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Abstract

In a graph where vertices have preferences over their neighbors, a matching is called
popular if it does not lose a head-to-head election against any other matching when the
vertices vote between the matchings. Popular matchings can be seen as an intermediate
category between stable matchings and maximum-size matchings. In this paper, we aim to
maximize the utility of a matching that is popular but admits only a few blocking edges.

We observe that for general graphs finding a popular matching with at most one blocking
edge is already NP-complete. For bipartite instances, we study the problem of finding a
maximum-utility popular matching with a bound on the number (or more generally, the cost)
of blocking edges applying a multivariate approach. We show classical and parameterized
hardness results for severely restricted instances. By contrast, we design an algorithm for
instances where preferences on one side admit a master list, and show that this algorithm
is roughly optimal.

1 Introduction

In the classic stable matching problem, we are given a bipartite graph, where the two sets of
vertices represent two agent sets. Each agent has a strictly ordered preference list over their
possible partners from the other agent set. A matching is stable if it is not blocked by any
edge, that is, no pair of agents exists who are mutually inclined to abandon their partners for
each other. The existence of stable matchings was shown in the seminal paper of Gale and
Shapley [31]. The optimality notion was later extended to various other input settings in order
to suit the growing number of applications such as employer allocation markets [56], university
admission decisions [4, 9], campus housing assignments [15,55] and bandwidth allocation [30].

In the area of matchings under preferences, the trade-off between stability and size (or
utility) has been an actively investigated topic [2, 8, 13, 29, 34]. The most extensively studied
compromise between these optimality criteria might be the notion of popular matchings, first
defined by Gärdenfors [32]. Matching M is more popular than another matching M ′ if the
number of vertices preferring M to M ′ is larger than the number of vertices preferring M ′

to M . A matching M is called popular if there is no matching M ′ that is more popular than M .
In bipartite graphs, all stable matchings have the same size, at least 1

2 |Mmax| where Mmax

is a maximum-size matching. Stable matchings are minimum-size popular matchings [32, 38],
and maximum-size popular matchings have size at least 2

3 |Mmax| [44]. In non-bipartite graphs
it is NP-complete to decide whether a popular matching even exists [24, 35]. If edges have
utilities in {1, 2}, computing a popular matching of maximum utility is NP-hard even in bipartite
instances [24]. The difference between a maximum-utility stable and a maximum-utility popular
matching can be arbitrarily large in terms of the objective.
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In this paper, we concentrate on the stability versus maximum utility question within the
set of popular matchings. We investigate popular matchings with bounded instability, that is,
matchings that are popular but admit only a few blocking edges. Can we find popular matchings
with, say, at most one blocking edge efficiently? If the given instance admits a stable matching
(which is always the case for bipartite graphs), the answer is obviously yes, since all stable
matchings are popular. But can we efficiently find a maximum-utility matching among all
popular matchings with at most one blocking edge? How far can we venture into the realm of
instability, if we want to keep our ability to find maximum-utility matchings efficiently?

In order to examine such questions in detail, we use a general model where with each edge
we associate a utility and a cost as well, and we ask for a popular matching whose total utility is
above a given threshold, while its blocking edges have total cost not exceeding a given budget.
This setting can be interpreted as follows. Vertices are agents whose partnership brings as much
profit to a central authority as the utility of the edge connecting them. The cost of an edge is the
regret of the agents if the edge blocks the matching. The central authority disposes of limited
resources to compensate agents who could be better off by switching to blocking edges. Up to
this limit, blocking edges can be paid for and thus tolerated. The goal is to find a matching
whose utility reaches our target, while ensuring that agents can be compensated from the cost
budget.

Since the question is computationally intractable in such a general form as we will see in
Section 2, we apply the framework of parameterized complexity [20], and take a multivariate
approach [53] in order to understand how exactly the several parameters appearing in such
an instance contribute to its intractability, and to identify cases that can be solved efficiently.
Apart from the several natural parameters we can associate with the problem (such as our
objective value or our budget), we also investigate various restrictions on the preference profiles
and how they influence the computational complexity of the question.

1.1 Related work

We briefly review some classical and parameterized complexity results on stable and popular
matchings. Then we elaborate on the versions of these problems with edge utilities, and finally,
we discuss the relaxation of stability.

Complexity results for stable and popular matchings. From the seminal paper of Gale
and Shapley [31] we know that in bipartite instances a stable matching always exists and can
be found in linear time. If the graph is not bipartite, then the existence of a stable solution is
not guaranteed. However, Irving’s linear-time algorithm finds a stable matching or reports that
none exists [40].

For bipartite instances, it was already noticed by Gärdenfors [32] that all stable matchings
are popular, which implies that in bipartite instances popular matchings always exist. In fact
stable matchings are smallest-size popular matchings, as shown by Biró et al. [6]; maximum-
size popular matchings can be found in polynomial time as well [38, 44]. Interestingly, finding
a popular matching that has exactly some prescribed size, or in fact, one that has neither
minimum nor maximum size, is NP-hard [24]. Only recently Faenza et al. [24] and Gupta et
al. [35] resolved the long-standing open question on the complexity of deciding whether a popular
matching exists in a non-bipartite instance and showed that the problem is NP-complete.

Stable matchings have been studied extensively from a parameterized viewpoint. For an
overview, please consult the survey by Chen [12]. Only a few results consider popularity within
the parameterized framework, and most of them do so in the context of the house allocation
problem [17,45].

There is a large set of results on stable and popular matchings in instances where preferences
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admit a master list (see Section 2 for a definition) [11,43,46,51]. Master lists naturally occur in
a number of applications, such as P2P networks [30,49], job markets [42], and student housing
assignments [55].

Stable matchings with edge utilities. For bipartite instances, Irving et al. [41] proposed
an algorithm for finding a maximum-utility stable matching in O(n4 log n) time for an n-vertex
graph; see also [36]. For non-negative integer edge utilities that satisfy a certain monotonicity
requirement, the fastest known algorithm is due to Feder [25,26], running in O(n2 log( K

n2 + 2))·
min {n,

√
K} time where K is the utility of an optimal solution. A maximum-utility stable

matching can also be computed using a simple and elegant formulation of the stable matching
polytope [57]. For the non-bipartite case, finding a maximum-utility stable matching is NP-hard,
but 2-approximable under certain monotonicity constraints using LP methods [59,60].

Popular matchings with edge utilities. For bipartite instances, Faenza et al. [23] showed
that it is NP-complete to decide if there exists a popular matching that contains two given
edges, which is a very restricted case of popular matchings with edge utilities. The same
authors provided a 2-approximation algorithm for non-negative edge utilities. NP-hardness was
established for non-bipartite instances with edge utilities a couple of years earlier already [39].

Almost stable matchings. Non-bipartite stable matching instances need not admit a stable
solution. The number of blocking edges is a characteristic property of every matching. A natural
goal is to find a matching that minimizes the number of blocking edges—such a matching is
called almost stable. This approach has a broad literature: almost stable matchings have been
investigated in bipartite [8, 34, 37, 47] and non-bipartite instances [1, 7, 13, 18]. Closest to our
work is the paper by Gupta et al. [34] studying the trade-off between size and stability from a
parameterized complexity viewpoint.

1.2 Our results and structure of the paper

Using a multivariate approach, we gain insight into the computational complexity of finding
a maximum-utility popular matching respecting a bound on the cost of its blocking edges.
We draw a detailed map of the problem’s complexity in terms of parameters such as the cost
budget k, the desired utility value t, the form of the cost and utility functions (e.g., being binary
or uniform), and the structural properties of the preference profile; see Table 8 for a detailed
summary.

Sections 2 and 3. We first define our model, optimality notions, and problems. In Obser-
vation 1 we prove that for general graphs, already finding any popular matching with at most
one blocking edge is NP-complete. We thus restrict ourselves to the bipartite case and show in
Theorems 6 and 7 that finding a maximum-utility popular matching with at most one blocking
edge is NP-complete even for highly restricted inputs.

Section 4. To contrast these strong intractability results, we next focus on the “tractability
island” of bipartite instances that admit a master list on one side. We propose a simple algorithm
that finds a maximum-utility popular matching whose blocking edges have total cost at most k,
given a positive integer cost function on the edges. Our algorithm runs in time O(|E|k) where
E is the edge set of the input graph (Theorem 10). This running time is tight in the sense that
the problem is W[1]-hard with parameter k (Theorem 11). We show our algorithm’s optimality
also in the sense that the few assumptions we have on the input (besides admitting a master
list), namely that preferences are strict and edges have positive integer costs, are necessary:
allowing for ties or for zero-cost edges undermines the tractability of the problem (Theorems 12
and 13).
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Section 5. We close our investigations with relaxing the requirement of popularity, and focus-
ing on the less restrictive requirement of Pareto-optimality instead. Hence, we ask the following
question: can we efficiently find a maximum-utility Pareto-optimal matching with only a few
blocking edges or, more generally, one whose blocking edges have total cost not exceeding a given
budget? In Theorem 14 we propose an algorithm for this problem that runs in 2O(k log k)|E|k+2

time for a positive integer cost function on the edge set E and a budget k. We also prove that
this algorithm is essentially optimal (Corollary 16).

2 Preliminaries

We first introduce our model and the most important concepts in Section 2.1, and then state
our problem definitions and start our investigations in Section 2.2.

2.1 Model and notation

Graphs. For a graph G = (V,E), we let V (G) and E(G) denote its vertex and edge set,
respectively. If F ⊆ E, then V (F ) is the set of all endpoints in F . All our graphs are simple
(without loops or parallel edges). For a vertex v ∈ V , NG(v) denotes the set of its neighbors
and δG(v) = |NG(v)| its degree in G. The maximum degree of G is ∆G = maxv∈V (G) δG(v).
Two edges are adjacent, if they share an endpoint. A matching in G is a set of edges such that
no two of them are adjacent. For a matching M and an edge (a, b) ∈M , we let M(a) = b, and
conversely, M(b) = a. For a set X of edges or vertices in G, let G −X be the subgraph of G
obtained by deleting X from G; for a singleton X = {x} we may simply write G− x. We also
let G[X] = G− (V (G) \X) for some X ⊆ V (G). For a set F of edges, we let V (F ) denote the
set of all vertices that are incident to some edge in F . We use △ for the symmetric difference
operator.

Preference systems. A preference system is a pair (G,⪯) where G = (V,E) is a graph and
⪯ is a collection of preference orders ⪯v for each v ∈ V , where ⪯v can be a strict or a weak
linear order over NG(v). We let ≺v be the strict part of ⪯v, i.e., a ≺v b means b ̸⪯v a. We
say that v prefers a to b if b ≺v a, and v weakly prefers a to b if b ⪯v a. Mostly we will deal
with strict preference systems where ⪯v is a strict linear order for each v ∈ V ; in this case we
write (G,≺). We say that (G,⪯) is complete, if G is a complete graph or, in case we assume
a bipartite setting, if G is a complete bipartite graph. We will say that (G,⪯) is compatible
with a complete preference system (G′,⪯′) if G is a subgraph of G′, and for any v ∈ V (G), the
restriction of ⪯′

v to NG(v) is exactly ⪯v. For a set X of edges or vertices, we define the deletion
of X from (G,⪯) as (G−X,⪯G−X) where ⪯G−X is the restriction of ⪯ to G−X, containing
for each v ∈ V (G−X) a preference order ⪯G−X

v over NG−X(v).

Stability, popularity, and Pareto-optimality. Given a preference system (G,⪯) and a
matching M in G, some (a, b) ∈ E is a blocking edge for M if a is unmatched or prefers b
to M(a), and b is unmatched or prefers a to M(b); we denote by bpG(M) the set of blocking
edges for M in G. If G is clear from the context, we may omit the subscript (also from notations
δG(·) or NG(·)). We say that M is stable in G if bpG(M) = ∅.1

For two matchings M and M ′ in G, some vertex v prefers M over M ′, if either v is matched
in M but unmatched in M ′, or M ′(v) ≺v M(v). We say that M is more popular than M ′, if
more vertices prefer M to M ′ than vice versa. A matching M is popular, if no matching is more
popular than M .

1When (G,⪯) is not strict, stability as we define it is often called weak stability. See the book [50] for other
stability notions for weakly ordered preferences.
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A Pareto-improvement of a matching M is a matching M ′ such that no vertex prefers M
to M ′, and at least one prefers M ′ to M . A matching M is Pareto-optimal, if there is no
Pareto-improvement for it. Although stability, popularity, and Pareto-optimality are defined in
the context of a preference system (G,⪯), when ⪯ is clear from the context, we may simply
say that a matching is stable, popular, or Pareto-optimal in G. Notice that for strict preference
systems, stable matchings are popular, and popular matchings are Pareto-optimal.

Structured preferences. In a bipartite preference system (G = (A,B;E),⪯), a master list
over vertices of A is defined as an ordering LA of all vertices in A such that for any b ∈ B,
restricting LA to NG(b) yields exactly the ordering ⪯b. We say that (G,⪯) admits a master list
on one side, if there exists a master list over either A or B; if both holds, then (G,⪯) admits a
master list on both sides.

Single-peaked and single-crossing preferences originate from problems in the context of elec-
tions, where preferences are complete linear orders. The two notions have been formally defined
for certain stable matching problems [5, 10] and their applicability in real-world matching in-
stances has also been argued for [3,22,58]. We follow standard definitions from the social choice
literature that adapt these notions to incomplete preferences [10, 21, 28]. For simplicity, let us
assume that (G,≺) is a strict preference system. Then (G,≺) has single-peaked preferences, if
there exists a strict linear ordering ▷ of all vertices in V (G) called an axis such that for any
vertex v ∈ V (G) and for every a, b, c ∈ NG(v) with a ▷ b ▷ c, the relation b ≺v a implies c ≺v b.
In this case we also say that (G,≺) is single-peaked with respect to the axis ▷. If G = (A,B;E)
is bipartite, then it suffices to provide a suitable axis for A and for B separately.

To define single-crossing preferences, let us first assume that (G,≺) is a strict and complete
preference system. For any a, b ∈ V (G) let V a≺b = {v ∈ V (G) : a ≺v b} denote the set of vertices
preferring b to a. We say that (G,≺) is single-crossing with respect to a strict linear ordering ▷
of V (G), if for any a, b ∈ V (G) either all vertices in V a≺b precede all vertices in V b≺a according
to ▷, or just the opposite, all vertices in V b≺a precede all vertices in V a≺b according to ▷. We say
that (G,≺) is single-crossing, if it is single-crossing with respect to some strict linear ordering
of V (G). An incomplete strict preference system is single-crossing, if it is compatible with a
complete single-crossing preference system. Note that if G is bipartite, then it suffices to provide
a complete bipartite preference system compatible with (G,≺) and separate linear orders for A
and for B.

Example 1. Consider the complete bipartite preference system (G,≺) over G = (A,B;E)
where A = {a1, a2, a3, a4} and B = {b1, b2, b3}, with the preferences of the vertices given as
follows.

a1: b1, b2, b3; b1: a1, a2, a3, a4;
a2: b1, b3, b2; b2: a2, a1, a4, a3;
a3: b2, b3, b1; b3: a2, a4, a1, a3;
a4: b2, b1, b3.

It is straightforward to see that (G,≺) is single-crossing: as Figure 1 shows, the preferences
are single-crossing with respect to any ordering ▷ over A ∪B that satisfies a2 ▷ a1 ▷ a4 ▷ a3 and
b1 ▷ b2 ▷ b3.

By contrast, consider the modified preference system (G,≺′) obtained by changing the
preferences of a4 so that b3 ≺′

a4 b2 ≺′
a4 b1; the preferences of all other vertices remain unchanged.

We claim that (G,≺′) is not single-crossing. To see this, first note that a1 and a3 both prefer b2
to b3, while a2 and a4 prefer b3 to b2 according to ≺′. Assuming that (G,≺′) is single-crossing
with respect to some strict linear ordering ▷ of A ∪ B, this means that either both a1 and a3
precede each of a2 and a4 in ▷, or vice versa. However, notice that a1 and a3 disagree about which
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b1, b2, b3;a1:

b1, b3, b2;a2:

b2, b3, b1.a3:

b2, b1, b3;a4:

a1, a2, a3, a4;b1:

a2, a1, a4, a3;b2:

a2, a4, a1, a3;b3:

▽

▽

▽

▽

▽

Figure 1: Illustration showing the single-crossing property of the complete bipartite preference
system defined in Example 1.

of b1 and b2 is better, and additionally, a2 and a4 also disagree about the ranking of b1 and b2.
Hence, it is not possible to determine a “threshold-vertex” tb1,b2 for the ordering ▷ so that all
vertices preceding tb1,b2 in ▷ rank b1 and b2 in the same way, and all vertices following tb1,b2 in ▷
rank b1 and b2 in the opposite way, contradicting our assumption that (G,≺′) is single-crossing
with respect to ▷.

Classical and parameterized complexity. We assume that the reader is familiar with basic
notions and techniques of classical and parameterized complexity theory; for an introduction
and definitions we refer to the books [19,33,52].

2.2 Problem definitions and initial results

Let us now formally define the problem whose computational complexity is the main focus of
our paper.

Max-Utility Popular Matching with Instability Costs:

Input: A strict preference system (G,≺), a utility function ω : E(G)→ N, a cost
function c : E(G)→ N, an objective value t ∈ N, and a budget k ∈ N.

Question: Is there a popular matching in G whose utility is at least t and whose
blocking edges have total cost at most k?

For a set F ⊆ E of edges in G, let ω(F ) =
∑

e∈F ω(e) and c(F ) =
∑

e∈F c(e) be its utility
and cost, respectively. A matching M in G is feasible, if both ω(M) ≥ t and c(bpG(M)) ≤ k
hold.

A very natural special case of the above problem is when we simply limit the number of
blocking edges: this amounts to setting all edge costs to 1. Hence, we are looking for a popular
matching (in the hope of finding matchings with greater utility or size when compared to stable
matchings) while also setting an upper bound on the degree of instability of the matching.

Popularity with Bounded Instability:

Input: A strict preference system (G,≺) and an integer k.
Question: Is there a popular matching M in G with |bpG(M)| ≤ k?

Our first result shows that this problem is NP-complete even for k = 1.

Observation 1. The Popularity with Bounded Instability problem is NP-complete for
k = 1.
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Proof. See the reduction in [16, Section 5.3] which provides a simple proof that deciding the
existence of a popular matching in a (non-bipartite) strict preference system is NP-hard. There
is no stable matching in the constructed instance, and if there exists a popular matching M
then there is a unique blocking edge (r, r′′) to M .

Corollary 2. The Max-Utility Popular Matching with Instability Costs problem is
NP-complete for any fixed utility function ω : E → N, even if the objective value is t = 0, the
cost function is c ≡ 1, and our budget is k = 1.

Motivated by this strong intractability, in the remainder we focus on the case where the
graph is bipartite. In this case, interestingly, the Max-Utility Popular Matching with
Instability Costs problem has a strong connection to the problem of finding a popular
matching with a fixed set of blocking edges.

Popularity with Fixed Instability:

Input: A strict preference system (G,≺) and a subset S ⊆ E(G) of edges.
Question: Is there a popular matching M in G such that bpG(M) = S?

On the one hand, a natural idea for finding maximum-utility matchings with bounded in-
stability is to “guess” the set S of blocking edges, and search for a maximum-utility matching
only among matchings M for which bp(M) = S, using some structural insight. On the other
hand, given an instance of Popularity with Fixed Instability where our aim is to ensure
that each edge in S is a blocking edge, a possible approach is to define a utility function that
enforces certain edges in the neighborhood of the vertices covered by S to be included in any
feasible matching M , thus yielding bp(M) = S. This intuitive two-way connection between the
two problems can be observed in the details of our reductions in Section 3, and will also form
the basis of our positive results in Section 4.

3 Hardness results

The main result of this section, Theorem 6, shows that both Max-Utility Popular Match-
ing with Instability Costs and Popularity with Fixed Instability are computationally
intractable even if the input graph G is bipartite, ∆G = 3, and preferences are single-peaked
and single-crossing.

The path to these results leads through Observation 4, which characterizes popular match-
ings with only a single blocking edge, and Theorem 5, which is a weaker version of Theorem 6.
Finally, Theorem 7 shows that Max-Utility Popular Matching with Instability Costs
remains hard even if the utility function is ω ≡ 1.

To depict an overview of the main reduction, we provide an additional proof outline to
Theorem 5. The proofs of Theorems 6 and 7 are modified versions of the proof of Theorem 5.

3.1 Popular matchings blocked by a single edge

To characterize popular matchings with only a single blocking edge, we need some further
notation. Given a matching M in a graph G, the subgraph GM of G is obtained by deleting
those edges (a, b) outside M from G where both a and b prefer their partner in M to each other.

The following well-known characterization of popular matchings is due to Huang and Kavitha.

Theorem 3 ( [38]). A matching M is popular in G if and only if GM does not contain any of
the following:
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(i) an M -alternating cycle containing a blocking edge;

(ii) an M -alternating path containing two distinct blocking edges;

(iii) an M -alternating path containing a blocking edge and an unmatched vertex as an endpoint.

The correctness of our reductions in this section heavily relies on Observation 4, which is
a re-formulation of the above characterization by Huang and Kavitha for the case of popular
matchings with a single blocking edge.

Observation 4. Given a strict preference system (G,≺) where G = (A,B;E) is bipartite, a
matching M in G is a popular matching with exactly one blocking edge e = (u, v) ∈ E if and
only if the following conditions hold:

(c1) e blocks M in G;

(c2) M is a stable matching in G− e;

(c3) there exists no M -alternating path in (G− e)M
(c3/i) from a vertex unmatched by M to u or to v, having even length, or
(c3/ii) from u to v, starting and ending with an edge of M .

3.2 A weaker form of Theorem 6

We start with stating a weaker version of Theorem 6, whose proof provides a reduction that is
the basis of all our reductions in this section.

Theorem 5. The Max-Utility Popular Matching with Instability Costs problem is
NP-complete even if

� the input graph G is bipartite,

� the cost function is c ≡ 1,

� the budget is k = 1,

� the utility function is ω(e) =

{
1 if e = f⋆,
0 otherwise,

for some f⋆ ∈ E(G), and

� the objective value is t = 1.

The Popularity with Fixed Instability problem is NP-complete even if

� the input graph is bipartite, and

� |S| = 1 for the set S of blocking edges.

Before the full proof, we sketch a proof outline to this theorem.
Proof outline for Theorem 5. Given an instance φ of Exact-3-SAT, we construct a bipartite
graph G with only a single edge f⋆ of non-zero utility, not contained in any stable matching,
so that achieving the target utility requires the inclusion of f⋆ in the matching. However,
including f⋆ in a matching will turn another edge e⋆, adjacent to f⋆, into a blocking edge,
thus introducing instability. In view of Observation 4, the computational hardness of finding
a matching that contains f⋆ and is blocked only by e⋆ lies in ensuring conditions (c3/i) and
(c3/ii) while avoiding the emergence of additional blocking edges.

In our construction, each clause c and each variable x in φ is represented by a vertex ac

and bx, respectively, left unmatched by any stable matching of G. Moreover, each literal ℓ in
some clause c is represented by a cycle Cc,ℓ in G, and similarly, the possible values true and
false of some variable x are represented by cycles Cx,t and Cx,f, respectively. Next, for each
clause c we create a path that leads from ac to the blocking edge e⋆ and goes through certain
edges of the three cycles corresponding to the three literals of c. Similarly, for each variable x
we create a path that leads from bx to e⋆ and goes through certain edges of the cycles Cx,t

and Cx,f.
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The preferences of the vertices along these paths and cycles are defined in a way that ensuring
condition (c3/i) requires the desired matching M to have the property that M△M0 contains
certain cycles, where M0 is a fixed stable matching (defined as part of the construction). Namely,
condition (c3/i) for the unmatched vertex ac corresponding to some clause c guarantees that
M△M0 contains at least one cycle Cc,ℓ, corresponding to a literal of c. Similarly, condition
(c3/i) for bx for some variable x guarantees that either Cx,t or Cx,f is contained in M△M0.
The crux of the construction is the addition of so-called consistency edges running between each
cycle Cc,ℓ corresponding to a literal ℓ of some clause c and the cycle Cx,t in case ℓ is the positive
literal of variable x, or the cycle Cx,f in case ℓ is the literal x. The condition that no such
consistency edge can block the desired matching M ensures that the truth assignment encoded
by M indeed satisfies each clause, and vice versa, any truth assignment that satisfies φ implies
a matching M that is popular, contains f⋆, and is blocked only by the edge e⋆.

Proof of Theorem 5. Since we can test both feasibility and popularity in polynomial time [38],
both problems are in NP. We now give a reduction from Exact-3-SAT, the variant of 3-SAT
where each clause contains exactly three literals. Consider an input formula φ = c1∧c2∧· · ·∧cm
over variables x1, . . . , xn.

Construction. We construct an instance of Max-Utility Popular Matching with In-
stability Costs with a graph G = (A,B;E) as follows; see Figure 2 for an illustration. For
an integer i ∈ N, we let [i] = {1, 2, . . . , i}.

For each variable xi, we create a 4-cycle Cxi,t on vertices axi,t
0 , bxi,t

0 , axi,t
1 , and bxi,t

1 , and
another 4-cycle Cxi,f on vertices axi,f

0 , bxi,f
0 , axi,f

1 , and bxi,f
1 , representing the true and false

value assignments for variable xi, correspondingly. Similarly, for each clause cj , we construct a

4-cycle on Ccj ,ℓ on vertices a
cj ,ℓ
0 , b

cj ,ℓ
0 , a

cj ,ℓ
1 and b

cj ,ℓ
1 where ℓ ∈ [3] , representing the ℓ-th literal

in clause cj . Furthermore, we add vertices of Â = {ac1 , . . . , acm} corresponding to clauses, as
well as vertices of B̂ = {bx1 , . . . , bxn} corresponding to variables. We will also have four special
vertices: u, v, u′ and v′. To define our vertex set, we let

Ax = {axi,λ
0 , axi,λ

1 : i ∈ [n] and λ ∈ {t, f}},

Ac = {acj ,ℓ0 , a
cj ,ℓ
1 : j ∈ [m] and ℓ ∈ [3]},

Bx = {bxi,λ
0 , bxi,λ

1 : i ∈ [n] and λ ∈ {t, f}},

Bc = {bcj ,ℓ0 , b
cj ,ℓ
1 : j ∈ [m] and ℓ ∈ [3]},

A = Ax ∪Ac ∪ Â ∪ {u, u′}, and

B = Bx ∪Bc ∪ B̂ ∪ {v, v′}.

To define the edge set of our bipartite graph G = (A,B;E), in addition to the edges of the
above defined 4-cycles, for each clause cj we add edges so that G contains the path

Pj = (u, v′, a
cj ,1
0 , b

cj ,1
0 , a

cj ,2
0 , b

cj ,2
0 , a

cj ,3
0 , b

cj ,3
0 , acj ).

Similarly, for each variable xi we add edges so that G contains the path

Qi = (v, u′, bxi,t
0 , axi,t

0 , bxi,f
0 , axi,f

0 , bxi).

Additionally, we define a set F of consistency edges: for each clause cj and each ℓ ∈ [3] we

add an edge (b
cj ,ℓ
1 , axi,t

1 ) if the ℓ-th literal in cj is xi, and we add an edge (b
cj ,ℓ
1 , axi,f

1 ) if the
ℓ-th literal in cj is xi. Note that we connect vertices corresponding to negative literals with
vertices corresponding to a true value assignment for the given variable, and similarly, we
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connect vertices corresponding to positive literals with vertices corresponding to a false value
assignment for the given variable. Finally, we create the edge e⋆ = (u, v).

We define the preference relation ≺ through the following preference lists, ordered in decreas-
ing order of preference. Here and henceforth, any set in a preference list should be interpreted
as a list of its elements ordered arbitrarily.

u: v, v′;
v: u, u′;

u′: v, bx1,t
0 , . . . , bxn,t

0 ;

v′: u, ac1,10 , . . . , acm,1
0 ;

a
cj ,1
0 : b

cj ,1
1 , v′, b

cj ,1
0 where j ∈ [m];

a
cj ,ℓ
0 : b

cj ,ℓ
1 , b

cj ,ℓ−1
0 , b

cj ,ℓ
0 where j ∈ [m] and ℓ ∈ {2, 3};

b
cj ,ℓ
0 : a

cj ,ℓ
0 , a

cj ,ℓ
1 , a

cj ,ℓ+1
0 where j ∈ [m] and ℓ ∈ {1, 2};

b
cj ,3
0 : a

cj ,3
0 , a

cj ,3
1 , acj where j ∈ [m];

a
cj ,ℓ
1 : b

cj ,ℓ
0 , b

cj ,ℓ
1 where j ∈ [m] and ℓ ∈ [3];

b
cj ,ℓ
1 : a

cj ,ℓ
1 , axi,λ

1 , a
cj ,ℓ
0 where j ∈ [m], ℓ ∈ [3] and (b

cj ,ℓ
1 , axi,λ

1 ) ∈ F ;

axi,t
0 : bxi,t

0 , bxi,t
1 , bxi,f

0 where i ∈ [n];

axi,f
0 : bxi,f

0 , bxi,f
1 , bxi where i ∈ [n];

bxi,t
0 : axi,t

1 , u′, axi,t
0 where i ∈ [n];

bxi,f
0 : axi,f

1 , axi,t
0 , axi,f

0 where i ∈ [n];

axi,λ
1 : bxi,λ

1 , NG[F ](a
xi,λ), bxi,λ

0 where i ∈ [n];

bxi,λ
1 : axi,λ

0 , axi,λ
1 where i ∈ [n];

acj : b
cj ,3
0 where j ∈ [m];

bxi : axi,f
0 where i ∈ [n].

We finish the construction by setting the cost function as c ≡ 1, our budget as k = 1, the
desired utility value as t = 1, and the utility function as

ω(e) =

{
1 if e = (u, v′),
0 otherwise.

Correctness. First, let us observe that the utility of a matching M achieves our objective
value t = 1 if and only if it contains the edge (u, v′). However, if M contains (u, v′), then the
edge e⋆ = (u, v) must be a blocking edge. Since e⋆ has cost 1 and our budget is k = 1, the edge e⋆

must be the unique blocking edge. Therefore, if M is feasible, then bp(M) = {e⋆}. In fact, the
converse is also true: if a popular matching is blocked solely by e⋆, then by Observation 4 it
must match u, and hence must contain the edge (u, v′). Thus, (G,≺, ω, c, t, k) is a ‘yes’-instance
of Max-Utility Popular Matching with Instability Costs if and only if (G,≺, {e⋆})
is a ‘yes’-instance of Popularity with Fixed Instability.

Let us define a matching M0 that contains edges (u, v′) and (u′, v) and otherwise matches
each vertex aσh ∈ Ax ∪ Ac for any possible values of σ and h to the vertex bσh ∈ Bx ∪ Bc (see
again Figure 2). To see that M0 is stable in G − e⋆, note that vertices in Ax ∪ Bc ∪ {u′, v′}
get their top choice in M0, and they cover all edges (including consistency edges) in G − e⋆.
Observe that M0 leaves exactly the vertices in Â ∪ B̂ unmatched.

We now show that φ is satisfiable if and only if (G,≺, ω, c, t, k) admits a feasible popular
matching.

Direction “⇒”. Assume that a truth assignment α : {x1, . . . , xn} → {t, f} satisfies φ, where
t and f stand for true and false, respectively. Let τ(cj) denote some literal in cj that is set
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Figure 2: Illustration of the reduction in the proof of Theorem 5. Edges of M0 are depicted as
double lines. The figure only shows one consistency edge, corresponding to a situation where
the third literal in cj is xi as a positive literal. Here and in every figure depicting a bipartite
graph, we use squares and circles to distinguish between vertices on the two sides.

to true by α. We define a matching M through determining its symmetric difference with M0

as

M△M0 =

(
n⋃

i=1

Cxi,α(xi)

)
∪

 m⋃
j=1

Ccj ,τ(cj)

 .

We claim that M is a popular matching in G with bp(M) = {e⋆}; we prove this by checking
all conditions in Observation 4.

Condition (c1) clearly holds, as e⋆ = (u, v) blocks M . To see condition (c2), we show
that no other edge blocks M . Note that any blocking edge must be incident to some vertex
in V (M△M0). However, no edge contained in a cycle Cxi,α(xi) can block M , since M assigns
vertices of B in that cycle their top choice. Similarly, no edge in a cycle Ccj ,τ(cj) may block M ,
since M assigns vertices of A in that cycle their top choice. Neither can edges of Pj or Qi

block M , due to similar reasons. Hence, any blocking edge must be a consistency edge. How-
ever, both endpoints of a consistency edge f ∈ F are assigned their top choice in M0, so f can
only block M if both of its endpoints belong to V (M△M0). Let f = (axi,λ, bcj ,ℓ) be a consis-
tency edge; then xi is the ℓ-th variable in cj . Suppose that both endpoints of f are contained
in V (M△M0): then τ(cj) = ℓ and α(xi) = λ. However, by construction of F , if cj contains xi
as a positive literal, then λ = f, but then setting xi to false does not yield a true literal in cj ,
contradicting α(xi) = λ = f. Similarly, if cj contains xi as a negative literal, then λ = t, but
then setting xi to true does not yield a true literal in cj , contradicting α(xi) = λ = t. Hence,
f /∈ bp(M). Thus, M is stable in G− e⋆.

Let us now show that condition (c3) in Observation 4 holds. Let us call an edge (a, b) where
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both a and b prefer their partner in M to each other a (−,−) edge; recall that (G− e⋆)M is
obtained by deleting all (−,−) edges from G−e⋆. Clearly, the even-length M -alternating paths

leading from vertices unmatched by M (and by M0) to u are exactly the paths P△
j := Pj△Ccj ,τ(cj),

j ∈ [m], and similarly, the even-length M -alternating paths leading from vertices unmatched

by M to v are exactly the paths Q△
i := Qi△Cxi,α(xi), i ∈ [n]. Note that any path P△

j contains

a (−,−) edge w.r.t. M , namely the edge connecting a
cj ,τ(cj)
0 to its second choice, that is, v′ if

τ(cj) = 1 and b
cj ,τ(cj)−1
0 otherwise. Similarly, Q△

i contains a (−,−) edge w.r.t. M , namely the

edge connecting b
xi,α(xi)
0 to its second choice, that is, u′ if α(xi) = t and axi,t

0 otherwise. So

neither P△
j nor Q△

i is a path in (G− e⋆)M for any j or i. Hence, condition (c3/i) holds.
Let us now prove that there is no M -alternating path in (G − e⋆)M from u to v. Observe

that any such path must have the following properties.

� It starts with a subpath of Pj for some j ∈ [m],

� reaches the cycle Ccj ,ℓ for some ℓ ∈ [3] through the second choice of a
cj ,ℓ
0 (let us call this

edge ecj ),

� then after traversing edges of this cycle goes through some consistency edge (b
cj ,ℓ
1 , axi,λ)

for some λ ∈ {f,t} and i ∈ [n],

� traverses edges of the cycle Cxi,λ and leaves it via the second choice of bxi,λ
0 (let us call

this edge exi).

If ℓ = τ(cj), then ecj is a (−,−) edge with respect to M . Similarly, if λ = α(xi), then exi is

a (−,−) edge. If neither of these conditions hold, then b
cj ,ℓ
1 and axi,λ

1 both get their top choice

in M , implying that (b
cj ,ℓ
1 , axi,λ

1 ) is a (−,−) edge. Hence, any M -alternating path from u to v
contains a (−,−) edge, and therefore condition (c3/ii) holds as well, proving this direction of
our reduction.

Direction “⇐”. Let us now suppose that M is a popular matching in G blocked only by
edge e⋆ = (u, v). By Observation 4, M is stable in G − e⋆, and so (u, v′) and (v, u′) are both
in M . Also, since all stable matchings in G − e⋆ leave the same vertices unmatched, we know
from the stability of M0 in G − e⋆ that the set of unmatched vertices in M is Â ∪ B̂. Using
this, a simple reckoning of the structure of G implies that M contains exactly two edges of each
4-cycle, and does not contain any consistency edge. Note that for each j ∈ [m] the cycle Ccj ,ℓ

must be contained in M△M0 for some ℓ ∈ [3], as otherwise Pj would violate condition (c3/i);
we set τ(cj) = ℓ for such an ℓ. Analogously, for each i ∈ [n] the cycle Cxi,λ must be contained in
M△M0 for some λ ∈ {t, f}, as otherwise Qi would violate condition (c3/i); we set α(xi) = λ.

We claim that the truth assignment α satisfies φ. To prove this, let us consider some j ∈ [m].

By the definition of τ , we know that M(b
cj ,τ(cj)
1 ) = a

cj ,τ(cj)
0 , which is the worst choice of b

cj ,τ(cj)
1 .

Since the consistency edge f incident to b
cj ,τ(cj)
1 cannot block M in G − e⋆ by condition (c2),

we obtain that f ’s other endpoint, let us denote it by axi,λ
1 , must be matched to its top choice

by M . Therefore, we get λ ̸= α(xi). By our definition of the consistency edges, this implies
that the τ(cj)-th literal in cj is set to true by α, finishing our proof.

3.3 Main hardness result

Theorem 6 is the strengthening of Theorem 5 for the case when the input graph has maximum
degree 3, and preferences are single-peaked and single-crossing. To obtain this generalization, we
reduce from a variant of 3-SAT where each variable occurs at most three times; additionally, we
use a well-known technique where vertices a with δ(a) > 3 are replaced by a path. Despite the
conceptual simplicity of this modification, maintaining the crucial properties of the reduction

12



while also ensuring that the constructed preference system is single-peaked and single-crossing
is a delicate task.

Theorem 6. The Max-Utility Popular Matching with Instability Costs problem is
NP-complete even if

� the input graph G is bipartite with ∆G = 3,

� preferences are single-peaked and single-crossing,

� the cost function is c ≡ 1,

� the budget is k = 1,

� the utility function is ω(e) =

{
1 if e = f⋆,
0 otherwise,

for some f⋆ ∈ E(G), and

� the objective value is t = 1.

The Popularity with Fixed Instability problem is NP-complete even if

� the input graph G is bipartite,

� ∆G = 3, preferences are single-peaked and single-crossing, and

� |S| = 1 for the set S of blocking edges.

Proof. Since we can test feasibility and popularity in polynomial time [38], both problems are
in NP. We give a reduction from the variant of 3-SAT where each clause has three literals and
each variable occurs at most three times. We are going to modify the reduction presented in
the proof of Theorem 5, re-using all definitions there. See Figure 3 for an illustration.
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Figure 3: Illustration of the reduction in the proof of Theorem 6. Edges of M̃0 are depicted as
double lines. The figure only shows one consistency edge, corresponding to a situation where
the third literal in cj is xi as a positive literal, and xi in cj is the second occurrence of the
variable xi in the input formula.
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Construction. First, for each i ∈ [n] and λ ∈ {t, f} we replace Cxi,λ with an 8-cycle C̃xi,λ

containing vertices axi,λ
h and bxi,λ

h for h ∈ {0, 1, 2, 3} (in the usual order). We replace the set F

with a new set F̃ of consistency edges as follows: for each j ∈ [m] and ℓ ∈ [3], if the ℓ-th
literal of cj is the h-th occurrence of variable xi for some i ∈ [n] and h ∈ [3], then we add the

edge (axi,λ
h , b

cj ,ℓ
1 ) to F̃ , where λ = f if the h-th occurrence of xi is as a positive literal (the ℓ-th

literal in cj) and λ = t otherwise.

Next, we replace v′ by a path (v′1, u1, . . . , v
′
m−1, um−1, v

′
m), replacing each edge (v′, a

cj ,1
0 ) with

the edge (v′j , a
cj ,1
0 ). Analogously, we replace u′ by a path (u′1, v1, . . . , u

′
n−1, vn−1, u

′
n), replacing

each edge (u′, bxi,t
0 ) with the edge (u′i, b

xi,t
0 ).

The preferences of the vertices are as follows; we omit those vertices whose preferences are
the same as defined in the proof of Theorem 5.

u: v, v′1;
v: u, u′1;

u′i: vi−1, b
xi,t
0 , vi where i ∈ [n− 1] and v0 = v;

u′n: vn−1, b
xn,t
0

v′j : uj−1, a
cj ,1
0 , uj where j ∈ [m− 1] and u0 = u;

v′m: um−1, a
cm,1
0

vi: u′i, u
′
i+1 where i ∈ [n− 1];

uj : v′j , v
′
j+1 where j ∈ [m− 1];

a
cj ,1
0 : b

cj ,1
1 , v′j , b

cj ,1
0 where j ∈ [m];

b
cj ,ℓ
1 : a

cj ,ℓ
1 , axi,λ

h , a
cj ,ℓ
0 where j ∈ [m], ℓ ∈ [3] and (b

cj ,ℓ
1 , axi,λ

h ) ∈ F̃ ;

axi,t
0 : bxi,t

0 , bxi,t
3 , bxi,f

0 where i ∈ [n];

axi,f
0 : bxi,f

0 , bxi,f
3 , bxi where i ∈ [n];

axi,λ
h : bxi,λ

h , b
cj ,ℓ
1 , bxi,λ

h−1 where i ∈ [n], h ∈ [3] and (b
cj ,ℓ
1 , axi,λ

h ) ∈ F̃ ;

axi,λ
h : bxi,λ

h , bxi,λ
h−1 where i ∈ [n], h ∈ [3] and axi,λ

h /∈ V (F̃ );

bxi,t
0 : axi,t

1 , u′i, a
xi,t
0 where i ∈ [n];

bxi,λ
h : axi,λ

h+1 mod 4, a
xi,λ
h where i ∈ [n] and h ∈ [3].

Let (G̃,≺) be the preference system defined this way. Note that ∆
G̃

= 3. To create an
instance of Max-Utility Popular Matching with Instability Costs, we set all utilities
to 0 except for the edge (u, v′1) whose utility is 1, we set c ≡ 1, and we let t = k = 1.

Correctness. To show that G̃ admits a popular matching with bp(M) = {e⋆} if and only if φ
is satisfiable, one can apply essentially the same arguments used in the proof of Theorem 5; for
this, however, we need to define a new matching M̃0 instead of M0. To do so, for each i ∈ [n]

and λ ∈ {t, f} we first add the edges (axi,λ
2 , bxi,λ

2 ) and (axi,λ
3 , bxi,λ

3 ) to M0. Second, we replace
the edge (v, u′) with edges (v, u′1) and (vi, u

′
i+1) for each i ∈ [n − 1]. Similarly, we replace the

edge (u, v′) with edges (u, v′1) and (uj , v
′
j+1) for each j ∈ [m− 1]. Let M̃0 denote the matching

obtained this way. Note that M̃0 is stable in G̃− e⋆.
Now, the reasoning used in the proof of Theorem 5 can be applied, with M̃0 taking the place

of M0, and with some trivial modifications where necessary. Assuming that the preference
system has the desired properties, this shows that Popularity with Fixed Instability is
NP-hard under the conditions stated in the theorem.

To prove the result for Max-Utility Popular Matching with Instability Costs,
observe that M is a popular matching in G̃ with bp(M) = {e⋆} if and only if M is a popular
matching in G̃ whose utility is at least t = 1 and whose blocking edges have cost at most k = 1
(here we use Observation 4 again).
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It remains to prove that the constructed preference system (G̃,≺) has the required proper-
ties. Let (Ã, B̃) denote the (unique) bipartition of G̃ where Ã contains u and B̃ contains v.

Single-peaked property. To show single-peakedness, we define two lists for each j ∈ [m]
and also for each i ∈ [n]:

Ac
j = (acj , a

cj ,3
0 , a

cj ,3
1 , a

cj ,2
0 , a

cj ,2
1 , a

cj ,1
0 , a

cj ,1
1 ),

Bc
j = (b

cj ,3
0 , b

cj ,3
1 , b

cj ,2
0 , b

cj ,2
1 , b

cj ,1
0 , b

cj ,1
1 ),

Ax
i = (axi,t

3 , axi,t
2 , axi,t

1 , axi,t
0 , axi,f

3 , axi,f
2 , axi,f

1 , axi,f
0 ),

Bx
i = (bxi,t

3 , bxi,t
2 , bxi,t

1 , bxi,t
0 , bxi,f

3 , bxi,f
2 , bxi,f

1 , bxi,f
0 , bxi).

Then we can define an axis for each of Ã and B̃ as follows:

um−1, . . . , u1, A
c
1, . . . , A

c
m, u, u′1, . . . , u

′
n, A

x
1 , . . . , A

x
n; (Axis Ã)

Bc
1, . . . , B

c
m, v′m, . . . , v′1, v, B

x
1 , . . . , B

x
n, v1, . . . , vm−1. (Axis B̃)

It is straightforward to check that each vertex has single-peaked preferences with respect to
the axis containing its neighbors. Note that the preferences of a degree-2 vertex are always
single-peaked, while the preferences of a vertex a with δ(a) = 3 are single-peaked w.r.t. a given
axis exactly if the least-preferred neighbor of a does not lie between its two other neighbors on
the axis.

Single-crossing property. To show that the preference system (G̃,≺) is single-crossing, we
define a complete bipartite strict preference system (K,≺K) compatible with (G̃,≺) that is
single-crossing; here K is the complete bipartite graph whose two partitions are Ã and B̃.

Let us define the following vertex sets and lists of vertices:

Aℓ
h = {acj ,ℓh : j ∈ [m]} for each h ∈ {0, 1}, ℓ ∈ [3];

Aλ
h = {axi,λ

h : i ∈ [n]} for each h ∈ {0, 1, 2, 3}, λ ∈ {t, f};
Bℓ

h = {bcj ,ℓh : j ∈ [m]} for each h ∈ {0, 1}, ℓ ∈ [3];

Bλ
h = {bxi,λ

h : i ∈ [n]} for each h ∈ {0, 1, 2, 3}, λ ∈ {t, f};
U ′ = (u′1, . . . , u

′
n);

V ′ = (v′1, . . . , v
′
m).

Next, we define the preferences in (K,≺K). We deal with the two sides separately, so first
we define ≺K

b for each vertex b ∈ B̃. Each such ≺K
b will be one of m + 2 complete total orders

over Ã: these are πj
0 for each j ∈ [m], π1 and π2, as they are defined below. We set π0 = πm

0 ,
and for any set appearing in the definition of these orders, we fix one arbitrary ordering (used
in all of the lists below).

πj
0: u, u1, . . . , uj−1, A

1
0, A

1
1, A

2
0, A

2
1, A

3
0, A

3
1, Â, uj , . . . , um−1, A

f
3, A

f
2, A

f
1, A

t
3, A

t
2, A

t
1, U

′, At
0, A

f
0;

π0: u, u1, . . . , um−1, A
1
0, A

1
1, A

2
0, A

2
1, A

3
0, A

3
1, Â, A

f
3, A

f
2, A

f
1, A

t
3, A

t
2, A

t
1, U

′, At
0, A

f
0;

π1: u, u1, . . . , um−1, A
1
1, A

2
1, A

3
1, A

f
3, A

f
2, A

f
1, A

t
3, A

t
2, A

t
1, U

′, At
0, A

f
0, A

1
0, A

2
0, A

3
0, Â;

π2: u, u1, . . . , um−1, A
1
1, A

2
1, A

3
1, A

t
0, A

f
0, A

f
3, A

f
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The following claims follow directly from the definitions:

� the preference list of v′j in G̃ is a restriction of πj
0 for any j ∈ [m];

� the preference list of b
cj ,ℓ
0 in G̃ is a restriction of π0 for any j ∈ [m], ℓ ∈ [3];

� the preference list of bxi,λ
3 in G̃ is a restriction of π2 for any i ∈ [n], λ ∈ {t, f};
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� the preference list of any other vertex of B̃ in G̃ is a restriction of π1.

This means that each preference relation ≺b for some b ∈ B̃ is compatible with one of the
preference relations in the set Π = {πj

0 | j ∈ [m]} ∪ {π1, π2}. We aim to show that (G̃,≺)
is compatible with the strict and complete preference system (K,≺K): so far we have proved
that compatibility holds for all vertices in B̃, and we will deal with vertices of Ã later in the
proof. Assuming now that (G̃,≺) is compatible with (K,≺K), in order to prove that (G̃,≺) is
single-crossing, it suffices to prove that (K,≺K) is single-crossing.

Recall that to prove that (K,≺K) is single-crossing, we need to shows that it is single-
crossing with respect to some linear ordering of the vertices of K, that is, of Ã ∪ B̃. Since
(K,≺K) is bipartite, it suffices to provide a separate ordering over Ã and over B̃; we will first
deal with vertices of B̃. Notice, however, that defining an ordering over B̃ is equivalent with
defining an ordering over all preference lists in {≺K

b : b ∈ B̃}. Therefore, it suffices to define an

ordering over {≺K
b : b ∈ B̃}. Recall that {≺K

b : b ∈ B̃} is, in fact, a multiset of m + 2 complete

orders over Ã, and these m + 2 complete orders form exactly the family Π of preference lists.
Thus, we provide an ordering ▷ over Π as π1

0 ▷ · · · ▷ πm
0 = π0 ▷ π1 ▷ π2.

For any a′, a′′ ∈ Ã, let Πa′≺a′′ = {π ∈ Π | a′′ precedes a′ in π}. It is now straightforward to
verify that for any two distinct vertices a′, a′′ ∈ Ã, either all preference relations in Πa′≺a′′ are
followed by all preference relations in Πa′′≺a′ according to ▷, or vice versa: this can be checked
by observing Figure 4, where we have depicted Π according to the ordering ▷ and highlighted
how certain sets are moved between one preference list and the next one; the figure shows that
there are no two vertices in Ã that switch places more than once when traversing Π according
to ▷. This proves that the single-crossing property holds for vertices of B̃ in (K,≺K).
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1, Â,u1, u2, . . . , um−1, A

f
3, A

f
2, A

f
1, A

t
3, A

t
2, A

t
1, U

′, At
0, A

f
0;π1

0 :

u, u1, A
1
0, A

1
1, A

2
0, A

2
1, A

3
0, A

3
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Figure 4: Illustration for proving the single-crossing property of the constructed instance, for
vertices in B̃. The figure shows the preference lists in Π, ordered according to ▷ (from top
to bottom), using the notation of Figure 4. At each row we highlighted in bold those vertex
sets that have to be “moved” in order to obtain the next row, and we used arrows to display
these changes. Observe that no two vertices a′, a′′ ∈ Ã switch places more than once when
traversing Π in the given order.

To deal with vertices of Ã in an analogous way, we define ≺K
a for each a ∈ Ã to be one

of n + 4 complete total orders over B̃: these are ϕi
0 for each i ∈ [n], ϕ1, ϕ2, ϕ3 and ϕ4, as they

are defined below. We set ϕ0 = ϕn
0 , and for any set appearing below in these orders, we fix one

arbitrary ordering (used in all of the lists below).
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The following claims follow directly from the definitions:

� the preference list of u′i in G̃ is a restriction of ϕi
0 for any i ∈ [n];

� the preference list of axi,λ
1 in G̃ is a restriction of ϕ0 for any i ∈ [n], λ ∈ {t, f};

� the preference list of axi,λ
2 in G̃ is a restriction of ϕ1 for any i ∈ [n], λ ∈ {t, f};

� the preference list of axi,λ
3 in G̃ is a restriction of ϕ2 for any i ∈ [n], λ ∈ {t, f};

� the preference list of axi,λ
0 in G̃ is a restriction of ϕ4 for any i ∈ [n], λ ∈ {t, f};

� the preference list of a
cj ,ℓ
1 in G̃ is a restriction of ϕ4 for any j ∈ [m], ℓ ∈ [3];

� the preference list of any other vertex in G̃ is a restriction of ϕ3.

This means that each preference relation ≺a for some a ∈ Ã is compatible with one of the
preference relations in the set Φ = {ϕi

0 | i ∈ [n]} ∪ {ϕ1, ϕ2, ϕ3, ϕ4}. Hence, to prove that (G̃,≺)

is single-crossing with regard to vertices of Ã, it suffices to prove that (K,≺K) is single-crossing
with regard to vertices of Ã.

We apply the same approach that we used for proving the single-crossing property of (K,≺K)
when restricted to the vertices in B̃. Using the same line of thought, we get that in order to
prove the single-crossing property of (K,≺K) for vertices of Ã, it suffices to order the elements
of Φ instead of ordering Ã itself. Therefore, we provide an ordering ▷ over Φ as ϕ1

0 ▷ · · · ▷ ϕn
0 =

ϕ0 ▷ ϕ1 ▷ ϕ2 ▷ ϕ3 ▷ ϕ4. For any b′, b′′ ∈ B̃, let Φb′≺b′′ = {ϕ ∈ Φ | b′′ precedes b′ in ϕ}. It is
now straightforward to verify that for any two distinct vertices b′, b′′ ∈ B̃, either all preference
relations in Φb′≺b′′ are followed by all preference relations in Φb′′≺b′ according to ▷, or vice versa:
this can be checked in Figure 5 by observing that there are no two vertices b′, b′′ ∈ B̃ that switch
places more than once when traversing Φ. This proves that the single-crossing property holds
for vertices of Ã in (K,≺K) as well, finishing our proof.

3.4 Uniform utilities

We also investigate whether Max-Utility Popular Matching with Instability Costs
becomes easier if we do not allow edges with zero utility: Theorem 7 below shows that if the
utility function is ω ≡ 1 and we aim for a popular matching that has only one more edge than a
stable matching, the problem is NP-complete even if all other restrictions of Theorem 6 remain
in place.

Theorem 7. The Max-Utility Popular Matching with Instability Costs problem is
NP-complete even if

� the input graph G = (V,E) is bipartite and ∆G = 3,

� preferences are single-peaked and single-crossing,

� the cost function is c ≡ 1,

� the budget is k = 1,

� the utility function is ω ≡ 1, and

� the objective value is t = |Ms|+ 1 = |V |
2 where Ms is a stable matching in G.
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Figure 5: Illustration for proving the single-crossing property of the constructed instance, for
vertices in Ã. The figure shows the preference lists in Φ, ordered according to ▷ using the
notation of Figure 4. Observe that no two vertices b′, b′′ ∈ B̃ switch places more than once
when traversing Φ in the given order.

Proof. Again, we give a reduction from the variant of 3-SAT where each clause has three literals
and each variable occurs at most three times. We are going to modify the reduction presented
in the proof of Theorem 6, re-using definitions there, and placing emphasis on condition (c3/ii)
instead of condition (c3/i) of Observation 4. See Figure 6 for an illustration.
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Figure 6: Illustration of the reduction in the proof of Theorem 7, depicting the part of graph Ĝ
where it differs from graph G̃ (shown in Figure 3). Double lines denote the matching M̂0.

Construction. We start with adding a set DX ∪DC ∪ {s, s′, t, t′} of new vertices to G̃ where
DX = {dxi : i ∈ [n]} and DC = {dcj : j ∈ [m]}. Among the vertices of G̃, only those
in Â ∪ B̂ ∪ {u, v} will be adjacent to newly introduced vertices; the preferences of all other
vertices remain unchanged. The preferences of the new vertices and of those that are adjacent
to them are as follows.

s: t, t′;
t: s, s′;
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s′: v, dc1 , t;
t′: u, dx1 , s;
u: v′1, t

′;
v: u′1, s

′;
dx1 : bx1 , t′;
dxi : bxi , bxi−1 where i ∈ {2, . . . , n};
bxi : axi,f

0 , dxi+1 , dxi where i ∈ [n− 1];

bxn : axn,f
0 , dxn ;

dc1 : ac1 , s′;
dcj : acj , acj−1 where j ∈ {2, . . . ,m};
acj : b

cj ,3
0 , dcj+1 , dcj where j ∈ [m− 1];

acm : bcm,3
0 , dcm .

As promised in the theorem, we set both the cost function and the utility function to be
uniformly 1, and we set t = |Ms|+ 1 and k = 1.

Correctness. Recall the matching M̃0 defined for the graph G̃ (see Figure 3); observe that M̃0

is a matching in Ĝ as well. Let us now define a matching Ms by adding the all edges in the
set {(dxi , bxi) : i ∈ [n]}∪{(dcj , acj ) : j ∈ [m]}∪{(s, t)} to M̃0. It is straightforward to verify that
Ms is stable in Ĝ. Note that the only vertices left unmatched by Ms are s′ and t′. Therefore a
matching is feasible if and only if it is complete and has at most one blocking edge.

We are going to show that there is a feasible and popular matching in Ĝ if and only if the
input formula φ is satisfiable.

Direction “⇒′′. Suppose that M is a feasible and popular matching in Ĝ. We claim that
M(s′) = t and M(t′) = s.

First, if M(t′) = u, then (u, v′1) blocks M . Second, if M(t′) = dx1 , then at least one edge
incident to some vertex of DX must block M : this follows from an observation that M cannot
connect a vertex bxi to its top choice (i.e., axi,f

0 ). To see this, suppose that (axi,f
0 , bxi) ∈ M .

This means that (axi,f
0 , bxi,f

3 ) ∈ bp(M), so no other edge in C̃xi,f can block M ; however, this
leads to (bxi,f

h , axi,f
h ) ∈M for h = 3, 2, 1, implying also (bxi,f

0 , axi,t
0 ) ∈ M . This in turn yields

that the edge (axi,t
0 , bxi,t

3 ) blocks M , a contradiction. Hence, if M(t′) ̸= s, then at least one
edge in bp(M) is incident to a vertex of DX ∪ {u}.

Analogously, the same arguments yield that if M(s′) ̸= t, then at least one edge in bp(M)
is incident to a vertex of DC ∪ {v}. Hence, by |bp(M)| ≤ 1, and since no vertex of DX ∪ {u}
is adjacent to a vertex of DC ∪ {v}, at least one of (s′, t) and (s, t′) is in M . This implies
bp(M) = {(s, t)}, and consequently, {(s, t′), (s′, t)} ⊆M because M is complete.

Since M is complete, dx1 must be matched in M , yielding (dx1 , bx1) ∈ M . Applying the
same argument repeatedly, we get (dxi , bxi) ∈ M for i = 2, . . . , n as well. Similarly, we get
(dcj , acj ) ∈ M for each j ∈ [m], and also (u′i, vi−1) ∈ M for each i ∈ [n] and (v′j , uj−1) ∈ M for
each j ∈ [m] where v0 = v and u0 = u.

Let us define a matching M̂0 = Ms \ {(s, t)} ∪ {(s, t′), (s′, t)}; see again Figure 6. By the
observations of the previous paragraph and using that M is complete, it follows that M△M̂0

is the union of cycles of the form C̃xi,λ and Ccj ,h. Moreover, we claim that for each i ∈ [n]
there exists some λ ∈ {t, f} such that C̃xi,λ ⊆ M△M̂0, and that for each j ∈ [m] there exists
some h ∈ [3] such that Ccj ,h ⊆M△M̂0. To see this for some i ∈ [n], consider the path

P̂i = (s, t′, dx1 , bx1 , . . . , dxi , bxi , axi,f
0 , bxi,f

0 , axi,t
0 , bxi,t

0 , u′i, vi−1,, u
′
i−1, . . . , v1, u

′
1, v, s

′, t).

Note that there are no (−,−) edges on P̂i with respect to the matching M̂0. By Observation 4,
this path cannot be present in (Ĝ−(s, t))M , implying that M cannot contain all edges of M̂0∩P̂i.
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Thus, indeed there exists some λ ∈ {t, f} for which C̃xi,λ ⊆M△M̂0; we define α(xi) to be such
a value of λ.

Arguing analogously about the path

Q̂j = (t, s′, dc1 , ac1 , . . . , dcj , acj , b
cj ,3
0 , a

cj ,3
0 , b

cj ,2
0 , a

cj ,2
0 , b

cj ,1
0 , a

cj ,1
0 , v′j , uj−1,, v

′
j−1, . . . , u1, v

′
1, u, t

′, s),

we get that for each j ∈ [m] there exists some h ∈ [3] for which Ccj ,h ⊆M△M̂0; we define τ(cj)
to be such a value h.

Based on the fact that no consistency edge can block M , one can argue in the same way
as in the proof of Theorems 5 and 6 to prove that α is a truth assignment satisfying the input
formula φ.

Direction “⇐”. Assume that α : {x1, . . . , xn} → {t, f} is a truth assignment that satisfies φ.
Let τ(cj) = h if the h-th literal in clause cj is set to true by α (any such value h works). Then
we define M through determining its symmetric difference with M̂0 as

M△M̂0 =

(
n⋃

i=1

Cxi,α(xi)

)
∪

 m⋃
j=1

Ccj ,τ(cj)

 .

It is easy to see that M is feasible, in particular, bp(M) = {(s, t)}. Using Observation 4, we
can show that M is popular as well. It is straightforward to check that conditions (c1), (c2),
and (c3/i) of Observation 4 hold. To see that (c3/ii) holds as well, let P be an M -alternating
path P starting with (s, t′) and ending with (s′, t). First note that if P contains no consistency

edge, then it must contain a (−,−) edge w.r.t. M : either an edge connecting some b
xi,α(xi)
0 with

its second choice (let us denote this edge by exi), or an edge connecting some a
cj ,τ(cj)
0 with its

second choice (let us denote this edge by ecj ). If P does contain some consistency edge f , then
either f itself is a (−,−) edge or it must be adjacent to an edge in some cycle C in M△M̂0.
Thus, either C = C̃xi,α(xi) for some i ∈ [n], or C = Ccj ,τ(cj) for some j ∈ [m]. In both cases we
can identify a (−,−) edge on P , namely exi in the former case, and ecj in the latter case. This
proves that M is indeed popular, and hence the reduction is correct.

It remains to prove that the constructed preference system (Ĝ, ≺̂) is single-peaked and
single-crossing.

Single-peaked property. Observe that all newly added vertices except for s′ and t′ have
degree 2 in Ĝ, as do u and v as well. Hence, these vertices have preferences that are trivially
single-peaked with respect to any axis. To deal with s′, t′, and the vertices in Â∪B̂, it suffices to
append the vertices dxn , dxn−1 , . . . , dx1 , s, s′ in this order after Axis Ã, and similarly, to append
dcm , dcm−1 , . . . , dc1 , t, t′ in this order after Axis B̃. It can easily be verified that (Ĝ, ≺̂) is single-
peaked with respect to the two axis obtained this way.

Single-crossing property. To show that (Ĝ, ≺̂) is single-crossing, recall the orders in Π and
in Φ as defined in the proof of Theorem 6. We apply two modifications to each π ∈ Π: first, we
append the vertices dxn , dxn−1 , . . . , dx1 , s, s′ to π in this order; second, we fix the order of the
vertices in Â as acm , acm−1 , . . . , ac1 . Similarly, we apply two modifications to each ϕ ∈ Φ: first,
we append the vertices dcm , dcm−1 , . . . , dc1 , t, t′ to ϕ in this order; second, we fix the order of the
vertices in B̂ as bxn , bxn−1 , . . . , bx1 . It is straightforward to check that the preference list of any
vertex in DC ∪{t, t′} can be obtained as the restriction of any π ∈ Π, while the preference list of
any vertex in DX ∪{s, s′} can be obtained as the restriction of any ϕ ∈ Φ. Moreover, any vertex
whose preference list in G̃ is the restriction of some π ∈ Π or ϕ ∈ Φ has the same property
in Ĝ with respect to the modified orders (as defined above). Therefore, (Ĝ, ≺̂) is single-crossing,
proving the theorem.
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Corollary 8. Given a preference system (G,≺), finding a popular matching in G with at most
one blocking edge that is larger than a stable matching is NP-complete, even if preferences
in (G,≺) are single-peaked and single-crossing.

Remark 1. The NP-hardness of finding a complete popular matching with at most one blocking
edge (a weaker form of Theorem 7 and Corollary 8) can also be proved using the reduction
in [16, Section 5.1]. It can be verified that adding a path (s, x, y, t) to the graph constructed
in the reduction presented in [16, Section 5.1], with newly introduced vertices x and y being
each other’s top choice, and with s ranking x, as well as t ranking y as their worst choice, the
obtained graph admits a complete popular matching if and only if it admits a complete popular
matching with (x, y) as the unique blocking edge, which in turn happens if and only if the
input instance of 3-SAT is satisfiable. This argument is due to Telikepalli Kavitha (personal
communication); the reduction we present in the proof of Theorem 7 is a combination of her
ideas and our reduction for Theorem 6.

4 Algorithms for preferences admitting a master list

In this section we focus on the case when preferences admit a master list on one side. Our two
simple algorithms for Popularity with Fixed Instability and Max-Utility Popular
Matching with Instability Costs are presented in Section 4.1. Then in Section 4.2 we
show that their running time is optimal. Finally, in Section 4.3. we investigate whether these
approaches can handle somewhat less restricted instances.

4.1 Our algorithms

It is known that strict preference systems with a master list on one side admit a unique stable
matching [42]; this fact is the backbone of our simple approach.

Theorem 9. An instance (G,≺, S) of Popularity with Fixed Instability where the input
graph G = (A,B;E) is bipartite and (G,≺) admits a master list on one side can be solved
in O(|E|) time.

Proof. Let M be a popular matching in G with bpG(M) = S. Then M is stable in the graph
G′ = G−S. Since (G,≺) admits a master list on one side, G′ admits a unique stable matching
M ′ which can be found in O(|E|) time [42]. If M ′ is not popular in G or bpG(M ′) ̸= S,
we output ‘No’, otherwise we output M ′. Finding M ′ in G′, computing bpG(M ′) and testing
whether M ′ is popular in G can all be done in O(|E|) time (for testing popularity, see [38]).

Theorem 10. An instance (G,≺, ω, c, t, k) of Max-Utility Popular Matching with In-
stability Costs where the input graph G = (A,B;E) is bipartite, (G,≺) admits a master list
on one side, and c(e) ≥ 1 for all edges e ∈ E can be solved in O(|E|k+1) time.

Proof. Since all edges have cost at least 1, the desired matching may admit at most k blocking
edges. As observed in the proof of Theorem 9, for a given subset S ⊆ E of edges, there exists
at most one matching M with bpG(M) = S. By trying all edge sets S ⊆ E of size at most k,
we can check all possible solutions in time O(|E|k+1), since we can check feasibility in linear
time.
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4.2 The optimality of our algorithms

As our algorithm in Theorem 9 runs in O(|E|) time, which is the time needed to read the input,
it clearly is as fast as possible asymptotically. We contrast Theorem 10 by showing that the
running time O(|E|k+1) cannot be improved to get an algorithm that runs in f(k) · |E|O(1) time
for some function f , i.e., an FPT algorithm with parameter k, as the problem is W[1]-hard with
parameter k, even for t = 1.

Theorem 11. The Max-Utility Popular Matching with Instability Costs problem
is NP-complete and W[1]-hard with parameter k, even if

� the input graph G is bipartite,

� preferences admit a master list on both sides,

� the cost function is c ≡ 1, and

� either (a) the utility function is ω(e) =

{
1 if e = f⋆,
0 otherwise,

for some f⋆ ∈ E(G)

with ω(Ms) = 0, and the objective value is t = 1, or
(b) ω ≡ 1 and t = |Ms|+ 1 = |V (G)|/2,

where Ms is the unique stable matching in G.

To prove Theorem 11, we need a different approach than the one used to prove the results of
Section 3. There is a simple reason why preferences in those constructions do not admit a master
list (on either side): vertices within cycles corresponding to literals or to truth assignments of a
variable are cyclic (in the sense that each vertex on such a cycle prefers the “next” vertex along
the cycle to the “previous” vertex on the cycle, when traversing the cycle in one direction), and
hence do not admit a master list on either side.

The reduction proving Theorem 11 is from the W[1]-hard Multicolored Clique problem,
and although it applies standard techniques from the literature (e.g., a similar approach is used
in [34]), proving its correctness requires detailed arguments. To give the reader some intuition
about the workings of the reduction, we present a short sketch, as we did with Theorem 5 as
well.

Proof outline for Theorem 11. The input of the Multicolored Clique problem is a graph
G = (V,E) with V partitioned into sets V1, . . . , Vq, and an integer parameter q, and the task is
to decide whether G contains a clique of size q containing exactly one vertex from each of the
sets Vi.

We introduce a vertex gadget Gi for each i ∈ [q], and an edge gadget Gi,j for each {i, j} ⊆ [q]
with i < j. Both vertex and edge gadgets will have the same underlying structure, which we
present now for Gi: It contains an edge (av, bv) for each v ∈ Vi, a “source” vertex si and a
“sink” vertex ti.

2 We connect si to each vertex in {av : v ∈ Vi}, and analogously, we connect ti
to each vertex in {bv : v ∈ Vi}. Edge gadgets are defined analogously, with Gi,j containing edges
of the form (ae, be) for each edge e ∈ E running between Vi and Vj .

The next idea is to connect all gadgets, one after the other, threading them along a path by
connecting the sink vertex of each gadget with the source vertex of the next gadget (see Figure 7
for an illustration). Preferences are defined so that the unique stable matching Ms contains all
edges of the form (av, bv) and (ae, be), and leaves unmatched only the source vertex of the first
gadget, say s1, and the sink vertex of the last gadget, say tq−1,q. Thus, a desired matching M
will be such that M△Ms is a path PM from s1 to tq−1,q that traverses all gadgets. The edges
of PM used within the gadgets will therefore correspond to selecting q vertices and

(
q
2

)
edges in

the input graph G. Additional inter-gadget edges, running between vertex and edge gadgets,

2We only use the terms “source” and “sink” for illustration; the constructed graph is undirected.
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will ensure that M is a popular matching of size |Ms| + 1 with |bp(M)| ≤ q +
(
q
2

)
exactly if

the endpoints of any edge “selected” by PM = MS△M are also “selected”, which in turn can
happen exactly if there exists a clique of size q in G as required.

Proof of Theorem 11. We give a reduction from the W[1]-hard Multicolored Clique prob-
lem, parameterized by the size of the solution [27]. Let G = (V,E) be the input of Multicol-
ored Clique, with V partitioned into q set V1, . . . , Vq. We let Ei,j denote the edges of G that
run between Vi and Vj for some 1 ≤ i < j ≤ q.

Construction. For each i ∈ [q], we construct a vertex gadget G′
i on vertex set Ai∪Bi∪{si, ti}

where Ai = {av : v ∈ Vi} and Bi = {bv : v ∈ Vi}. For each v ∈ Vi, vertices av and bv are each
other’s top choices, the worst choice of av is si, and the worst choice of bv is ti; the gadget contains
only these 3|Vi| edges. Similarly, for each i, j ∈ [q] with i < j, we construct an edge gadget G′

i,j

on vertex set Ai,j ∪Bi,j ∪ {si,j , ti,j} where Ai,j = {ae : e ∈ Ei,j} and Bi,j = {be : e ∈ Ei,j}. For
each e ∈ Ei,j , vertices ae and be are each other’s top choices, the worst choice of ae is si,j , and
the worst choice of be is ti,j ; the gadget contains only these 3|Ei,j | edges. We also add vertices s0
and t0, connected with each other.

We next create edges that connect our gadgets along a path. For this, we need an ordering
over our gadgets, so let µ be any fixed bijection from [q +

(
q
2

)
] to [q] ∪ {(i, j) ∈ [q]× [q] : i < j}

satisfying the property that all vertex gadgets precede all edge gadgets (formally, this amounts
to µ−1(i) < µ−1(i′, j′) for any i, i′, j′ ∈ [q] with i′ < j′). For simplicity, we also assume µ(1) = 1.
We can now add the edge set

ETS = {(t0, s1)} ∪ {(tµ(h), sµ(h)+1) : h ∈ [q +
(
q
2

)
− 1]}.

We further create a set F of consistency edges as follows. For each edge e ∈ E connecting
vertices x ∈ Vi and y ∈ Vj for some indices i and j, we connect vertex be with all vertices in the
set {av : v ∈ Vi \ {x}} ∪ {av : v ∈ Vj \ {y}}.
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Figure 7: Illustration of the reduction in the proof of Theorem 11. Vertex gadgets are shown in
the upper row, with edge gadgets below them. We assume µ(i) = i for each i ∈ [q], as well as
µ(q + 1) = (1, 2) and µ(q +

(
q
2

)
) = (q− 1, q). Double lines denote edges of Ms. The bent arrows

around a given vertex indicate the preferences of the vertex, with the arrow progressing from
the least-preferred neighbor towards the most-preferred neighbor. Among consistency edges
only those incident to be are shown (in grey). The figure assumes e = (u, v) ∈ E1,2.
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Let G′ denote the resulting graph; see Figure 7 for an illustration. We set

AV =

q⋃
i=1

Ai, AE =
⋃

1≤i<j≤q

Ai,j , S = {si : i ∈ [q]} ∪ {si,j : 1 ≤ i < j ≤ q}

and we define the sets BV , BE , and T analogously. Then A = AV ∪ AE ∪ S ∪ {s0} and
B = BV ∪ BE ∪ T ∪ {t0} are the two partitions of G′. We proceed with providing a master
list over vertices in A and in B, denoted by LA and LB, respectively. To this end, we fix an

arbitrary ordering π over V ∪ E. Then we write
−→
AV to denote the ordering of AV in which

av precedes av′ if and only if v precedes v′ according to π. By contrast, let
←−
BV to denote the

ordering of BV in which bv precedes bv′ for some v′ ̸= v if and only if v does not precede v′

according to π. We define
−→
AE and

←−
BE analogously. We are now ready to define the preferences:

LA:
−→
AE ,

−→
AV , S, s0;

LB:
←−
BV ,

←−
BE , T , t0.

Observe that Ms = {(av, bv) : v ∈ V }∪{(ae, be) : e ∈ E}∪ETS is the unique stable matching
in G′.

All edges have cost 1, and our budget is k = q +
(
q
2

)
. Regarding the utility function ω

and the objective value t, we define two equivalent variants, as required. To show hardness for
variant (a) we set ω such that the edge (s0, t0) has utility 1, while all other edges have utility 0,
and we set t = 1. Note that ω(Ms) = 0 indeed holds in this case. For variant (b), we set ω ≡ 1
and t = |V (G′)|/2; note that in this case t = |Ms|+ 1. Observe that the presented reduction is
a parameterized reduction with parameter k (in both variants).

We prove that a feasible popular matching exists in the constructed instance (G′,≺, ω, c, t, k)
if and only if G contains a clique of size q containing a vertex from each set Vi.

Direction“⇒”. Suppose that M is a matching that is popular and feasible for (G′,≺, ω, c, t, k).
First, let us observe that a popular matching M cannot leave a vertex v in AV ∪AE∪BV ∪BE

unmatched: supposing otherwise we immediately get that (v,Ms(v)) blocks M , and so v cannot
be unmatched due to condition (c3/i) of Observation 4, a contradiction.

Claim. (♦) If (sµ(h), a) ∈ M for some vertex a ∈ Aµ(h), then (Ms(a), tµ(h)) ∈ M , and also
M(sµ(h+1)) ∈ Aµ(h+1) unless h = q(q + 1)/2.

Proof. We prove this first for vertex gadgets, i.e., for h ∈ [q]. Suppose (sµ(h), a) ∈ M for some
vertex a ∈ Aµ(h) with h ∈ [q]. Let b = Ms(a). Since a and b are each other’s top choice,
(a, b) ∈ bp(M) and so by condition (c3/i) of Observation 4 we know that b must be matched
in M . Since G′

µ(h) is a vertex gadget, δG′(b) = 2. Hence, we get (b, tµ(h)) ∈ M . Using again

condition (c3/i), we also know that sµ(h+1) must be matched in M , and since it clearly cannot
be matched to tµ(h), claim (♦) follows in this case.

Before proving claim (♦) for edge gadgets, let us show first that M contains no consistency
edges. By the feasibility of M we know (s0, t0) ∈ M , and hence s1 must be matched by M , as
otherwise (t0, s1) would be a blocking edge of M with an unmatched endpoint, contradicting
condition (c3/i) of Observation 4. Thus, M(s1) ∈ A1. Moreover, by our choice of µ, all
vertex gadgets precede all edge gadgets, and thus repeatedly applying claim (♦) for vertex
gadgets (proved in the previous paragraph) implies that for each i ∈ [q] there exists a unique
vertex v ∈ Vi such that (si, av) and (bv, ti) are both in M , with (av, bv) ∈ bp(M); we denote
this vertex v by vi. Assuming that some consistency edge (av, be) ∈ F is contained in M , it is
clear that v ̸= vi for any i ∈ [q]. However, then bv cannot be matched to any vertex by M , a
contradiction.
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Suppose now that (sµ(h), a) ∈M for some vertex a ∈ Aµ(h) in an edge gadget G′
µ(h). Again,

let �b = Ms(a). Then b must be matched in M by condition (c3/i) of Observation 4. Note that
δG′−F (b) = 2, and hence from M ∩ F = ∅ we get (b, tµ(h)) ∈ M . Thus, if sµ(h+1) exists, then
it must also be matched in M by condition (c3/i), and can only be matched to some vertex
in Aµ(h+1), proving claim (♦).

Therefore, for any i, j ∈ [q] with i < j there exists a unique edge e ∈ Ei,j such that (si,j , ae)
and (be, ti,j) are both in M , with (ae, be) ∈ bp(M); let ei,j denote this edge e.

As a consequence, each gadget contains an edge of Ms that blocks M . By k = q +
(
q
2

)
we

get that no consistency edge can block M without exceeding the budget. We claim that each
edge ei,j connects vi and vj . Indeed, if ei,j is not incident to vi, then avi and bei,j are connected
in G′ by a consistency edge, and they form a blocking edge for M (as both of them are matched
to their least favorite neighbor in M), a contradiction. By symmetry, ei,j is incident to vj
as well, proving our claim. Therefore, vertices v1, . . . , vq form a clique in G, with vi ∈ Vi for
each i ∈ [q] as desired.

Direction “⇐”. Suppose that vertices vi ∈ Vi, i ∈ [q], form a clique in G; let us define
K = G[{v1, . . . , vq]}. We define a matching M as follows.

M = {(s0, t0)} ∪ {(av, bv) : v ∈ V \ V (K)} ∪ {(si, avi), (bvi , ti) : i ∈ [q]}
∪{(ae, be) : e ∈ E \ E(K)} ∪ {(si,j , a(vi,vj)), (b(vi,vj), ti,j) : i, j ∈ [q], i < j}.

Observe that M is a complete matching, and the set of edges blocking M is

bp(M) = {(avi , bvi) : i ∈ [q]} ∪ {(a(vi,vj), b(vi,vj)) : i, j ∈ [q], i < j},

since all vertices in AV ∪ BV ∪ AE ∪ BE except those in V (bp(M)) are matched to their top
choice in M ; note that since K is a clique, the definition of G′ implies that no consistency
edge has both of its endpoints in V (bp(M)), and therefore no consistency edge blocks M . This
shows that the edges blocking M have total cost exactly k = |bp(M)|, and thus M is feasible.
It remains to show that M is popular in G′.

For the sake of contradiction, suppose that M ′ is more popular than M . Note that s0
obtains her top choice in M , and t0 can only be better off in M ′ if s0 is worse off in M ′. Hence,
as all remaining vertices in G′ belong to a vertex or an edge gadget, there must exist a vertex
or an edge gadget in which M ′ beats M , i.e., where more vertices prefer M ′ to M than vice
versa. Suppose that G′

i is such a gadget; the same argument works for edge gadgets. Note that
the only vertices that do not (necessarily) obtain their top choice in M are the endpoints of
the edges (si, avi) and (bvi , ti), both in M . Thus, either si prefers M ′ to M , or ti prefers M ′

to M , or both. Furthermore, it also follows that at most four vertices in G′
i can be better off

in M ′ when compared to M , and so at most three vertices of G′
i may be better off in M when

compared to M ′. We distinguish between two cases:

� Case A: both si and ti prefer M ′ to M . Then M ′(si) = ax and M ′(ti) = by for some x
and y with vi /∈ {x, y}. Since avi ≺si ax, we get that x precedes vi in π. By contrast,
since bvi ≺ti by we get that y does not precede vi in π. Hence, x ̸= y. This implies that
vertices ax, bx, ay, and by are four vertices that prefer M to M ′, a contradiction.

� Case B: exactly one of si and ti prefer M ′ to M , say si (the case for ti is symmetric).
Let M ′(si) = ax for some x ̸= vi. If M ′(ti) = M(ti), then the only vertices preferring M ′

to M can be si and avi , but both ax and bx prefer M to M ′, so M ′ cannot beat M in G′
i,

a contradiction. Otherwise, M ′(ti) ̸= M(ti) and, by our assumption, ti prefers M to M ′.
Then ax, bx, and ti are three vertices in G′

i who prefer M to M ′, while at most three
vertices in G′

i (namely, si, avi , and bvi) may prefer M ′ to M , a contradiction.

This proves that M is indeed popular, as required, finishing our proof.
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4.3 The extendibility of our algorithms

We next investigate whether the conditions of Theorems 9 and 10 can be lifted without leaving
the field of polynomially tractable problems.

4.3.1 Free edges.

One may wonder if the restriction in Theorem 10 that all edge costs are at least 1 is necessary, or
our algorithm can be extended to accommodate edges of cost 0. Such edges are called free edges
in the literature, and a matching whose blocking edges are all free edges is called a socially stable
matching. It is known that deciding whether there exists a complete socially stable matching
in a bipartite instance with master lists on both sides is NP-complete [48, Theorem 5.3.4];
however, this does not imply the following theorem where we prove that it is NP-hard to find a
complete popular socially stable matching. The proof of Theorem 12 is a slight modification of
the reduction proving Theorem 11.

Theorem 12. The Max-Utility Popular Matching with Instability Costs problem
is NP-complete even if

� the cost function c is binary,

� the budget is k = 0, and

� all other restrictions of Theorem 11 hold.

Proof. We prove the theorem by slightly modifying the reduction from Multicolored Clique
given in the proof of Theorem 11; we re-use all definitions from that proof. Recall the instance
I = (G′,≺, ω, c, t, k =

(
q
2

)
+ q) of Max-Utility Popular Matching with Instability

Costs constructed there. We define a modified instance I ′ = (G′,≺, ω, c′, t, k′ = 0) by setting
c′(e) = 1 if e is a consistency edge, and setting c′(e) = 0 otherwise. Note that our modified
reduction is a polynomial-time reduction.

We claim that there exists a feasible popular matching in I ′ if and only if the input graph G
contains a clique of size q.

Direction “⇒”. Suppose that M is a popular matching feasible for I ′. The same arguments
presented in the proof of Theorem 11 can be applied to define a clique in G, except for the
argument to prove that M cannot be blocked by any consistency edge—the only place where
properties of the original cost function c and budget k were used. In the case of I ′, however,
this follows immediately from the fact that c′(e) = 1 for any consistency edge e and our budget
is k′ = 0.

Direction “⇐”. Given a clique in G, the corresponding matching M defined as in the proof
of Theorem 11 has the property that bp(M) ∩ F = ∅, so the cost of M with respect to the
modified cost function c′ is zero. Hence, M is feasible in I ′ as well.

4.3.2 Ties in the master list.

Another possible direction to generalize Theorems 9 and 10 would be to extend their results
to the case where preferences are not necessarily strict but may include ties. We define the
Max-Utility Popular Matching with Instability Costs and Ties problem the same
way as its strict variant, with the only difference that the input preference system may not be
strict; we define Popularity with Fixed Instability and Ties analogously.

Our next result shows that there is no hope that the algorithm of Theorem 9 can be extended
to the case where we allow ties in the preference lists, even if we further require severe restrictions
on the input. The proof of Theorem 13 is based on the reduction proving Theorem 6, and its
main idea is to circumvent the problem of cyclic preferences in the construction by using ties.
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Theorem 13. The Max-Utility Popular Matching with Instability Costs and Ties
problem is NP-complete even if

� the input graph G = (A,B;E) is bipartite and ∆G = 3,

� preferences on both sides admit a master list,

� the cost function is c ≡ 1,

� the budget is k = 1,

� the utility function is ω(e) =

{
1 if e = f⋆,
0 otherwise,

for some f⋆ ∈ E(G), and

� the objective value is t = 1.

The Popularity with Fixed Instability and Ties problem is NP-complete even if

� the input graph G is bipartite and ∆G = 3,

� preferences on both sides admit a master list, and

� |S| = 1 for the set S of blocking edges.

Proof. Again, we are going to present a modification of the reduction given in the proof of
Theorem 6, re-using all definitions there. One can observe that there is a simple reason why
preferences in the graph G̃ created in that reduction do not admit a master list (on either
side): vertices within a cycle Ccj ,ℓ, j ∈ [m] and ℓ ∈ [3], as well as within a cycle C̃xi,λ, i ∈ [n]
and λ ∈ {t,f}, are cyclic (in the sense that each vertex on such a cycle prefers the “next”
vertex along the cycle to the “previous” vertex on the cycle, when traversing the cycle in one
direction), and hence do not admit a master list on either side. We now present a modification
that circumvents this problem with the help of ties, by simply replacing an edge in each of these
cycles with a path of length 5 (i.e., making each of them longer by four edges).

Construction. For each j ∈ [m] and ℓ ∈ [3] we subdivide the edge (a
cj ,ℓ
1 , b

cj ,ℓ
0 ) of G̃ with

newly introduced vertices b
cj ,ℓ
2 , a

cj ,ℓ
2 , b

cj ,ℓ
3 , and a

cj ,ℓ
3 , in this order. Similarly, for each i ∈ [n]

and λ ∈ {t, f} we subdivide the edge (bxi,λ
3 , axi,λ

0 ) with newly introduced vertices axi,λ
4 , bxi,λ

4 ,

axi,λ
5 , and bxi,λ

5 . This way, for any cycle C of the form C̃xi,λ or Ccj ,ℓ in G̃, we have created a

corresponding cycle Cties in the obtained graph G̃ties. We will call such cycles base cycles (both
in G̃ and in G̃ties).

We give the preferences of the newly introduced vertices and their neighbors below (see
Figure 8); all other preferences remain unchanged. Ties are denoted by angle brackets ⟨·⟩.

a
cj ,ℓ
1 : ⟨bcj ,ℓ1 , b

cj ,ℓ
2 ⟩ where j ∈ [m] and ℓ ∈ [3];

b
cj ,ℓ
2 : ⟨acj ,ℓ1 , a

cj ,ℓ
2 ⟩ where j ∈ [m] and ℓ ∈ [3];

a
cj ,ℓ
2 : b

cj ,ℓ
2 , b

cj ,ℓ
3 where j ∈ [m] and ℓ ∈ [3];

b
cj ,ℓ
3 : a

cj ,ℓ
2 , a

cj ,ℓ
3 where j ∈ [m] and ℓ ∈ [3];

a
cj ,ℓ
3 : ⟨bcj ,ℓ0 , b

cj ,ℓ
3 ⟩ where j ∈ [m] and ℓ ∈ [3];

b
cj ,ℓ
0 : ⟨acj ,ℓ0 , a

cj ,ℓ
3 ⟩, a

cj ,ℓ+1
0 where j ∈ [m] and ℓ ∈ [2];

b
cj ,3
0 : ⟨acj ,30 , a

cj ,3
3 ⟩, acj where j ∈ [m];

bxi,λ
3 : ⟨axi,λ

3 , axi,λ
4 ⟩ where i ∈ [n] and λ ∈ {t, f};

axi,λ
4 : ⟨bxi,λ

3 , bxi,λ
4 ⟩ where i ∈ [n] and λ ∈ {t, f};

bxi,λ
4 : axi,λ

4 , axi,λ
5 where i ∈ [n] and λ ∈ {t, f};

axi,λ
5 : bxi,λ

4 , bxi,λ
5 where i ∈ [n] and λ ∈ {t, f};

bxi,λ
5 : ⟨axi,λ

0 , axi,λ
5 ⟩ where i ∈ [n] and λ ∈ {t, f};

axi,t
0 : ⟨bxi,t

0 , bxi,t
5 ⟩, bxi,f

0 where i ∈ [n];

axi,f
0 : ⟨bxi,f

0 , bxi,f
5 ⟩, bxi where i ∈ [n].
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Figure 8: Illustration of the reduction in the proof of Theorem 13, depicting how the graph G̃ is
modified to obtain graph G̃ties. The figure assumes that the third literal in cj is xi as a positive
literal. Edges leaving a given vertex a that are labelled with the same rank lead to vertices that
are equally preferred by a and hence are contained in a tie in a’s preference list.

We keep all remaining parameters for both problems unchanged: S = {e⋆} for Popularity
with Fixed Instability, and for Max-Utility Popular Matching with Instability
Costs we set c, k, ω and t as required in the statement of the theorem, with f⋆ = (u, v′1) being
the only edge with utility 1.

Further definitions. We extend the matching M̃0 in the straightforward way into a match-
ing M̃ ties

0 : for any i ∈ [n] and λ ∈ {t, f}, we let M̃ ties
0 (axi,λ

h ) = bxi,λ
h for each h ∈ {0, 1, . . . , 5},

and similarly, for each j ∈ [m] and ℓ ∈ [3], we let M̃ ties
0 (a

cj ,ℓ
h ) = b

cj ,ℓ
h for each h ∈ {0, 1, 2, 3}; we

set M̃ ties
0 (a) = M̃0(a) for each remaining vertex a.

Recall from the proof of Theorem 6 that any popular matching M̃ in G̃ with bp(M̃) = {e⋆}
has the following property: for any base cycle C either M̃ contains C ∩M0, or M̃ contains
C \M0. Based on this fact, we can define a matching M̃ ties in G̃ties corresponding to M̃ as

follows: for each base cycle C in G̃, if M̃ ⊇ M̃0∩C, then we add the edges Cties∩M̃ ties
0 to M̃ ties,

otherwise we add the edges Cties \ M̃ ties
0 ; we further add all edges of M̃ ties

0 not incident to any

base cycle to M̃ ties.

Correctness. It is easy to see that if M̃ is a popular matching in G̃ with bp(M̃) = {e⋆},
then M̃ ties is a popular matching in G̃ties with bp(M̃ ties) = {e⋆}. We are going to prove that
the converse is true as well, i.e., any popular matching in G̃ties blocked only by e⋆ is of the
form M̃ ties for some popular matching M̃ in G̃ with bp(M̃) = {e⋆}. Notice that this suffices to
prove that our modified reduction is correct (for both problems).

So let M be a popular matching in G̃ties blocked only by e⋆. It is clear that (v, u′1) ∈ M .
Using for i = 1, 2, . . . , n− 1 that the edge (vi, u

′
i+1) cannot block M , we get that (vi, u

′
i+1) ∈M

for each i ∈ [n−1]. In particular, no edge (u′i, b
xi,t
0 ) is in M . This implies that (axi,t

0 , bxi,f
0 ) /∈M :

indeed, (axi,t
0 , bxi,f

0 ) ∈M would imply (axi,t
5 , bxi,t

5 ) ∈M since (axi,t
0 , bxi,t

5 ) cannot block M , and
applying the same argument iteratively it follows that (axi,t

h , bxi,t
h ) ∈ M for each h ∈ [5].

That would, however, leave bxi,t
0 unmatched in M and hence (bxi,t

0 , axi,t
0 ) would block M , a

contradiction. Therefore we know (axi,t
0 , bxi,f

0 ) /∈ M . Using the same argument once more, we
also get that (axi,f

0 , bxi) /∈M .
Note that analogous arguments can be used to show that M contains (u, v′1) together with

all edges (uj , v
′
j+1) for j ∈ [m− 1], and that M does not match any vertex of the form b

cj ,ℓ
0 to

its worst choice. To prove our claim, it therefore remains to show that M cannot contain any
consistency edge.
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Figure 9: Illustration of the matching M ′ in the proof of Theorem 13 in the case where the
matching M contains the consistency edge (axi,f

2 , b
cj ,3
1 ). The figure assumes (axi,f

0 , bxi,f
0 ) ∈ M

but (a
cj ,3
0 , b

cj ,3
0 ) /∈M . The edges of M are depicted with bold blue lines, while edges of M ′ \M

are dashed red lines. Vertices that prefer M ′ to M have been marked by a plus sign, while those
preferring M to M ′ are marked by a minus sign.

Assume for the sake of contradiction that M contains some consistency edge (axi,λ
h , b

cj ,ℓ,
1 ).

We will define a matching M ′ so that M ′ is more popular than M . Since (axi,λ
h , bxi,λ

h ) cannot

block M , we know (axi,λ
h+1, b

xi,λ
h ) ∈ M , and applying the same argument iteratively we obtain

that (axi,λ
h′+1, b

xi,λ
h′ ) ∈M for each h′ = h, h+ 1, . . . , 3. We also get (axi,λ

5 , bxi,λ
4 ) ∈M , as otherwise

(axi,λ
5 , bxi,λ

4 ) would block M . By contrast, if h > 1, then since (axi,λ
h−1, b

xi,λ
h−1) cannot block M ,

it must be contained in M ; arguing iteratively again, we obtain that (axi,λ
h′ , bxi,λ

h′ ) ∈ M for

each h′ ∈ [h− 1]. Thus, M assigns either bxi,λ
0 or bxi,λ

5 to axi,λ
0 , leaving the other vertex un-

matched. Now, we let M ′ contain the edges {(axi,λ
h , bxi,λ

h ) : h ∈ {0, 1, . . . , 5}} if (axi,λ
0 , bxi,λ

0 ) /∈M ,

otherwise we let M ′ to contain the edges {(axi,λ
h+1 mod 6, b

xi,λ
h ) : h ∈ {0, 1, . . . , 5}}. We use the

same reasoning for the cycle Ccj ,ℓ and define M ′ analogously on the vertices of Ccj ,ℓ. For each
remaining vertex a we let M ′(a) = M(a). It is not hard to see by simply checking all vertices
in V (M△M ′) that there are at least two more vertices preferring M ′ to M than vice versa (see
Figure 9), showing that M ′ is indeed more popular than M , a contradiction.

Master lists. To finish the proof of our theorem, it remains to show that the reduction has
the promised properties, in particular that preferences on both sides admit a master list. To
this end, for h = 1, 2, 3 we define Ih as the set of those pairs (cj , ℓ) where the ℓ-th literal in
clause cj is the h-th occurrence of some variable in the input formula. We define the two master
lists as follows.

LA: u,
{〈

a
cj ,ℓ
1 , a

cj ,ℓ
2

〉}
j∈[m],ℓ∈[3],

{〈
axi,λ
3 , axi,λ

4

〉}
i∈[n],λ∈{t,f},

{
axi,λ
2 }i∈[n],λ∈{t,f}, {a

xi,λ
1 }i∈[n],λ∈{t,f},

u′1, u
′
2, . . . , u

′
n,
〈
ac1,10 , ac1,13

〉
, u1,

〈
ac2,10 , ac2,13

〉
, u2, . . . , um−1,

〈
acm,1
0 , acm,1

3

〉
,
{〈

a
cj ,2
0 , a

cj ,2
3

〉}
j∈[m]

,{〈
a
cj ,3
0 , a

cj ,3
3

〉}
j∈[m]

,
{
acj
}
j∈[m]

,
{〈

axi,t
0 , axi,t

5

〉}
i∈[n],

{〈
axi,f
0 , axi,f

5

〉}
i∈[n].

LB: v,
{〈

bxi,λ
3 , bxi,λ

4

〉}
i∈[n],λ∈{t,f},

{〈
b
cj ,ℓ
1 , b

cj ,ℓ
2

〉}
(cj ,ℓ)∈I3

,
{
bxi,λ
2

}
i∈[n],λ∈{t,f},

{〈
b
cj ,ℓ
1 , b

cj ,ℓ
2

〉}
(cj ,ℓ)∈I2

,{
bxi,λ
1

}
i∈[n],λ∈{t,f},

{〈
b
cj ,ℓ
1 , b

cj ,ℓ
2

〉}
(cj ,ℓ)∈I1

,
〈
bx1,t
0 , bx1,t

5

〉
, v1,

〈
bx2,t
0 , bx2,t

5

〉
, v2, . . . , vn−1,〈

bxn,t
0 , bxn,t

5

〉
,
{〈

bxi,f
0 , bxi,f

5

〉}
i∈[n],

{
bxi
}
i∈[n], v

′
1, v

′
2, . . . , v

′
m,
{〈

b
cj ,1
0 , b

cj ,1
3

〉}
j∈[m]

,
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{〈
b
cj ,2
0 , b

cj ,2
3

〉}
j∈[m]

,
{〈

b
cj ,3
0 , b

cj ,3
3

〉}
j∈[m]

.

It is not hard (though tedious) to verify that preferences in the constructed instance indeed
admit the master lists given above.

5 Pareto-optimal matchings with bounded instability

In this section we shift our attention to the following problem.

Max-Utility Pareto-Optimal Matching with Instability Costs:

Input: A strict preference system (G,≺), a utility function ω : E(G)→ N, a cost
function c : E(G)→ N, an objective value t ∈ N, and a budget k ∈ N.

Question: Is there a Pareto-optimal matching in G whose utility is at least t and
whose blocking edges have total cost at most k?

A natural approach to solve this problem is to guess the set S of blocking edges in G, and
find a stable matching M of maximum utility in the graph G − S. But even though M is
Pareto-optimal in G− S, it may not be Pareto-optimal in G, as Example 2 demonstrates.

Example 2. Instead of a formal definition, we set the structure and preferences of our example
as depicted in Figure 10. Assume that k = 2 and we are looking for a matching that is blocked
by exactly the edges contained in S = {(a1, b2), (a2, b1)}. Assume that edges in S have utility 1,
while all other edges have utility 2. There are two stable matchings in G−S, both of them having
the same utility. Observe that the matching Ma = {(ai, bi) : i ∈ [3]} highlighted in part (a) of
Figure 10 is Pareto-optimal in G − S; however, it is not Pareto-optimal in G: switching edges
along the cycle (a1, b1, a2, b2) yields a matching that is a Pareto-improvement for Ma, but has
less utility than Ma. By contrast, the matching Mb = {(a1, b1), (a2, b3), (a3, b2)} highlighted in
part (b) of Figure 10 is Pareto-optimal in G− S as well as in G.

(a) a1

a2

a3

b1

b2

b3

2

1

1

2

2
1 1

1

2

3

3

2 2
1

a1

a2

a3

b1

b2

b3

2

1

1

2

2
1 1

1

2

3

3

2 2
1

(b)

Figure 10: An example illustrating why the simplest approach for finding a Pareto-optimal
matching with at most k blocking edges and maximal utility does not work. Bold blue edges
denote the matching Ma and Mb in parts (a) and (b) of the figure, respectively, while dashed
red edges denote blocking edges.

In Section 5.1 we present our algorithm that solves Max-Utility Pareto-Optimal Match-
ing with Instability Costs, and then prove that its running time is asymptotically optimal
in Section 5.2.

5.1 Our algorithm

Let M be a solution for our input instance I = (G,≺, ω, c, t, k). Consider the set FM of
edges that run between vertices in V (bpG(M)) but do not belong to M . We will refer to the
pair (bpG(M), FM ) as the hint for M .
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Let HI denote the set of all pairs (S, F ) where S ⊆ E with |S| ≤ c(S) ≤ k, and F is a subset
of the edges in G[V (S)]−S such that G[V (S)]− (S ∪F ) is a matching. Our algorithm iterates
over each H ∈ HI , and searches for a matching MH whose hint is H. With each hint H, we
associate a weight function wH : E \ S → N as follows:

wH(e) =

{
0 if e ∈ F ,
ω(e) + w0 if e ∈ E \ (S ∪ F ),

where w0 is large enough to ensure that any maximum-weight stable matching in G − S is
disjoint from F ; setting w0 = |Ms| · maxe∈E{ω(e)} suffices for our purpose, where Ms is any
stable matching in G− S.

Algorithm 1 Input: I = (G,≺, ω, c, t, k).

1: for all H = (S, F ) ∈ HI do
2: Compute a maximum-weight stable matching MH w.r.t. wH in G− S.
3: if MH is feasible and Pareto-optimal in G then return MH .

4: return “No feasible Pareto-optimal matching exists for I.”

Theorem 14. Algorithm 1 solves an instance (G,≺, ω, c, t, k) of Max-Utility Pareto-
Optimal Matching with Instability Costs where G = (V,E) is bipartite and c(e) ≥ 1 for
all edges e ∈ E in 2O(k log k)|E|k+2 time.

Proof. Note that whenever Algorithm 1 outputs a matching, it is clearly Pareto-optimal and
feasible in G (since it checks both). So it remains to prove that whenever there exists a feasible
Pareto-optimal matching M in G, Algorithm 1 finds one. Let H = (SM , FM ) be the hint of M ;
clearly, H ∈ HI . We claim that MH is also feasible and Pareto-optimal in G (though M ̸= MH

is possible).
First, since MH is stable in G − SM , we get bpG(MH) ⊆ bpG(M) = SM and therefore

c(bpG(MH)) ≤ c(bpG(M)) ≤ k.
Second, to see ω(MH) ≥ ω(M) ≥ t, recall that SM = bp(M) by definition, so M is

stable in G− SM . As MH is a maximum-weight stable matching in G− SM under the weight
function wH , we get that wH(MH) ≥ wH(M). Since M has weight |Ms| · w0 + ω(M), by our
choice of w0 it follows that MH must also contain |Ms| edges whose weight (according to wH)
is at least w0, i.e., |Ms| edges in E \ (SM ∪ FM ). Since |Ms| = |M | = |MH |, this implies
MH ∩ FM = ∅. Thus, we get

wH(MH) = |Ms| · w0 + ω(MH) ≥ wH(M) = |Ms| · w0 + ω(M),

implying ω(MH) ≥ ω(M). Hence, MH is feasible.
Third, we claim that MH is Pareto-optimal in G. Let us assume otherwise for the sake of

contradiction. Then there exists a matching M ′ in G that is a Pareto-improvement over MH .
By the definition of Pareto-improvements, any edge in M ′ \MH blocks MH , so M ′ \MH ⊆ SM .
Let D = M ′△MH . Note that D is the disjoint union of cycles and paths whose endpoints are
both unmatched in MH but matched in M ′. This implies that each edge in D ∩MH connects
two vertices incident to some edge in D ∩M ′ ⊆ M ′ \MH ⊆ SM , i.e., edges of D ∩MH are
in G[V (SM )]. Recall that every edge of G[V (SM )] that is not in SM ∪ FM is in M (by the
definition of FM ). Therefore, as MH ∩ FM = ∅ and MH is a matching in G − SM , we obtain
D ∩MH ⊆M .

We claim that M△D is a matching that is a Pareto-improvement over M in G, contradicting
the Pareto-optimality of M . That M△D is a matching follows from the facts that D∩MH ⊆M ,
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that D \MH ⊆ SM is disjoint from M , and that MH and M match the same set of vertices
in G (as they are both stable in G−SM ). To see that M△D is a Pareto-improvement over M ,
it suffices to observe that all edges in D \M ⊆ SM = bpG(M) block M .

Hence, we can conclude that Algorithm 1 will find at least one matching, namely MH , that
is feasible and Pareto-optimal in G.

Regarding the running time, first observe that |HI | ≤ |E|k ·k! because there are at most |E|k
ways to select some S ⊆ E of size at most k, and given S, there are at most k! possibilities to
select F so that (S, F ) ∈ HI . The latter follows from the observation that selecting F from the
edges of G[V (S)]−S is equivalent to selecting the remaining edges of G[V (S)]−S, required to
form a matching; note that there are at most k! matchings in G[V (S)]− S.

Given some hint H = (S, F ) ∈ HI , we use the algorithm of Irving, Leather, and Gusfield [41]
to find a maximum-weight stable matching in G−S with respect to wH . Their method constructs
a flow network based on the so-called rotation digraph of G− S; this network has N = O(|E|)
vertices and M = O(|E|) arcs, as can be noted by inspecting the proof of Lemma 3.3.2 in [36]. A
detailed analysis of Irving et al.’s algorithm [14] shows that their method runs in O(NM) time
plus the time necessary for computing a maximum flow in the constructed network. The latter
can be done in O(NM) time as well, applying Orlin’s algorithm [54] (not yet available when [41]
and [36] were published). Thus, computing MH takes O(NM) = O(|E|2) time, implying that
the total running time of Algorithm 1 is k!O(|E|k+2) = 2O(k log k)|E|k+2.

5.2 The optimality of our algorithm

Theorem 15 generalizes a result in [34] which shows that finding a matching in a bipartite graph
that is larger by t′ than a stable matching and has at most k blocking edges is W[1]-hard with
parameter t′ +k; we show that the parameterized hardness holds even if t′ is a constant, namely
t′ = 1, and preferences admit a master list. As a consequence we obtain Corollary 16, showing
that we cannot hope to solve Max-Utility Pareto-Optimal Matching with Instability
Costs in FPT time with parameter k. Thus, Algorithm 1 is roughly optimal.

Theorem 15. Given a bipartite preference system (G,≺) with a stable matching Ms, finding a
matching in (G,≺) with at most k blocking edges that is larger than Ms is W[1]-hard with param-
eter k, even if preferences in (G,≺) admit a master list on both sides and |Ms| = |V (G)|/2− 1.

Proof. Recall the reduction presented in the proof Theorem 11: given an instance (G = (V,E), q)
of Multicolored Clique with V partitioned into q sets V1, . . . , Vq, we constructed an equiv-
alent instance I = (G′,≺, ω, c, t, k = q +

(
q
2

)
) of Max-Utility Popular Matching with

Instability Costs. We claim that this construction is correct here as well in the sense that
(G′,≺) admits a matching M of size |Ms| + 1 = |V (G′)|/2 and with bpG′(M) ≤ k if and only
if G has a clique v1, . . . , vq in G with vi ∈ Vi for each i ∈ [q].

On the one hand, given such a clique in G, the corresponding matching M defined in the
proof of Theorem 11 is clearly a matching that is larger than the unique stable matching Ms

in (G′,≺) and has exactly k blocking pairs.
On the other hand, let M be a matching in (G′,≺) that is larger than Ms and has at

most k blocking edges. Note that M is feasible in instance I of Max-Utility Popular
Matching with Instability Costs, but we do not know whether it is popular in (G′,≺) or
not. Nevertheless, observe that in the proof of Theorem 11 we only use the popularity of M
in order to show that certain vertices must be matched by M . This is, however, obvious now,
since M is a complete matching. Therefore, we can apply the same arguments we used in the
proof of Theorem 11, making use of the completeness of M instead of its popularity, to obtain
a clique in G as required.

Thus, the reduction is indeed correct and proves the theorem.
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input settings result
problem graph preferences costs utilities complexity theorem

popular general general c ≡ 1, k = 1 ω fixed, t = 0 NP-c Cor. 2
popular bipartite, ∆G = 3 SP, SC c ≡ 1, k = 1 ω almost always 0, t = 1 NP-c Thm. 6
popular bipartite, ∆G = 3 SP, SC c ≡ 1, k = 1 ω ≡ 1, t = |Ms|+ 1 NP-c Thm. 7
popular bipartite 1-ML c ≥ 1 O(|E|k+1) alg. Thm 10
popular bipartite 2-ML c ≡ 1 ω almost always 0, t = 1 W[1]-h wrt k Thm. 11
popular bipartite 2-ML c ≡ 1 ω ≡ 1, t = |Ms|+ 1 W[1]-h wrt k Thm. 11
popular bipartite 2-ML c binary, k = 0 ω almost always 0, t = 1 NP-c Thm. 12
popular bipartite 2-ML c binary, k = 0 ω ≡ 1, t = |Ms|+ 1 NP-c Thm. 12
popular w/ ties bipartite, ∆G = 3 2-ML c ≡ 1, k = 1 ω almost always 0, t = 1 NP-c Thm. 13
Pareto-opt bipartite general c ≥ 1 k! ·O(|E|k+2) alg. Thm. 14
Pareto-opt bipartite 2-ML c ≡ 1 ω ≡ 1, t = |Ms|+ 1 W[1]-h wrt k Cor. 16

Table 8: Summary of our results. We simply write “popular” (“Pareto-opt”) to denote the
problem Max-Utility Popular (Pareto-Optimal) Matching with Instability Costs,
and add “w/ ties” for the variant with ties. SP / SC / 1-ML / 2-ML mean preferences that
are single-peaked /single-crossing / admit a master list on one side / on both sides, resp. We
describe ω as “almost always 0” when ω is binary and takes value 1 only on a single edge. We
let Ms denote a stable matching in the input.

Corollary 16. The Max-Utility Pareto-Optimal Matching with Instability Costs
problem is W[1]-hard with budget k as parameter, if

� the input graph G is bipartite,

� preferences admit a master list on both sides,

� the cost function is c ≡ 1,

� the utility function is ω ≡ 1, and

� the objective value is t = |Ms|+ 1 = |V (G)|
2 for a stable matching Ms of G.

Proof. The corollary is an immediate consequence of Theorem 15 and the following observation:
G contains a matching of size t with at most k blocking edges if and only if G contains a Pareto-
optimal matching of size t with at most k blocking edges. To see the non-trivial direction of this
observation, consider any matching M of size t for which |bp(M)| ≤ k. By applying Pareto-
improvements to M as long as possible, we obtain a Pareto-optimal matching M ′ where no
vertex is worse off than in M . This implies that an edge that blocks M ′ also blocks M (note
that no edge in M \M ′ blocks M ′). It follows that |bpG(M ′)| ≤ k, and it is also clear that
|M ′| ≥ |M | = t, proving the observation.

6 Conclusion

We studied the Max-Utility Popular Matching with Instability Costs problem, and
painted a detailed landscape of its computational complexity by showing how the utility and
cost functions ω and c, the budget k, our objective value t, and various restrictions on the
preferences affect the tractability of the problem. We also made a brief detour into a relaxation
where the requirement of popularity is replaced by Pareto-optimality. Table 8 summarizes our
results.

An interesting open question is whether the algorithm of Theorem 10 can be extended to
preference domains that are, in some sense, close to admitting a master list. For example, can
we efficiently solve instances where preferences of almost all vertices admit a master list?
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[29] P. Floréen, P. Kaski, V. Polishchuk, and J. Suomela. Almost stable matchings by truncating
the Gale-Shapley algorithm. Algorithmica, 58(1):102–118, 2010.

[30] A.-T. Gai, D. Lebedev, F. Mathieu, F. De Montgolfier, J. Reynier, and L. Viennot. Acyclic
preference systems in P2P networks. In A. Kermarrec, L. Bougé, and T. Priol, editors,
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