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Abstract—With the rise of deep neural networks (NNs), Ma-
chine Learning as a Service (MLaaS) gained significant attention.
In MLaaS, a service provider offers inference with a pre-trained
NN to clients, allowing them to obtain the inference output
without the need for computationally intensive training. However,
MLaaS introduces data privacy and security concerns for both
clients and service providers. Clients’ sensitive data in the input
and output must be kept private, and the NN representing the
service provider’s intellectual property should not be shared with
clients. Secure Neural Network Inference (SNNI) addresses these
concerns by ensuring that the client learns only the output, and
the service provider remains oblivious to the input and output.

Many SNNI approaches proposed in recent years are mainly
based on advanced cryptographic techniques such as Secure
Multiparty Computation (MPC) and Homomorphic Encryp-
tion (HE). These approaches incur an overhead due to the
underlying cryptographic primitives, making them significantly
more compute-intensive and thus more energy-hungry than con-
ventional inference. Optimization approaches for SNNI mainly
focused on maximizing accuracy and minimizing execution time.
However, amidst growing climate concerns, energy consumption
becomes a crucial aspect when determining optimal deployments
of SNNI. Thus, conducting a comprehensive investigation into
energy-friendly SNNI approaches remains an open challenge.

We design and develop a framework for determining the
optimal deployment of SNNI. Given a machine learning (ML)
inference task, the framework selects the SNNI approach and NN
that minimize energy consumption while considering additional
constraints, such as the desired level of accuracy and execution
time. This knowledge-based framework distills information from
experiments involving combinations of SNNIs and NNs, subse-
quently identifying the best deployment option, i.e., the (near-)
optimal choice of SNNI and NN, based on the client’s request.

Index Terms—energy consumption, secure neural network
inference, neural network, privacy-preserving machine learning,
secure multi-party computation

I. INTRODUCTION

In recent years, the field of machine learning (ML) has
gained enormous attention. Deep neural networks (NNs) are
especially widely used in various applications, such as im-
age classification, natural language processing (NLP), pattern
recognition, and predictive analytics, among others [1], [25].

ML encompasses two main phases: training and inference.
The training phase involves substantial volumes of data to
refine and optimize the parameter values in a NN model.
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The inference phase uses a pre-trained NN model to process
and analyze new input data. To master the often tedious and
computationally intensive training phase, Machine Learning
as a Service (MLaaS) has gained significant attention [5]. In
MLaaS, a service provider offers inference with a pre-trained
NN to clients, allowing them to obtain the output of the NN
without the need for computationally intensive training.

However, the adoption of MLaaS introduces data pri-
vacy and security concerns for both clients and service
providers [19]. The input and output may contain sensitive
information about the client, which must be kept private.
Meanwhile, the service provider, as the proprietor of the NN
models, is concerned that the parameters of the NN could be
stolen in the inference phase by the client or other adversaries.

Secure Neural Network Inference (SNNI) addresses these
concerns by computing the output of the NN based on client
inputs, ensuring that the client learns only the output and
nothing about the service provider’s NN beyond what the
output reveals, while the service provider remains oblivious
to the client’s input and output.

In recent years, numerous approaches have been proposed
for SNNI [13]. To achieve security and privacy goals, SNNI re-
lies on sophisticated cryptographic techniques such as Secure
Multiparty Computation (MPC) and Homomorphic Encryption
(HE). While these approaches preserve privacy and safeguard
sensitive data, they often incur computational overhead due to
their reliance on complex cryptographic primitives [2]. Thus,
SNNI protocols are significantly more compute-intensive and
energy-hungry than conventional inference methods.

Minimizing energy consumption is crucial to mitigate car-
bon emissions in response to the escalating climate concerns.
Compared to training, ML inference consumes the majority
of computing resources, resulting in high costs and a signif-
icant environmental impact, particularly in terms of carbon
footprint [22], [23]. For instance, the carbon footprint of
Meta’s Transformer-based Universal Language Model for text
translation is predominantly generated during the inference
phase rather than the training phase, with inference requiring
significantly more resources (65%) compared to training [23].

However, optimization approaches proposed for SNNI have
primarily focused on (i) maximizing accuracy (i.e., measures
for the ratio of correct inferences made by the ML model)
and (ii) minimizing execution time (i.e., the time needed to
perform inference) [13]. Amidst growing climate concerns,



optimizing energy consumption when determining optimal
deployments of SNNI becomes a crucial aspect due to the
high computational overhead. Therefore, making SNNI more
energy-friendly remains an important research challenge.

To address this challenge, we design and develop a frame-
work that determines the optimal deployment option for SNNI
in terms of energy consumption. When referring to energy
consumption, we mean the overall energy consumption en-
compassing both client-side and server-side energy. Given an
ML inference task, this framework selects the SNNI approach
and NN that minimize energy consumption while considering
additional constraints, such as the desired level of accuracy
(i.e., the minimum acceptable accuracy for the client) and
execution time (i.e., the maximum acceptable execution time
for the client). The framework is based on a knowledge
base, which distills information from experiments involving
combinations of SNNIs and NNs. The framework uses the
knowledge base to identify the (near-) optimal choice of SNNI
and NN based on the client’s request. This paper outlines
the conceptual framework and showcases the main ideas.
Specifically, the contributions of this paper are as follows:

• An overview of our framework, presenting a novel ap-
proach designed to support any SNNI protocol.

• An empirical experiment using two state-of-the-art SNNI
protocols with three different NNs.

• An investigation into the implications of combining NNs
and SNNIs in terms of execution time, power, and energy
consumption on both the client and server sides.

The paper is organized as follows: Section II presents
relevant background information, Section III provides an
overview of our framework, while Section IV exemplifies it;
we discuss our insights in Section V, and review related work
in Section VI. Section VII concludes the paper.

II. BACKGROUND

A. Secure Neural Network Inference

Fig. 1 shows a typical setup of SNNI in the context of
MLaaS [13]. In this scenario, there are two parties: the client
and the service provider. The service provider has a pre-trained
NN on a server owned by them, with which it offers inference
as a service to clients. The client owns an input, x, and seeks
to acquire the neural network’s output, f(x), for this input.
Both input and output may contain sensitive information about
the client and must be kept private. The parameters of the NN
may also be sensitive and the service provider may not want to
reveal them to the client. An SNNI protocol allows the client
to obtain the output of the NN while ensuring that x, f(x),
and the parameters of NN remain private to their respective
owners. We now briefly describe two such protocols.

1) CrypTFlow2: CrypTFlow2 [18] is an SNNI approach
that evaluates an NN layer by layer, applying different cryp-
tographic primitives for different layers. In the used version
of CrypTFlow2, called SCI HE1, linear layers (e.g., fully-

1SCI means Secure and Correct Inference. In this paper, we use SCI HE
and CrypTFlow2 interchangeably.
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Fig. 1. Typical SNNI setup in a MLaaS context, based on prior work [13]

connected or convolutional layers) are evaluated using HE.
CrypTFlow2 introduces special MPC protocols for securely
and efficiently evaluating non-linear layers, such as ReLU
and Argmax. CrypTFlow2 ensures that the results of secure
inference are bitwise equivalent to the corresponding fixed-
point cleartext computations.

CrypTFlow2 can securely evaluate SqueezeNet [8] in under
a minute. It can securely evaluate ImageNet-scale practical
deep NNs, such as ResNet50 [4] and DenseNet121 [6], which
are significantly larger than those considered in prior work.
CrypTFlow2 claims to be more efficient than the previous
state-of-the-art protocol, Delphi [15], particularly in evaluating
non-linear layers of smaller CIFAR-scale deep NNs considered
in previous studies. CrypTFlow2 achieves this efficiency by
requiring an order of magnitude less communication and
reducing execution time significantly by 20×-30× [18].

2) Cheetah: Cheetah [7] is a recently introduced SNNI ap-
proach. It performs secure inference on large NN models like
ResNet50, with significantly reduced computation and com-
munication overheads compared to other SNNI approaches [7].

Similarly to CrypTFlow2, Cheetah evaluates the NN layer
by layer, applying HE for linear layers and special MPC
primitives for nonlinear layers. However, Cheetah uses a
different HE scheme from the one used in CrypTFlow2, and
Cheetah also further optimizes some of the MPC protocols
used for nonlinear layers compared to CrypTFlow2 [7].

B. Benchmark Neural Networks
We use three ImageNet-scale benchmark NNs: SqueezeNet

[8], ResNet50 [4], and DenseNet121 [6].
1) SqueezeNet: a convolutional neural network (CNN) de-

signed to have fewer parameters while maintaining competitive
accuracy. It achieves AlexNet-level accuracy on ImageNet
with a 50X reduction in model size compared to AlexNet [8].
It comprises 26 convolution layers, 26 ReLU layers, 3 Max-
pool layers, and 1 Avgpool layer.

2) ResNet50: a CNN based on residual network architec-
ture. It comprises 53 convolutional layers, each followed by
batch normalization and ReLU activation layers. Additionally,
the network features 1 Maxpool layer, 1 Avgpool layer, and 1
fully connected layer.

3) DenseNet121: a densely connected CNN that connects
each layer to every other layer. It comprises 121 convolutional
layers, each followed by batch normalization and ReLU ac-
tivation layers. Additionally, it includes 1 Maxpool layer, 4
Avgpool layers, and 1 fully connected layer.
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III. OUR APPROACH

In our approach, the service provider interacts with our
framework to find an optimal combination of SNNI and NN.
To do that, the framework relies on a knowledge base (KB).
We proceed to introduce the framework, the KB, and the in-
teraction between client, service provider, and our framework.

A. Overview of the framework

Fig. 2 provides an overview of the framework, which is
used by the service provider. In an initial offline phase,
the KB is populated through experiments involving different
combinations of SNNI protocols and NNs. This is followed
by an online phase, wherein the populated KB is utilized
by our framework and extended with results from subsequent
protocol execution. The service provider offers the following
deployment options for the offline phase: (i) a list of available
SNNI protocols; (ii) a list of available pre-trained NNs.

The client’s request typically comprises (i) an inference
request, which includes the input size, inference request type
(e.g., image classification), minimum acceptable accuracy, and
maximum acceptable execution time; and (ii) information
regarding the client’s resources, including CPU, memory, and
network bandwidth.

Our framework aims to determine the optimal deployment
option, i.e., the optimal choice of SNNI approach and NN.
In its current version, our framework focuses on a single
optimization objective function: minimizing energy consump-
tion, while respecting the client’s constraints. For an ML
inference task, the framework selects the SNNI approach
and NN that minimize energy consumption while considering
additional constraints, such as the desired level of accuracy
and execution time. Once the optimal choice is identified, the
framework forwards this solution to the service provider, who
then recommends it to the client. The service provider uses
our approach as a service. This self-learning service employs
existing SNNI approaches and NNs, and dynamically decides
what is optimal at run time. It autonomously selects the best
solution without requiring human intervention.

To find the optimal deployment option, our framework uses
a configuration search algorithm. This algorithm is driven by
the client’s specific request. The search space encompasses
existing deployment options, each comprising a possible com-
bination of SNNI approach and NN. The algorithm evaluates
various deployment options stored in the KB to identify the
best one, i.e., the (near-) optimal choice of SNNI approach

and NN for the client’s needs. (This paper focuses on a simple
proof-of-concept, where an explicit KB is used as the search
space for the configuration search algorithm. Future iterations
of the configuration search algorithm may incorporate more
advanced methods. However, for larger-scale knowledge bases,
the configuration search algorithm may require further opti-
mization in the future to handle increased size and complexity.)
Below we describe how the algorithm works. First, we select
the KB entries that are compatible with the client’s request,
by performing the following checks for each entry in the KB:
• Step 1: if the Inference Type of the client request does not

match the Inference Type in the entry, return NO,
• Step 2: if the Inference Size of the client request does not

match the Inference Size in the entry, return NO,
• Step 3: if the recorded accuracy in the entry is less than the

requested accuracy, return NO,
• Step 4: if the recorded execution time in the entry is larger

than the requested execution time, return NO,
• Step 5: check if the client’s resources match the resources

recorded in the entry.
To scope the work presented in this paper, we assume that step
5 is always fulfilled. In future work, we plan to investigate a
more nuanced set of checks, such as:
• Hard NO: if the Inference Type is not a match, the deploy-

ment option in the respective KB entry is not suitable for
the client request,

• Soft NO: if the client’s resources do not match those
recorded in the entry, then a prediction mechanism is used
to determine the execution time and energy consumption
for the client using the deployment option in the entry.

Once we identify the compatible KB entries, we select the one
with the smallest recorded energy consumption. To break ties,
we select the one with the smallest recorded execution time.

B. Knowledge base

During the offline phase, data is collected from experiments
involving SNNIs and NNs to populate the KB. Subsequently,
the online phase utilizes this KB to predict the optimal
deployment option in various scenarios. The KB continually
enhances its performance as a self-learning model through
online learning. We describe the experiments in Section IV-A.

C. Interaction between client, service provider, and framework

The sequence diagram presented in Fig. 3 illustrates the
execution of operations and the interaction between the client,
the service provider, and our framework, outlining the order of
events. For brevity, the diagram solely focuses on the online
phase, omitting the offline phase wherein the KB is populated.

The process begins with the client sending a request to the
service provider, who then forwards it to the framework for
identifying the optimal deployment option. The framework
uses its configuration search algorithm and determines the
near-optimal choice for the client. Once the best combination
of SNNI and NN is determined, the framework passes this to
the service provider, who then recommends it to the client.
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Fig. 3. Interaction between client, service provider, and framework

Following the initial handshaking process between the client
and the service provider, the client sends a protocol exe-
cution request for the recommended SNNI protocol to the
service provider, which is duly acknowledged. Subsequently,
the agreed SNNI protocol is executed jointly by the service
provider and the client, adhering to the protocol specifications.

Afterward, the service provider sends an update request to
the framework to incorporate the new measurements into the
KB. This update includes the new energy consumption and
execution time values obtained from the executed protocol.

IV. EXEMPLIFYING OUR FRAMEWORK: A
PROOF-OF-CONCEPT APPROACH

We describe here the experiments and the resulting data used
to populate the KB during the offline phase. We also explain
how the framework functions in the online phase.

A. Exemplification of the Offline Phase

Our experimental methodology and metric definitions are
built on prior work [17].

1) Experiment design: We conduct experiments using
two state-of-the-art SNNI approaches: Cheetah and CrypT-
Flow2 (SCI HE), and three NNs: SqueezeNet, ResNet50, and
DenseNet121. We measure the execution time, average power
consumption, and subsequently, the total energy consumption
for one secure inference. We obtain these measurements inde-
pendently for both the client and server machines. Currently,
we focus on one objective: minimize energy consumption.

We run each combination of SNNI and NN 30 times. Based
on the experimental results, we compute the overall energy
consumption (encompassing both client-side and server-side
energy) and execution time. We also collect data on the client’s
resources, including CPU, memory, and network bandwidth,
as well as specifics of the client’s inference request such as
type, input size, and requested levels of accuracy and execution
time. These experimental findings are used to populate our KB.

In our experiments, we use a simple system model consist-
ing of one server and one client machine. To represent these,
we use two identical Intel(R) Xeon(R) E-2378 computers,
both running Ubuntu 22.04.2 LTS with a 64-bit Linux kernel
version 5.15.0-83-generic x86 64. Each computer is equipped
with a 2.60 GHz, 8-core processor and has 64 GB of RAM
each. To measure power and energy consumption, we utilize
the Linux Hardware Monitoring (hwmon)2 interface on both
the client and server machines. Through this interface, we
collect the average power consumption of both client and
server machines every second. From these measurements,
we calculate the average power consumption and estimate
the total energy consumption of each computer during the
entire duration of the secure inference process. Regarding the
SNNI approaches, we utilize the latest version of Cheetah
(commit number: 0b63d6f ) released on 2nd March, 2023. The
codebase of Cheetah includes an implementation of CrypT-
Flow2 (SCI HE), which we employ in our experiments as an
alternative SNNI approach alongside Cheetah.

We take the following precautions in our experiments: (i)
ensuring no other workload is running on both computers
besides our experiment, (ii) subtracting the mean idle power
consumption of the system when measuring the actual power
consumption of running an SNNI program on both machines,
and (iii) repeating the measurements of each SNNI and NN
combination 30 times.

We collect the following metrics in our experiment:
• Execution time (s): Execution time is the duration of

the secure inference process execution for one inference
request. It is measured by the time difference between
when the client starts and finishes its part in the secure
inference process. Since the actual execution of the secure
inference protocol starts when the client joins, we disregard
the waiting time of the server. In the end, both the server
and the client finish the protocol execution at about the same
time. It is measured in seconds (s).

• Average power consumption of the server (W): The addi-
tional power consumed by the server machine during the
execution of the SNNI program, averaged over the duration
of the secure inference process. It is measured in Watts (W).

• Average power consumption of the client (W): The addi-
tional power consumed by the client machine during the
execution of the SNNI program, averaged over the duration
of the secure inference process. It is measured in Watts (W).

• Total energy consumption of the server (J): The integral
of the instantaneous power consumption on the server ma-
chine accumulates over the duration of the secure inference
process, calculated as the product of the average power
consumption of the server and the execution time of the
SNNI program. It is measured in Joules (J).

• Total energy consumption of the client (J): The integral
of the instantaneous power consumption on the client ma-
chine accumulates over the duration of the secure inference
process, calculated as the product of the average power

2https://www.kernel.org/doc/Documentation/hwmon/sysfs-interface



consumption of the client and the execution time of the
SNNI program. It is measured in Joules (J).
2) Experimental results: We conduct an empirical ex-

periment, obtaining the idle power measurements initially.
Subsequently, we measure power and energy consumption
while executing various combinations of SNNIs and NNs. To
measure the power consumption of running an SNNI program,
we first measure the idle power consumption of both the client
and server machines. Then, we measure the system’s power
consumption while the SNNI program is running. Finally, we
subtract the mean idle power consumption of the system from
this value and report this difference as power consumption.
We also compute the energy consumption metric based on
this difference later in our experiments.

a) Idle power measurements: We measure the idle power
consumption for 10 minutes and collect power measurements
every second, yielding 600 measurements. Subsequently, we
compute the mean and standard deviation of idle power
consumption for both client and server machines from these
measurements. The idle power consumption for the client is
29.86 ± 0.48 watt, and for the server, it is 30.68 ± 0.75 watt.
The standard deviation is small compared to the idle power
consumption, indicating it will also be small relative to the
additional power consumption incurred during the experiment.
This gives us a reliable basis for accurately measuring the
power consumption of running an SNNI program. Given the
relatively small standard deviation of idle power consumption,
we disregard it in further calculations.

b) Energy measurements: We measure the average power
consumption and the total energy consumption of executing
one secure inference using two state-of-the-art SNNI protocols
on three different NNs. The measurement of average power
and energy consumption accounts for idle power consumption.
Table I shows the results. For each metric, we report an
average of 30 runs.

For each combination of SNNI and NN, we obtain mea-
surements for the overall energy consumption (encompassing
both client-side and server-side energy) and execution time
from our experiments. We use accuracy information from the
literature: “Cheetah produces predictions almost the same as
CrypTFlow2 (SCI HE), which are bit-wise equivalent to plain-
text fixed-point computation” [7]. The authors of CrypTFlow2
demonstrate that the accuracy achieved by the fixed-point code
is equivalent to that of floating-point numbers [18]. Therefore,
we use the top-1 fixed point accuracy from the CrypTFlow2
paper (cf. Table 10) as our accuracy indicator for the respective
SNNI and NN combination. Table II provides a snapshot of
the populated KB at the time the client places a request.

B. Exemplification of the Online Phase

The framework uses its KB to recommend the optimal
combination of SNNI and NN online. We now use an example
to illustrate our process of identifying and recommending a
deployment option for SNNI protocols and NNs.

Table III presents sample data regarding the client’s request-
related information, with each row representing a separate

request. We assume that the client’s inference requests come
with client resources similar to those in our KB.

For the first request, a client holds an input image of
size 224x224 pixels and seeks secure inference for an image
classification task. The client’s resources consist of a 2.60 GHz
processor with 64 GB of RAM and a network bandwidth
of 1000 Mbps. The client’s objective is to determine the
SNNI + NN combination that achieves secure inference with
minimal energy consumption, ensures at least 75% accuracy,
and completes the execution within 120 seconds.

The service provider forwards the client’s request to the
framework, which uses it as input for its configuration search
algorithm to determine the optimal combination of SNNI and
NN from the KB that best satisfies the client’s request.

The search algorithm traverses the KB and evaluates deploy-
ment options stored therein (as shown in Table II). Table IV
summarizes the evaluation results. The first option is Cheetah
+ SqueezeNet. Despite its low execution time and energy
consumption, this option is discarded because the accuracy
of Cheetah + SqueezeNet (55.90%) falls short of the client’s
minimum threshold (75%) and due to a mismatched input size.
Similarly, SCI HE + SqueezeNet is discarded due to accuracy
and input size mismatches. Cheetah + ResNet50 satisfies all
the client’s requirements and thus is considered as a possible
recommended option. The remaining options are discarded due
to various shortcomings: SCI HE + ResNet50 exceeds the
maximum acceptable execution time, Cheetah + DenseNet121
fails to meet the minimum accuracy requirement, and SCI HE
+ DenseNet121 fails on both criteria. Ultimately, the con-
figuration search algorithm selects Cheetah + ResNet50 as
the only feasible deployment choice, resulting in an energy
consumption of 7749.71 J, an accuracy level of 76.45%, and
an execution time of 108.70 seconds.

The second client request is more flexible in terms of
accuracy. They seek a combination of SNNI and NN that
achieves inference with minimal energy consumption while
ensuring an accuracy of at least 70% and completing the
execution within 120 seconds.

After analyzing the options in the KB (see Table V), the con-
figuration search algorithm eliminates Cheetah + SqueezeNet
and SCI HE + SqueezeNet due to the same reasons identified
in the prior scenario. Likewise, SCI HE + ResNet50, and
SCI HE + DenseNet121 are discarded for exceeding the
execution time limit. Both Cheetah + ResNet50 and Cheetah
+ DenseNet121 meet all the client’s requirements in this
instance. Comparing their overall energy consumption, the
search algorithm selects Cheetah + DenseNet121 (6750.58
J) over Cheetah + ResNet50 (7749.71 J), prioritizing lower
energy consumption (6750.58 J) with an accuracy of 74.35%
and an execution time of 115.27 seconds.

Our framework selects the best deployment option for the
client and suggests it to the service provider, who then recom-
mends the client proceed with this choice for execution. Upon
successful protocol execution, new measurements obtained in
the online phase replace old values stored in the KB entry.



TABLE I
COMPARISON OF CHEETAH AND CRYPTFLOW2 (SCI HE) ON SQUEEZENET, RESNET50, AND DENSENET121 REGARDING EXECUTION TIME, POWER
CONSUMPTION, AND ENERGY CONSUMPTION. THE RESULTS ARE THE AVERAGE OF 30 RUNS, CORRECTED FOR AVERAGE IDLE POWER CONSUMPTION

Neural
network

SNNI
approach

Participant Execution
time (s)

Average Power
consumption (W)

Total Energy
consumption (J)

SqueezeNet
Cheetah Client 24.50 ± 0.51 28.44 ± 2.92 696.79 ± 73.23

Server 31.63 ± 2.99 775.36 ± 77.91

SCI HE Client 77.53 ± 0.86 9.36 ± 0.82 725.94 ± 66.61
Server 29.58 ± 2.58 2293.61 ± 200.62

ResNet50
Cheetah Client 108.70 ± 0.47 24.22 ± 1.69 2633.05 ± 182.51

Server 47.07 ± 3.14 5116.66 ± 347.83

SCI HE Client 366.90 ± 4.09 8.66 ± 0.65 3178.43 ± 235.43
Server 47.00 ± 1.35 17242.15 ± 512.64

DenseNet121
Cheetah Client 115.27 ± 0.52 24.99 ± 1.17 2,880.30 ± 132.23

Server 33.58 ± 1.55 3,870.28 ± 181.26

SCI HE Client 409.73 ± 3.75 8.79 ± 0.53 3,600.76 ± 216.57
Server 37.70 ± 1.24 15,443.01 ± 460.93

TABLE II
SAMPLE KNOWLEDGE BASE WITH DATA COLLECTED FROM ACTUAL EXPERIMENTS. SNET = SQUEEZENET, RNET = RESNET50,

DNET = DENSENET121, IM = IMAGE CLASSIFICATION

Service provider’s
deployment options Client’s inference requests Client’s resources Measured outcome

SNNI NN Accuracy
(%)

Type Input
size

CPU
(GHz)

Memory
(GB)

Network
bandwidth

(Mbps)

Execution
time
(s)

Overall Energy
consumption

(J)

Cheetah SNet 55.90 IM 227x227 2.60 64 1000 24.50 1472.15
SCI HE SNet 55.90 IM 227x227 2.60 64 1000 77.53 3019.55
Cheetah RNet 76.45 IM 224x224 2.60 64 1000 108.70 7749.71
SCI HE RNet 76.45 IM 224x224 2.60 64 1000 366.90 20420.58
Cheetah DNet 74.35 IM 224x224 2.60 64 1000 115.27 6750.58
SCI HE DNet 74.35 IM 224x224 2.60 64 1000 409.73 19043.77

TABLE III
EXAMPLE CLIENT REQUESTS

Client’s inference requests Client’s resources

Input
size Type

Min.
accuracy

(%)

Max.
execution
time (s)

CPU
(GHz)

Memory
(GB)

Network
bandwidth

(Mbps)

224x224 IM 75 120 2.60 64 1000
224x224 IM 70 120 2.60 64 1000

. . . . . . . . . . . . . . . . . . . . .

TABLE IV
EVALUATION RESULTS OF POSSIBLE DEPLOYMENT OPTIONS FOR THE

FIRST CLIENT REQUEST

SNNI NN Appropriate for request

Cheetah SNet NO: wrong input size, accuracy too low
SCI HE SNet NO: wrong input size, accuracy too low
Cheetah RNet YES
SCI HE RNet NO: execution time too high
Cheetah DNet NO: accuracy too low
SCI HE DNet NO: accuracy too low, execution time too high

V. DISCUSSION

We discuss the insights from this study, the limitations of
our research, and potential threats to validity.

A. Lessons learned

Our experiments in Section IV-A demonstrate that different
combinations of NN and SNNI approaches can lead to very
different execution times and energy consumption values. Our
measurement results are in line with previous research [17],

TABLE V
EVALUATION RESULTS OF POSSIBLE DEPLOYMENT OPTIONS FOR THE

SECOND CLIENT REQUEST

SNNI NN Appropriate for request

Cheetah SNet NO: wrong input size, accuracy too low
SCI HE SNet NO: wrong input size, accuracy too low
Cheetah RNet YES
SCI HE RNet NO: execution time too high
Cheetah DNet YES
SCI HE DNet NO: execution time too high

but we are the first to go one step further and leverage these
measurement results for determining the best combination of
NN and SNNI approach for a given client request.

For a future SNNI service that is used by many clients,
it is fair to assume that different clients can have different
requirements in terms of accuracy and execution time. As
Section IV-B shows, our framework can accommodate these
different requirements, by proposing different NNs and/or
SNNI approaches depending on the requirements. This dy-
namic adaptivity is a special feature of our framework that
differentiates it clearly from previous approaches.

Section IV-B has also shown that for certain client requests,
multiple NN / SNNI approach combinations can be suitable.
Our framework automatically leverages such cases for saving
energy, by choosing from the suitable deployment options
the one with the least energy consumption. Again, this is a
property that no existing approach exhibits.

Section IV has also demonstrated how the offline and online



phases are tied together by the KB. The KB captures in a
concise form all the relevant results of all experiments of the
offline phase. During the online phase, the KB provides a solid
basis for responding to client queries.

B. Opportunities for future research

We implemented a first version of our framework as a proof
of concept (PoC) to show the fundamental viability of our idea.
We plan to extend our framework in several aspects.

We currently assume that the client provides hard require-
ments on accuracy and execution time, and we optimize energy
consumption. In reality, several other metrics could also be rel-
evant (e.g., energy consumption of only the client, power draw,
memory demand), and there may not be hard requirements on
most of the metrics. Multi-objective optimization methods [14]
can be applied to find good deployment options in such a case.

For now we used the same client computer in the offline
and the online phase. In reality, clients in the online phase can
differ from what was tested in the offline phase. This requires
predicting how long inference would take and how much en-
ergy it would consume on the new client, given measurements
with other clients [24]. We plan to apply prediction methods,
such as machine learning, to solve this problem.

We currently employ three conventional NNs in the experi-
ment: SqueezeNet, ResNet50, and DenseNet121. Future work
aims to enrich the framework by incorporating additional state-
of-the-art NNs, such as transformers.

Our PoC only considers a single client and a single server
at a time. In reality, a service provider may possess several
servers with different capabilities and may serve multiple
clients simultaneously. Our framework could be extended with
resource management aspects, allowing it to select not only the
best NN and SNNI approach but also the most appropriate
server for a given client request, considering the load on the
servers and their energy efficiency.

C. Threats to validity

External validity. The PoC incorporates two SNNI ap-
proaches and three NNs. To address external validity concerns,
we select two state-of-the-art SNNI approaches. We also
utilize three often-used neural networks that were previously
employed to evaluate the chosen SNNI approaches. We use
two robust identical computers to simulate the server and client
machines, both equipped with relatively powerful hardware
configurations. Real clients may not always possess such
powerful computing devices. Therefore, as part of our future
work, we aim to accommodate varied hardware configurations
to represent less powerful client computers. However, running
the SNNIs on different computers and employing diverse
SNNI approaches alongside other NNs may result in varying
energy measurements. Further replication of the experiment
can help mitigate this potential threat.

Internal validity. System processes may contribute to ad-
ditional power consumption, potentially impacting the energy
usage of the SNNI approaches. To address this concern, we
conduct idle power consumption measurements for 10 minutes

on both client and server machines. We observe a relatively
small standard deviation in the idle power consumption of both
machines over extended periods, indicating that any additional
power consumption of the system during the experiment can
be attributed to the SNNI process. We also ensure that no other
workloads run on either computer during our experiments
to maintain experimental integrity. To mitigate the potential
impact of random effects, we repeat the measurements of
each SNNI and NN combination 30 times, and calculate the
average of the collected metrics. Finally, we measure power
and estimate energy consumption using the Linux Hardware
Monitoring (hwmon) interface. We partially mitigate potential
bias by subtracting the mean idle power consumption of the
system when measuring the actual power consumption of an
SNNI process. However, future replications of experiments
using alternative power monitoring tools may yield more
precise and reliable measurements, further mitigating this
potential threat to internal validity.

VI. RELATED WORK

In recent years, the field of SNNI has witnessed significant
progress, with numerous approaches proposed, many of which
leverage advanced cryptographic techniques [13]. Current re-
search has mostly focused on making secure inference faster.

Among the earliest protocols to explore secure two-party
NN inference, CryptoNets [3] demonstrated the application
over encrypted data, using HE. At the cost of high overhead
in terms of execution time, CryptoNets achieved both high
accuracy and security, with high throughput. GAZELLE [9]
combined multiple protocols, incorporating a blend of HE and
two-party computation techniques such as garbled circuits.

Some approaches [15], [16], [11], [21] use offline pre-
computation to expedite the online phase. For instance, in
Delphi, heavy computational operations are shifted to the
offline pre-processing phase, thus significantly reducing ex-
ecution time and communication costs in the online phase
compared to prior work [15]. SecureML uses online/offline
phases similar to Delphi, but assumes the presence of two non-
colluding servers and leverages parallelization in its offline
phase, leading to increased efficiency [16]. Falcon, on the other
hand, differs from SecureML by using three non-colluding
servers instead of two, leading to improved efficiency com-
pared to prior works [21]. Also, MiniONN uses an offline
pre-computation phase to reduce the overhead during the on-
line phase, achieving comparable online performance to prior
works and significantly improved offline performance [11].

CrypTFlow2 [18] enhances CrypTFlow [10] by combining
HE and various MPC protocols, leading to reduced execution
time. Cheetah [7] refines CrypTFlow2, yielding one of the
most efficient SNNI implementations to date.

Some approaches leverage the edge computing paradigm,
where most compute-intensive tasks are offloaded to edge
devices. Tian et al. [20] devised an IoT-based edge-assisted
scheme for efficiently executing complex CNN inference tasks,
resulting in significant energy savings for IoT devices. How-
ever, it requires powerful devices to handle high-frequency



CNN requests, due to storage overhead and substantial energy
consumption during offline key pre-computation [20]. Liu
et al. [12] introduced Leia, a lightweight cryptographic NN
inference system at the edge, delegating the entire secure
inference to the edge. Additionally, the authors measured the
energy consumption of Leia across various medical application
datasets [12]. By outsourcing compute-intensive tasks to the
edge, these approaches focus on reducing computational cost
and energy consumption of IoT devices, and not on reducing
the overall energy consumption of the entire system, although
this would be more important to improve sustainability.

To sum up, the primary focus of existing SNNI research
lies in making execution faster, without explicitly optimizing
overall energy consumption. In our work, we try to fill this gap
in existing research by providing a framework for minimizing
the overall energy consumption of SNNI.

VII. CONCLUSION

MLaaS allows clients to obtain inference output from pre-
trained neural networks offered by service providers. The
data privacy and security concerns introduced by MLaaS are
addressed by SNNI approaches. SNNI leverages cryptographic
techniques to shield the client’s input and output from the
service provider, and the service provider’s NN from the client.

The high computational overhead associated with state-
of-the-art SNNI approaches makes finding energy-friendly
solutions an ongoing challenge. To tackle this challenge, we
proposed a novel framework designed to determine an optimal
deployment option for the SNNI and NN based on client
requests. This initial version focuses solely on optimizing the
overall energy consumption, while accuracy and execution
time metrics are treated as client constraints. By leveraging
a knowledge base derived from experimental data, we im-
plemented the first version of our framework as a proof-of-
concept, demonstrating the feasibility of providing tailored
deployment options for clients.

We plan to extend our framework by incorporating predic-
tion methods and multi-objective optimization to enhance its
practicality. Additionally, we aim to accommodate resource-
constrained clients and support multiple servers serving mul-
tiple clients within the framework. Furthermore, we intend to
apply our framework and evaluate its overall performance in
real-world scenarios to validate and refine its practical utility.
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