., Wang, Z., Zhao, J., Xie, X.,
Li, A., Geng, T., et al.: AutoReP: Automatic ReLU replacement for fast private
network inference. In: Proceedings of the IEEE/CVF International Conference on
Computer Vision (ICCV) (2023)

Prins, J., Mann, Z.A.: Secure neural network inference for edge intelligence: Impli-
cations of bandwidth and energy constraints. In: IoT Edge Intelligence. Springer
(2024)

Ren, P., Xiao, Y., Chang, X., Huang, P.Y., Li, Z., Chen, X., Wang, X.: A com-
prehensive survey of neural architecture search: Challenges and solutions. ACM
Computing Surveys (CSUR) 54(4) (2021)

de Vries, R., Mann, Z.A.: Secure neural network inference as a service with resource-
constrained clients. In: Proceedings of the IEEE/ACM 16th International Confer-
ence on Utility and Cloud Computing (UCC) (2023)

Wagh, S., Tople, S., Benhamouda, F., Kushilevitz, E., Mittal, P., Rabin, T.: FAL-
CON: Honest-majority maliciously secure framework for private deep learning.
Proceedings on Privacy Enhancing Technologies (2021)

Zeng, W., Li, M., Xiong, W., Tong, T., Lu, W.j., Tan, J., Wang, R., Huang, R.:
MPCViT: Searching for accurate and efficient MPC-friendly vision transformer
with heterogeneous attention. In: Proceedings of the IEEE/CVF International
Conference on Computer Vision (2023)

Zhang, E., Mann, Z.A.: Predicting the execution time of secure neural network
inference. In: IFIP International Conference on ICT Systems Security and Privacy
Protection. Springer (2024)

Zhang, Y., Chen, D., Kundu, S., Li, C., Beerel, P.A.: SAL-ViT: Towards latency
efficient private inference on ViT using selective attention search with a learnable
softmax approximation. In: Proceedings of the IEEE/CVF International Confer-
ence on Computer Vision (2023)

