
A lower bound and a tabu search algorithm for scheduling

batches in a proportional job shop ∗

Márton Drótos † Gábor Erdős ‡ Tamás Kis §

1 Introduction

We consider a complex batch scheduling problem in a job shop, where jobs belong to job families, there
are sequence and machine dependent setup times between jobs of different families, the processing times
are determined by the job sizes and machine speeds, there are routing and machine alternatives and
the machines have non-availability periods. The objective is to minimize the total tardiness of the job
families, where the tardiness of a job family is determined by the maximum tardiness of the jobs in the
family. This is a complex problem motivated by an industrial application. Nevertheless, we are able to
compute lower bounds on large scale instances, and some ideas of our tabu search algorithm may be
transfered to other batch scheduling problems. For convenience we measure the time in minutes and
days.

The input data of our scheduling problem can be summarized as follows: there is a set of job families
{F1, . . . , Fn}, where each Fi consists of a finite number of jobs. All jobs in the same family Fi have a
common release date ri, due date di and weight wi. There is a time horizon, 30 days, say, and each ri
falls on the beginning of some day, while each di is the end of some day within the horizon. Moreover,
each job j ∈ Fi has a size qj . There is a sequence of main production steps and each job family requires
a subsequence of this. Each Fi has a few routing alternatives R1

i , . . . , R
ai
i , where each R`i is a sequence

of stages, each stage being a subsequence of steps. The stages of each routing alternative must be
disjoint and their union must give the set of steps required by Fi. With each stage s, there is associated
a set of machines Ms

i . The processing time of job j ∈ Fi on some machine Mk ∈ Ms
i is defined as

pj,k = qj/v
k
i , where vki is the speed of Mk (items/unit time) when processing any job from Fi. Each

machine Mk has a calendar specifying those time periods when the machine is available for processing.
There are sequence dependent setup times between the jobs of different families scheduled on the same
machine. Let uk(j1, j2) denote the setup time between the jobs j1, j2 on Mk, it is 0 if jobs j1 and j2
belong to the same family. It is assumed that the setup times satisfy the triangle inequality, that is,
uk(j1, j2) + uk(j2, j3) ≥ uk(j1, j3) for any jobs j1, j2 and j3.

A feasible solution consists of a selection of routing alternatives Rρ(i)i , starting times Sj,s ≥ ri (j ∈ Fi,
s ∈ Rρ(i)i ), and machines µ(j, s) ∈ Ms

i , i = 1, . . . , n. Notice that the same stage of distinct jobs of the
same family may be assigned to different machines. If a machine becomes non-available during the
processing of a job, then the processing of the job is stopped and resumed immediately once the machine
becomes available again. However, once the processing of a job has started on a machine, it must be
finished on the same machine, and it cannot be preempted for processing another job. Before processing
∗The support of NKFP Grant No. 2/010/2004 and the János Bolyai Research Grant No. BO/00380/05 is gratefully

acknowledged.
†marton.drotos@sztaki.hu. Computer and Automation Institute, Kende utca 13-17, 1111 Budapest, Hungary, and

Budapest University of Technology and Economics, Magyar tudósok körútja 2/d, 1117 Budapest, Hungary.
‡gabor.erdos@sztaki.hu. Computer and Automation Institute, Kende utca 13-17, 1111 Budapest, Hungary.
§tamas.kis@sztaki.hu. Computer and Automation Institute, Kende utca 13-17, 1111 Budapest, Hungary.

1



the first job of a family on a machine, a setup must be performed. In addition, all jobs of the same family
that are assigned to the same machine must be performed consecutively. The objective is to minimize
the function

∑
i widCFi

− die, where CFi
is the maximum completion time of the jobs in family Fi and

d·e rounds up to days.

2 Solution approach

Our solution approach consists of two main phases. In the first phase a routing alternative is selected
for each job family and an initial (job, stage) to machine assignment as well as an initial ordering of jobs
is determined. In the second phase we apply a tabu search algorithm for improving the initial schedule.

2.1 Selection of routing alternatives and lower bound computation

We select a routing alternative simultaneously for all the job families. To this end, we allow preemption
and neglect setup times and exploit that the processing times of the jobs depend on the job sizes and
machine speeds. We also exploit that all jobs of the same family go through the same stages. In the
relaxed problem, we take into account the machine availability periods and job family due dates. Like
in the original problem, the objective is to minimize the total weighted tardiness of job families, where
tardiness is measured in days. We provide a time-indexed MIP formulation and solve it by a standard
solver. The advantage of this approach is that once the MIP solver finds a feasible, but not necessarily
optimal solution, we can stop at any time, we always have a lower bound on the optimal objective
function value.

The solution of the MIP problem provides not only a selection of routing alternatives, but also a
fractional assignment of job families to machines. From this we create an initial schedule by assigning
full jobs to machines and by inserting the batches (formed by all jobs of the same family assigned to the
same machine) into an initially empty schedule in a greedy manner.

2.2 Tabu search

To improve the initial schedule, we have used a tabu search algorithm. The neighborhood of a schedule
is defined by feasible reinsertions of critical batches, where a batch of jobs is critical if moving it to the
left would enable jobs that complete after their due dates to finish earlier. Note that since the number
of batches is much smaller than the number of jobs, this way we have reduced the size of the search
space considerably. To define various neighborhoods of a schedule, we define a critical forest of batches,
which is any spanning forest of the subgraph spanned by the critical batches. In neighborhood N1, one
critical tree of the critical forest is chosen at random and all batches of this particular tree are tested
for reinsertion on all possible machines and the best neighbor is chosen. Neighborhood N2 is similar to
N1, but if the objective function value improved in the previous iteration, then it evaluates the trees of
the critical forest one by one until an improvement is found, otherwise only one randomly chosen tree is
evaluated. N3 is similar to N2, but if the previous iteration improved the objective function value, then
the evaluation starts with the tree of the same root from which a batch was chosen for reinsertion in
the previous iteration (if such a tree exists). To guide the search we rank the solutions with respect to
two objectives: total tardiness of job families as primary objective and total job tardiness as secondary
objective. The secondary objective helps to find out how to improve on the primary objective. On
top of that, if there is no improvement after some iterations, then we split some of the critical batches
(provided it improves the objective function) and the tabu search continues with the modified set of
batches. Splitting a batch means that some jobs of the batch are moved to a different machine.

We tested our algorithm on data from a real-world industrial application. Results show that batch
splitting considerably improves solution quality. Moreover, there are not big differences between the
neighborhoods.

2


