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ABSTRACT
We study the strong core of housing markets when agents’ pref-

erences over houses are expressed as partial orders. We provide a

structural characterization of the strong core, and propose an effi-

cient algorithm that finds an allocation in the strong core or decides

that it is empty, even in the presence of forced and forbidden arcs.

The algorithm satisfies the property of group-strategyproofness.

Additionally, we show that certain results known for the strong

core in the case when agents’ preferences are weak orders can be

extended to the setting with partial order preferences; among oth-

ers, we show that the strong core in such housing markets satisfies

the property of respecting improvements.

KEYWORDS
housing market; strong core; partial orders; forced and forbidden
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1 INTRODUCTION
A Shapley-Scarf housing market involves a set of agents, each

endowed with exactly one unit of some indivisible good – a house –
and having preferences over the houses owned by other agents in

the market. Agents are assumed to trade among themselves without

monetary transfers; hence, the outcome in such a market is an

allocation that assigns to each agent exactly one house, possibly its

own. Housing markets have been extensively studied in the fields of

economics and computer science since the seminal work of Shapley

and Scarf in 1974 [41]. Theirmost prominentmotivation comes from

kidney-exchange programs [10, 12, 37], but applications include

various exchange markets
1
ranging from time-sharing markets [43]

and time banks [3] to on-campus housing [1].

Two prominent solution concepts widely investigated in connec-

tion to housing markets are the core and the strong core: the core of
a housing market contains allocations from which no coalition of

agents can deviate so that each of them strictly improves their situ-

ation by trading among themselves, while the strong core (or strict
core) contains allocations that do not admit a coalition of agents

who are able to weakly improve their situation, with at least one

agent strictly improving as a result of the deviation. Shapley and

Scarf described the Top Trading Cycle (TTC) mechanism, attributed

to David Gale, that always finds an allocation in the core [41]. Roth

and Postlewaite showed that if agents’ preferences are strict, then

the TTC mechanism always returns the unique allocation in the

1
For an online exchange market for board games, see https://boardgamegeek.com/

wiki/page/Math_Trades.

strong core [36]. Roth proved that in such a model the TTC is strat-
egyproof, meaning that no agent can improve its outcome under

TTC by misreporting its preferences [35]. Later, Bird [9] showed

that TTC under strict preferences is even group-strategyproof, that
is, no set of agents can improve their situation by misreporting

their preferences in a coordinated fashion.

If agents can be indifferent between houses, then both the core

and the strict core loose many of their appealing properties. Al-

though the TTCmechanism always returns an allocation in the core

even when agents’ preferences over the houses are weak orders (i.e.,
linear orders containing ties) [41], the core in such markets may

contain multiple allocations. As opposed to the core, the strong core

can become empty if agents’ preferences are weak orders. Quint and

Wako characterized the strong core in such housing markets, and

gave a polynomial-time algorithm that either finds an allocation

in the strong core or concludes that the strong core is empty [33].

Several researchers have introduced generalizations of the TTC in

search of a mechanism that maintains the desirable properties of

TTC even under the presence of indifference in the market; this line

of research has yielded algorithms that efficiently find allocations

in the core with additional properties such as Pareto-optimality,

while ensuring also strategyproofness [2, 5, 25, 32, 38].

Despite the significant effort to deal with weakly ordered prefer-

ences in housing markets, there is still limited knowledge about the

case when agents’ preferences can be partial orders, a generalization
of weak orders. Partial orders arise in contexts where agents may

regard two alternatives as incomparable; as opposed to indifference

in weak orders, incomparability is not necessarily transitive. De-

spite the clear motivations for studying partial orders in the context

of kidney exchange, as we explain it below, there is scant literature

on housing markets that allow agents to express their preferences

using partial orders. A recent study [40] addresses questions about

the core in such a model, but we are not aware of any research

concerning the strong core in a setting where preferences can be

partial orders. This paper aims to address this gap in the literature.

Motivation. Partial orders naturally arise in real-life applications

where agents compare alternatives based on multiple unrelated

criteria. An important example of this occurs in kidney exchange,

where patients exchange the incompatible organs donated by their

own donors; such a situation can be modelled as a housing market

where agents are incompatible patient–donor pairs. The prefer-

ences of patients over possible kidney transplants are primarily

based on two factors: the age of the donor and the HLA compatibil-

ity between donor and recipient. In fact, in the UK kidney exchange

program, these two factors are the only ones for which patients can

https://boardgamegeek.com/wiki/page/Math_Trades
https://boardgamegeek.com/wiki/page/Math_Trades


set a threshold of acceptance [12]. The unrelated nature of these

two factors gives rise to a partial ordering: we can only assert that

a certain graft is better than another if it is more advantageous

regarding both of these factors, so a graft from a younger donor

but with a worst HLA-matching is incomparable with a graft from

an older donor but with a better HLA-matching. Such incompara-

bility is not necessarily transitive; hence, patients’ preferences over

possible transplants is only a partial, and not a weak, ordering.

Another source of partial order preferences in kidney exchange

(or, in fact, in many other applications) is the fact that small differ-

ences between two alternatives may not be significant enough to

influence the preferences, but slight differences may add up to a

more substantial contrast. For example, when the age difference

between two possible donors is, say, less than a year, then a recipi-

ent might regard the corresponding grafts as equivalent; however,

such incomparability is not transitive: donors 𝐴 and 𝐵, as well as 𝐵

and𝐶 , might have an age difference less than a year, but𝐴might be

almost two years older than 𝐶 . Such preferences can be described

as so-called semi-orders, a special case of partial orders.
Another application where partial orders arise naturally is a

project aimed at promoting social inclusion of individuals with in-

tellectual disabilities, where participants are intellectually disabled

people who have to be assigned to various job positions, namely, to

computer-numerical-controlled (CNC) machines in a facility [44].
2

The preferences of the participants over the available positions are

determined by multiple criteria, based on their abilities and the

requirements of the job, and thus induce a partial ordering [13].

See [19] for further applications where partial orders appear.

Our contribution and organization.We consider the strong core

of housing markets where agents’ preferences are expressed as

partial orders, which is a setting that has not been studied before.

After providing the preliminaries in Section 2, we explain why

the Quint–Wako characterization fails when agents’ preferences

are partial—and not weak—orders (Section 3.1), and present an

alternative characterization of the strong core in such a setting

(Section 3.2). Even though our characterization does not immedi-

ately yield an algorithm for finding an allocation in the strong core

(if exists), in Section 4 we propose a polynomial-time algorithm for

this problem. Recall that the Quint–Wako algorithm [33] finds an

allocation in the strong core when agents’ preferences are weak or-

ders, or detects that the strong core is empty; hence, our algorithm

can be thought of as a generalization of this result to the setting

with partial order preferences. In fact, our algorithm can handle

forbidden and forced arcs in the graph underlying the market: it can

find an allocation in the strong core that contains all forced arcs but

no forbidden arcs, if such an allocation exists; see Sections 4.1–4.3.

We prove that our algorithm is group-strategyproof (Section 4.4),

and we also examine its ability to enumerate all allocations in the

strong core (Section 4.5).

In Section 5, we investigate certain properties of the strong core.

The main result of Section 5 is that the strong core satisfies the

property of respecting improvement: assuming that the outcome

of a market is an allocation in the strong core, we show that an

2
Strictly speaking, this application does not directly concern housingmarkets; however,

assuming a dynamic setting where certain participants are already assigned to job

positions while new participants may also enter the market, we quickly arrive at a

situation that can be modelled as a housing market.

Table 1: Summary of results on the problem of finding alloca-
tions in the core and strong of housing markets. The phrase
“f/f arcs” refers to problem variants with forced or forbid-
den arcs. “NP-h” stands for NP-hardness. If the problem is
polynomial-time solvable, we write either “in P” or the name
of the corresponding algorithm.

Problem Strict orders Weak orders Partial orders

Core TTC [41] TTC [41] TTC [40, 41]

Core, f/f arcs NP-h [40] NP-h [40] NP-h [40]

Strong core TTC [36] Quint–Waco [33] Thm 4.4
Strong core, f/f arcs TTC [36] in P [40] Thm 4.4

agent can only (weakly) benefit from an increase in the “value” of

its house, i.e., from its house becoming more preferred according

to the remaining agents; this observation is a generalization of the

analogous result for weakly ordered preferences by Biró et al. [11].

Section 6 contains our conclusions.

We defer some of our results and proofs to the appendix; state-

ments with deferred proofs are marked with the symbol ★.

Related work.We have already mentioned in the introduction the

series of papers containing prior work on the core and the strong

core of housing markets, a line of research into which our paper

fits smoothly. The closest works to our study are the papers by

Quint and Waco [33] and by Schlotter et al. [40]. See Table 1 for a

comparison of the results in these works.

Besides the literature on housing markets, our paper also builds

on various ideas that have been explored in the broader context of

matching under preferences.

First, we emphasize that even though we are not aware of any

previous work on housing markets with partial order preferences

with the exception of the work by Schlotter et al. on the core [40],

partial order preferences have been widely studied in the area of

matching under preferences, appearing already in early works on

stable matchings [20, 21, 24, 30, 34].

Second, problems involving edge restrictions have also been

extensively studied for stable matching problems, see e.g. [16–18,

21, 27]. In the context of housing markets, the question whether a

given agent can obtain a certain house (or can avoid ending up with

a certain house) has been addressed in [40]. The analogous problems

have also been studied in the house allocation model where a set

of objects needs to be allocated to a set of agents (without initial

endowments) using serial dictatorship [4, 6, 7, 14, 39].

Third, questions about the property of respecting improvement

have been already studied in the context of housingmarkets [37, 40],

but this line of research has its roots in a study by Balinski and

Sönmez [8] on college admission. The authors investigated how

an improvement in a student’s test scores may have undesirable

effects. Their results inspired further studies of the same flavor

about school choice and other allocation problems [22, 26, 42].

Fourth, the topic of (group-)strategyproofness has a vast litera-

ture in the area of social choice, and has been explored in connection

to the TTC mechanism and its generalizations [2, 9, 25, 28, 32, 35,

38]; more recent results investigate strategyproofness in relation to

different extensions of housing markets [23, 45], and the interesting

topic of obvious strategyproofness in connection to TTC [29, 31].



2 PRELIMINARIES
For a positive integer ℓ ∈ N, we use the notation [ℓ] = {1, 2, . . . , ℓ}.
Directed graphs. We assume the reader is familiar with basic

concepts from graph theory; see Appendix A for a detailed de-

scription of all the definitions we rely on. Given a vertex 𝑣 in a

directed graph 𝐷 = (𝑉 , 𝐸), we let 𝛿 in (𝑣) = {(𝑢, 𝑣) : (𝑢, 𝑣) ∈ 𝐸} and
𝛿out (𝑣) = {(𝑣,𝑢) : (𝑣,𝑢) ∈ 𝐸} denote the set of incoming and outgo-
ing arcs of 𝑣 , respectively. Given a set 𝐹 ⊆ 𝐸 of arcs, we extend this

notation by letting 𝛿 in
𝐹
(𝑣) = 𝛿 in (𝑣) ∩ 𝐹 and 𝛿out

𝐹
(𝑣) = 𝛿out (𝑣) ∩ 𝐹 .

Given a vertex set 𝑉 ′ ⊆ 𝑉 and an arc set 𝐸′ ⊆ 𝐸, we let 𝐷 [𝑉 ′]
denote the subgraph induced by 𝑉 ′

and 𝐷 [𝐸′] for the subgraph
spanned by 𝐸′. A notion of central importance for our purposes

is the following: we call a set 𝑆 ⊆ 𝑉 an absorbing set in 𝐷 , if 𝑆 is

a strongly connected component of 𝐷 that is not left by any arc.

In other words, when contracting 𝑆 , the newly introduced vertex

corresponding to 𝑆 has no outgoing arcs.

Partial orders. A partial ordering over a set 𝑆 is a binary relation ≻
over 𝑆 that is irreflexive (i.e., 𝑠 ⊁ 𝑠 for all 𝑠 ∈ 𝑆), antisymmetric (i.e.,

if 𝑠 ≻ 𝑟 , then 𝑟 ⊁ 𝑠), and transitive (i.e., 𝑠 ≻ 𝑟 and 𝑟 ≻ 𝑞 implies

𝑠 ≻ 𝑞). Given a partial ordering ≻ over 𝑆 , two elements 𝑠 and 𝑟 of 𝑆

are comparable if 𝑠 ≻ 𝑟 or 𝑟 ≻ 𝑠; otherwise, they are incomparable,
denoted by 𝑠 ∼ 𝑟 . We write 𝑠 ⪰ 𝑟 for 𝑟 ⊁ 𝑠 .

Partial orders are a generalization of weak orders. A partial

ordering over 𝑆 is a weak order if and only if the incomparability

relation ∼ is an equivalence relation: it is reflexive, symmetric, and

transitive. Note that the first two conditions always hold, hence the

transitivity of the incomparability relation is the key property for

a partial order to be a weak order. For example, 𝑆 = {𝑠, 𝑟, 𝑞} with
𝑠 ≻ 𝑞 but 𝑠 ∼ 𝑟 and 𝑟 ∼ 𝑞 is not a weak order, because 𝑠 ≁ 𝑞.

Housing markets. A housing market is a pair (𝑁, {≻𝑎 : 𝑎 ∈ 𝑁 })
where 𝑁 is the set of agents and ≻𝑎 is a partial order over 𝑁 for

each 𝑎 ∈ 𝑁 , representing the preferences of agent 𝑎. Note that we

identify each house with its initial owner and thus express agents’

preferences over houses as partial orders over 𝑁 . Recall that we

write 𝑏 ∼𝑎 𝑐 if 𝑏 ⊁𝑎 𝑐 and 𝑐 ⊁𝑎 𝑏 both hold, and 𝑏 ⪰𝑎 𝑐 means that

𝑐 ⊁𝑎 𝑏. We say that 𝑎 prefers 𝑐 to 𝑏 if 𝑐 ≻𝑎 𝑏, and 𝑎 weakly prefers 𝑐
to 𝑏, if 𝑐 ⪰𝑎 𝑏. Agent 𝑏 is acceptable to agent 𝑎, if 𝑏 ⪰𝑎 𝑎, and we

let 𝐴(𝑎) = {𝑏 ∈ 𝑁 : 𝑏 ⪰𝑎 𝑎} denote the acceptability set of 𝑎.
The underlying graph of a housingmarket𝐻 = (𝑁, {≻𝑎 : 𝑎 ∈ 𝑁 })

is defined as the directed graph 𝐷𝐻 = (𝑁, 𝐸) where vertices cor-
respond to agents, and arcs correspond to acceptability, that is,

𝐸 = {(𝑎, 𝑏) : 𝑎 ∈ 𝑁,𝑏 ∈ 𝐴(𝑎)}. Note that (𝑎, 𝑎) ∈ 𝐸 for each 𝑎 ∈ 𝑁 ,

so𝐷𝐻
contains a loop at each agent. We say that an arc (𝑎, 𝑏) ∈ 𝐸 is

dominated by an arc (𝑎′, 𝑏′) if 𝑎 = 𝑎′ and 𝑏′ ≻𝑎 𝑏. An arc (𝑎, 𝑏) ∈ 𝐸

is undominated, if no arc in 𝐸 dominates it.

Given a subset𝑁 ′ ⊆ 𝑁 of agents, the submarket of𝐻 restricted to

the agent set 𝑁 ′
is the housing market 𝐻 |𝑁 ′ = (𝑁 ′, {≻′

𝑎 : 𝑎 ∈ 𝑁 ′})
where ≻′

𝑎 is the restriction of ≻𝑎 to the set 𝑁 ′
of agents.

An allocation in 𝐻 is defined as a set 𝑋 ⊆ 𝐸 of arcs in 𝐷𝐻
such

that each agent has exactly one outgoing and exactly one incoming

arc in 𝑋 , i.e., |𝛿 in
𝑋
(𝑎) | = |𝛿out

𝑋
(𝑎) | = 1 for each 𝑎 ∈ 𝑁 .

Remark 1. Given an arbitrary subset 𝐸′ of arcs in 𝐷𝐻
, it is possi-

ble to check in polynomial time whether𝐻 admits an allocation con-

taining only arcs of 𝐸′, by reducing this problem via a well-known,

simple reduction to finding a perfect matching in a bipartite graph.

This classic reduction constructs an auxiliary graph𝐺 = (𝑁∪𝑁 ′, 𝐹 )
where 𝑁 ′ = {𝑎′ : 𝑎 ∈ 𝑁 } is a copy of the set 𝑁 , and the edge set

is 𝐹 = {𝑎𝑏′ : (𝑎, 𝑏) ∈ 𝐸′}; then allocations in 𝐻 contained in 𝐸′

correspond bijectively to perfect matchings in 𝐺 .

For an allocation𝑋 , or more generally, a set𝑋 of arcs in𝐷𝐻
such

that |𝛿out
𝑋

(𝑎) | ≤ 1 for each agent 𝑎 ∈ 𝑁 , we let 𝑋 (𝑎) denote the
agent 𝑏 if 𝛿out

𝑋
(𝑎) = {(𝑎, 𝑏)}; if 𝛿out

𝑋
(𝑎) = ∅, then we set 𝑋 (𝑎) = ∅.

We extend the agents’ preferences over 𝑁 to preferences over al-

locations in the straightforward way: agent 𝑎 (weakly) prefers an

allocation 𝑋 to an allocation 𝑋 ′
if and only if 𝑎 (weakly) prefers

𝑋 (𝑎) to 𝑋 ′ (𝑎). Extending the notation, we write 𝑋 ≻𝑎 𝑋 ′
for 𝑎

preferring 𝑋 to 𝑋 ′
; we use 𝑋 ⪰𝑎 𝑋 ′

and 𝑋 ∼𝑎 𝑋 ′
analogously.

An allocation 𝑋 is in the strong core of 𝐻 , if there does not exist

a blocking cycle for 𝑋 , i.e., a cycle 𝐶 in 𝐷𝐻
such that all agents 𝑎

on 𝐶 weakly prefer 𝐶 (𝑎) to 𝑋 (𝑎), and at least one agent 𝑎★ on 𝐶

(strictly) prefers 𝐶 (𝑎★) to 𝑋 (𝑎★). We remark that such cycles are

often called weakly blocking cycles. We adopt the notation by Biró

et al. [11] and write SC(𝐻 ) for the strong core of 𝐻 .

An allocation𝑋 is in the core of𝐻 , if there does not exist a strictly
blocking cycle for 𝑋 , i.e., a cycle𝐶 in 𝐷𝐻

such that all agents 𝑎 on𝐶

strictly prefer 𝐶 (𝑎) to 𝑋 (𝑎).

3 CHARACTERIZING THE STRONG CORE
If agents’ preferences are strict orders, then the strong core always

contains a unique allocation [36], which can be found in linear time

using the Top Trading Cycle algorithm, attributed to David Gale

in the seminal paper by Shapley and Scarf [41]. If preferences are

weak orders, then the strong core can be empty, but Quint and

Wako provided a characterization of allocations in the strong core

in such a setting, and showed how to use this characterization to

find an allocation in the strong core if there exists one [33].

In Section 3.1 we show that the characterization of the strong

core by Quint and Wako fails to hold in the setting when agents’

preferences can be partial orders. In Section 3.2 we generalize the re-

sults of Quint andWako to the setting with partial order preferences

by giving a characterization of the strong core.

3.1 The Quint–Wako Characterization Fails for
Partial Orders

For housing markets where agents’ preferences are weak orders,

Quint and Wako proved the following characterization of alloca-

tions in the strong core [33]. Recall that an absorbing set is a strongly

connected component from which no arc may leave.

Theorem 3.1 (Quint–Wako characterization [33]). Suppose
that 𝐻 = (𝑁, {≻𝑎 : 𝑎 ∈ 𝑁 }) is a housing market where each ≻𝑎 is a
weak order. Let 𝑈 be the set of undominated arcs in 𝐷𝐻 , and 𝑆 an
absorbing set in 𝐷𝐻 [𝑈 ]. An allocation 𝑋 for 𝐻 is in the strong core
of 𝐻 if and only if it can be partitioned into sets 𝑋𝑆 and 𝑋𝑁 \𝑆 where

(a) 𝑋𝑆 = 𝑋 ∩ (𝑆 × 𝑆) is an allocation in 𝐻 |𝑆 contained in𝑈 , and
(b) 𝑋𝑁 \𝑆 = 𝑋 ∩ (𝑁 \ 𝑆) × (𝑁 \ 𝑆) is an allocation in the strong

core of 𝐻 | (𝑁 \𝑆 ) .

It is not hard to show that conditions (a) and (b) stated in Theo-

rem 3.1 are necessary for a given allocation to be in the strong core

also in the case when agents’ preferences are partial orders (see



Appendix B.1 for details). Example 3.2 shows that conditions (a)

and (b) of Theorem 3.1 are not sufficient to ensure that an allocation

belongs to the strong core. Thus, the characterization established

by Theorem 3.1 for weakly ordered preferences fails to hold in the

case when agents’ preferences are partial orders.

Example 3.2. Consider the following market 𝐻1
over agent set

𝑁 = {𝑎, 𝑏, 𝑐, 𝑑}; see its underlying graph in Figure 1. Let the accept-

ability sets be defined as 𝐴(𝑎) = 𝐴(𝑏) = 𝑁 , 𝐴(𝑐) = {𝑎, 𝑏, 𝑐}, and
𝐴(𝑑) = {𝑐, 𝑑}. For each agent 𝑥 and 𝑦 ∈ 𝐴(𝑥) \ {𝑥}, we let 𝑦 ≻𝑥 𝑥 ;

additionally, 𝑐 ≻𝑎 𝑑 and 𝑐 ≻𝑏 𝑑 .

𝑎

𝑏

𝑐 𝑑
| |

| | |

|

𝑆

Figure 1: The underlying graph of housing market 𝐻1 de-
fined in Example 3.2. Henceforth, loops are omitted, and
undominated arcs are shown in blue, the strongly connected
components they form are shown as dashed polygons. Single
and double line markings | and | | convey domination: an arc
marked with | | dominates an arc marked with | and leaving
the same agent; e.g., (𝑎, 𝑐) dominates (𝑎, 𝑑) but not (𝑎, 𝑏), and
neither does (𝑎, 𝑏) dominate (𝑎, 𝑑).

Note that 𝑈 = {(𝑎, 𝑏), (𝑎, 𝑐), (𝑏, 𝑐), (𝑏, 𝑎), (𝑐, 𝑎), (𝑐, 𝑏), (𝑑, 𝑐)} is

the set of undominated arcs, and the unique absorbing set in𝐷𝐻 1 [𝑈 ]
is 𝑆 = {𝑎, 𝑏, 𝑐}. The submarket 𝐻1

|𝑆 admits two allocations in 𝑈 :

𝑋1 = {(𝑎, 𝑏), (𝑏, 𝑐), (𝑐, 𝑎)} and 𝑋2 = {(𝑎, 𝑐), (𝑐, 𝑏), (𝑏, 𝑎)}. The only
allocation for the submarket 𝐻1

| (𝑁 \𝑆 ) = 𝐻 | {𝑑 } is 𝑋𝑑 = {(𝑑, 𝑑)}.
Although both 𝑋1 and 𝑋2 are in the strong core of 𝐻1

|𝑆 , and 𝑋𝑑
is in the strong core of 𝐻 |𝑁 \𝑆 , neither 𝑋1 ∪ 𝑋𝑑 nor 𝑋2 ∪ 𝑋𝑑 is in

the strong core of 𝐻1
: {(𝑎, 𝑑), (𝑑, 𝑐), (𝑐, 𝑎)} is a blocking cycle for

𝑋1 ∪ 𝑋𝑑 , and similarly, {(𝑏, 𝑑), (𝑑, 𝑐), (𝑐, 𝑏)} is a blocking cycle for
𝑋2 ∪ 𝑋𝑑 . This shows that Theorem 3.1 does not extend to partial

order preferences.

3.2 A Characterization Through Peak Sets
Given an allocation 𝑋 in 𝐻 , let us define the following arc sets:

𝐸 [∼𝑋 ] = {(𝑎, 𝑏) ∈ 𝐸 : 𝑋 (𝑎) ∼𝑎 𝑏},
𝐸 [≻𝑋 ] = {(𝑎, 𝑏) ∈ 𝐸 : 𝑏 ≻𝑎 𝑋 (𝑎)}, and

𝐸 [⪰𝑋 ] = 𝐸 [∼𝑋 ] ∪ 𝐸 [≻𝑋 ] .

Let 𝐷 [∼𝑋 ] = (𝑁, 𝐸 [∼𝑋 ] ), and let the digraphs 𝐷 [≻𝑋 ] and 𝐷 [⪰𝑋 ] be
defined analogously. The following definition captures the central

notion we need for our characterization of the strong core.

Definition 3.3. Given an allocation 𝑋 in a housing market 𝐻 , a

peak set of 𝑋 is an absorbing set in 𝐷 [⪰𝑋 ] .

In our characterization of the strong core, peak sets will play the

role that absorbing sets in the subgraph of undominated arcs have

in Theorem 3.1. The following lemma states their key property.

Lemma 3.4 (★). Suppose that 𝑋 is an allocation in the strong core
of 𝐻 . If 𝑆 a peak set of 𝑋 , then 𝑋 ∩ (𝑆 × 𝑆) is an allocation in 𝐻 |𝑆
consisting only of undominated arcs. Moreover, each arc leaving 𝑆 is
dominated by an arc of 𝑋 .

Based on Lemma 3.4, we can now characterize the strong core.

Theorem 3.5. Suppose that 𝐻 = (𝑁, {≻𝑎 : 𝑎 ∈ 𝑁 }) is a housing
market where each ≻𝑎 is a partial order, and let 𝑈 be the set of
undominated arcs in 𝐷𝐻 . Then allocation 𝑋 for 𝐻 is in the strong
core of 𝐻 if and only if it can be partitioned into two sets 𝑋1 and 𝑋2

such that there exists a set 𝑆 ⊆ 𝑁 of agents for which

(a) 𝑋1 is an allocation in 𝐻 |𝑆 contained in𝑈 ,
(b) 𝑋2 is an allocation in the strong core of 𝐻 | (𝑁 \𝑆 ) , and
(c) each arc of 𝐷𝐻 leaving 𝑆 is dominated by an arc of 𝑋1.

Moreover, 𝑆 can be chosen as a peak set for 𝑋 .

Proof. First suppose that 𝑋 is in the strong core of 𝐻 . Define 𝑆

as a peak set of 𝑋 , and set 𝑋1 := 𝑋 ∩ (𝑆 × 𝑆) and 𝑋2 = 𝑋 \ 𝑋1. By

Lemma 3.4 we know that conditions (a) and (c) are fulfilled. Since𝑋1

is an allocation on 𝐻 |𝑆 , we necessarily have that 𝑋2 = 𝑋 \ 𝑋1 is

an allocation in 𝐻 | (𝑁 \𝑆 ) . To see that 𝑋2 is in the strong core of

this submarket, it suffices to note that any blocking cycle for 𝑋2

in 𝐻 | (𝑁 \𝑆 ) would also block 𝑋 in 𝐻 .

Second, suppose that some allocation 𝑋 can be partitioned into

𝑋1 and 𝑋2 satisfying conditions (a)–(c) for some set 𝑆 of agents;

we show that 𝑋 is in the strong core of 𝐻 . Assume for the sake of

contradiction that there is a blocking cycle 𝐶 for 𝑋 . First, since 𝑋1

is an allocation for 𝐻 |𝑆 and 𝑋1 ⊆ 𝑈 , we know that 𝐶 must involve

at least one agent not in 𝑆 . Second, since 𝑋2 is an allocation in the

strong core of 𝐻 | (𝑁 \𝑆 ) , we know that 𝐶 must also contain at least

one agent not in𝑁 \𝑆 . Thus,𝐶 involves agents from both 𝑆 and𝑁 \𝑆 ,
and consequently has to contain at least one arc leaving 𝑆 . However,

all arcs leaving 𝑆 are dominated by an arc of 𝑋1, which contradicts

the assumption that𝐶 blocks 𝑋 . This proves that no blocking cycle

for 𝑋 exists, so 𝑋 is indeed in the strong core of 𝐻 . □

4 FINDING AN ALLOCATION IN THE STRONG
CORE

In this section, we show how Theorem 3.5 can be used to construct

an algorithm that either finds an allocation in the strong core of

a housing market where agents’ preferences are partial orders, or

concludes that such an allocation does not exist.

Before explaining our ideas, let us briefly describe the algorithm

by Quint and Wako [33] that solves this problem in the setting

where agents’ preferences are weak orders, based on Theorem 3.1.

Given a housing market𝐻 = (𝑁, {≻𝑎 : 𝑎 ∈ 𝑁 }), the Quint–Wako al-

gorithm first computes an absorbing set 𝑆 in the subgraph 𝐷𝐻 [𝑈 ]
of undominated arcs in the underlying digraph. Then it checks

whether 𝐻 |𝑆 admits an allocation consisting only of undominated

arcs, and if so, stores such an allocation 𝑋𝑆 and proceeds with the

submarket𝐻 | (𝑁 \𝑆 ) of the remaining agents recursively. If the recur-

sive call returns an allocation 𝑋𝑁 \𝑆 in the strong core of 𝐻 | (𝑁 \𝑆 ) ,
then the algorithm outputs 𝑋𝑆 ∪𝑋𝑁 \𝑆 ; otherwise it concludes that
the strong core of 𝐻 is empty.

Unfortunately, the characterization of the strong core given in

Theorem 3.5 does not readily offer an algorithm for finding an



allocation in the strong core of a given housing market, or to decide

whether such an allocation exists. The reason for this is that it

is not immediately clear how to find a set 𝑆 of agents for which

conditions (a)–(c) of Theorem 3.5 hold for the desired allocation 𝑋

(or, more precisely, for the arcs sets𝑋1 and𝑋2 that together yield𝑋 ).

By Theorem 3.5 we know that the set 𝑆 can be chosen to be a peak

set of the desired allocation; however, this insight does not seem to

offer a direct way to find such a set without knowing 𝑋 itself.

In this section, we propose a method that resolves this issue and

finds an allocation in the strong core of the given housing market, if

such an allocation exists. In fact, we are going to solve the following

more general computational problem:

Strong Core with Forbidden Arcs (SCFA):

Input: A housing market𝐻 with partial orders and a set 𝐹 of

forbidden arcs in the underlying directed graph 𝐷𝐻
.

Task: Decide if there exists an allocation 𝑋 in the strong

core of 𝐻 such that 𝑋 ∩ 𝐹 = ∅, and if so, find such

an allocation.

In Section 4.1 we describe a polynomial-time algorithm to solve

the Strong Core with Forbidden Arcs problem, and we sketch

its proof of correctness in Section 4.2. We extend our algorithm

to a setting with forced arcs in Section 4.3, and explain its group-

strategyproofness in Section 4.4. In Section 4.5 we briefly compare

it with the Quint–Wako algorithm [33].

4.1 Algorithm for SCFA
We now present Algorithm SCFA to solve our instance (𝐻, 𝐹 ) of
SCFA. An allocation in SC(𝐻 ) that is disjoint from 𝐹 is a solution.
Description of Algorithm SCFA. The main idea of our algorithm

is to find a set 𝑇★
that can serve as the peak set of our desired

allocation in the strong core, find an appropriate allocation on𝐻 |𝑇★ ,

and solve the remainder recursively after deleting all agents in 𝑇★
.

The algorithm starts by dealing with the case when the market

only contains a single agent. Next, it computes the family S of

strongly connected components in the digraph 𝐷𝐻 [𝑈 ] = (𝑁,𝑈 )
of undominated arcs and, using the method of Remark 1, checks

for each component 𝑆 ∈ S whether there is an allocation for the

submarket 𝐻 |𝑆 consisting only of undominated non-forbidden arcs.

Those sets that pass this test are collected in a family T ⊆ S.
Given this collection T ⊆ S, an iterative process is started. At

each step in this iteration, Algorithm SCFA checks whether each

submarket 𝐻 |𝑆 for 𝑆 ∈ T admits an allocation that contains only

arcs that (i) are undominated and not forbidden, and (ii) dominate

all arcs leaving 𝑇★ =
⋃
𝑇 ∈T 𝑇 ; the set of such arcs in denoted

by 𝐸𝑆,T on line 13. More formally, let us say that an allocation 𝑋

in 𝐻 |𝑆 is 𝑇★-valid for some 𝑇★ ⊆ 𝑁 , if

(i) 𝑋 ⊆ 𝑈 \ 𝐹 and

(ii) 𝑋 (𝑎) ≻𝑎 𝑏′ for each (𝑎, 𝑏′) ∈ 𝐸 where 𝑎 ∈ 𝑇★
and 𝑏′ ∉ 𝑇★

.

Thus, an allocation 𝑋 in 𝐻 |𝑆 is 𝑇★
-valid if and only if

𝑋 ⊆
{
(𝑎, 𝑏) ∈ 𝑈 \ 𝐹 : 𝑏 ≻𝑎 𝑏′ for each (𝑎, 𝑏′) ∈ 𝐸,𝑏′ ∉ 𝑇★

}
.

If Algorithm SCFA finds that all submarkets 𝐻 |𝑆 , 𝑆 ∈ T , admit a

𝑇★ =
⋃
𝑇 ∈T 𝑇 -valid allocation, then it stores such an allocation for

each 𝑆 ∈ T , deletes the agents in𝑇★
, and proceeds with the remain-

ing market recursively—unless the remaining market is empty, in

Algorithm SCFA Solving SCFA.

Input: An instance (𝐻, 𝐹 ) of SCFA where 𝐷𝐻 = (𝑁, 𝐸).
Output: An allocation in the strong core of𝐻 disjoint from 𝐹 , or ∅

if no such allocation exists.

1: if |𝑁 | = 1 then
2: if (𝑎, 𝑎) ∈ 𝐸 \ 𝐹 where 𝑁 = {𝑎} then return {(𝑎, 𝑎)}.
3: else return ∅.
4: Let𝑈 denote the set of undominated arcs in 𝐷𝐻

.

5: Let S be the set of strongly connected components in (𝑁,𝑈 ).
6: Let T = ∅.
7: for all 𝑆 ∈ S do
8: Let 𝐸𝑆 = {(𝑎, 𝑏) ∈ 𝑈 \ 𝐹 : 𝑎, 𝑏 ∈ 𝑆}.
9: if ∃ an allocation for 𝐻 |𝑆 in 𝐸𝑆 then Put 𝑆 into T .

10: while |T | > 0 do
11: Let R = ∅ and 𝑇★ =

⋃
𝑆∈T 𝑆 .

12: for all 𝑆 ∈ T do
13: Let 𝐸𝑆,T = {(𝑎, 𝑏) ∈ 𝐸𝑆 : 𝑏 ≻𝑎𝑏′ ∀(𝑎, 𝑏′) ∈ 𝐸,𝑏′ ∉ 𝑇★}.
14: if ∃ an allocation for 𝐻 |𝑆 in 𝐸𝑆,T then
15: Let 𝑋𝑆 be such an allocation.

16: else Add 𝑆 as an element to R.
17: if R = ∅ then
18: if 𝑁 = 𝑇★ then return

⋃
𝑆∈T 𝑋𝑆 .

19: Let 𝑁 ′ = 𝑁 \𝑇★
and 𝐹 ′ = 𝐹 ∩ (𝑁 ′ × 𝑁 ′

).

20: Call 𝑋 ′ = SCFA(𝐻 |𝑁 ′ , 𝐹 ′).
21: if 𝑋 ′ = ∅ then return ∅
22: else return

⋃
𝑆∈T 𝑋𝑆 ∪ 𝑋 ′

.

23: else Delete each 𝑆 ∈ R from T .

24: return ∅.

which case no recursion is necessary. If, on the contrary, 𝐻 |𝑆 does

not admit a 𝑇★
-valid allocation for certain sets 𝑆 ∈ T , then each

such set 𝑆 is removed from the collection T .

This iterative process stops either if all sets in T pass the test

of admitting a

⋃
𝑇 ∈T 𝑇 -valid allocation, or if T becomes empty, in

which case the algorithm concludes that there is no solution.

Example 4.1. Consider again the housing market 𝐻1
defined in

Example 3.2 and depicted in Figure 1, to see how Algorithm SCFA

runs with 𝐻1
as its input. For simplicity, we define the set of for-

bidden arcs as empty. The set of strongly connected components

in the subgraph spanned by all undominated arcs is S = {𝑆1, 𝑆2}
where 𝑆1 = {𝑎, 𝑏, 𝑐} and 𝑆2 = {𝑑}. Algorithm SCFA computes the

arc sets 𝐸𝑆1 = {(𝑎, 𝑏), (𝑏, 𝑐), (𝑐, 𝑎), (𝑎, 𝑐), (𝑐, 𝑏), (𝑏, 𝑎)} and 𝐸𝑆2 = ∅,
and finds that 𝐻1

|𝑆1 admits an allocation in 𝐸𝑆1 , e.g., the allocation

{(𝑎, 𝑏), (𝑏, 𝑐), (𝑐, 𝑎)}, but no allocation for 𝐻1

|𝑆2 (containing only

the vertex 𝑑) can be constructed from the empty set. Thus, Algo-

rithm SCFA initializes the family T by setting T = {𝑆1}.
Starting the iteration on lines 10–23, the algorithm first computes

the arc set 𝐸𝑆1,T , obtaining 𝐸𝑆1,T = {(𝑎, 𝑐), (𝑐, 𝑎), (𝑏, 𝑐), (𝑐, 𝑏)}; note
that neither (𝑎, 𝑏) nor (𝑏, 𝑎) is contained in 𝐸𝑆1,T , since they do

not dominate the arc (𝑎, 𝑑) or (𝑏, 𝑑), respectively (observe that

both (𝑎, 𝑑) and (𝑏, 𝑑) leave the set of vertices contained in T , that

is, 𝑇★ = 𝑆1 = {𝑎, 𝑏, 𝑐}). The algorithm next observes that 𝐸𝑆1,T
does not contain an allocation for 𝐻 |𝑆1 ; thus, it removes 𝑆1 from T ,



leaving T empty. Hence, the iteration stops, and Algorithm SCFA

outputs ∅ on line 24, concluding that the strong core is empty.

𝑎

𝑏

𝑐

𝑑1

𝑑2
| |

| |

|

|

𝑆1 𝑆2

Figure 2: The housing market 𝐻2 defined in Example 4.2.

Example 4.2. Consider the following market 𝐻2
over agent set

𝑁 = {𝑎, 𝑏, 𝑐, 𝑑1, 𝑑2}; see its underlying graph (without loops) on

Figure 2. Let the acceptability sets be defined as 𝐴(𝑎) = 𝑁 \ {𝑑2},
𝐴(𝑏) = 𝑁 \ {𝑑1}, 𝐴(𝑐) = {𝑎, 𝑏, 𝑐}, 𝐴(𝑑1) = {𝑐, 𝑑1, 𝑑2}, and 𝐴(𝑑2) =
{𝑑1, 𝑑2}. For each agent 𝑥 ∈ 𝑁 and 𝑦 ∈ 𝐴(𝑥) \ {𝑥}, we let 𝑦 ≻𝑥 𝑥 ;

additionally, 𝑐 ≻𝑎 𝑑1 and 𝑐 ≻𝑏 𝑑2.

Consider how Algorithm SCFA runs with 𝐻2
as its input, with-

out forbidden arcs. All arcs are undominated except for (𝑎, 𝑑1)
and (𝑏, 𝑑2). The strongly connected components in the subgraph

spanned by all undominated arcs are 𝑆1 = {𝑎, 𝑏, 𝑐} and 𝑆2 = {𝑑1, 𝑑2}.
Algorithm SCFA computes the arc sets 𝐸𝑆1 = {(𝑎, 𝑏), (𝑏, 𝑐), (𝑐, 𝑎),
(𝑎, 𝑐), (𝑐, 𝑏), (𝑏, 𝑎)} and 𝐸𝑆2 = {(𝑑1, 𝑑2), (𝑑2, 𝑑1)}, and finds that

both 𝐻2

|𝑆1 and 𝐻2

|𝑆2 admit an allocation in 𝐸𝑆1 and in 𝐸𝑆2 , respec-

tively. Thus, Algorithm SCFA initializes T by setting T = {𝑆1, 𝑆2}.
Starting the iteration on lines 10–23, the algorithm first com-

putes the arc sets 𝐸𝑆,T for both 𝑆 ∈ T , obtaining 𝐸𝑆1,T = 𝐸𝑆1
and 𝐸𝑆2,T = 𝐸𝑆2 and storing allocations 𝑋𝑆1 and 𝑋𝑆2 for 𝐻 |𝑆1 and
for 𝐻 |𝑆2 , respectively. Suppose that the algorithm finds 𝑋𝑆1 =

{(𝑎, 𝑏), (𝑏, 𝑐), (𝑐, 𝑎)} and 𝑋𝑆2 = {(𝑑1, 𝑑2), (𝑑2, 𝑑1)}; the case when
𝑋𝑆1 = {(𝑎, 𝑐), (𝑐, 𝑏), (𝑏, 𝑎)} is similar. The algorithm finds on line 18

that 𝑁 = 𝑇★ = 𝑆1 ∪ 𝑆2, and hence returns the allocation 𝑋𝑆1 ∪ 𝑋𝑆2 .

4.2 Correctness of Algorithm SCFA
The correctness of Algorithm SCFA relies on the following key fact.

Lemma 4.3. If 𝑋 is an allocation in the strong core of 𝐻 disjoint
from 𝐹 , and 𝑃 is a peak set of 𝑋 , then 𝑃 ⊆ ⋃

𝑇 ∈T 𝑇 always holds on
lines 10–23 during the execution of Algorithm SCFA on (𝐻, 𝐹 ).

Proof. First, recall that if 𝑃 is a peak set for 𝑋 , then no arc

of 𝐸 [⪰𝑋 ] leaves 𝑃 by definition. This implies that no undominated

arc leaves 𝑃 , and therefore, each strongly connected component

of 𝐷𝐻 [𝑈 ] is either entirely contained in 𝑃 , or is disjoint from it.

Hence, if S denotes the family of strongly connected components

in 𝐷𝐻 [𝑈 ], then 𝑃 =
⋃

𝑆∈S𝑃
𝑆 for some S𝑃 ⊆ S.

By Lemma 3.4, the arc (𝑝,𝑋 (𝑝)) is undominated for each 𝑝 ∈ 𝑃 .

Since no undominated arc leaves 𝑃 , this implies that 𝑋 contains a

collection of pairwise vertex-disjoint cycles in𝑈 covering all agents

in 𝑃 . By the definition of strongly connected components, each

such cycle must be entirely contained in some strongly connected

component of 𝐷𝐻 [𝑈 ]. Summarizing this, we obtain that for each

𝑆 ∈ S𝑃 the arc set 𝑋𝑆 = {(𝑠, 𝑋 (𝑠)) : 𝑠 ∈ 𝑆} is an allocation in 𝐻 |𝑆
that is contained in 𝑈 and disjoint from 𝐹 . Consequently, each

set 𝑆 ∈ S𝑃 is added to T on line 9 of Algorithm SCFA. Hence, at

the beginning of the iteration on lines 10–23, 𝑃 ⊆ ⋃
𝑇 ∈T 𝑇 holds.

We prove that this remains true throughout the run of the al-

gorithm. For this, it suffices to see that whenever some set 𝑆 ∈ S
is removed from 𝑇 , then 𝑆 ∉ S𝑃 . So assume that 𝑆 ∈ S𝑃 is re-

moved from T on line 23, and before the removal, 𝑃 ⊆ 𝑇★
for

𝑇★ =
⋃
𝑇 ∈T 𝑇 . Then 𝐻 |𝑆 does not admit an allocation in 𝐸𝑆,T , that

is, 𝐻 |𝑆 does not admit a 𝑇★
-valid allocation.

Recall now that allocation𝑋𝑆 for𝐻 |𝑆 is 𝑃-valid due to Lemma 3.4.

However, since 𝑃 ⊆ 𝑇★
, all arcs leaving 𝑇★

necessarily leave 𝑃 as

well, and hence must be dominated by an arc of 𝑋𝑆 . It follows

that 𝑋𝑆 is 𝑇★
-valid. This contradicts our assumption that 𝐻 |𝑆 does

not admit a 𝑇★
-valid allocation, proving that no set in S𝑃 is ever

removed by the algorithm from T . □

The correctness of Algorithm SCFA is stated below.

Theorem 4.4 (★). Algorithm SCFA correctly solves each instance
of SCFA, and runs in 𝑂 ( |𝑁 | · |𝐸 |1+𝑜 (1) ) time where (𝑁, 𝐸) is the
underlying graph of the housing market 𝐻 of the instance.

Proof sketch. The proof applies induction on the number of

agents; the correctness is clear for |𝑁 | = 1.

We need to show that whenever Algorithm SCFA concludes that

the instance does not admit a solution, then this indeed holds. First,

if a solution exists, then the algorithm never reaches line 24 as the

peak set of the solution remains in

⋃
𝑇 ∈T 𝑇 by Lemma 4.3. Second,

Algorithm SCFA cannot return ∅ on line 21 either if a solution

exists, due to the induction hypothesis.

For the other direction, we need to prove that whenever the algo-

rithm returns a set 𝑋 of arcs, then 𝑋 ∈ SC(𝐻 ). This can be shown

using Theorem 3.5 in combination with our induction hypothesis.

By |T | ≤ |𝑁 |, lines 10–23 are performed at most |𝑁 | times, since

Algorithm SCFA either stops or decreases |T | during each iteration.

The bottleneck in each iteration is to compute a perfect matching

in a bipartite graph, which takes 𝑂 ( |𝐸 |1+𝑜 (1) ) time [15]. For the

details of the proof, see Appendix C.1.

Corollary 4.5. SCFA with 𝑛 agents and𝑚 arcs in the underlying
graph can be solved in 𝑂 (𝑛 ·𝑚1+𝑜 (1) ) time.

4.3 Extension to Forbidden and Forced Arcs
We remark that Algorithm SCFA can also be used to solve the

extension of SCFA with forced arcs.

Strong Core with Forbidden and Forced Arcs (SCFFA):

Input: A housing market 𝐻 with partial orders, a set 𝐹+

of forced arcs and a set 𝐹− of forbidden arcs in the

underlying directed graph 𝐷𝐻
.

Task: Decide if there exists an allocation 𝑋 in the strong

core of 𝐻 such that 𝐹+ ⊆ 𝑋 and 𝑋 ∩ 𝐹− = ∅, and if

so, find such an allocation.

To solve SCFFA in a housing market 𝐻 , it is sufficient to solve

the variant that only involves forbidden arcs. Indeed, since an

allocation contains exactly one outgoing arc for each agent, we

know that an allocation in 𝐻 contains an arc (𝑎, 𝑏) of the un-

derlying graph 𝐷𝐻
if and only if it does not contain any of the



arcs 𝛿out (𝑎) \ {(𝑎, 𝑏)} in 𝐷𝐻
. Therefore, we can reduce an instance

of (𝐻, 𝐹+, 𝐹−) of SCFFA to an equivalent instance (𝐻, 𝐹 ) of SCFA
where 𝐹 = 𝐹− ∪ ⋃

(𝑎,𝑏 ) ∈𝐹 +

(
𝛿out
𝐴

(𝑎) \ {(𝑎, 𝑏)}
)
. Thus, we obtain

the following consequence of Corollary 4.5.

Corollary 4.6. SCFFA with𝑛 agents and𝑚 arcs in the underlying
graph can be solved in 𝑂 (𝑛 ·𝑚1+𝑜 (1) ) time.

4.4 Strategyproofness
A desirable property of Algorithm SCFA besides its efficiency is that

it is group-strategyproof, i.e., it is not possible for a coalition of agents
to improve their situation via misrepresenting their preferences.

To formalize this definition, let 𝑓SCFA (𝐻, 𝐹 ) denote the set of al-
locations that can be obtained via Algorithm SCFA on input (𝐻, 𝐹 );
note that there can be several such allocations due to line 15, where

the algorithm may pick an arbitrary one among a set of possi-

ble allocations for a given submarket 𝐻 |𝑆 . Given a housing mar-

ket 𝐻 = (𝑁, {≻𝑎 : 𝑎 ∈ 𝑁 }) and a coalition 𝐶 ⊆ 𝑁 of agents, a 𝐶-
deviation from 𝐻 is a housing market 𝐻 ′ = (𝑁, {≻′

𝑎 : 𝑎 ∈ 𝑁 })
where ≻𝑎=≻′

𝑎 for all 𝑎 ∈ 𝑁 \𝐶 .
Definition 4.7. Let 𝑓 be a mechanism that assigns to each in-

stance (𝐻, 𝐹 ) of the Strong Core with Forbidden Arcs problem

a set 𝑓 (𝐻, 𝐹 ) ⊆ SC(𝐻 ) of solutions for (𝐻, 𝐹 ). We say that 𝑓 is

group-strategyproof (with respect to SCFA) if there does not exist an
instance (𝐻, 𝐹 ) with 𝐻 = (𝑁, {≻𝑎 : 𝑎 ∈ 𝑁 }), a coalition 𝐶 ⊆ 𝑁 and

a𝐶-deviation𝐻 ′
from𝐻 such that there are allocations𝑋 ∈ 𝑓 (𝐻, 𝐹 )

and 𝑋 ′ ∈ 𝑓 (𝐻 ′, 𝐹 ) for which 𝑋 ′ (𝑐) ≻𝑐 𝑋 (𝑐) for each 𝑐 ∈ 𝐶 .

We remark that Definition 4.7 takes into account models devia-

tions where agents may only misreport their preferences but have

no possibility to change the set of forbidden arcs.

Theorem 4.8 (★). Algorithm SCFA is group-strategyproof.

Proof sketch. The proof relies on the observation that, roughly

speaking, whenever an agent 𝑝 is removed from the market during

Algorithm SCFA, the allocation fixed for 𝑝 is the best 𝑝 can hope

for, as long as no agent removed earlier than (or together with) 𝑝 is

contained in the deviating coalition 𝐶 . Using this claim for the first

agent 𝑐 of𝐶 removed from the market, one can show that there is at

least one agent removed before 𝑐 for which the allocation obtained

as a result of the deviation is disadvantageous; this gives rise to a

blocking cycle, leading to a contradiction that proves the result. See

Appendix C.2 for the details.

4.5 Finding All Allocations in the Strong Core
It is known that the Quint–Wako algorithm can find all allocations

in the strong core of a housing market𝐻 = (𝑁, {≻𝑎}𝑎∈𝑁 ) in which

agents’ preferences are described by weak orders. More precisely,

if 𝑆 is an absorbing set of the graph 𝐷𝐻
underlying 𝐻 , then by

choosing an allocation (consisting of undominated arcs) for the

submarket 𝐻 |𝑆 appropriately, and using also appropriate choices

within the recursive call on 𝐻 | (𝑁 \𝑆 ) , the Quint–Wako algorithm

can return any fixed allocation 𝑋 in the strong core of 𝐻 .

Interestingly, this also holds for Algorithm SCFA if agents’ pref-

erences are weak orders; hence, Algorithm SCFA is as powerful as

the Quint–Waco algorithm when used for enumerating the strong

core. By contrast, if agents’ preferences are partial orders, then the

strong core may contain allocations that can never be returned by

Algorithm SCFA. For details and examples, see Appendix C.3

5 PROPERTIES OF THE STRONG CORE
In previous sections, we already mentioned that the strong core

may be empty when we assume that agents’ preferences are partial

orders. If the strong core is not empty, then we are interested in

knowing some of its most relevant characteristics.

Incomparability of strong core allocations.We start with the

remarkable fact that all agents find any two allocations 𝑋 and 𝑌 in

the strong core incomparable. This is stated in Lemma 5.1 whose

proof relies on structural observations about the arc set obtained,

roughly speaking, by letting each agent 𝑎 choose between (𝑎,𝑋 (𝑎))
and (𝑎,𝑌 (𝑎)) according to its preferences (see Appendix D.1).

Lemma 5.1 (★). Given a housing market 𝐻 = (𝑁, {≻𝑎 : 𝑎 ∈ 𝑁 })
with partial order preferences, and allocations 𝑋 and 𝑌 in the strong
core of 𝐻 , we have 𝑋 ∼𝑎 𝑌 for each agent 𝑎 ∈ 𝑁 .

An important consequence of Lemma 5.1 is that even though

there might be allocations in the strong core that can never be found

by Algorithm SCFA, this is not really relevant from the viewpoint

of the agents, as all agents find any two allocations in the strong

core incomparable. Lemma 5.1 also plays a crucial role in proving

that the strong core respects improvement.

The effect of improvements on the strong core.We next aim

to examine the effect of a change in the market when the house

of some agent 𝑝 improves—is such a change necessarily (weakly)

advantageous for 𝑝 in terms of the strong core? Such questions are

essential to understand the incentives of agents to improve their

endowments. In the context of a kidney exchange program, does

bringing a “better” (e.g., younger) donor always benefits the patient,

assuming that the program offers a strong core allocation?

To formalize the concept of improvement, consider two housing

markets 𝐻 = (𝑁, {≻𝑎 : 𝑎 ∈ 𝑁 }) and 𝐻 ′ = (𝑁, {≻′
𝑎 : 𝑎 ∈ 𝑁 }) over

the same agent set 𝑁 . For two agents 𝑝, 𝑞 ∈ 𝑁 , we say that 𝐻 ′

is a (𝑝, 𝑞)-improvement of 𝐻 if 𝐻 ′
is obtained from 𝐻 by shifting

the position of 𝑝 “upward” in the preferences of agent 𝑞; see also

Example 5.2. Formally, we require that

(1) for each 𝑎 ∈ 𝑁 \ {𝑞}, ≻𝑎=≻′
𝑎 , that is, we only allow changes

in the preferences of agent 𝑞;

(2) for each 𝑎 ∈ 𝑁 \ {𝑝}, 𝑝 ≻𝑞 𝑎 implies 𝑝 ≻′
𝑞 𝑎, and 𝑝 ⪰𝑞 𝑎

implies 𝑝 ⪰′
𝑞 𝑎, that is, agent 𝑝 may only become more

preferred for agent 𝑞 in ≻′
, and not less preferred;

(3) for each 𝑎, 𝑏 ∈ 𝑁 \{𝑝}, we have 𝑎 ≻𝑞 𝑏 if and only if 𝑎 ≻′
𝑞 𝑏,

that is, the preferences for agent 𝑞 remain unchanged when

comparing two agents not involving 𝑝 .

Now, a 𝑝-improvement of 𝐻 is the result of a sequence of (𝑝, 𝑞𝑖 )-
improvements from 𝐻 for some series of agents 𝑞1, . . . , 𝑞𝑘 ∈ 𝑁 .

Example 5.2. Consider the following market 𝐻3
over agent set

𝑁 = {𝑎, 𝑏, 𝑐, 𝑑}; see Figure 3a. The acceptability sets are 𝐴(𝑎) =

𝐴(𝑏) = {𝑎, 𝑏}, 𝐴(𝑐) = {𝑎, 𝑐, 𝑑}, and 𝐴(𝑑) = {𝑐, 𝑑}. For each agent 𝑥

and 𝑦 ∈ 𝐴(𝑥) \ {𝑥}, we let 𝑦 ≻𝑥 𝑥 ; additionally, we set 𝑎 ≻𝑐 𝑑 . Then
SC(𝐻3) = {𝑋orig} where 𝑋orig = {(𝑎, 𝑏), (𝑏, 𝑎), (𝑐, 𝑐), (𝑑,𝑑)}.

Let 𝐻4
be the 𝑐-improvement of 𝐻3

where the preferences are

defined the same way as in𝐻3
but 𝑏 now prefers 𝑐 to its own house,



Table 2: Summary of results on the effect of improvements.
RI stands for “respects improvement”, while RI-best / RI-
worst stands for “respects improvement for the best / worst
available house”, respectively. We use ✔ to indicate that the
given property holds; ✔ ∃∃∃∃∃∃ additionally signals that the strong
core (or core) cannot become empty as the result of a 𝑝-
improvement; ✗ means that the given property fails to hold.

Preferences Strong core RI Core RI-best Core RI-worst

Strict orders ✔ ∃∃∃∃∃∃
[11] ✔ ∃∃∃∃∃∃

[40] ✗ [40]

Weak orders ✔ [11] ✔ ∃∃∃∃∃∃
[40] ✗ [40]

Partial orders ✔ Thm. 5.4 ✔ ∃∃∃∃∃∃
[40] ✗ [40]

𝑎

𝑏

𝑐

𝑑

|

| |

(a) Original housing
market 𝐻 3.

𝑎

𝑏

𝑐

𝑑

|

| |

(b) Market𝐻 4: a (𝑐,𝑏 )-
improvement of 𝐻 3.

𝑎

𝑏

𝑐

𝑑

|

| |

(c) Market 𝐻 5, a (𝑐, 𝑎)-
improvement of 𝐻 3.

Figure 3: Illustration for Example 5.2.

so its acceptability set becomes𝐴(𝑏) = 𝑁 \ {𝑑}; see Figure 3b. Then
SC(𝐻4) contains the unique allocation {(𝑎, 𝑏), (𝑏, 𝑐), (𝑐, 𝑎), (𝑑, 𝑑)}
which 𝑐 prefers to 𝑋orig.

Let now 𝐻5
be the 𝑐-improvement of 𝐻3

where the preferences

are defined the same way as in 𝐻3
but 𝑎 now prefers 𝑐 to its own

house; see Figure 3c. The strong core of 𝐻5
then becomes empty,

since the strongly connected component {𝑎, 𝑏, 𝑐} within the sub-

graph of undominated arcs does not contain an allocation.

To study the effects of change in a housingmarket, we investigate

how the strong core changes when a 𝑝-improvement occurs for

some agent 𝑝 ∈ 𝑁 . Particularly, we aim to understand whether a

𝑝-improvement is always beneficial (or, at least, not detrimental) to

agent 𝑝; hence, we aim to check the following property.

Definition 5.3. The strong core of housing markets respects im-
provement, if for all housing markets 𝐻 and 𝐻 ′

such that 𝐻 ′
is a

𝑝-improvement of 𝐻 for some agent 𝑝 , we have 𝑋 ′ ⪰𝑝 𝑋 for all

allocations 𝑋 ∈ SC(𝐻, 𝑝) and 𝑋 ′ ∈ SC(𝐻 ′, 𝑝).

Note that Definition 5.3 allows the strong core of 𝐻 ′
to become

empty as the result of an improvement, which may indeed happen

if agents’ preferences are weak or partial orders, as we have already

seen in Example 5.2.

Remark 2. Notably, Lemma 5.1 does not hold for the core of a

housing market with indifferences. Hence, Biró et al. [11] intro-

duced the following notion: the core of housing markets respects
improvement for the best available house if for all housing markets𝐻

and 𝐻 ′
such that 𝐻 ′

is a 𝑝-improvement of 𝐻 for some agent 𝑝 ,

𝑋 ′ ⪰𝑝 𝑋 holds whenever 𝑋 and 𝑋 ′
are among the most-preferred

allocations by 𝑝 within the core of 𝐻 and of 𝐻 ′
, respectively; the

respecting improvement property for the worst available house is
defined analogously. These two notions coincide for the strong core

with the property expressed in Definition 5.3. Schlotter et al. [40]

proved that the core of housing markets respects improvement for

the best available house, but not for the worst available house.

Table 2 summarizes the results regarding the property of re-

specting improvements for the strong core and the core, including

Theorem 5.4, the main result of this section. Although the proof of

Theorem 5.4 is elementary in its technique, it requires certain in-

sights and uses ideas from the proof of Lemma 5.1 (see Appendix D.2

for details.

Theorem 5.4 (★). Let 𝐻 = (𝑁, {≻𝑎 : 𝑎 ∈ 𝑁 }) be a housing market
in which agents’ preferences are partial orders, and let 𝐻 ′ be a 𝑝-
improvement of𝐻 for some agent 𝑝 . Then for all allocations𝑋 and𝑋 ′

in the strong core of 𝐻 and 𝐻 ′, respectively, it holds that 𝑋 ′ ⪰𝑝 𝑋 .

Formulation as an integer linear program. Quint and Wako

were the first to provide an ILP for the strong core of housing

markets [33]. Subsequently, Biró, Klijn, Klimentova, and Viana [11]

provided an improved ILP formulation for the strong core where

the number of constraints is only linear in the size of the market.

Biró et al. [11] assumed weakly ordered preferences, hence it is

not immediately clear whether their formulation remains correct

for partial order preferences. We prove that the ILP formulation

for the strong core by Biró et al. remains sound even when agents’

preferences are partial orders; see Appendix D.3 for the details.

6 CONCLUSION
We investigated the strong core of housing markets in a model

where agents’ preferences are partial orders, filling a gap in the

literature. Our main result is a polynomial-time algorithm for ob-

taining an allocation in the strong core whenever the strong core

is not empty; our algorithm is group-strategyproof and can accom-

modate forbidden and forced arcs. We also discovered important

properties of the strong core in housing markets with partial order

preferences. In particular, we showed that the strong core in such

housing markets respects improvements, and that the ILP proposed

by Biró et al. [11] for the strong core remains sound even when

agents’ preferences are partial orders.

As the strong core can be empty in housing markets with in-

differences, it would be interesting to study allocations that are

“nearly in the strong core”. E.g., can we find allocations for which

a few agents cover all blocking cycles? Such an allocation could

be stabilized by compensating these agents, thus preventing devia-

tions. Or can we find an allocation from which no deviation yields

a strict improvement for at least 𝑘 agents for some constant 𝑘 ∈ N?
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Appendix A BASICS ON GRAPHS
Consider a directed graph 𝐷 = (𝑉 , 𝐸) where 𝑉 is the set of vertices
and 𝐸 ⊆ 𝑉 ×𝑉 is the set of arcs. An arc (𝑢, 𝑣) leading from 𝑢 to 𝑣

has tail 𝑢 and head 𝑣 . A loop is an arc (𝑣, 𝑣) for some 𝑣 ∈ 𝑉 . Given

a set𝑈 ⊆ 𝑉 of vertices, we say that an arc (𝑢, 𝑣) leaves 𝑈 if 𝑢 ∈ 𝑈

but 𝑣 ∉ 𝑈 ; similarly, (𝑢, 𝑣) enters 𝑈 if 𝑢 ∉ 𝑈 but 𝑣 ∈ 𝑈 .

A set 𝑃 ⊆ 𝐸 is a path in𝐷 , if there exist distinct vertices 𝑣1, . . . , 𝑣ℓ
in 𝑉 such that 𝑃 = {(𝑣𝑖 , 𝑣𝑖+1) : 𝑖 ∈ [ℓ − 1]}; the vertices 𝑣1, . . . , 𝑣ℓ
appear on 𝑃 , and 𝑃 starts at 𝑣1 and ends at 𝑣ℓ , or equivalently, leads
from 𝑣1 to 𝑣ℓ . An (𝑢, 𝑣)-path is a path that starts at 𝑢 and ends at 𝑣 .

A cycle in 𝐷 is the union of an arc (𝑢, 𝑣) and a path leading from 𝑣

to𝑢. A graph 𝐷′ = (𝑉 ′, 𝐸′) is a subgraph of 𝐷 if𝑉 ′ ⊆ 𝑉 and 𝐸′ ⊆ 𝐸;

sometimes we may treat paths or cycles as subgraphs instead of

arc sets. The subgraph of 𝐷 induced by a set 𝑉 ′ ⊆ 𝑉 of vertices is

obtained by deleting all vertices of 𝑉 \𝑉 ′
from 𝐷 together with all

incident arcs. The subgraph of 𝐷 spanned by a set 𝐸′ ⊆ 𝐸 of arcs is

the graph (𝑉 , 𝐸′).
A strongly connected component of 𝐷 is an inclusion-wise maxi-

mal set𝑈 ⊆ 𝑉 of vertices such that for all 𝑢,𝑢′ ∈ 𝑈 there exists a

path leading from 𝑢 to 𝑢′, and also a path leading from 𝑢′ to 𝑢. By
contracting 𝑈 ⊆ 𝑉 , we mean the operation of adding a newly intro-

duced vertex 𝑢★, replacing the head of each arc entering𝑈 with 𝑢★,

replacing the tail of each arc leaving 𝑈 with 𝑢★, and then deleting

the vertices of 𝑈 ; note that this operation does not create loops.

It is known that the strongly connected components of 𝐷 yield a

partition of𝑉 , and contracting each strongly connected component

results in an acyclic digraph, i.e., a directed graph without cycles.

Appendix B ADDITIONAL MATERIAL FOR
SECTION 3

B.1 Necessary Conditions for Strong Core
Allocations

Here we prove that conditions (a) and (b) stated in Theorem 3.1 are

necessary for a given allocation to be in the strong core also in the

case when agents’ preferences are partial orders, as stated in the

following proposition.

Proposition B.1. Suppose that 𝐻 = (𝑁, {≻𝑎 : 𝑎 ∈ 𝑁 }) is a hous-
ing market where each ≻𝑎 is a partial order. Again, let𝑈 denote the set
of undominated arcs in 𝐷𝐻 , and let 𝑆 be an absorbing set in 𝐷𝐻 [𝑈 ].
If𝑋 is an allocation in the strong core of𝐻 , then conditions (a) and (b)
of Theorem 3.1 hold for 𝑋 .

Proof. Define 𝑋𝑆 = 𝑋 ∩ (𝑆 × 𝑆) and 𝑋𝑁 \𝑆 = 𝑋 \ (𝑆 × 𝑆), as in
conditions (a) and (b).

Suppose for the sake of contradiction that condition (a) fails. This

means that there exists some 𝑠 ∈ 𝑆 such that either the arc (𝑠, 𝑋 (𝑠))
leaves 𝑆 , or it is dominated by some arc of 𝐷𝐻

. Recall that 𝑆 is an

absorbing set in 𝐷𝐻 [𝑈 ], and thus no arc of 𝑈 leaves 𝑆 . Thus, in

either of these cases we know (𝑠, 𝑋 (𝑠)) ∉ 𝑈 , and hence there exists

an arc 𝑒 = (𝑠, 𝑎) ∈ 𝛿out
𝑈

(𝑠) that dominates (𝑠, 𝑋 (𝑠)), i.e., 𝑎 ≻𝑠 𝑋 (𝑠).
Since 𝑒 ∈ 𝑈 , we know that 𝑎 ∈ 𝑆 . Since 𝑆 is a strongly connected

component in 𝐷𝐻 [𝑈 ], there exists a cycle 𝐶 within 𝑆 through 𝑒 .

Since 𝑠 prefers 𝐶 to 𝑋 , and by 𝐶 ⊆ 𝑈 no agent on 𝐶 prefers 𝑋 to 𝐶 ,

we get that 𝐶 is a blocking cycle for 𝑋 ; a contradiction. Hence, we

obtain that 𝑋𝑆 is indeed an allocation in 𝐻 |𝑆 contained in𝑈 .

To see that condition (b) holds as well, first note that by condi-

tion (a), 𝑋 \ 𝑋𝑆 = 𝑋𝑁 \𝑆 , and so 𝑋𝑆 and 𝑋𝑁 \𝑆 indeed partition 𝑋

into two. Moreover,𝑋𝑁 \𝑆 is an allocation in the submarket𝐻 | (𝑁 \𝑆 ) .
Observe now that a blocking cycle for 𝑋 in this submarket would

be a blocking cycle for 𝑋 in 𝐻 as well, proving that 𝑋𝑁 \𝑆 is indeed

in the strong core of 𝐻 | (𝑁 \𝑆 ) . □

B.2 Proof of Lemma 3.4
Lemma 3.4 (★). Suppose that 𝑋 is an allocation in the strong core

of 𝐻 . If 𝑆 a peak set of 𝑋 , then 𝑋 ∩ (𝑆 × 𝑆) is an allocation in 𝐻 |𝑆
consisting only of undominated arcs. Moreover, each arc leaving 𝑆 is
dominated by an arc of 𝑋 .

Proof. Let𝑈 denote the set of undominated arcs in 𝐷 .

We first show that if 𝑆 is an absorbing set in 𝐷 [⪰𝑋 ] and 𝑠 ∈ 𝑆 ,

then the arc (𝑠, 𝑋 (𝑠)) is contained in 𝑈 . Assume for the sake of

contradiction that (𝑠, 𝑋 (𝑠)) is dominated by some arc of 𝐷𝐻
. Then

(𝑠, 𝑋 (𝑠)) is also dominated by some arc (𝑠, 𝑠′) ∈ 𝑈 . Now, since

(𝑠, 𝑠′) ∈ 𝑈 , we also know that (𝑠, 𝑠′) is in 𝐸 [⪰𝑋 ] and thus cannot

leave 𝑆 , by the definition of an absorbing set, so we get 𝑠′ ∈ 𝑆 . Since

𝑆 is a strongly connected component of 𝐷 [⪰𝑋 ] , there must exists a

path 𝑄 from 𝑠′ to 𝑠 within 𝐷 [⪰𝑋 ] [𝑆]. Now, since (𝑠, 𝑠′) dominates

(𝑠, 𝑋 (𝑠)), the cycle obtained by adding (𝑠, 𝑠′) to 𝑄 is a blocking

cycle for 𝑋 , a contradiction. Hence, (𝑠, 𝑋 (𝑠)) ∈ 𝑈 for each 𝑠 ∈ 𝑆 .

Since𝑈 ⊆ 𝐸 [⪰𝑋 ] , and no arc of 𝐸 [⪰𝑋 ] leaves 𝑆 by the definition

of an absorbing set, we obtain that 𝑋 (𝑠) ∈ 𝑆 . Hence, 𝑋 ∩ (𝑆 × 𝑆) is
indeed an allocation in 𝐻 |𝑆 contained in𝑈 .

The last claim of the lemma follows from the fact that no arc

of 𝐸 [⪰𝑋 ] may leave 𝑆 due to the definition of an absorbing set. □

Appendix C ADDITIONAL MATERIAL FOR
SECTION 4

C.1 Proof of Theorem 4.4
Theorem 4.4 (★). Algorithm SCFA correctly solves each instance

of SCFA, and runs in 𝑂 ( |𝑁 | · |𝐸 |1+𝑜 (1) ) time where (𝑁, 𝐸) is the
underlying graph of the housing market 𝐻 of the instance.

Proof. Let 𝐼 = (𝐻, 𝐹 ) denote our input instance. We use in-

duction on |𝑁 |, the number of agent in 𝐼 , to prove the theorem.

Notice that if |𝑁 | = 1, then the algorithm is clearly correct, since

any solution must consist of a single loop that is adjacent to the

unique agent in 𝑁 and is not a forbidden arc—exactly the property

checked on line 2. Henceforth, let us assume that the algorithm

correctly solves all instances with less than |𝑁 | agents.

Claim 1. If 𝐼 admits a solution, then Algorithm SCFA does not
reject 𝐼 by outputting ∅.

Claim proof. Let 𝑌 be a solution for 𝐼 , and let 𝑃 be a peak set

for 𝑌 . By Lemma 4.3, 𝑃 ⊆ ⋃
𝑇 ∈T 𝑇 holds throughout lines 10–23

of Algorithm SCFA when executed on instance 𝐼 ; therefore, the

algorithm never reaches line 24, and hence cannot output ∅ on

line 24.

Assume now for the sake of contradiction, that the algorithm

outputs ∅ on line 21, which happens only if the recursive call on

line 20 returns ∅. Observe that since |T | > 0 for the collection T at

this point, we know |𝑁 ′ | < |𝑁 |, and thus our inductive hypothesis

implies that the instance 𝐼 ′ = (𝐻 |𝑁 ′ , 𝐹 ′) does not admit a solution.



Consider now the collection T and the agent set 𝑇★ =
⋃
𝑇 ∈T 𝑇 .

Observe that since each 𝑆 ∈ T admits a 𝑇★
-valid allocation 𝑋𝑆 , no

undominated arc leaves 𝑇★
.

We claim that no arc of 𝑌 leaves 𝑇★
either. To see this, assume

that some arc (𝑎, 𝑏) ∈ 𝑌 leaves 𝑇★
; then (𝑎, 𝑏) is dominated by the

arc 𝑓 = (𝑎,𝑋𝑆 (𝑎)) ∈ 𝑋𝑆 . Since 𝑋𝑆 contains only arcs within 𝐻 |𝑆
and 𝑆 is a strongly connected component of 𝐷𝐻 [𝑈 ], we know that

there is a path𝑄 ⊆ 𝑈 from the head of 𝑓 to the tail of 𝑓 . The cycle𝐶

formed by 𝑄 and the arc 𝑓 is therefore contained in 𝐸 [⪰𝑌 ] , with
agent 𝑎 strictly preferring 𝐶 to 𝑌 , i.e., 𝐶 is a blocking cycle for 𝑌 , a

contradiction. This proves that no arc of𝑌 leaves𝑇★
. However, then

the restriction of 𝑌 to the set 𝑁 ′ = 𝑁 \𝑇★
of remaining agents, i.e.,

the arc set𝑌 ′ = 𝑌 ∩(𝑁 ′×𝑁 ′) is an allocation in𝐻 |𝑁 ′ . It is also clear

that 𝑌 ′
is in the strong core of 𝐻 |𝑁 ′ , as a blocking cycle in 𝐻 |𝑁 ′

for 𝑌 ′
would also block 𝑌 in 𝐻 . Since 𝑌 ′ ⊆ 𝑌 is disjoint from 𝐹 ,

we obtain that 𝑌 ′
is a solution for the instance 𝐼 ′, a contradiction

proving the claim. ◁

Next, let us show the counterpart of Claim 1.

Claim 2. If Algorithm SCFA outputs a set𝑋 ⊆ 𝐸, then𝑋 is solution
for 𝐼 .

Claim proof. Suppose that Algorithm SCFA outputs a set 𝑋 on

line 18. In this case, by𝑁 =
⋃

𝑆∈T 𝑆 we know that𝑋 is an allocation

for 𝐻 . Moreover, we also have 𝑋 ⊆ ⋃
𝑆∈T 𝐸𝑆,T ⊆ 𝑈 \ 𝐹 . Hence, it

is clear that no blocking cycle for 𝑋 exists, and therefore, 𝑋 is a

solution for the input instance.

Suppose now that Algorithm SCFA outputs a set 𝑋 on line 22,

and let us consider the values of T , 𝑁 ′
and 𝐹 ′ at this point. Due

to our induction hypothesis, we know that 𝑋 ′
is a solution for

the instance 𝐼 ′ = (𝐻 |𝑁 ′ , 𝐹 ′). By line 13, we also know that the

allocation 𝑋𝑆 for 𝐻 |𝑆 determined on line 15 is 𝑇★
-valid for each

𝑆 ∈ T where 𝑇★ =
⋃
𝑇 ∈T 𝑇 .

First, it is clear that the set 𝑋 = 𝑋 ′ ∪⋃
𝑆∈T 𝑋𝑆 is an allocation

in 𝐻 : 𝑋 ′
is an allocation in 𝐻𝑁 ′ , and

⋃
𝑆∈T 𝑋𝑆 is an allocation

in 𝐻 |𝑇★ . It is also obvious that 𝑋 does not contain any forbidden

arcs, due to our induction hypothesis and the definition of 𝑇★
-

validity. It remains to show that 𝑋 is in the strong core of 𝐻 .

To show𝑋 ∈ SC(𝐻 ), we apply Theorem 3.5with𝑋1 :=
⋃

𝑆∈T 𝑋𝑆

and 𝑋2 := 𝑋 ′
. First, since 𝑋1 is an allocation in 𝐻 |𝑇★ that only

contains undominated arcs, it is immediate that 𝑋1 ∈ SC(𝐻 |𝑇★).
Second, recall that 𝑋2 ∈ SC(𝐻𝑁 ′ ) = SC(𝐻 |𝑁 \𝑇★) by induction.

Third, since the allocation 𝑋𝑆 is 𝑇★
-valid for each 𝑆 ∈ T , we get

that each arc leaving 𝑇★
is dominated by an arc of 𝑋1. Hence, con-

ditions (a)–(c) of Theorem 3.5 are satisfied, proving that 𝑋 is indeed

in the strong core of 𝐻 , and hence, it is a solution for 𝐼 . ◁

Due to Claims 1 and 2, to show the correctness of Algorithm SCFA

it suffices to prove that the algorithm always produces an output.

To see this, observe that |T | ≤ |𝑁 |, and that during each itera-

tion of lines 10–23, Algorithm SCFA either produces an output, or

decreases |T |. Hence, there are at most |𝑁 | iterations. The total
running time is therefore |𝑁 | times the time necessary for comput-

ing a perfect matching in a bipartite graph on 2|𝑁 | vertices and at

most |𝐴| edges. Since the latter can be performed in 𝑂 ( |𝐸 |1+𝑜 (1) )
time using the recent algorithm for maximum flow by Chen et

al. [15], the theorem follows. □

C.2 Proof of Theorem 4.8
Theorem 4.8 (★). Algorithm SCFA is group-strategyproof.

Proof. Suppose for the sake of contradiction that there is an

instance (𝐻, 𝐹 ) of SCFA with 𝐻 = (𝑁, {≻𝑎 : 𝑎 ∈ 𝑁 }), a coali-

tion𝐶 ⊆ 𝑁 of agents, a𝐶-deviation𝐻 ′ = (𝑁, {≻′
𝑎 : 𝑎 ∈ 𝑁 }) from𝐻 ,

together with allocations 𝑋 ∈ 𝑓SCFA (𝐻, 𝐹 ) and 𝑋 ′ ∈ 𝑓SCFA (𝐻 ′, 𝐹 )
for which 𝑋 ′ (𝑐) ≻𝑐 𝑋 (𝑐) for each agent 𝑐 ∈ 𝐶 in the coalition.

Recall that Algorithm SCFA run on input (𝐻, 𝐹 ) repeatedly re-

moves agents from 𝐻 , and performs a recursive call on the remain-

ing submarket on line 20. Consider the run of the algorithm that

produces 𝑋 as its output. Let 𝐼𝑖 = (𝐻 |𝑁𝑖
, 𝐹𝑖 ) be the input of the

𝑖-th call of the algorithm during this run, with 𝐼1 being the original

input instance, and each further call 𝐼𝑖 , 𝑖 ≥ 2, initiated at line 20 of

the previous call. Let 𝑇★
𝑖

denote the set of agents contained in 𝑇★

(defined in line 11) at the point when the algorithm reaches line 18

in the 𝑖-th call. Then either the algorithm stops in the 𝑖-th call, or

deletes the agents of 𝑇★
𝑖

from the market on line 19, right before

the recursive call on 𝐼𝑖+1, in which case we have 𝑁𝑖+1 = 𝑁𝑖 \𝑇★
𝑖
.

Consider the smallest 𝑘 for which𝑇★
𝑘
∩𝐶 ≠ ∅, and let 𝑐 ∈ 𝐶 ∩𝑇★

𝑘
be an agent in coalition𝐶 removed from the market in the 𝑘-th call.

Note that the arc (𝑐, 𝑋 (𝑐)), which the algorithm will put into the

returned allocation 𝑋 , is undominated within the submarket 𝐻 |𝑁𝑘
,

due to the definitions of the arc sets 𝐸𝑆 and 𝐸𝑆,T on lines 8 and 13. By

𝑋 ′ (𝑐) ≻𝑐 𝑋 (𝑐), we get that 𝑋 ′ (𝑐) must have been removed earlier

from themarket, so𝑋 ′ (𝑐) = 𝑡 for some agent 𝑡 ∈ 𝑇 = 𝑇★
1
∪· · ·∪𝑇★

𝑘−1.

By the definition of 𝑘 , we know𝐶 ∩𝑇 = ∅. We prove the following.

Claim 3. For each agent 𝑎 ∈ 𝑇 , we have 𝑋 ⪰𝑎 𝑋 ′.

Claim proof. For a contradiction, assume that 𝑋 ′ ≻𝑎 𝑋 for

some 𝑎 ∈ 𝑇 , and let us choose 𝑎 ∈ 𝑇★
𝑗
so as to minimize the index

𝑗 ∈ [𝑘 − 1]. Since (𝑎,𝑋 (𝑎)) is undominated in 𝐻 |𝑁 𝑗
, we know

that 𝑋 ′ (𝑎) = 𝑎′ for some 𝑎′ ∈ 𝑇★
1

∪ · · · ∪ 𝑇★
𝑗−1. Since 𝑋 ′

is an

allocation, it contains a cycle through the arc (𝑎,𝑋 ′ (𝑎)) entering
the set 𝑇★

1
∪ · · · ∪𝑇★

𝑗−1; hence, it also contains an arc leaving the

set 𝑇★
1
∪ · · · ∪𝑇★

𝑗−1. See Figure 4a for an illustration. Let (𝑏,𝑋 ′ (𝑏))
be such an arc, and let ℎ ∈ [ 𝑗 − 1] be the index for which 𝑏 ∈ 𝑇★

ℎ
.

Then {(𝑣, 𝑋 (𝑣)) : 𝑣 ∈ 𝑇★
ℎ
} contains a cycle 𝐶 through 𝑏. Note that

𝑋 ⪰𝑣 𝑋 ′
for each agent 𝑣 ∈ 𝑉 (𝐶) ⊆ 𝑇★

ℎ
, due to our choice of 𝑎

and ℎ < 𝑗 . Moreover, since (𝑏, 𝑋 ′ (𝑏)) leaves𝑇★
ℎ
, the arc (𝑏, 𝑋 (𝑏)) ∈

𝐶 ⊆ 𝑋 dominates the arc (𝑏,𝑋 ′ (𝑏)) due to the definition of 𝐸𝑆,T on

line 13, i.e., 𝑋 (𝑏) ≻𝑏 𝑋 ′ (𝑏). Therefore, 𝐶 is a blocking cycle for 𝑋 ′

in𝐻 . Recall also that there is no deviating agent in𝑇 , i.e.,𝐶 ∩𝑇 = ∅,
and thus ≻𝑣=≻′

𝑣 for each agent 𝑣 ∈ 𝑉 (𝐶) ⊆ 𝑇★
ℎ

⊆ 𝑇 . This implies

that 𝐶 is a blocking cycle for 𝑋 ′
in 𝐻 ′

as well, which contradicts

the correctness of Algorithm SCFA established in Theorem 4.4. ◁

We will apply again the ideas used in the proof of Claim 3; see

Figure 4b for an illustration. Recall that (𝑐, 𝑋 ′ (𝑐)) = (𝑐, 𝑡) is an
arc that enters 𝑇 , so we know that 𝑋 ′

must also contain an arc

that leaves 𝑇 ; let (𝑡 ′, 𝑋 ′ (𝑡 ′)) be such an arc for some 𝑡 ′ ∈ 𝑇 . Recall

that (𝑡 ′, 𝑋 (𝑡 ′)) dominates all arcs leaving 𝑇 , so we have 𝑋 ≻𝑡 ′ 𝑋 ′
.

By 𝑡 ′ ∈ 𝑇 , we also know that the cycle 𝐶 of 𝑋 covering 𝑡 ′ only
contains agents within 𝑇 . By Claim 3, this implies that 𝑋 ⪰𝑎 𝑋 ′
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𝑏

| |
𝑋 ′

|

𝑋

𝑋 ′
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𝑋 ′

| |

𝐶 ⊆ 𝑋

𝑇★
ℎ 𝑇★

ℎ−1 · · · 𝑇★
𝑗

(a) Illustration for Claim 3.

𝑐𝑡

𝑡 ′
𝑋 ′
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𝑋 ′

𝑋

|

|

𝑋 ′

| |

𝐶 ⊆ 𝑋

𝑇 𝑇★
𝑘

(b) Illustration for Theorem 4.8.

Figure 4: Illustrations for Theorem 4.8. Paths are shown as
zigzag lines. Arcs and paths belonging to allocation 𝑋 (or 𝑋 ′)
are shown in green (in purple, respectively).

for each agent 𝑎 on 𝐶 , and 𝑋 ≻𝑡 ′ 𝑋 ′
for agent 𝑡 ′ on 𝐶 . This means

that 𝐶 is a blocking cycle for 𝑋 ′
in 𝐻 . Recall that since there is

no deviating agent in 𝑇 , i.e., 𝐶 ∩ 𝑇 = ∅, we further have ≻𝑎=≻′
𝑎

for each agent 𝑎 ∈ 𝑉 (𝐶) ⊆ 𝑇 . Hence, 𝐶 is a blocking cycle for 𝑋 ′

in 𝐻 ′
as well, which contradicts the correctness of Algorithm SCFA

established in Theorem 4.4. □

C.3 Material for Section 4.5
It is known that the Quint–Wako algorithm can return any fixed

allocation 𝑋 in the strong core of 𝐻 . In the following lemma, we

show that the same holds for Algorithm SCFA if agents’ preferences

are weak orders.

Proposition C.1. Suppose that 𝐻 is a housing market where
agents’ preferences are weak orders. When run on the instance (𝐻, ∅),
Algorithm SCFA can find each allocation in the strong core of 𝐻 , by
appropriately choosing between possible allocations on line 15.

Proof. Suppose that 𝑋 is an allocation in the strong core of

some housing market𝐻 . Let S denote the set of strongly connected

components in the subgraph 𝐷𝐻 [𝑈 ] spanned by the set 𝑈 of un-

dominated arcs. For each 𝑆 ∈ S, define the arc set𝑋 |𝑆 = 𝑋 ∩ (𝑆 ×𝑆).
The following facts follow from Theorem 3.1:

(i) 𝑋 |𝑆 is an allocation in the submarket𝐻 |𝑆 for each set 𝑆 ∈ S;

(ii) if 𝐻 |𝑆 admits an allocation contained in𝑈 , then 𝑋 |𝑆 ⊆ 𝑈 ;

(iii) if 𝑆 is an absorbing set in 𝐷𝐻 [𝑈 ], then 𝑋 |𝑆 ⊆ 𝑈 .

Next, we are going to show that Algorithm SCFA will reach

line 18 at some point where the set family T contains all absorbing

sets in 𝐷𝐻 [𝑈 ] and possibly some other sets from S.
To see this, first notice that each absorbing set of 𝐷𝐻 [𝑈 ] is

added to the family T on line 9, due to fact (iii) above. Second,

by definition, no arc leaving an absorbing set 𝑆 of 𝐷𝐻 [𝑈 ] can be

undominated. Since agents’ preferences are weak orders, all arcs

leaving a given agent 𝑎 ∈ 𝑆 are dominated by all undominated arcs

leaving 𝑎. Hence, 𝐸𝑆 = 𝐸𝑆,T for every possible set family T that

contains 𝑆 . This means that no absorbing set is ever added to R on

line 16. Hence, at some point the algorithm reaches line 18, and

when this happens, the set family T contains all absorbing sets

of 𝐷𝐻 [𝑈 ], and possibly some other sets from S as well.

Consider the value of the set family T at this point, and the set

𝑇★ =
⋃
𝑇 ∈T 𝑇 of agents. Notice that𝑇★

must be closed in the sense

that there cannot be an undominated arc leaving 𝑇★
: indeed, the

existence of such an arc (𝑎, 𝑏) would imply that no arc leaving 𝑎

would be contained in 𝐸𝑆,T for the set 𝑆 ∈ T containing 𝑎, and

hence, 𝑆 would have been added to R on line 16, resulting in the

deletion of 𝑆 from T .

Using again that agents’ preferences are weak orders, the obser-

vation that𝑇★
is closed, i.e., no undominated arc leaves𝑇★

, implies

that all arcs leaving 𝑇★
are dominated by all arcs in𝑈 . Therefore,

𝐸𝑆,T = 𝐸𝑆 ⊆ 𝑈 for each 𝑆 ∈ T . Moreover, due to line 9, the submar-

ket 𝐻 |𝑆 admits an allocation consisting only of undominated arcs.

By facts (i) and (ii) above, this means that 𝑋 |𝑆 is also an allocation

consisting only of undominated arcs. Since there are no forbidden

arcs, this means that𝑋 |𝑆 ⊆ 𝐸𝑆,T . Hence, there exists an appropriate
choice for the algorithm to store the allocation 𝑋 |𝑆 on line 15 for

each 𝑆 ∈ T ; assume henceforth that this happens.

In the case 𝑁 = 𝑇★
, this implies that the allocation

⋃
𝑆∈T 𝑋 |𝑆

returned on line 18 is exactly the allocation 𝑋 . If 𝑁 ′ = 𝑁 \𝑇★ ≠ ∅,
then𝑋∩(𝑁 ′×𝑁 ′) is clearly in the strong core of𝐻 |𝑁 ′ . Hence, by an

inductive argument wemay assume that the recursive call on line 20

returns the allocation 𝑋 ′ = 𝑋 ∩ (𝑁 ′ × 𝑁 ′) for the submarket 𝐻 |𝑁 ′ ,

and thus, the algorithm outputs the allocation

⋃
𝑆∈T 𝑋 |𝑆 ∪𝑋 ′ = 𝑋

on line 22. □

Contrasting Proposition C.1, we now show that if agents’ pref-

erences are partial orders, then there may exist allocations in the

strong core that can never be returned by Algorithm SCFA. Such

an instance is presented in Example C.2.

Example C.2. Consider the following market 𝐻6
over agent set

𝑁 = {𝑎, 𝑏, 𝑐, 𝑑1, 𝑑2}; see its underlying graph without loops on Fig-

ure 5. Let the acceptability sets be defined as𝐴(𝑎) = 𝐴(𝑏) = 𝐴(𝑐) =
𝑁 \ {𝑑2} and 𝐴(𝑑1) = 𝐴(𝑑2) = {𝑑1, 𝑑2}. For each agent 𝑥 ∈ 𝑁 and

𝑦 ∈ 𝐴(𝑥) \ {𝑥}, we let 𝑦 ≻𝑥 𝑥 ; additionally, we set 𝑑1 ≻𝑎 𝑏, 𝑑1 ≻𝑏 𝑐

and 𝑑1 ≻𝑐 𝑎.
Consider how Algorithm SCFA runs with 𝐻6

as its input with-

out forbidden arcs. The set of undominated arcs in the market is

𝑈 = {(𝑏, 𝑎), (𝑎, 𝑐), (𝑐, 𝑎), (𝑑1, 𝑑2)} ∪ {(𝑥, 𝑑1) : 𝑥 ∈ 𝑁 \ {𝑑1}}. The
set of strongly connected components in the subgraph spanned

by all undominated arcs is S = {𝑆1, 𝑆2} where 𝑆1 = {𝑎, 𝑏, 𝑐}
and 𝑆2 = {𝑑1, 𝑑2}. Algorithm SCFA computes on line 8 the arc



sets 𝐸𝑆1 = {(𝑎, 𝑐), (𝑐, 𝑏), (𝑏, 𝑎)} and 𝐸𝑆2 = {(𝑑1, 𝑑2), (𝑑2, 𝑑1)}, and
finds that both 𝐻6

|𝑆1 and 𝐻
6

|𝑆2 admit an allocation in 𝐸𝑆1 and in 𝐸𝑆2 ,

respectively. Thus, Algorithm SCFA initializes the family T by

setting T = {𝑆1, 𝑆2}.
Starting the iteration on lines 10–23, the algorithm first com-

putes the arc sets 𝐸𝑆,T for both 𝑆 ∈ T , obtaining 𝐸𝑆1,T = 𝐸𝑆1 and

𝐸𝑆2,T = 𝐸𝑆2 and storing the allocations 𝑋𝑆1 = {(𝑎, 𝑐), (𝑐, 𝑏), (𝑏, 𝑎)}
and𝑋𝑆2 = {(𝑑1, 𝑑2), (𝑑2, 𝑑1)} that are the unique allocations for𝐻6

|𝑆1
in 𝐸𝑆1,T and for 𝐻6

|𝑆2 in 𝐸𝑆2,T , respectively; note that no other allo-

cations can be stored at this point. The algorithm finds on line 18

that 𝑁 = 𝑇★ = 𝑆1 ∪ 𝑆2, and hence returns the allocation 𝑋𝑆1 ∪ 𝑋𝑆2 .

Even though Algorithm SCFA can only output the single allo-

cation described above, the strong core of 𝐻6
contains another

allocation: namely, the allocation {(𝑎, 𝑏), (𝑏, 𝑐), (𝑐, 𝑎)} ∪ 𝑋𝑆2 .

𝑎

𝑏

𝑐 𝑑1 𝑑2

|

|

|

| |

| |

| |

𝑆1

𝑆2

Figure 5: The underlying graph of housingmarket𝐻6 defined
in Example C.2.

Appendix D ADDITIONAL MATERIAL FOR
SECTION 5

D.1 Proof of Lemma 5.1
Lemma 5.1 (★). Given a housing market 𝐻 = (𝑁, {≻𝑎 : 𝑎 ∈ 𝑁 })

with partial order preferences, and allocations 𝑋 and 𝑌 in the strong
core of 𝐻 , we have 𝑋 ∼𝑎 𝑌 for each agent 𝑎 ∈ 𝑁 .

Proof. Suppose for the sake of contradiction that 𝑌 ≻𝑎 𝑋 for

some agent 𝑎 ∈ 𝑁 . We build a walk𝑊 starting at agent 𝑎 using an

iterative procedure as follows. The procedure distinguishes between

two states, 𝑋 -preferring and 𝑌 -preferring, starting initially in a 𝑌 -

preferring state and with𝑊 containing zero arcs. At each step, we

take the agent 𝑏 at the end of𝑊 and choose the next arc of𝑊

among the arcs leaving 𝑏:

(a) if 𝑌 ≻𝑏 𝑋 , we pick (𝑏,𝑌 (𝑏)) and we switch to (or remain

in) the 𝑌 -preferring state;

(b) if 𝑋 ≻𝑏 𝑌 , we pick (𝑏,𝑋 (𝑏)) and we switch to (or remain

in) the 𝑋 -preferring state;

(c) if 𝑋 ∼𝑏 𝑌 , and the procedure is currently in 𝑍 -preferring

mode for some 𝑍 ∈ {𝑋,𝑌 }, then we pick (𝑏, 𝑍 (𝑏)).
We stop this procedure at the point where𝑊 ceases to be a directed

path, because the last arc added to𝑊 points to some vertex already

contained in𝑊 , thus creating a cycle 𝐶 .

Let 𝑢 be the last agent on𝑊 for whom𝑊 ≻𝑢 𝑋 or𝑊 ≻𝑢 𝑌 ;

possibly 𝑢 = 𝑎, so 𝑢 is well-defined. This means that 𝑢 is the last

agent at which step (a) or (b) above was applied. Observe that

if 𝑢 is on 𝐶 , then 𝐶 blocks 𝑋 or 𝑌 , because 𝑊 (𝑐) ⪰𝑐 𝑋 (𝑐) and
𝑊 (𝑐) ⪰𝑐 𝑌 (𝑐) holds for each 𝑐 on 𝐶 by the definition of𝑊 , and 𝑢

prefers 𝐶 to 𝑋 or to 𝑌 . Hence, this contradicts 𝑋,𝑌 ∈ SC(𝐻 ).
Thus, we get that 𝑢 is not on 𝐶 , as shown in Figure 6. Then

the arcs put into𝑊 after and including (𝑢,𝑊 (𝑢)) form the union

of the cycle 𝐶 and a path 𝑃 leading from 𝑢 to some agent 𝑐 on 𝐶 ,

with 𝑉 (𝑃) ∩ 𝑉 (𝐶) = {𝑐}. Suppose that𝑊 (𝑢) = 𝑋 (𝑢) (the case

when𝑊 (𝑢) = 𝑌 (𝑢) is symmetrical), so the procedure entered (or

remained in) the𝑋 -preferring state at𝑢. By the definition of𝑢, after

picking the arc (𝑢,𝑋 (𝑢)) at 𝑢, the procedure always applied step (c)
above, and thus remained in 𝑋 -preferring mode. Consequently,

𝑊 (𝑧) = 𝑋 (𝑧) for all agents 𝑧 that follow 𝑢 on𝑊 . However, this

means that 𝑐 is entered by two arcs of 𝑋 , one on 𝑃 and one on 𝐶

(the last arc put into𝑊 ). This contradicts the assumption that 𝑋 is

an allocation, finishing our proof. □

𝑎 𝑢 𝑊 (𝑢) 𝑐

𝐶

𝑃

Figure 6: Illustration of walk𝑊 for Theorem 5.1. Paths are
shown as zigzag lines.

D.2 Proof of Theorem 5.4
Theorem 5.4 (★). Let 𝐻 = (𝑁, {≻𝑎 : 𝑎 ∈ 𝑁 }) be a housing market

in which agents’ preferences are partial orders, and let 𝐻 ′ be a 𝑝-
improvement of𝐻 for some agent 𝑝 . Then for all allocations𝑋 and𝑋 ′

in the strong core of 𝐻 and 𝐻 ′, respectively, it holds that 𝑋 ′ ⪰𝑝 𝑋 .

Proof. Let 𝐻 ′ = (𝑁, {≻′
𝑎 : 𝑎 ∈ 𝑁 }) be obtained from 𝐻 as the

result of a series of (𝑝, 𝑞𝑖 )-improvements for some agents𝑞1, . . . , 𝑞𝑘 ;

let 𝑄 = {𝑞1, . . . , 𝑞𝑘 }.
Assume for the sake of contradiction that 𝑋 ≻𝑝 𝑋 ′

.

We will re-use the procedure described in the proof of Lemma 5.1,

applied to allocations 𝑋 and 𝑋 ′
with starting point 𝑝 and start-

ing in the 𝑋 -preferring state; we use the preferences ≻′
as given

for 𝐻 ′
. Let𝑊 be the resulting walk. Note that if𝑊 does not in-

clude an arc pointing to 𝑝 , then the arguments presented in the

proof of Lemma 5.1 either yield a contradiction to the assumption

that 𝑋 or 𝑋 ′
is an allocation, or prove the presence of a cycle 𝐶

that blocks 𝑋 or 𝑋 ′
in 𝐻 ′

. By 𝑋 ′ ∈ SC(𝐻 ′), the only possibil-

ity is that 𝐶 blocks 𝑋 in 𝐻 ′
. Given that 𝑋 ∈ SC(𝐻 ), we also

know that 𝐶 does not block 𝑋 in 𝐻 . By the definition of a (𝑝, 𝑞)-
improvement, we know that this can happen only if 𝐶 contains

some of the arcs {(𝑞𝑖 , 𝑝) : 𝑞𝑖 ∈ 𝑄}, because the only agents whose

preferences differ in 𝐻 and 𝐻 ′
are the agents in 𝑄 , and moreover,

the only agent that can become more preferred by some 𝑞𝑖 ∈ 𝑄

when compared to some other agent is agent 𝑝 .

Notice now that (𝑞𝑖 , 𝑝) ∈ 𝐶 for some 𝑞𝑖 ∈ 𝑄 implies 𝐶 = 𝑊 .

Recall that 𝑋 ≻𝑝 𝑋 ′
; hence 𝐶 (𝑝) = 𝑊 (𝑝) = 𝑋 (𝑝), and therefore



𝐶 is a cycle that blocks 𝑋 ′
in 𝐻 ′

: all agents on 𝐶 weakly prefer 𝐶

to 𝑋 ′
by the definition of𝑊 , and 𝑝 strictly prefers 𝐶 to 𝑋 . This

contradiction proves the theorem. □

D.3 Integer Linear Program for the Strong Core
In their paper, Biró et al. [11] gave an incremental ILP formulation:

they first gave an ILP for the core, then added a set of constraints

to obtain an ILP for the set of so-called competitive allocations, and

finally added another set of constraints for an ILP describing the

strong core. Since our focus here is solely on the strong core, we

show that we can omit certain constraints from this incremental

description (namely, those that ensure that the allocation is com-

petitive) and still obtain an ILP that defines the strong core, even

when agents’ preferences are partial orders.

Recall our notation for the arc sets 𝐸 [≻𝑋 ] and 𝐸 [⪰𝑋 ] defined in

Section 3.2.

Let 𝐻 = (𝑁, {≻𝑎 : 𝑎 ∈ 𝑁 }) be a housing market with partial

orders with underlying graph 𝐷𝐻 = (𝑁, 𝐸). Let |𝑁 | = 𝑛. The ILP

defining the strong core of 𝐻 is shown in ILPsc. For each (𝑖, 𝑗) ∈ 𝐸,

it contains a variable 𝑦𝑖 𝑗 with the following interpretation:

𝑦𝑖 𝑗 =

{
1 if (𝑖, 𝑗) is an arc in the allocation,

0 otherwise.

A further set of variables, 𝑝𝑖 for each 𝑖 ∈ 𝑁 , can be thought of as

the price of 𝑖 .

(ILPsc) ∑︁
𝑗 :(𝑖, 𝑗 ) ∈𝐸

𝑦𝑖 𝑗 = 1 ∀𝑖 ∈ 𝑁, (1)∑︁
𝑗 :( 𝑗,𝑖 ) ∈𝐸

𝑦 𝑗𝑖 = 1 ∀𝑖 ∈ 𝑁, (2)

𝑝𝑖 + 1 ≤ 𝑝 𝑗 + 𝑛 ·
∑︁

𝑘 :𝑗⪯𝑖𝑘

𝑦𝑖𝑘 ∀(𝑖, 𝑗) ∈ 𝐸, (3)

𝑝𝑖 ≤ 𝑝 𝑗 + 𝑛 ·
∑︁

𝑘 :𝑗≺𝑖𝑘

𝑦𝑖𝑘 ∀(𝑖, 𝑗) ∈ 𝐸, (4)

𝑦𝑖 𝑗 ∈ {0, 1} ∀𝑖 ∈ 𝑁, (5)

𝑝𝑖 ∈ [𝑛] ∀𝑖 ∈ 𝑁 . (6)

Constraints (1) and (2) together with (5) determine an allocation 𝑋 :

defining 𝑋 (𝑖) = 𝑗 if and only if 𝑦𝑖 𝑗 = 1, constraints (1) and (2)

guarantee that𝑋 contains exactly one arc leaving and entering each

agent 𝑖 ∈ 𝑁 , respectively. Constraints (3) and (6) ensure that there is

no strictly blocking cycle for 𝑋 , that is, 𝑋 is in the core. To see this,

recall that 𝑋 is in the core of 𝐻 if and only if arcs of 𝐸 [≻𝑋 ] form an

acyclic subgraph of 𝐷𝐻
, which in turn happens if and only if there

is a topological order of the agents in the subgraph of 𝐷𝐻
spanned

by 𝐸 [≻𝑋 ] . The existence of such a topological order is equivalent

to the existence of values 𝑝𝑖 , 𝑖 ∈ 𝑁 , such that 𝑝𝑖 < 𝑝 𝑗 for each

arc (𝑖, 𝑗) ∈ 𝐸 [≻𝑋 ] , which is in turn guaranteed by constraints (3)

and (6). Finally, adding constraints (4) narrows down the set of

allocations that correspond to the feasible solutions of our ILP to

the strong core.

The correctness of ILPsc is expressed by Proposition D.2 whose

proof relies on Lemma D.1 and follows ideas from [11]. We remark

that the ILP formulations of Biró et al. [11] that describe the core

and the set of competitive allocations also remain sound under the

generalization that agents’ preferences are partial orders.

To show the correctness of ILPsc, we need the following lemma.

Lemma D.1. An allocation 𝑋 is in the strong core of 𝐻 if and only
if there exist prices 𝑝𝑖 ∈ [𝑛] for each 𝑖 ∈ 𝑁 such that

• 𝑝𝑖 < 𝑝 𝑗 for each (𝑖, 𝑗) ∈ 𝐸 [≻𝑋 ] , and
• 𝑝𝑖 ≤ 𝑝 𝑗 for each (𝑖, 𝑗) ∈ 𝐸 [⪰𝑋 ] .

Proof. First, if 𝑋 ∈ SC(𝐻 ), then there is no cycle consisting of

arcs in 𝐸 [⪰𝑋 ] that also contains an arc in 𝐸 [≻𝑋 ] , as such a cycle

would be a blocking cycle. Hence, no strongly connected component

of𝐷 [⪰𝑋 ] = (𝑁, 𝐸 [⪰𝑋 ] )may contain a cycle in 𝐸 [≻𝑋 ] , as that would
give rise to a blocking cycle for 𝑋 .

Let 𝐷′
be the digraph obtained by contracting each strongly

connected component of 𝐷 [⪰𝑋 ] . Let 𝜑 (𝑖) denote the vertex of 𝐷′

corresponding to some 𝑖 ∈ 𝑁 . On the one hand, we know that 𝐷′

is acyclic due to its definition. On the other hand, we know that for

each arc (𝑖, 𝑗) ∈ 𝐸 [≻𝑋 ] we have 𝜑 (𝑖) ≠ 𝜑 ( 𝑗), and so (𝜑 (𝑖), 𝜑 ( 𝑗))
is an arc in 𝐷′

. Notice also that 𝐷′
may further contain arcs that

correspond to arcs in 𝐸 [⪰𝑋 ] that run between different strongly con-
nected components of 𝐷 [⪰𝑋 ] ; such arcs may exist because agents’

preferences are partial orders.

Since 𝐷′
is acyclic, it admits a topological ordering, so we can

assign a value 𝑝𝑣 ∈ [𝑛] for each vertex 𝑣 of 𝐷′
such that 𝑝𝑣 < 𝑝𝑣′

holds for each arc (𝑣, 𝑣 ′) of 𝐷′
. This gives rise to prices 𝑝𝑖 for

𝑖 ∈ 𝑁 by setting 𝑝𝑖 = 𝑝𝜑 (𝑖 ) . In this way, we have 𝑝𝑖 < 𝑝 𝑗 for each

(𝑖, 𝑗) ∈ 𝐸 [≻𝑋 ] , because for such arcs, (𝜑 (𝑖), 𝜑 ( 𝑗)) is an arc of 𝐷′
.

We also know that 𝑝𝑖 ≤ 𝑝 𝑗 for each (𝑖, 𝑗) ∈ 𝐸 [⪰𝑋 ] , because either
𝜑 (𝑖) = 𝜑 ( 𝑗), which implies 𝑝𝑖 = 𝑝 𝑗 , or again (𝜑 (𝑖), 𝜑 ( 𝑗)) is an arc

of 𝐷′
, implying 𝑝𝑖 < 𝑝 𝑗 .

For the other direction of the proof, assume that there are prices𝑝𝑖
for each 𝑖 ∈ 𝑁 fulfilling the conditions of the lemma. We show that

𝑋 cannot admit a blocking cycle. Assume for the sake of contra-

diction that 𝐶 is a cycle that blocks 𝑋 . Then 𝐶 ⊆ 𝐸 [⪰𝑋 ] implies

that 𝑝𝑖 ≤ 𝑝 𝑗 for each (𝑖, 𝑗) ∈ 𝐶 , which can only happen if 𝑝𝑖 = 𝑝 𝑗
for each (𝑖, 𝑗) ∈ 𝐶 , since 𝐶 is a cycle. However, by the definition

of a blocking cycle, 𝐶 contains an arc (𝑖′, 𝑗 ′) of 𝐸 [≻𝑋 ] , for which
𝑝𝑖′ < 𝑝 𝑗 ′ follows from the condition on the prices as stated by the

lemma, yielding a contradiction. Thus, 𝑋 is indeed in the strong

core of 𝐻 . □

Proposition D.2. There exists a feasible solution for ILPsc if and
only if the housing market 𝐻 admits an allocation in the strong core.

Proof. Let 𝑋 be an allocation in the strong core of 𝐻 . Set 𝑦𝑖 𝑗
as 1whenever each (𝑖, 𝑗) ∈ 𝑋 , and 0 otherwise. Then (1), (2), and (5)

clearly hold. Define prices 𝑝𝑖 for each 𝑖 ∈ 𝑁 so that they satisfy

the conditions of Lemma D.1. Since 𝑝𝑖 ∈ [𝑛] for each 𝑖 ∈ 𝑁 , con-

straint (6) is satisfied.

We show that inequality (3) holds for each (𝑖, 𝑗) ∈ 𝐸. On the one

hand, if (𝑖, 𝑗) ∈ 𝐸 [≻𝑋 ] , then this is clear by our assumption on the

prices, as we have 𝑝𝑖 + 1 ≤ 𝑝 𝑗 . On the other hand, if (𝑖, 𝑗) ∉ 𝐸 [≻𝑋 ] ,
that is, 𝑋 (𝑖) ⪰𝑖 𝑗 , then 𝑋 (𝑖) is contained in the set {𝑘 : 𝑘 ⪰𝑖 𝑗}.



Therefore, we get

∑
𝑘 :𝑘⪰𝑖 𝑗 𝑦𝑖𝑘 ≥ 1. Since both 𝑝𝑖 and 𝑝 𝑗 are in [𝑛],

this implies

𝑝𝑖 + 1 ≤ 𝑛 + 1 ≤ 𝑝 𝑗 + 𝑛 ≤ 𝑝 𝑗 + 𝑛 ·
∑︁

𝑘 :𝑘⪰𝑖 𝑗

𝑦𝑖𝑘

as desired, proving (3).

Next, we show that (4) holds for each (𝑖, 𝑗) ∈ 𝐸. On the one

hand, if (𝑖, 𝑗) ∈ 𝐸 [⪰𝑋 ] , then 𝑝𝑖 ≤ 𝑝 𝑗 holds by our choice of the

prices, which implies (4). On the other hand, if (𝑖, 𝑗) ∉ 𝐸 [⪰𝑋 ] , that
is, 𝑋 (𝑖) ≻𝑖 𝑗 , then 𝑋 (𝑖) is contained in the set {𝑘 : 𝑘 ≻𝑖 𝑗}, and
therefore we get

∑
𝑘 :𝑘≻𝑖 𝑗 𝑦𝑖𝑘 ≥ 1, which implies

𝑝𝑖 ≤ 𝑛 ≤ 𝑛 ·
∑︁

𝑘 :𝑘≻𝑖 𝑗

𝑦𝑖𝑘 ≤ 𝑝 𝑗 + 𝑛 ·
∑︁

𝑘 :𝑘≻𝑖 𝑗

𝑦𝑖𝑘

proving (4).

Suppose now that values𝑦𝑖 𝑗 for each (𝑖, 𝑗) ∈ 𝐸 together with val-

ues 𝑝𝑖 for each 𝑖 ∈ 𝑁 yield a feasible solution to ILPsc. Constraints

(1), (2), and (5) determine an allocation 𝑋 where an arc (𝑖, 𝑗) ∈ 𝐸 is

contained in 𝑋 if and only if 𝑦𝑖 𝑗 = 1.

We show that the values 𝑝𝑖 , 𝑖 ∈ 𝑁 , fulfill the conditions of

Lemma D.1. By constraint (6), we know 𝑝𝑖 ∈ [𝑛] for each 𝑖 ∈ 𝑁 .

To show the first condition, assume that (𝑖, 𝑗) ∈ 𝐸 [≻𝑋 ] . Then
𝑗 ≻𝑖 𝑋 (𝑖), or in other words, 𝑋 (𝑖) ⪰̸𝑖 𝑗 . Thus, 𝑋 (𝑖) is not contained
in {𝑘 : 𝑘 ⪰𝑖 𝑗}. Therefore,

∑
𝑘 :𝑘⪰𝑖 𝑗 𝑦𝑖𝑘 = 0. Hence by (3) we know

𝑝𝑖 + 1 ≤ 𝑝 𝑗 + 𝑛 ·
∑︁

𝑘 :𝑘⪰𝑖 𝑗

𝑦𝑖𝑘 = 𝑝 𝑗 ,

that is, 𝑝𝑖 < 𝑝 𝑗 . This proves that the first condition of Lemma D.1

is satisfied.

Second, assume that (𝑖, 𝑗) ∈ 𝐸 [⪰𝑋 ] . Then 𝑗 ⪰𝑖 𝑋 (𝑖), or in other

words, 𝑋 (𝑖) ⊁𝑖 𝑗 . Thus, 𝑋 (𝑖) is not contained in {𝑘 : 𝑘 ≻𝑖 𝑗}.
Therefore

∑
𝑘 :𝑘≻𝑖 𝑗 𝑦𝑖𝑘 = 0. Hence by (4) we know

𝑝𝑖 ≤ 𝑝 𝑗 + 𝑛 ·
∑︁

𝑘 :𝑘≻𝑖 𝑗

𝑦𝑖𝑘 = 𝑝 𝑗 ,

that is, 𝑝𝑖 ≤ 𝑝 𝑗 . This proves that the second condition of Lemma D.1

is satisfied. Hence, by Lemma D.1, 𝑋 is indeed in the strong core

of 𝐻 . □
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