
Popular Arborescences and Their Matroid Generalization∗

TELIKEPALLI KAVITHA, Tata Institute of Fundamental Research, India

KAZUHISA MAKINO, Kyoto University, Japan

ILDIKÓ SCHLOTTER, HUN-REN Centre for Economic and Regional Studies, Hungary

YU YOKOI, Institute of Science Tokyo, Japan

Consider a directed, rooted graph𝐺 = (𝑉 ∪ {𝑟 }, 𝐸) where each vertex in 𝑉 has a partial order preference over

its incoming edges. The preferences of a vertex naturally extend to preferences over arborescences rooted

at 𝑟 . We present a polynomial-time algorithm that decides whether a given input instance admits a popular

arborescence, i.e., one for which there is no “more popular” arborescence.

In fact, our algorithm solves the more general popular common base problem in the intersection of two

matroids: we are given an arbitrary matroid𝑀 = (𝐸,I) and a partition matroid𝑀part over 𝐸, where partition

classes correspond to a set 𝑉 of agents with |𝑉 | = rank(𝑀) and each agent has a partial order preference over

its associated partition class; the problem asks for a common base of𝑀 and𝑀part such that there is no “more

popular” common base. Our algorithm is combinatorial, and can be regarded as a primal–dual algorithm. It

searches for a solution along with its dual certificate, a chain of subsets of 𝐸, witnessing its popularity. Our

generalized results, expressed in terms of matroids, demonstrate that the identification of agents with vertices

of the graph in the popular arborescence problem is not essential.

We also study the related popular common independent set problem. For the case with weak rankings,

we formulate the popular common independent set polytope, and thus show that a minimum-cost popular

common independent set can be computed efficiently. By contrast, we prove that it is NP-hard to compute a

minimum-cost popular arborescence, even when rankings are strict.

CCS Concepts: • Theory of computation→ Design and analysis of algorithms; • Mathematics of
computing→Matroids and greedoids.

Additional Key Words and Phrases: matching under preferences, matroids, duality in linear programming

1 INTRODUCTION
Let 𝐺 = (𝑉 ∪ {𝑟 }, 𝐸) be a directed graph where the vertex 𝑟 (called the root) has no incoming

edge. Every vertex 𝑣 ∈ 𝑉 has a partial ordering ≻𝑣 (i.e., a preference relation that is irreflexive,

antisymmetric and transitive) over the set 𝛿 (𝑣) of its incoming edges, as in the following example

from [22] where preference orders are strict rankings. Here 𝑉 = {𝑎, 𝑏, 𝑐, 𝑑} and the preference

orders of these four vertices on their incoming edges are as follows:

∗
A preliminary version has appeared in the 35th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA 2024) [24].

Authors’ addresses: Telikepalli Kavitha, Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai, India,

kavitha@tifr.res.in; Kazuhisa Makino, Kyoto University, Kitashirakawaoiwake-cho, Sakyo-ku, Kyoto, Japan, makino@

kurims.kyoto-u.ac.jp; Ildikó Schlotter, HUN-REN Centre for Economic and Regional Studies, 1097 Tóth Kálmán u. 4.,

Budapest, Hungary, schlotter.ildiko@krtk.hun-ren.hu; Yu Yokoi, Institute of Science Tokyo, Ookayama, Meguro-ku, Tokyo,

Japan, yokoi@comp.isct.ac.jp.

HTTPS://ORCID.ORG/0000-0003-2619-6606
HTTPS://ORCID.ORG/0009-0000-9771-4955
HTTPS://ORCID.ORG/0000-0002-0114-8280
HTTPS://ORCID.ORG/0000-0002-7316-5434
https://orcid.org/0000-0003-2619-6606
https://orcid.org/0009-0000-9771-4955
https://orcid.org/0000-0002-0114-8280
https://orcid.org/0000-0002-7316-5434

2 Kavitha, Makino, Schlotter, and Yokoi

(𝑏, 𝑎) ≻𝑎 (𝑐, 𝑎) ≻𝑎 (𝑟, 𝑎)
(𝑎, 𝑏) ≻𝑏 (𝑑, 𝑏) ≻𝑏 (𝑟, 𝑏)
(𝑑, 𝑐) ≻𝑐 (𝑎, 𝑐) ≻𝑐 (𝑟, 𝑐)
(𝑐, 𝑑) ≻𝑑 (𝑏, 𝑑) ≻𝑑 (𝑟, 𝑑).

𝑟

𝑎 𝑏

𝑐 𝑑

first rank

second rank

third rank

We are interested in computing an optimal arborescence rooted at 𝑟 , where an arborescence is an

acyclic subgraph in which each vertex, except one called the root, has a unique incoming edge;

notice that all arborescences in our input graph 𝐺 are rooted at 𝑟 , as 𝑟 has no incoming edge. Our

notion of optimality is a function of the preferences (≻𝑣)𝑣∈𝑉 of vertices for their incoming edges.

Given any pair of arborescences 𝐴 and 𝐴′ in 𝐺 , we say that 𝑣 ∈ 𝑉 prefers 𝐴 to 𝐴′ if 𝑣 prefers its
incoming edge in 𝐴 to its incoming edge in 𝐴′, i.e., 𝑣 prefers 𝐴 to 𝐴′ if 𝐴(𝑣) ≻𝑣 𝐴′ (𝑣) where 𝐴(𝑣)
(respectively, 𝐴′ (𝑣)) is 𝑣 ’s incoming edge in 𝐴 (respectively, in 𝐴′). Let 𝜙 (𝐴,𝐴′) be the number of

vertices that prefer 𝐴 to 𝐴′. We say that 𝐴 is more popular than 𝐴′ if 𝜙 (𝐴,𝐴′) > 𝜙 (𝐴′, 𝐴).

Definition 1.1. An arborescence 𝐴 is popular if 𝜙 (𝐴,𝐴′) ≥ 𝜙 (𝐴′, 𝐴) for all arborescences 𝐴′.

Our notion of optimality is popularity, in other words, we seek a popular arborescence 𝐴 in 𝐺 .

So there is no arborescence more popular than 𝐴, thus 𝐴 is maximal under the “more popular than”

relation. The “more popular than” relation is not transitive and popular arborescences need not

always exist.

Example 1.2. Consider the example from [22] depicted above. The arborescence𝐴 = {(𝑟, 𝑎), (𝑎, 𝑏),
(𝑎, 𝑐), (𝑐, 𝑑)} is not popular, since the arborescence 𝐴′ = {(𝑟, 𝑑), (𝑑, 𝑐), (𝑐, 𝑎), (𝑎, 𝑏)} is more popular.

This is because 𝑎 and 𝑐 prefer𝐴′ to𝐴, while 𝑑 prefers𝐴 to𝐴′, and 𝑏 is indifferent between𝐴 and𝐴′.
We can similarly obtain an arborescence 𝐴′′ = {(𝑟, 𝑏), (𝑏, 𝑎), (𝑏, 𝑑), (𝑑, 𝑐)} more popular than 𝐴′. It
is easy to check that for any arborescence here, there is a more popular arborescence. Therefore

this instance has no popular arborescence.

Consider the above instance without the edge (𝑟, 𝑑). Vertex preferences are the same as in the

earlier instance, except that vertex 𝑑 has no third-choice edge. It can be shown that this instance has

two popular arborescences: 𝐴 = {(𝑟, 𝑎), (𝑎, 𝑏), (𝑎, 𝑐), (𝑐, 𝑑)} and 𝐴′′′ = {(𝑟, 𝑏), (𝑏, 𝑎), (𝑎, 𝑐), (𝑐, 𝑑)}
(Appendix A has more details).

The popular arborescence problem. Given a directed graph 𝐺 as described above, the popular
arborescence problem is to determine if 𝐺 admits a popular arborescence or not, and to find one,

if so. The computational complexity of the popular arborescence problem was posed as an open

problem at the Emléktábla workshop [26] in 2019 and the problem has remained open till now.

Thus it is an intriguing open problem—aside from its mathematical interest and curiosity, it has

applications in liquid democracy, which is a voting scheme that allows the delegation of votes. Each

voter can delegate its vote to another voter; however, delegation cycles are forbidden. A popular

arborescence represents a cycle-free delegation process that is stable, and every child of the root 𝑟

casts a weighted vote on behalf of all its descendants.
1

1
A vertex 𝑣 delegating its vote to 𝑢 should be represented as the edge (𝑣,𝑢) ; however as said in [22], it will be more

convenient to denote this delegation by (𝑢, 𝑣) so as to be consistent with downward edges in an arborescence.

Popular Arborescences and Their Matroid Generalization 3

Liquid democracy has been used for internal decision making at Google [18] and political parties

such as the German Pirate Party or the Swedish party Demoex. We refer to [32] for more details.

We show the following result.

Theorem 1.3. Let 𝐺 = (𝑉 ∪ {𝑟 }, 𝐸) be a directed graph where each 𝑣 ∈ 𝑉 has a partial order over
its incoming edges. There is a polynomial-time algorithm to solve the popular arborescence problem
in 𝐺 .

1.1 Popular common base problem
The popular arborescence problem is a special case of the popular common base problem defined

as follows. We are given two matroids, where one matroid is a partition matroid𝑀part = (𝐸,Ipart)
whose partition classes 𝐸𝑣 are indexed by the elements 𝑣 of a finite set 𝑉 and the independent set

family is defined by Ipart = { 𝑆 ⊆ 𝐸 : |𝑆 ∩ 𝐸𝑣 | ≤ 1 for all 𝑣 ∈ 𝑉 }. The other matroid 𝑀 = (𝐸,I)
is an arbitrary matroid of rank |𝑉 |. Each 𝑣 ∈ 𝑉 has a partial order ≻𝑣 over the partition class 𝐸𝑣
associated with 𝑣 . For any pair of common bases (i.e., common maximal independent sets) 𝐵 and 𝐵′

in the intersection of matroids 𝑀part and 𝑀 , we say that 𝑣 ∈ 𝑉 prefers 𝐵 to 𝐵′ if 𝑣 prefers the
element in 𝐵 ∩ 𝐸𝑣 to the element in 𝐵′ ∩ 𝐸𝑣 , i.e., 𝑒 ≻𝑣 𝑓 where 𝐵 ∩ 𝐸𝑣 = {𝑒} and 𝐵′ ∩ 𝐸𝑣 = {𝑓 }. Let
𝜙 (𝐵, 𝐵′) be the number of elements in 𝑉 that prefer 𝐵 to 𝐵′.

Definition 1.4. A common base 𝐵 of the matroids𝑀part and𝑀 is popular if 𝜙 (𝐵, 𝐵′) ≥ 𝜙 (𝐵′, 𝐵)
for all common bases 𝐵′.

The task in the popular common base problem is to find a popular common base in the intersec-

tion of two such matroids or decide if no popular common base exists. Arborescences in a graph 𝐺

are common bases in the intersection of the partition matroid on 𝐸 =
Ï

𝑣∈𝑉 𝛿 (𝑣) with the graphic

matroid of 𝐺 (where for any edge set 𝐼 ⊆ 𝐸, 𝐼 ∈ I if and only if 𝐼 has no cycle in the underlying

undirected graph). In fact, our algorithm solves the general popular common base problem.

Theorem 1.5. There exists a polynomial-time algorithm that computes a popular common base in
the intersection of a partition matroid on 𝐸 =

Ï
𝑣∈𝑉 𝐸𝑣 and any matroid𝑀 = (𝐸,I) of rank |𝑉 |, where

each 𝑣 ∈ 𝑉 has a partial order ≻𝑣 over elements in 𝐸𝑣 , or decides that no such common base exists.

In general, the matroid intersection need not admit common bases, and in such a case, an alter-

native is a largest common independent set that is popular among all largest common independent

sets. This problem can be easily reduced to the popular common base problem (see Section 8).

Furthermore, along with some simple reductions, we can use our popular common base algorithm

to find a popular solution under certain constraints.

For example, we can find a common independent set that is popular subject to a size constraint (if

a solution exists). We can further solve the problem under a category-wise size constraint: consider

a setting of the popular arborescence problem and the liquid democracy application mentioned

earlier, where the set 𝑉 of voters is partitioned into categories, and for each category, there are

lower and upper bounds on the number of voters who (roughly speaking) have an element in the

chosen independent set belonging to them (see Section 8). This translates to setting lower and

upper bounds on the number of representatives taken from each category so as to ensure that there

is diversity among them.

Moreover, the popular common independent set problem which asks for a common independent

set that is popular in the set of all common independent sets (of all sizes) in the matroid intersection

can be easily reduced to the popular common base problem (see Section 4). Therefore, the following

fact is obtained as a corollary to Theorem 1.5.

4 Kavitha, Makino, Schlotter, and Yokoi

Corollary 1.6. There exists a polynomial-time algorithm that computes a popular common
independent set in the intersection of a partition matroid on 𝐸 =

Ï
𝑣∈𝑉 𝐸𝑣 and any matroid𝑀 = (𝐸,I),

where each 𝑣 ∈ 𝑉 has a partial order ≻𝑣 over elements in 𝐸𝑣 , or decides that no such common
independent set exists.

Popular common independent set polytope. Edmonds [12] proved that the intersection of the

independent set polytopes of twomatroids gives exactly the convex hull of the common independent

sets of the two matroids—this is called the matroid intersection polytope; see also [33, Chapter 14.1].

If preferences are weak rankings, then we can give a formulation of an extension of the popular
common independent set polytope, i.e., the convex hull of characteristic vectors of popular common

independent sets in our matroid intersection.

Our formulation involves two auxiliary matroids that are used in our reduction from the popular
common independent set problem to the popular common base problem. The common ground

set of these auxiliary matroids is an extension of 𝐸 with dummy elements. See Section 4 for

the definitions of these matroids and a more precise formulation (Theorem 4.4) of the following

statement.

Theorem 1.7. If preferences are weak rankings, the popular common independent set polytope of a
partition matroid on 𝐸 =

Ï
𝑣∈𝑉 𝐸𝑣 and any matroid𝑀 = (𝐸,I) is a projection of a face of a matroid

intersection polytope defined on a superset of 𝐸.

By projection, we mean the deletion of variables corresponding to elements not in 𝐸. There are

an exponential number of constraints in this formulation, however it admits an efficient separation

oracle. As a consequence, when there is a function cost : 𝐸 → R, a min-cost popular common

independent set can be computed in polynomial time by optimizing over this polytope, assuming

that preferences are weak rankings.

It follows from past work [21] that finding a min-cost popular common base—even with strict

rankings—is NP-hard. Nevertheless, as shown here, finding a popular common base with forced or

forbidden elements in an input instance with partial order preferences is polynomial-time solvable.

This result allows us to recognize in polynomial time all those elements that are present in every

popular common base and all those elements that are present in no popular common base.

Theorem 1.8. Given a partition matroid on 𝐸 =
Ï

𝑣∈𝑉 𝐸𝑣 , where each 𝑣 ∈ 𝑉 has a partial order ≻𝑣
over elements in 𝐸𝑣 , and any matroid 𝑀 = (𝐸,I) of rank |𝑉 |, along with a set 𝐸+ ⊆ 𝐸 of forced
elements and a set 𝐸− ⊆ 𝐸 of forbidden elements, there is a polynomial-time algorithm to decide if
there is a popular common base 𝐵 with 𝐸+ ⊆ 𝐵 and 𝐸− ∩ 𝐵 = ∅ and to find one, if so.

1.2 Related graph problems and our hardness results
In this section we discuss problems that are closely related to our starting problem—the popular
arborescence problem. After explaining how these problems relate to the popular common base
problem, we highlight some consequences of our algorithmic results presented in Section 1.1,

and contrast them with NP-hardness results that outline the limits of tractability (Theorems 1.9

and 1.10).

Popular branchings. A special case of the popular arborescence problem is the popular branching
problem. A branching is a directed forest in a digraph 𝐺 = (𝑉 , 𝐸) where each vertex has at most

one incoming edge. Any branching in 𝐺 can be viewed as an arborescence in an auxiliary graph

obtained by augmenting 𝐺 with a new vertex 𝑟 as the root and adding the edge (𝑟, 𝑣) for each
𝑣 ∈ 𝑉 as the least-preferred incoming edge of 𝑣 . So the problem of deciding whether the given

instance 𝐺 admits a popular branching or not reduces to the problem of deciding whether this

Popular Arborescences and Their Matroid Generalization 5

auxiliary instance admits a popular arborescence or not. An efficient algorithm for this special case

of the popular arborescence problem (where the root 𝑟 is an in-neighbor of every 𝑣 ∈ 𝑉) was given
in [22].

The applications of popular branchings in liquid democracy were discussed in [22]. Every root

in a popular branching 𝐵 casts a weighted vote on behalf of all its descendants. However, in many

real-world applications, not all agents would be willing to be representatives, i.e., to be roots in a

branching. Thus, it cannot be assumed that every vertex is an out-neighbor of 𝑟 , so it is only agents

who are willing to be representatives that are out-neighbors of 𝑟 in our instance. Therefore, the

popular arborescence problem has to be solved in a general digraph 𝐺 = (𝑉 ∪ {𝑟 }, 𝐸) rather than
in one where every vertex is an out-neighbor of 𝑟 .

Popular matchings and assignments. The notion of popularity has been extensively studied in the

domain of bipartite matchings where vertices on one side of the graph have weak rankings (i.e.,

linear preference order with possible ties) over their neighbors. The popular matching problem is

to decide if such a bipartite graph admits a popular matching, i.e., a matching𝑀 such that there is

no matching more popular than𝑀 .

An efficient algorithm for the popular matching problem was given in 2007 [1]. The popular
assignment problem was considered several years later in 2022 [21]. What is sought in this problem

is a perfect matching that is popular within the set of perfect matchings—so the cardinality of the

matching is more important than popularity here. It is easy to see that the popular assignment
problem is a generalization of the popular matching problem; a simple reduction from the popular
matching problem to the popular assignment problem can be shown by adding some dummy

vertices (see [21, Section 2.3]). An efficient algorithm for the popular assignment problem was

given in [21]. Note that assignments are common bases in the intersection of two partition matroids.

In view of the above connections, we can observe that all of the following problems fall in

the framework of a popular common base (or common independent set) in the intersection of a

partition matroid with another matroid:

(1) Popular matchings [1].

(2) Popular assignments [21].

(3) Popular branchings [22].

(4) Popular matchings with matroid constraints
2
[20].

Since Corollary 1.6 holds for partial order preferences, it generalizes the tractability result in [20]

which assumes that preferences are weak rankings (note that the results in [20] are based on the

paper [1], which in turn strongly relies on weak rankings). Observe that past work identified agents
or elements with preferences with vertices in a graph. It follows from Theorem 1.5 that such an

identification is not important at all. We exploit this property further to show that the following

two new problems—popular colorful forest and popular colorful spanning tree—can also be solved

efficiently by our algorithm. These are natural generalizations of the popular branching problem

and the popular arborescence problem, respectively.

Popular colorful forests and popular colorful spanning trees. The input of the popular colorful
forest problem is an undirected graph 𝐺 where each edge has a color in {1, . . . , 𝑛}. A forest 𝐹 is

colorful if each edge in 𝐹 has a distinct color. Colorful forests are the common independent sets of

the partition matroid defined by color classes and the graphic matroid of 𝐺 . For each 𝑖 ∈ {1, . . . , 𝑛},
we assume that there is an agent 𝑖 with a partial order ≻𝑖 over color 𝑖 edges. Agent 𝑖 prefers forest 𝐹
2
This problem asks for a popular many-to-one matching in a bipartite graph𝐺 = (𝐴 ∪ 𝐵, 𝐸) where vertices in 𝐴 have weak

rankings and the vertices that get matched to each 𝑏 ∈ 𝐵 must form an independent set in a matroid𝑀𝑏 .

6 Kavitha, Makino, Schlotter, and Yokoi

to forest 𝐹 ′ if either (i) 𝐹 contains an edge colored 𝑖 while 𝐹 ′ has no edge colored 𝑖 or (ii) both 𝐹

and 𝐹 ′ contain color 𝑖 edges and 𝑖 prefers the color 𝑖 edge in 𝐹 to the color 𝑖 edge in 𝐹 ′.
A colorful forest 𝐹 is popular if 𝜙 (𝐹, 𝐹 ′) ≥ 𝜙 (𝐹 ′, 𝐹) for all colorful forests 𝐹 ′, where 𝜙 (𝐹, 𝐹 ′) is

the number of agents that prefer 𝐹 to 𝐹 ′. The popular colorful forest problem is to decide if a given

graph𝐺 admits a popular colorful forest or not, and to find one, if so. The motivation here is to find

an optimal independent network (cycles are forbidden) with diversity, i.e., there is at most one edge

from each color class—as before, our definition of optimality is popularity. The popular branching
problem is a special case of the popular colorful forest problem where all edges entering vertex 𝑖

are colored 𝑖 .

A colorful spanning tree is a colorful forest with exactly one component. In the popular colorful
spanning tree problem, connectivity is more important than popularity, and we seek popularity

within the set of colorful spanning trees rather than popularity within the set of all colorful forests.

Theorem 1.5 implies a polynomial-time algorithm to solve the popular colorful spanning tree
problem and Corollary 1.6 implies a polynomial-time algorithm to solve the popular colorful forest
problem. Recall that Theorem 1.7 gives a formulation of an extension of the popular colorful

forest polytope when preferences are weak rankings. When preferences are weak rankings, note

that such a polytope was already known for popular branchings [22] where it was also shown

that it is NP-hard to find a min-cost popular branching with partial order preferences. It follows

from Theorem 1.7 that for weak rankings, we can compute a min-cost popular colorful forest in

polynomial time when there is a function cost : 𝐸 → R.
One may wonder if such a result also holds for the popular colorful spanning tree problem or at

least the popular arborescence problem. Unfortunately, that is not the case as we show here.

Theorem 1.9. Given an instance𝐺 = (𝑉 ∪ {𝑟 }, 𝐸) of the popular arborescence problem where each
vertex has a strict ranking over its incoming edges along with a function cost : 𝐸 → {0, 1,∞}, it is
NP-hard to compute a min-cost popular arborescence in 𝐺 .

A natural problem in instances that do not admit a popular arborescence is the relaxation of

popularity to near-popularity or “low unpopularity”. A standard measure of unpopularity is the

unpopularity margin [28], defined for any arborescence 𝐴 as 𝜇 (𝐴) = max𝐴′ 𝜙 (𝐴′, 𝐴) − 𝜙 (𝐴,𝐴′)
where the maximum is taken over all arborescences 𝐴′. An arborescence 𝐴 is popular if and only if

𝜇 (𝐴) = 0. Unfortunately, finding an arborescence with minimum unpopularity margin is NP-hard.

Theorem 1.10. Given an instance 𝐺 = (𝑉 ∪ {𝑟 }, 𝐸) of the popular arborescence problem where
each vertex has a strict ranking over its incoming edges, together with an integer 𝑘 , it is NP-complete
to decide whether 𝐺 contains an arborescence with unpopularity margin at most 𝑘 .

1.3 Background
The notion of popularity was introduced by Gärdenfors [15] in 1975 in bipartite graphs with

two-sided strict preferences. In this model every stable matching [14] is popular, thus popular

matchings always exist in this setting. When preferences are one-sided, popular matchings need

not always exist. This is not very surprising given that popular solutions correspond to (weak)

Condorcet winners [6, 29] and it is well-known in social choice theory that such a winner need not

exist.

For the case when preferences are weak rankings, a combinatorial characterization of popular

matchings was given in [1] and this yielded an efficient algorithm to solve the popular matching
problem in this case. Note that the characterization in [1] does not generalize to partial order

preferences, as argued in [23]. Several extensions of the popular matching problem have been

considered such as random popular matchings [27], weighted voters [30], capacitated objects [34],

Popular Arborescences and Their Matroid Generalization 7

popular mixed matchings [25], and popularity with matroid constraints [20]. We refer to [7] for a

survey on results in popular matchings.

Popular spanning trees were studied in [8–10] where the incentive was to find a “socially best”

spanning tree. However, in contrast to the popular colorful spanning tree problem, edges have no

colors in their model and voters have rankings over the entire edge set. Many different ways to

compare a pair of trees were studied here, and most of these led to hardness results.

Popular branchings, i.e., popular directed forests, in a directed graph (where each vertex has

preferences as a partial order over its incoming edges) were studied in [22] where a polynomial-time

algorithm was given for the popular branching problem. When preferences are weak rankings,

polynomial-time algorithms for the min-cost popular branching problem and the 𝑘-unpopularity

margin branching problem were shown in [22]; however these problems were shown to be NP-hard
for partial order preferences. The popular branching problem where each vertex (i.e., voter) has a

weight was considered in [31].

The popular assignment algorithm from [21] solves the popular maximum matching problem

in a bipartite graph, and works for partial order preferences. It was also shown in [21] that the

min-cost popular assignment problem is NP-hard, even for strict rankings.

Many combinatorial optimization problems can be expressed as (largest) common independent

sets in the intersection of two matroids. Interestingly, constraining one of the two matroids in

the matroid intersection to be a partition matroid is not really a restriction, because any matroid

intersection can be reduced to the case where onematroid is a partitionmatroid (see [12, Claims 104–

106]). We refer to [16, 33] for notes on matroid intersection and for the formulation of the matroid

intersection polytope.

1.4 An overview of our algorithm
For a common base 𝐵, we can naturally define a weight function wt𝐵 : 𝐸 → {−1, 0, 1} such that

for any common base 𝐵′ we have wt𝐵 (𝐵′) = 𝜙 (𝐵′, 𝐵) − 𝜙 (𝐵, 𝐵′). Then a popular common base 𝐵

is a max-weight common base in the intersection of matroids 𝑀part and 𝑀 with respect to this

function wt𝐵 . Therefore, the popular common base problem is to find a common base 𝐵 such that

max𝐵′∈B wt𝐵 (𝐵′) = wt𝐵 (𝐵) = 0 where B is the set of all common bases in the matroid intersection.

This means that a popular common base 𝐵 is an optimal solution to the linear program (LP) for the

max-weight common base with weights given by wt𝐵 .

Dual certificates. We show that every popular common base 𝐵 has a dual certificate with a special

structure, which corresponds to a chain C = {𝐶1, . . . ,𝐶𝑝 } of subsets of 𝐸 with ∅ ⊊ 𝐶1 ⊊ · · · ⊊ 𝐶𝑝 = 𝐸

and span(𝐵 ∩𝐶𝑖) = 𝐶𝑖 for all 𝑖 .
3
Our algorithm to compute a popular common base is a search for

such a chain C and a common base 𝐵. At a high level, this method is similar to the approach used

in [21] for popular assignment, however our dual certificates are more complex than those in [21],

and hence the steps in our algorithm (and its proof of correctness) become much more challenging.

Given a chain C of subsets of 𝐸, there is a polynomial-time algorithm to check if C corresponds to

a dual certificate for some popular common base. It follows from dual feasibility and complementary

slackness that C is a dual certificate if and only if for a certain subset 𝐸 (C) ⊆ 𝐸, there exists a
common base 𝐵 ⊆ 𝐸 (C) such that span(𝐵 ∩𝐶𝑖) = 𝐶𝑖 for all𝐶𝑖 ∈ C. If such a common base 𝐵 exists,

then it is easy to show that 𝐵 is a popular common base with C as its dual certificate.

If such a common base 𝐵 ⊆ 𝐸 (C) does not exist, then we need to update C. Since updating C
changes 𝐸 (C), we now seek a common base 𝐵 ⊆ 𝐸 (C) (for the new C) such that span(𝐵 ∩𝐶𝑖) = 𝐶𝑖

for all 𝑖 . If such a common base 𝐵 does not exist yet again, then C is updated once more and so on.

3
The set span(𝐵 ∩𝐶𝑖) is defined as (𝐵 ∩𝐶𝑖) ∪ { 𝑒 ∈ 𝐸 : (𝐵 ∩𝐶𝑖) + 𝑒 is not independent }.

8 Kavitha, Makino, Schlotter, and Yokoi

Note that updating C may increase |C|. When |C| becomes larger than |𝑉 |, we claim that the input

instance has no popular common base. Among other ideas, our technical novelty lies in the proof

of this claim that is based on the strong exchange property of matroids.

We also show that a popular common independent set has a dual certificate C = {𝐶, 𝐸} of length
at most 2. This leads to the polyhedral result given in Theorem 1.7.

Comparison with previous algorithms. In the case of popular arborescences, the problem of

checking if a chain C corresponds to a dual certificate is the same as checking if a certain subgraph

𝐺C = (𝑉 ∪ {𝑟 }, 𝐸 (C)) admits an arborescence 𝐴 such that span(𝐴 ∩𝐶𝑖) = 𝐶𝑖 for all 𝐶𝑖 ∈ C. Our
algorithm is different from the popular branching algorithm [22] that (loosely speaking) first finds

a maximum branching on best edges and then augments this branching with second best edges
entering certain vertices. Note that the popular arborescence problem regards reachability from

the root 𝑟 to be more important than popularity, thus a popular arborescence need not be a popular

branching. However, in an instance with a popular branching that is also a popular arborescence,

our algorithm will return such a popular branching.

Recall that there is a polynomial-time algorithm for finding a popular matching in a bipartite

graph𝐺 = (𝐴∪𝐵, 𝐸) with matroid constraints on the 𝐵-side [20]. One may wonder if a polynomial-

time algorithm to solve the popular common base problem can be obtained by identifying the entire

set 𝐵 into a single vertex. However this would require generalizing the algorithm in [20] to solve the

popular assignment problem (rather than the popular matching problem) with matroid constraints

in an instance with parallel edges. Recall that the popular matching problem is a special case of

the popular assignment problem and fixing the size of the solution makes the problem involved.

While popular matchings admit a simple characterization described by two edge sets [1], finding a

popular perfect matching [21] requires a sophisticated primal–dual type algorithm. Furthermore,

our algorithm for the popular common base problem works for preferences in partial orders, while

the algorithm in [20] does not seem to generalize to that setting.
4

Organization of the paper. The rest of the paper is organized as follows. Section 2 describes dual

certificates for popular common bases. Section 3 presents the popular common base algorithm and its

proof of correctness. In Section 4, we discuss popular common independent sets and their polytope.

Section 5 provides the algorithm for the popular common base problem with forced/forbidden

elements. Our hardness results are proved in Sections 6 and 7. Section 8 contains extensions and

related results. Appendix A offers examples of executions of our algorithm.

2 DUAL CERTIFICATES
In this section we show that every popular common base has a special dual certificate—this will be

crucial in designing our algorithm in Section 3.

In the popular common base problem, we are given a partitionmatroid𝑀part on a set 𝐸 =
Ï

𝑣∈𝑉 𝐸𝑣 ,
where 𝑉 is the set of indices and each 𝑣 ∈ 𝑉 is associated with a partial order ≻𝑣 over 𝐸𝑣 , and an

arbitrary matroid 𝑀 = (𝐸,I) of rank |𝑉 |. For each 𝑣 ∈ 𝑉 and each 𝑒, 𝑓 ∈ 𝐸𝑣 , we write 𝑒 ∼𝑣 𝑓 to
denote that 𝑣 is indifferent between 𝑒 and 𝑓 , i.e., 𝑒 ⊁𝑣 𝑓 and 𝑓 ⊁𝑣 𝑒 .

Given a common base 𝐵, there is a simple method (as shown in [22]) to check if 𝐵 is popular or

not. We need to check that 𝜙 (𝐵, 𝐵′) ≥ 𝜙 (𝐵′, 𝐵) for all common bases 𝐵′ of 𝑀part and 𝑀 . For this,

we will use the following function wt𝐵 : 𝐸 → {−1, 0, 1}.

4
Solving the popular matching problem for partial order preferences requires a different approach [21] than the simple

combinatorial characterization that forms the basis of the popular matching algorithm [1] which is generalized in [20].

Popular Arborescences and Their Matroid Generalization 9

For any 𝑣 ∈ 𝑉 , let 𝐵(𝑣) be the unique element in 𝐵 ∩ 𝐸𝑣 . For any 𝑣 ∈ 𝑉 and 𝑒 ∈ 𝐸𝑣 , let

wt𝐵 (𝑒) =

1 if 𝑒 ≻𝑣 𝐵(𝑣) (𝑣 prefers 𝑒 to 𝐵(𝑣));
0 if 𝑒 ∼𝑣 𝐵(𝑣) (𝑣 is indifferent between 𝑒 and 𝐵(𝑣));
−1 if 𝑒 ≺𝑣 𝐵(𝑣) (𝑣 prefers 𝐵(𝑣) to 𝑒).

It immediately follows from the definition of wt𝐵 that we have wt𝐵 (𝐵′) = 𝜙 (𝐵′, 𝐵) − 𝜙 (𝐵, 𝐵′)
for any common base 𝐵′. Thus, 𝐵 is popular if and only if every common base of𝑀part and𝑀 has

weight at most 0, where weights on 𝐸 are given by wt𝐵 .
Consider the linear program problem LP1 below. The constraints of LP1 describe the face of

the matroid intersection polytope corresponding to common bases. Here, rank : 2
𝐸 → Z+ is the

rank function of the matroid𝑀 = (𝐸,I). That is, for each 𝑆 ⊆ 𝐸, the value rank(𝑆) is the size of a
maximum independent subset of 𝑆 .

max

∑︁
𝑒∈𝐸

wt𝐵 (𝑒) · 𝑥𝑒 (LP1)

s.t.

∑︁
𝑒∈𝐸𝑣

𝑥𝑒 = 1 ∀ 𝑣 ∈ 𝑉∑︁
𝑒∈𝑆

𝑥𝑒 ≤ rank(𝑆) ∀𝑆 ⊆ 𝐸

𝑥𝑒 ≥ 0 ∀𝑒 ∈ 𝐸.

min

∑︁
𝑆⊆𝐸

rank(𝑆) · 𝑦𝑆 +
∑︁
𝑣∈𝑉

𝛼𝑣 (LP2)

s.t.

∑︁
𝑆 :𝑒∈𝑆

𝑦𝑆 + 𝛼𝑣 ≥ wt𝐵 (𝑒) ∀𝑒 ∈ 𝐸𝑣,∀𝑣 ∈ 𝑉

𝑦𝑆 ≥ 0 ∀𝑆 ⊆ 𝐸.

The feasible region of LP1 is the common base polytope of the matroids𝑀part and𝑀 . Hence LP1

is the max-weight common base LP with weights given by wt𝐵 . The linear program LP2 is the dual

LP in variables 𝑦𝑆 and 𝛼𝑣 where 𝑆 ⊆ 𝐸 and 𝑣 ∈ 𝑉 .
The common base 𝐵 is popular if and only if the optimal value of LP1 is at most 0, more precisely,

if the optimal value is exactly 0, since wt𝐵 (𝐵) = 0. Equivalently, 𝐵 is popular if and only if the

optimal value of LP2 is 0. We will now show that LP2 has an optimal solution with some special

properties. For a popular common base 𝐵, a dual optimal solution that satisfies all these special

properties (see Lemma 2.1) will be called a dual certificate for 𝐵.
The function span : 2

𝐸 → 2
𝐸
of a matroid (𝐸,I) is defined as follows:

span(𝑆) = { 𝑒 ∈ 𝐸 : rank(𝑆 + 𝑒) = rank(𝑆) } where 𝑆 ⊆ 𝐸.

In particular, if 𝑆 ∈ I, then span(𝑆) = 𝑆 ∪ { 𝑒 ∈ 𝐸 : 𝑆 + 𝑒 ∉ I }.
A chain C of length 𝑝 is a collection of 𝑝 distinct subsets of 𝐸 such that for each two distinct

sets 𝐶,𝐶′ ∈ C, we have either 𝐶 ⊊ 𝐶′ or 𝐶′ ⊊ 𝐶 . That is, a chain has the form C = {𝐶1,𝐶2, . . . ,𝐶𝑝 }
where 𝐶1 ⊊ 𝐶2 ⊊ · · · ⊊ 𝐶𝑝 .

Lemma 2.1 shows that LP2 always admits an optimal solution in the following special form. The

proof is based on basic facts on matroid intersection and linear programming.

Lemma 2.1. A common base 𝐵 is popular if and only if there exists a feasible solution (®𝑦, ®𝛼) to LP2
such that

∑
𝑆⊆𝐸 rank(𝑆) · 𝑦𝑆 +

∑
𝑣∈𝑉 𝛼𝑣 = 0 and properties 1–4 are satisfied:

1. ®𝑦 is integral and its support C B { 𝑆 ⊆ 𝐸 : 𝑦𝑆 > 0 } is a chain.
2. Each 𝐶 ∈ C satisfies span(𝐵 ∩𝐶) = 𝐶 .
3. Every element in C is nonempty, and the maximal element in C is 𝐸.
4. For each 𝐶 ∈ C, we have 𝑦𝐶 = 1. For each 𝑣 ∈ 𝑉 , we have 𝛼𝑣 = −| {𝐶 ∈ C : 𝐵(𝑣) ∈ 𝐶 } |.

10 Kavitha, Makino, Schlotter, and Yokoi

Proof. The optimal value of LP1 is at least 0 since wt𝐵 (𝐵) = 0. Therefore, if there exists a

feasible solution (®𝑦, ®𝛼) to LP2 whose objective value is 0, then (®𝑦, ®𝛼) is an optimal solution to LP2

and the optimal value of LP1 is also 0, and hence 𝐵 is a popular common base of𝑀part and𝑀 .

If 𝐵 is a popular common base, then the optimal value of LP2 is 0. We will now show that there

always exists an optimal solution (®𝑦, ®𝛼) to LP2 that satisfies properties 1–4.

1. It is a well-known fact on matroid intersection (see, e.g., [33, Theorem 41.12]) that there exists

an integral optimal solution to LP2 such that the support of the dual variables corresponding

to the matroid 𝑀 is a chain, which means property 1. Here, we give a proof to make the paper

self-contained.

Among all the optimal solutions to LP2, let (®𝑦, ®𝛼) be the one that minimizes

∑
𝑆⊆𝐸 𝑦𝑆 · |𝑆 | · |𝐸 \ 𝑆 |.

Suppose to the contrary that the support of ®𝑦 is not a chain. Then there exist 𝑋,𝑌 ⊆ 𝐸 such that

𝑋 \ 𝑌 ≠ ∅, 𝑌 \ 𝑋 ≠ ∅, 𝑦𝑋 > 0, and 𝑦𝑌 > 0. Set 𝛿 = min{𝑦𝑋 , 𝑦𝑌 }, decrease 𝑦𝑋 and 𝑦𝑌 by 𝛿 , increase

𝑦𝑋∪𝑌 and 𝑦𝑋∩𝑌 by 𝛿 , and denote the resultant vector by ®𝑧. Then, ∑𝑆 :𝑒∈𝑆 𝑦𝑆 =
∑

𝑆 :𝑒∈𝑆 𝑧𝑆 for any

𝑒 ∈ 𝐸, and hence (®𝑧, ®𝛼) is feasible in LP2. Since rank(𝑋) + rank(𝑌) ≥ rank(𝑋 ∪ 𝑌) + rank(𝑋 ∩ 𝑌)
by the submodularity of the matroid rank function, the objective value of (®𝑧, ®𝛼) is not smaller than

that of (®𝑦, ®𝛼), and hence (®𝑧, ®𝛼) is optimal. Since∑︁
𝑆⊆𝐸

𝑧𝑆 · |𝑆 | · |𝐸 \ 𝑆 | −
∑︁
𝑆⊆𝐸

𝑦𝑆 · |𝑆 | · |𝐸 \ 𝑆 | = 𝛿 · (|𝑋 |2 + |𝑌 |2 − |𝑋 ∪ 𝑌 |2 − |𝑋 ∩ 𝑌 |2) < 0,

this contradicts the choice of (®𝑦, ®𝛼).
Thus, LP2 has an optimal solution (®𝑦∗, ®𝛼∗) such that the support of ®𝑦∗ is a chain. Let C be the

support of such ®𝑦∗ and LP2′ be a variant of LP2 such that variables ®𝑦 are defined as {𝑦𝐶 }𝐶∈C instead
of {𝑦𝑆 }𝑆⊆𝐸 . Then, optimal solutions to LP2

′
are also optimal solutions to LP2. Let C′ = {𝐸𝑣}𝑣∈𝑉 .

Then, both C and C′ are laminar families on 𝐸. Let 𝑀 be the 𝐸 × (C ∪ C′) incidence matrix, i.e.,

𝑀𝑒,𝐶 = 1 if 𝑒 ∈ 𝐶 and 0 otherwise. Since the incidence matrix of the union of two laminar families

is totally unimodular [12] (see also [33, Theorem 41.11]), so is 𝑀 . This implies that LP2
′
has an

integral optimal solution, which is a solution to LP2 satisfying property 1.

2. Among all the optimal solutions to LP2 that satisfy property 1, let (®𝑦, ®𝛼) be the one that

minimizes

∑
𝐶∈C |span(𝐶) \𝐶 |, where C is the support of ®𝑦. We claim that span(𝐵 ∩𝐶) = 𝐶 holds

for all𝐶 ∈ C. Observe that each𝐶 ∈ C satisfies𝑦𝐶 > 0, and hence complementary slackness implies

that the characteristic vector ®𝑥 of 𝐵 satisfies

∑
𝑒∈𝐶 𝑥𝑒 = rank(𝐶), i.e., |𝐵 ∩𝐶 | = rank(𝐶). Therefore,

to obtain span(𝐵 ∩𝐶) = 𝐶 for all 𝐶 ∈ C, it suffices to show span(𝐶) = 𝐶 for all 𝐶 ∈ C. Suppose to
the contrary that it does not hold. Then there exists at least one 𝐶 ∈ C with span(𝐶) ≠ 𝐶 . Among

all such 𝐶 , let 𝐶∗ ∈ C be the maximal one.

Define ®𝑧 as follows: (i) 𝑧span(𝐶∗) = 𝑦span(𝐶∗) + 𝑦𝐶∗ , (ii) 𝑧𝐶∗ = 0, and (iii) 𝑧𝑆 = 𝑦𝑆 for all other 𝑆 ⊆ 𝐸.
Then C′ = (C \ {𝐶∗}) ∪ {span(𝐶∗)} is the support of ®𝑧. Note that C′ is again a chain because any

𝐶 ∈ C with 𝐶∗ ⊊ 𝐶 satisfies span(𝐶) = 𝐶 by the choice of 𝐶∗, hence span(𝐶∗) ⊆ span(𝐶) = 𝐶 .
Observe that (®𝑧, ®𝛼) is a feasible solution to LP2. Moreover, since rank(𝐶∗) = rank(span(𝐶∗)),

it does not change the objective value. Thus (®𝑧, ®𝛼) is an optimal solution to LP2 that satisfies

property 1 and

∑
𝐶∈C′ |span(𝐶) \𝐶 | < ∑

𝐶∈C |span(𝐶) \𝐶 |. This contradicts the choice of (®𝑦, ®𝛼).

3. Suppose (®𝑦, ®𝛼) satisfies properties 1–2 but not property 3. If ∅ ∈ C, then modify ®𝑦 by setting

𝑦∅ = 0. Then ∅ is removed from C. This does not change the objective value and does not violate

feasibility constraints.

If 𝐸 ∉ C, then add 𝐸 to C and modify (®𝑦, ®𝛼) by (i) setting 𝑦𝐸 = 1 and (ii) decreasing every 𝛼𝑣
value by 1. Since rank(𝐸) = |𝑉 |, the objective value does not change. Also, all constraints in LP2

are preserved. Hence the new solution satisfies properties 1–3.

Popular Arborescences and Their Matroid Generalization 11

4. Among all the optimal solutions to LP2 that satisfy properties 1–3, let (®𝑦, ®𝛼) be the one that
minimizes

∑
𝑆⊆𝐸 𝑦𝑆 and let C be the support of ®𝑦. Note that 𝛼𝑣 = −∑𝐶∈C:𝐵 (𝑣) ∈𝐶 𝑦𝐶 holds for

any 𝑣 ∈ 𝑉 by complementary slackness (observe that 𝑥𝐵 (𝑣) > 0 for 𝐵’s characteristic vector ®𝑥).
Suppose 𝑦𝐶∗ ≥ 2 for some 𝐶∗ ∈ C. Define (®𝑧, ®𝛽) as follows: 𝑧𝐶∗ = 𝑦𝐶∗ − 1 and 𝑧𝑆 = 𝑦𝑆 for every

other 𝑆 ⊆ 𝐸. For any 𝑣 ∈ 𝑉 , let 𝛽𝑣 = −
∑

𝐶∈C:𝐵 (𝑣) ∈𝐶 𝑧𝐶 . We will show below that (®𝑧, ®𝛽) is a feasible
solution to LP2. Let us first see what is the objective value attained by (®𝑧, ®𝛽).
This value is

∑
𝐶∈C rank(𝐶) ·𝑧𝐶 +

∑
𝑣∈𝑉 𝛽𝑣 . When compared to

∑
𝐶∈C rank(𝐶) ·𝑦𝐶 +

∑
𝑣∈𝑉 𝛼𝑣 , the

first term has decreased by rank(𝐶∗) and the second term has increased by | { 𝑣 ∈ 𝑉 : 𝐵(𝑣) ∈ 𝐶∗ } | =
|𝐵 ∩𝐶∗ | ≤ rank(𝐶∗). Thus the objective value does not increase.
We will now show that (®𝑧, ®𝛽) is a feasible solution to LP2, that is,

∑
𝐶∈C:𝑒∈𝐶 𝑧𝐶 + 𝛽𝑣 ≥ wt𝐵 (𝑒) for

each 𝑒 ∈ 𝐸𝑣 , 𝑣 ∈ 𝑉 . Since (®𝑦, ®𝛼) is feasible and the first term

∑
𝐶∈C:𝑒∈𝐶 𝑧𝐶 decreases by at most 1

and the second term 𝛽𝑣 = −
∑

𝐶∈C:𝐵 (𝑣) ∈𝐶 𝑧𝐶 never decreases, the only case we need to worry about

is when the first term decreases and the second term does not increase. This implies that 𝑒 ∈ 𝐶∗
and 𝐵(𝑣) ∉ 𝐶∗; hence∑︁

𝐶∈C:𝑒∈𝐶
𝑧𝐶 + 𝛽𝑣 =

∑︁
𝐶∈C:𝑒∈𝐶

𝑧𝐶 −
∑︁

𝐶∈C:𝐵 (𝑣) ∈𝐶
𝑧𝐶 ≥ 𝑧𝐶∗ ≥ 1 ≥ wt𝐵 (𝑒).

Thus (®𝑧, ®𝛽) is a feasible solution to LP2; furthermore, it is an optimal solution to LP2. Since we have∑
𝑆⊆𝐸 𝑧𝑆 <

∑
𝑆⊆𝐸 𝑦𝑆 , this contradicts the choice of (®𝑦, ®𝛼).

Thus, we have shown that (®𝑦, ®𝛼) satisfies properties 1–3 and 𝑦𝐶 = 1 for all 𝐶 ∈ C. Since we have
𝛼𝑣 = −

∑
𝐶∈C:𝐵 (𝑣) ∈𝐶 𝑦𝐶 , it follows that 𝛼𝑣 = −| {𝐶 ∈ C : 𝐵(𝑣) ∈ 𝐶 } | for each 𝑣 ∈ 𝑉 . □

For any chain C, we will now define a subset 𝐸 (C) of the ground set 𝐸 that will be used in our

algorithm. The construction of 𝐸 (C) is inspired by the construction of an analogous edge subset in

the popular assignment algorithm [21].

For a chain C = {𝐶1,𝐶2, · · · ,𝐶𝑝 } with ∅ ⊊ 𝐶1 ⊊ · · · ⊊ 𝐶𝑝 = 𝐸, define

levC (𝑒) = the index 𝑖 such that 𝑒 ∈ 𝐶𝑖 \𝐶𝑖−1 for any 𝑒 ∈ 𝐸,
lev∗C (𝑣) = max { levC (𝑒) : 𝑒 ∈ 𝐸𝑣 } for any 𝑣 ∈ 𝑉 ,

where we let 𝐶0 = ∅. Thus every element 𝑒 ∈ 𝐸 has a level in {1, . . . , 𝑝} associated with it, which is

the minimum subscript 𝑖 such that 𝑒 ∈ 𝐶𝑖 (where𝐶𝑖 ∈ C). Furthermore, each 𝑣 ∈ 𝑉 has a lev∗C-value
which is the highest level of any element in 𝐸𝑣 .

Define 𝐸 (C) ⊆ 𝐸 as follows. For each 𝑣 ∈ 𝑉 , an element 𝑒 ∈ 𝐸𝑣 belongs to 𝐸 (C) if one of the
following two conditions holds:

• levC (𝑒) = lev∗C (𝑣) and there is no element 𝑒′ ∈ 𝐸𝑣 such that levC (𝑒′) = lev∗C (𝑣) and 𝑒′ ≻𝑣 𝑒 ;
• levC (𝑒) = lev∗C (𝑣) − 1 and there is no element 𝑒′ ∈ 𝐸𝑣 such that levC (𝑒′) = lev∗C (𝑣) − 1 and

𝑒′ ≻𝑣 𝑒 , and moreover, 𝑒 ≻𝑣 𝑓 for every 𝑓 ∈ 𝐸𝑣 with levC (𝑓) = lev∗C (𝑣).
In other words, 𝑒 ∈ 𝐸𝑣 belongs to 𝐸 (C) if either (i) 𝑒 is a maximal element in 𝐸𝑣 with respect to ≻𝑣

among those at level lev∗C (𝑣) or (ii) 𝑒 is a maximal element in 𝐸𝑣 among those at level lev∗C (𝑣) − 1

and 𝑣 strictly prefers 𝑒 to all elements at level lev∗C (𝑣). From Lemma 2.1, we obtain the following

useful characterization of popular common bases.

Lemma 2.2. A common base 𝐵 is popular if and only if there exists a chain C = {𝐶1, . . . ,𝐶𝑝 } such
that ∅ ⊊ 𝐶1 ⊊ · · · ⊊ 𝐶𝑝 = 𝐸, 𝐵 ⊆ 𝐸 (C), and span(𝐵 ∩𝐶𝑖) = 𝐶𝑖 for all 𝐶𝑖 ∈ C.

The proof is given below. Recall that for a popular common base 𝐵, we defined its dual certificate
as a dual optimal solution (®𝑦, ®𝛼) to LP2 that satisfies properties 1–4 in Lemma 2.1. As shown in the

proof of Lemma 2.2, we can obtain such a solution (®𝑦, ®𝛼) from a chain satisfying the properties in

12 Kavitha, Makino, Schlotter, and Yokoi

Lemma 2.2. We therefore will also use the term dual certificate to refer to a chain as described in

Lemma 2.2.

Proof of Lemma 2.2. We first show the existence of a desired chain C for a popular common

base 𝐵. Since 𝐵 is popular, we know from Lemma 2.1 that there exists an optimal solution (®𝑦, ®𝛼) to
LP2 such that properties 1–4 hold, where C is the support of ®𝑦. Since the properties ∅ ⊊ 𝐶1 ⊊ · · · ⊊
𝐶𝑝 = 𝐸 and span(𝐵 ∩𝐶𝑖) = 𝐶𝑖 (∀𝐶𝑖 ∈ C) directly follow from properties 3 and 2, respectively, it

remains to show that 𝐵 ⊆ 𝐸 (C).
Since (®𝑦, ®𝛼) is a feasible solution of LP2, we have

∑
𝑆 :𝑒∈𝑆 𝑦𝑆 + 𝛼𝑣 ≥ wt𝐵 (𝑒) for every 𝑒 ∈ 𝐸𝑣 with

𝑣 ∈ 𝑉 . By property 4, the left-hand side can be expressed as

| {𝐶𝑖 ∈ C : 𝑒 ∈ 𝐶𝑖 } | − | {𝐶𝑖 ∈ C : 𝐵(𝑣) ∈ 𝐶𝑖 } | = (𝑝 − levC (𝑒) + 1) − (𝑝 − levC (𝐵(𝑣)) + 1)
= levC (𝐵(𝑣)) − levC (𝑒).

Thus it is equivalent to the condition that for every 𝑒 ∈ 𝐸𝑣 :

levC (𝐵(𝑣)) − levC (𝑒) ≥ wt𝐵 (𝑒) =

1 if 𝑒 ≻𝑣 𝐵(𝑣);
0 if 𝑒 ∼𝑣 𝐵(𝑣);
−1 if 𝑒 ≺𝑣 𝐵(𝑣).

(1)

In particular, this holds for an element 𝑒′ with levC (𝑒′) = lev∗C (𝑣), and hence we have levC (𝐵(𝑣)) ≥
lev∗C (𝑣) − 1. Since levC (𝐵(𝑣)) ≤ lev∗C (𝑣) by 𝐵(𝑣) ∈ 𝐸𝑣 , levC (𝐵(𝑣)) is either lev

∗
C (𝑣) or lev

∗
C (𝑣) − 1.

• If levC (𝐵(𝑣)) = lev∗C (𝑣), then for any 𝑒 ∈ 𝐸𝑣 with levC (𝑒) = lev∗C (𝑣), the left-hand side

of (1) is 0, and hence it must be the case that either 𝐵(𝑣) ≻𝑣 𝑒 or 𝐵(𝑣) ∼𝑣 𝑒 . Hence 𝐵(𝑣) is a
maximal element in { 𝑒 ∈ 𝐸𝑣 : levC (𝑒) = lev∗C (𝑣) } with respect to ≻𝑣 .
• If levC (𝐵(𝑣)) = lev∗C (𝑣) − 1, then we can similarly show that 𝐵(𝑣) is a maximal element in

the set { 𝑒 ∈ 𝐸𝑣 : levC (𝑒) = lev∗C (𝑣) − 1 } with respect to ≻𝑣 . Furthermore, in this case, for

any 𝑒 ∈ 𝐸𝑣 with levC (𝑒) = lev∗C (𝑣), the left-hand side of (1) is −1, and hence 𝐵(𝑣) ≻𝑣 𝑒 must

hold.

Therefore, in either case, we have 𝐵(𝑣) ∈ 𝐸 (C), which implies that 𝐵 ⊆ 𝐸 (C).

For the converse, suppose that C = {𝐶1, . . . ,𝐶𝑝 } is a chain such that ∅ ⊊ 𝐶1 ⊊ · · · ⊊ 𝐶𝑝 = 𝐸,

𝐵 ⊆ 𝐸 (C), and span(𝐵 ∩𝐶𝑖) = 𝐶𝑖 for all 𝐶𝑖 ∈ C. Define ®𝑦 by 𝑦𝐶𝑖
= 1 for every 𝐶𝑖 ∈ C and 𝑦𝑆 = 0

for all 𝑆 ∈ 2
𝑆 \ C. We also define ®𝛼 by 𝛼𝑣 = −| {𝐶 ∈ C : 𝐵(𝑣) ∈ 𝐶 } | for any 𝑣 ∈ 𝑉 . Then (®𝑦, ®𝛼)

satisfies properties 1–4 given in Lemma 2.1, and these properties also imply that the objective value

is 0. Thus it is enough to show that (®𝑦, ®𝛼) is a feasible solution to LP2, because it implies that 𝐵

is a popular common base by Lemma 2.1. Observe that constraint (1) is satisfied for every 𝑣 ∈ 𝑉
and 𝑒 ∈ 𝐸𝑣 , which follows from 𝐵 ⊆ 𝐸 (C). Since it is equivalent to the constraint in LP2 for 𝑣 ∈ 𝑉
and 𝑒 ∈ 𝐸𝑣 , the proof is completed. □

3 OUR ALGORITHM
We now present our main result. The popular common base algorithm seeks to construct a common

base 𝐵 along with its dual certificate C = {𝐶1, . . . ,𝐶𝑝 }, which is a chain satisfying (i) ∅ ⊊ 𝐶1 ⊊
· · · ⊊ 𝐶𝑝 = 𝐸, (ii) 𝐵 ⊆ 𝐸 (C), and (iii) span(𝐵 ∩𝐶𝑖) = 𝐶𝑖 for all 𝐶𝑖 ∈ C.
• The existence of such a chain C means that 𝐵 is popular by Lemma 2.2.

• Since a popular common base need not always exist, the algorithm also needs to detect

when a solution does not exist.

The algorithm starts with the chain C = {𝐸} and repeatedly updates it. It always maintains C as

a multichain, where a collection C = {𝐶1, · · · ,𝐶𝑝 } of indexed subsets of 𝐸 is called a multichain

Popular Arborescences and Their Matroid Generalization 13

if 𝐶1 ⊆ · · · ⊆ 𝐶𝑝 . Note that it is a chain if all the inclusions are strict. We will use the notations

levC , lev∗C , and 𝐸 (C) also for multichains, which are defined in the same manner as for chains.

During the algorithm’s execution, C = {𝐶1, . . . ,𝐶𝑝 } is always a multichain with 𝐶𝑝 = 𝐸 and

span(𝐶𝑖) = 𝐶𝑖 for all 𝐶𝑖 ∈ C. Note that when span(𝐶𝑖) = 𝐶𝑖 holds, for any set 𝐵 ⊆ 𝐸, the condition
span(𝐵 ∩ 𝐶𝑖) = 𝐶𝑖 in (iii) above is equivalent to |𝐵 ∩ 𝐶𝑖 | = rank(𝐶𝑖). Furthermore, as explained

later, any multichain can be modified to a chain that satisfies condition (i) preserving the remaining

conditions (ii) and (iii). Therefore, we can obtain a desired chain if |𝐵 ∩𝐶𝑖 | = rank(𝐶𝑖) is attained
for all 𝐶𝑖 ∈ C for some common base 𝐵 ⊆ 𝐸 (C) in the algorithm.

Lex-maximal common independent set. In order to determine the existence of a common base

𝐵 ⊆ 𝐸 (C) that satisfies |𝐵 ∩ 𝐶𝑖 | = rank(𝐶𝑖) for all members 𝐶𝑖 ∈ C of the chain, the algorithm

computes a lex-maximal common independent set 𝐼 in 𝐸 (C). That is, 𝐼 is a common independent set

whose 𝑝-tuple (|𝐼 ∩𝐶1 |, . . . , |𝐼 ∩𝐶𝑝 |) is lexicographically maximum among all common independent

sets in 𝐸 (C). If (|𝐼 ∩ 𝐶1 |, . . . , |𝐼 ∩ 𝐶𝑝 |) = (rank(𝐶1), . . . , rank(𝐶𝑝)), then we can show that 𝐼 is a

popular common base
5
; otherwise the multichain C is updated. We describe the algorithm as

Algorithm 1; recall that rank(𝐸) = |𝑉 |.

Algorithm 1 The popular common base algorithm

1: Initialize 𝑝 = 1 and 𝐶1 = 𝐸. ⊲ Initially we set C = {𝐸}.
2: while 𝑝 ≤ |𝑉 | do
3: Compute the subset 𝐸 (C) of 𝐸 from the current multichain C.
4: Find a common independent set 𝐼 that lexicographically maximizes (|𝐼 ∩𝐶1 |, . . . , |𝐼 ∩𝐶𝑝 |)

subject to 𝐼 ⊆ 𝐸 (C).
5: if |𝐼 ∩𝐶𝑖 | = rank(𝐶𝑖) for every 𝑖 = 1, . . . , 𝑝 then return 𝐼 .

6: Let 𝑘 be the minimum index such that |𝐼 ∩𝐶𝑘 | < rank(𝐶𝑘).
7: Update 𝐶𝑘 ← span(𝐼 ∩𝐶𝑘).
8: if 𝑘 = 𝑝 then 𝑝 ← 𝑝 + 1, 𝐶𝑝 ← 𝐸, and C ← C ∪ {𝐶𝑝 }.
9: Return “The input instance has no popular common base.”

We include some example instances of the popular arborescence problem in Appendix A to

illustrate the working of Algorithm 1 on the arborescence setting.

The following observation is important.

Observation 3.1. During the execution of Algorithm 1, C is always amultichain and span(𝐶𝑖) = 𝐶𝑖

holds for all 𝐶𝑖 ∈ C.

Proof. When𝐶𝑘 is updated, it becomes smaller, but the inclusion𝐶𝑘−1 ⊆ 𝐶𝑘 is preserved. Indeed,

since |𝐼 ∩𝐶𝑘−1 | = rank(𝐶𝑘−1) by the choice of 𝑘 , we have 𝐶𝑘−1 ⊆ span(𝐼 ∩𝐶𝑘−1) ⊆ span(𝐼 ∩𝐶𝑘),
for the set𝐶𝑘 before the update. Hence the updated value for𝐶𝑘 , i.e., span(𝐼 ∩𝐶𝑘), is still a superset
of 𝐶𝑘−1, and thus C remains a multichain.

Since any 𝐶𝑖 ∈ C is defined in the form span(𝑋) for some 𝑋 ⊆ 𝐸 (note that 𝐸 = span(𝐸)) and
span(span(𝑋)) = span(𝑋) holds in general, we have span(𝐶𝑖) = 𝐶𝑖 . □

Running time of the algorithm. Before showing the correctness of the algorithm, here we briefly

discuss the time complexity of Algorithm 1 on an instance J with |𝐸 | =𝑚 and |𝑉 | = 𝑛. We assume

that the partial order ≻𝑣 over 𝐸𝑣 associated with each 𝑣 ∈ 𝑉 is represented by a Hasse diagram,

given as part of J . Then Line 3 can be implemented in 𝑂 (|J |) time. Note that a Hasse diagram

5
Observe that the common independent set 𝐼 will be a common base since |𝐼 ∩ 𝐸 | = |𝐼 ∩𝐶𝑝 | = rank(𝐶𝑝) = rank(𝐸) = |𝑉 | .

14 Kavitha, Makino, Schlotter, and Yokoi

over 𝐸𝑣 may require Θ(|𝐸𝑣 |2) space, so the total size of Hasse diagrams may add up to Θ(𝑚2). Line 4
can be executed by solving an instance of the weighted matroid intersection problem, for which

various efficient algorithms are known (see, e.g., [13, 19, 33]). Here, we assume that the matroid

𝑀 = (𝐸,I) is given by an independence oracle or a rank function oracle. Lines 5–8 require 𝑂 (𝑚)
time. To bound the number of iterations of the while loop, consider the value

∑𝑛
𝑖=1

rank(𝐶𝑖), where
we let rank(𝐶𝑖) = 𝑛 for each𝐶𝑖 that is undefined. This value is 𝑛

2
at the beginning and decreases in

every iteration. Thus, the number of iterations is at most 𝑛2
. These imply that Algorithm 1 can be

implemented in polynomial time.

In the case of the popular arborescence problem, our input is a directed rooted graph with vertex

preferences and we can provide a more precise complexity analysis. In this case, Line 4 can be done

by a max-weight branching algorithm [2, 5, 11], which can be implemented to run in 𝑂 (𝑚 log𝑛)
by Tarjan’s algorithm [35]. Then, Algorithm 1 runs in 𝑂 (𝑛2 (𝑚 log𝑛 + |J |)) time, where the total

size of Hasse diagrams of input preferences may add up to Θ(𝑛3) in this case. This running time

can be further simplified to 𝑂 (𝑛2𝑚 log𝑛) if preferences are weak rankings, which can be simply

represented as preference lists.

Correctness of the algorithm. Suppose that a common independent set 𝐼 is returned by the

algorithm. Then 𝐼 is a common base (see Footnote 5) with 𝐼 ⊆ 𝐸 (C), where C is the current

multichain. Since 𝐼 was returned by the algorithm, we have |𝐼 ∩𝐶𝑖 | = rank(𝐶𝑖) for all 𝐶𝑖 ∈ C and

this implies span(𝐼 ∩𝐶𝑖) = 𝐶𝑖 for all 𝐶𝑖 ∈ C by Observation 3.1.

In order to prove that 𝐼 is a popular common base, let us first prune the multichain C to a

chain C′, i.e., C′ contains a single occurrence of each 𝐶𝑖 ∈ C; we will also remove any occurrence

of ∅ from C′. Observe that 𝐸 (C) ⊆ 𝐸 (C′): indeed, if 𝐶𝑖 = 𝐶𝑖+1 in C, then no element 𝑒 ∈ 𝐸 can

have levC (𝑒) = 𝑖 + 1, and hence no element gets deleted from 𝐸 (C) by pruning 𝐶𝑖+1 from C. Thus
𝐼 ⊆ 𝐸 (C) ⊆ 𝐸 (C′). This implies that C′ = {𝐶′

1
, . . . ,𝐶′

𝑝′ } satisfies ∅ ⊊ 𝐶′1 ⊊ · · · ⊊ 𝐶′𝑝′ = 𝐸, 𝐼 ⊆ 𝐸 (C′),
and span(𝐼 ∩𝐶′𝑖) = 𝐶′𝑖 for all 𝐶′𝑖 ∈ C′.6 Hence 𝐼 is a popular common base by Lemma 2.2.

We will now show that the algorithm always returns a popular common base, if the input instance

admits one. Let 𝐵 be any popular common base of𝑀part and𝑀 and let D = {𝐷1, . . . , 𝐷𝑞} be a dual
certificate for 𝐵.

Claim 3.2. We have 𝑞 ≤ |𝑉 | where |D| = 𝑞.

Proof. From the definition of dual certificate, we have ∅ ⊊ 𝐷1 ⊊ · · · ⊊ 𝐷𝑞 = 𝐸 and span(𝐷𝑖) =
𝐷𝑖 for each 𝐷𝑖 . This implies 0 < rank(𝐷1) < · · · < rank(𝐷𝑞). Since rank(𝐷𝑞) = rank(𝐸) = |𝑉 |, we
obtain 𝑞 ≤ |𝑉 |. □

The following crucial lemma shows an invariant of the algorithm that holds for the multichain

C = {𝐶1, . . . ,𝐶𝑝 } constructed in the algorithm and a dual certificate D = {𝐷1, . . . , 𝐷𝑞} of any
popular common base 𝐵. The proof will be given in this section.

Lemma 3.3. During the execution of Algorithm 1, we always have 𝑝 ≤ 𝑞 and𝐷𝑖 ⊆ 𝐶𝑖 for 𝑖 = 1, . . . , 𝑝 .

If 𝑝 = |𝑉 | + 1 occurs in Algorithm 1, then Lemma 3.3 implies 𝑞 ≥ |𝑉 | + 1. This contradicts

Claim 3.2. Hence it has to be the case that the input instance has no popular common base when

𝑝 = |𝑉 | + 1. Thus, assuming Lemma 3.3, the correctness of Algorithm 1 follows.

Before we prove Lemma 3.3, we need the following claim on 𝐸 (C) and 𝐸 (D).

Claim 3.4. Assume 𝑝 ≤ 𝑞 and 𝐷𝑖 ⊆ 𝐶𝑖 for 𝑖 = 1, . . . , 𝑝 . For each 𝑒 ∈ 𝐸, if levC (𝑒) = levD (𝑒) and
𝑒 ∈ 𝐸 (D), then 𝑒 ∈ 𝐸 (C).
6
In fact, it will turn out that C = C′ , i.e., the final C obtained by the algorithm itself is a dual certificate of 𝐼 if the algorithm

returns a common base 𝐼 . This fact follows from Lemma 3.3 (with C′ substituted for D).

Popular Arborescences and Their Matroid Generalization 15

Proof. Suppose for the sake of contradiction that 𝑒 fulfills the conditions of the claim, but

𝑒 ∉ 𝐸 (C). Let 𝑒 ∈ 𝐸𝑣 . It follows from the definition of 𝐸 (C) that there exists an element 𝑒′ ∈ 𝐸𝑣 such
that one of the following three conditions holds: (a) levC (𝑒′) ≥ levC (𝑒) +2, (b) levC (𝑒′) = levC (𝑒) +1

and 𝑒 ⊁𝑣 𝑒
′
, or (c) levC (𝑒′) = levC (𝑒) and 𝑒′ ≻𝑣 𝑒 .

Because 𝐷𝑖 ⊆ 𝐶𝑖 for each 𝑖 ∈ {1, . . . , 𝑝}, we have levD (𝑒′) ≥ levC (𝑒′). Since levD (𝑒) = levC (𝑒),
the existence of such an 𝑒′ ∈ 𝐸𝑣 implies 𝑒 ∉ 𝐸 (D), a contradiction. Thus we have 𝑒 ∈ 𝐸 (C). □

The proof of Lemma 3.3 will use the following fact, known as the strong exchange property, that

is satisfied by any matroid.
7

Fact 3.5 (Brualdi [4]). For any 𝑋,𝑌 ∈ I and 𝑒 ∈ 𝑋 \𝑌 , if 𝑌 + 𝑒 ∉ I, then there exists an element
𝑓 ∈ 𝑌 \ 𝑋 such that 𝑋 − 𝑒 + 𝑓 and 𝑌 + 𝑒 − 𝑓 are in I.

Now we provide the proof of Lemma 3.3. As mentioned above, this completes the proof of the

correctness of our algorithm, and hence we can conclude Theorem 1.5.

Proof of Lemma 3.3. Algorithm 1 starts with C = {𝐸}. Then the conditions in Lemma 3.3 hold

at the beginning. We show by induction that they are preserved through the algorithm.

It is easy to see that the condition 𝑝 ≤ 𝑞 is preserved. Indeed, whenever Algorithm 1 is going

to increase 𝑝 (in line 8), it is the case that 𝑝 + 1 ≤ 𝑞 because 𝐷𝑝 ⊆ 𝐶𝑝 ⊊ 𝐸 = 𝐷𝑞 by the induction

hypothesis. Thus 𝑝 ≤ 𝑞 is maintained in the algorithm.

We now show that𝐷𝑖 ⊆ 𝐶𝑖 (𝑖 = 1, . . . , 𝑝) is maintained. Note that C is updated in lines 7 or 8. The

update in line 8 (adding𝐶𝑝 = 𝐸) clearly preserves the condition. We complete the proof by showing

that the update in line 7 also preserves the condition, i.e., we show the following statement.

• Let C = {𝐶1, . . . ,𝐶𝑝 } be a multichain with 𝐶𝑝 = 𝐸 such that 𝑝 ≤ 𝑞 and 𝐷𝑖 ⊆ 𝐶𝑖 for

𝑖 = 1, . . . , 𝑝 . Suppose that the following two conditions hold.

(1) 𝐼 is a lex-maximal common independent set subject to 𝐼 ⊆ 𝐸 (C).
(2) span(𝐼 ∩𝐶𝑖) = 𝐶𝑖 for 𝑖 = 1, . . . , 𝑘 − 1, and span(𝐼 ∩𝐶𝑘) ⊊ 𝐶𝑘 .

Then 𝐷𝑘 ⊆ span(𝐼 ∩𝐶𝑘).
To show this statement, assume for contradiction that 𝐷𝑘 ⊈ span(𝐼 ∩𝐶𝑘).

We will first show the existence of distinct elements 𝑒1 and 𝑓1 such that 𝑒1, 𝑓1 ∈ 𝐸𝑣1
for some

𝑣1 ∈ 𝑉 and 𝑓1 ∈ 𝐵 \ 𝐼 while 𝑒1 ∈ 𝐼 \ 𝐵. Then we will use the pair 𝑒1, 𝑓1 to show the existence

of another pair 𝑒2, 𝑓2 such that 𝑒2, 𝑓2 ∈ 𝐸𝑣2
where 𝑓2 ≠ 𝑓1 and 𝑓2 ∈ 𝐵 \ 𝐼 while 𝑒2 ∈ 𝐼 \ 𝐵. In this

manner, for any 𝑡 ∈ Z+ we will be able to show distinct elements 𝑓1, 𝑓2, . . . , 𝑓𝑡 that belong to 𝐵.

However, 𝐵 has only |𝑉 | elements, a contradiction. Then we can conclude that our assumption

𝐷𝑘 ⊈ span(𝐼 ∩𝐶𝑘) is wrong. The following is our starting claim.

Claim 3.6. There exists 𝑣1 ∈ 𝑉 such that there are 𝑒1, 𝑓1 ∈ 𝐸𝑣1
satisfying the following properties:

(1) 𝑓1 ∈ 𝐵 \ 𝐼 , 𝐼1 B (𝐼 ∩𝐶𝑘) + 𝑓1 ∈ I, 𝐼1 ⊆ 𝐸 (C), and levC (𝑓1) = 𝑘 ,
(2) 𝑒1 ∈ 𝐼1 \ 𝐵 and levC (𝑒1) = levD (𝑒1) ≤ 𝑘 .

Claim proof. SinceD is a dual certificate of𝐵, we have span(𝐵∩𝐷𝑘) = 𝐷𝑘 . So𝐷𝑘 ⊈ span(𝐼∩𝐶𝑘)
implies that span(𝐵 ∩ 𝐷𝑘) ⊈ span(𝐼 ∩𝐶𝑘). Hence 𝐵 ∩ 𝐷𝑘 ⊈ span(𝐼 ∩𝐶𝑘). So there exists 𝑓1 such
that 𝑓1 ∈ 𝐵 ∩ 𝐷𝑘 and 𝑓1 ∉ span(𝐼 ∩𝐶𝑘).
Since 𝐷𝑘 ⊆ 𝐶𝑘 , we have 𝑓1 ∈ 𝐷𝑘 ⊆ 𝐶𝑘 . We also have 𝐷𝑘−1 ⊆ 𝐶𝑘−1 = span(𝐼 ∩ 𝐶𝑘−1) ⊆

span(𝐼 ∩𝐶𝑘) ∌ 𝑓1. Hence 𝑓1 ∈ 𝐶𝑘 \𝐶𝑘−1 and 𝑓1 ∈ 𝐷𝑘 \ 𝐷𝑘−1, i.e., levC (𝑓1) = levD (𝑓1) = 𝑘 .

7
The original statement in [4] claims this property only for pairs of bases (maximal independent sets), but it is equivalent

to Fact 3.5. Indeed, if we consider the rank(𝐸)-truncation of the direct sum of (𝐸, I) and a free matroid whose rank is

rank(𝐸) , then the axiom in [4] applied to this new matroid implies Fact 3.5 for (𝐸, I) .

16 Kavitha, Makino, Schlotter, and Yokoi

Since 𝑓1 ∈ 𝐵 ⊆ 𝐸 (D) and levC (𝑓1) = levD (𝑓1), we have 𝑓1 ∈ 𝐸 (C) by Claim 3.4. As 𝐼 ⊆ 𝐸 (C), we
then have 𝐼1 B (𝐼 ∩ 𝐶𝑘) + 𝑓1 ⊆ 𝐸 (C). Also, 𝐼1 ∈ I by 𝑓1 ∉ span(𝐼 ∩ 𝐶𝑘). Since levC (𝑓1) = 𝑘 , the
set 𝐼1 = (𝐼 ∩𝐶𝑘) + 𝑓1 is lexicographically better than 𝐼 . Then, the lex-maximality of 𝐼 implies that

𝐼1 must be dependent in 𝑀part, i.e., there exists 𝑒1 ∈ 𝐼1 such that 𝑒1 ≠ 𝑓1 and 𝑒1, 𝑓1 ∈ 𝐸𝑣1
for some

𝑣1 ∈ 𝑉 .
We have levC (𝑒1) ≤ 𝑘 as 𝑒1 ∈ 𝐼1− 𝑓1 = 𝐼 ∩𝐶𝑘 . Since 𝑓1 ∈ 𝐸𝑣1

∩𝐵 and |𝐸𝑣1
∩𝐵 | ≤ 1, we have 𝑒1 ∉ 𝐵.

Note that 𝑓1 ∈ 𝐸 (D) implies levD (𝑓1) ≥ levD (𝑒1) −1 and 𝑒1 ∈ 𝐸 (C) implies levC (𝑒1) ≥ levC (𝑓1) −1.

Note also that, for any element 𝑒 ∈ 𝐸, we have levD (𝑒) ≥ levC (𝑒) because 𝐷𝑖 ⊆ 𝐶𝑖 for all 𝑖 .

• If 𝑓1 ≻𝑣1
𝑒1, then levC (𝑒1) > levC (𝑓1) by 𝑒1 ∈ 𝐸 (C),8 and hence levD (𝑓1) ≥ levD (𝑒1) − 1 ≥

levC (𝑒1) − 1 ≥ levC (𝑓1). As we have levD (𝑓1) = levC (𝑓1), all the equalities hold.
• If 𝑒1 ≻𝑣1

𝑓1, then levD (𝑓1) > levD (𝑒1) by 𝑓1 ∈ 𝐸 (D), and hence levD (𝑓1) ≥ levD (𝑒1) + 1 ≥
levC (𝑒1) + 1 ≥ levC (𝑓1). As we have levD (𝑓1) = levC (𝑓1), all the equalities hold.
• If 𝑓1 ∼𝑣1

𝑒1, then levC (𝑒1) ≥ levC (𝑓1) by 𝑒1 ∈ 𝐸 (C); also levD (𝑓1) ≥ levD (𝑒1) by 𝑓1 ∈ 𝐸 (D).
Hence, we have levD (𝑓1) ≥ levD (𝑒1) ≥ levC (𝑒1) ≥ levC (𝑓1). Since levD (𝑓1) = levC (𝑓1), all
the equalities hold.

Thus in all the cases, we have levC (𝑒1) = levD (𝑒1) ≤ 𝑘 and 𝑒1 ∈ 𝐼1 \ 𝐵. �

Our next claim is the following. Recall that 𝐼1 B (𝐼 ∩𝐶𝑘) + 𝑓1 ∈ I.

Claim 3.7. There exists 𝑣2 ∈ 𝑉 such that there are 𝑒2, 𝑓2 ∈ 𝐸𝑣2
satisfying the following properties:

(1) 𝑓2 ∈ 𝐵 \ 𝐼1, 𝐼2 B 𝐼1 − 𝑒1 + 𝑓2 ∈ I, 𝐼2 ⊆ 𝐸 (C), and levC (𝑒1) = levC (𝑓2),
(2) 𝑒2 ∈ 𝐼2 \ 𝐵 and levC (𝑒2) = levD (𝑒2) ≤ 𝑘 .

Claim proof. We know from Claim 3.6 that 𝐼1 = (𝐼 ∩ 𝐶𝑘) + 𝑓1 ∈ I. Observe that the set 𝐼1
satisfies span(𝐼1 ∩𝐶𝑖) = span(𝐼 ∩𝐶𝑖) = 𝐶𝑖 for each 1 ≤ 𝑖 ≤ 𝑘 − 1; this is because 𝐼1 ∩𝐶𝑖 = 𝐼 ∩𝐶𝑖

for each 𝑖 ≤ 𝑘 − 1. Let us apply the exchange axiom in Fact 3.5 to 𝐼1, 𝐵 ∈ I and 𝑒1 ∈ 𝐼1 \ 𝐵. Since 𝐵
is maximal in I, we have 𝐵 + 𝑒1 ∉ I, and hence there exists 𝑓2 ∈ 𝐵 \ 𝐼1 such that 𝐼1 − 𝑒1 + 𝑓2 and
𝐵 + 𝑒1 − 𝑓2 are in I.

Using that span(𝐵∩𝐷𝑖) = 𝐷𝑖 for 1 ≤ 𝑖 ≤ 𝑞, from 𝑒1 ∉ span(𝐵− 𝑓2) we obtain levD (𝑓2) ≤ levD (𝑒1):
indeed, assuming levD (𝑓2) = ℓ ≥ 2 we get 𝐷ℓ−1 = span(𝐵 ∩ 𝐷ℓ−1) ⊆ span(𝐵 − 𝑓2), which
implies 𝑒1 ∉ 𝐷ℓ−1 and hence also levD (𝑒1) ≥ ℓ = levD (𝑓2). Similarly, from 𝑓2 ∉ span(𝐼1 − 𝑒1),
levC (𝑒1) ≤ 𝑘 , and span(𝐼1 ∩𝐶𝑖) = 𝐶𝑖 for 1 ≤ 𝑖 ≤ 𝑘 − 1, we obtain levC (𝑒1) ≤ levC (𝑓2). Thus we
have levC (𝑒1) ≤ levC (𝑓2) ≤ levD (𝑓2) ≤ levD (𝑒1) = levC (𝑒1), implying all the equalities. Hence we

have

𝑓2 ∈ 𝐵 \ 𝐼1, levC (𝑓2) = levD (𝑓2), levC (𝑒1) = levC (𝑓2).
As 𝑓2 ∈ 𝐵 ⊆ 𝐸 (D), Claim 3.4 implies 𝑓2 ∈ 𝐸 (C).

Observe that 𝐼2 B 𝐼1 − 𝑒1 + 𝑓2 = (𝐼 ∩ 𝐶𝑘) + 𝑓1 − 𝑒1 + 𝑓2 ⊆ 𝐸 (C), and recall 𝐼2 ∈ I. Since
levC (𝑒1) = levC (𝑓2) and levC (𝑓1) = 𝑘 , 𝐼2 is lexicographically better than 𝐼 . This implies that 𝐼2 must

be dependent in 𝑀part. By the same argument as used in Claim 3.6 to show levC (𝑒1) = levD (𝑒1),
we see that there exists 𝑒2 such that 𝑒2, 𝑓2 ∈ 𝐸𝑣2

for some 𝑣2 ∈ 𝑉 , satisfying
𝑒2 ∈ 𝐼2 \ 𝐵, levC (𝑒2) = levD (𝑒2) ≤ 𝑘.

This completes the proof of this claim. �

Note that 𝑓2 ≠ 𝑓1 since 𝑓1 ∈ 𝐼1 and 𝑓2 ∈ 𝐵 \ 𝐼1. Let 𝑡 ∈ Z+. As shown in Claim 3.7 for 𝑡 = 3, suppose

we have constructed for 2 ≤ 𝑗 ≤ 𝑡 − 1:

8
Actually, the case 𝑓1 ≻𝑣1

𝑒1 is impossible because levC (𝑒1) > levC (𝑓1) contradicts levC (𝑒1) ≤ 𝑘 = levC (𝑓1) . We write

the proof in this form because the proofs of Claims 3.7 and 3.8 refer to the argument here to apply it to 𝑒 𝑗 , 𝑓𝑗 , where

levC (𝑓𝑗) = 𝑘 is not assumed.

Popular Arborescences and Their Matroid Generalization 17

(1) 𝑓𝑗 ∈ 𝐵 \ 𝐼 𝑗−1, 𝐼 𝑗 B 𝐼 𝑗−1 − 𝑒 𝑗−1 + 𝑓𝑗 ∈ I, 𝐼 𝑗 ⊆ 𝐸 (C), and levC (𝑒 𝑗−1) = levC (𝑓𝑗),
(2) 𝑒 𝑗 ∈ 𝐼 𝑗 \ 𝐵 and levC (𝑒 𝑗) = levD (𝑒 𝑗) ≤ 𝑘 .
For each 𝑗 with 2 ≤ 𝑗 ≤ 𝑡 − 1, note that 𝐼 𝑗 satisfies span(𝐼 𝑗 ∩𝐶𝑖) = span(𝐼 ∩𝐶𝑖) = 𝐶𝑖 for each 𝑖

with 1 ≤ 𝑖 ≤ 𝑘 − 1. Indeed, since levC (𝑒 𝑗−1) = levC (𝑓𝑗), we have |𝐼 𝑗 ∩𝐶𝑖 | = |𝐼 ∩𝐶𝑖 | = rank(𝐶𝑖) for
each 𝑖 with 1 ≤ 𝑖 ≤ 𝑘 − 1. This implies span(𝐼 𝑗 ∩𝐶𝑖) = 𝐶𝑖 . Claim 3.8 generalizes Claim 3.7 for any

𝑡 ≥ 3.

Claim 3.8. There exists 𝑣𝑡 ∈ 𝑉 such that there are 𝑒𝑡 , 𝑓𝑡 ∈ 𝐸𝑣𝑡 satisfying the following properties:
(1) 𝑓𝑡 ∈ 𝐵 \ 𝐼𝑡−1, 𝐼𝑡 B 𝐼𝑡−1 − 𝑒𝑡−1 + 𝑓𝑡 ∈ I, 𝐼𝑡 ⊆ 𝐸 (C), and levC (𝑒𝑡−1) = levC (𝑓𝑡),
(2) 𝑒𝑡 ∈ 𝐼𝑡 \ 𝐵 and levC (𝑒𝑡) = levD (𝑒𝑡) ≤ 𝑘 .

Claim proof. Let us apply the exchange axiom in Fact 3.5 to 𝐼𝑡−1, 𝐵 ∈ I and 𝑒𝑡−1 ∈ 𝐼𝑡−1 \ 𝐵.
Since 𝐵 + 𝑒𝑡−1 ∉ I, there exists 𝑓𝑡 ∈ 𝐵 \ 𝐼𝑡−1 such that 𝐼𝑡−1 − 𝑒𝑡−1 + 𝑓𝑡 and 𝐵 + 𝑒𝑡−1 − 𝑓𝑡 are in I.
By the conditions span(𝐵 ∩ 𝐷𝑖) = 𝐷𝑖 for 1 ≤ 𝑖 ≤ 𝑞 we have levD (𝑓𝑡) ≤ levD (𝑒𝑡−1), and by

span(𝐼𝑡−1 ∩ 𝐶𝑖) = 𝐶𝑖 for 1 ≤ 𝑖 ≤ 𝑘 − 1 and levC (𝑒𝑡−1) ≤ 𝑘 we have levC (𝑒𝑡−1) ≤ levC (𝑓𝑡). Then
levC (𝑒𝑡−1) ≤ levC (𝑓𝑡) ≤ levD (𝑓𝑡) ≤ levD (𝑒𝑡−1) = levC (𝑒𝑡−1), and hence all the equalities hold.

So we have 𝑓𝑡 ∈ 𝐵 \ 𝐼𝑡−1, levC (𝑓𝑡) = levD (𝑓𝑡), and levC (𝑒𝑡−1) = levC (𝑓𝑡). As 𝑓𝑡 ∈ 𝐵 ⊆ 𝐸 (D),
Claim 3.4 implies 𝑓𝑡 ∈ 𝐸 (C).
Observe that 𝐼𝑡 B 𝐼𝑡−1 − 𝑒𝑡−1 + 𝑓𝑡 = (𝐼 ∩𝐶𝑘) + 𝑓1 − 𝑒1 + . . . + 𝑓𝑡−1 − 𝑒𝑡−1 + 𝑓𝑡 ⊆ 𝐸 (C), and recall

𝐼𝑡 ∈ I. Since levC (𝑒 𝑗−1) = levC (𝑓𝑗) for 2 ≤ 𝑗 ≤ 𝑡 and levC (𝑓1) = 𝑘 , the set 𝐼𝑡 is lexicographically
better than 𝐼 . This implies that 𝐼𝑡 must be dependent in 𝑀part. By the same argument as used in

Claim 3.6 to show levC (𝑒1) = levD (𝑒1), we see that there exists 𝑒𝑡 such that 𝑒𝑡 , 𝑓𝑡 ∈ 𝐸𝑣𝑡 for some 𝑣𝑡 ,

satisfying also 𝑒𝑡 ∈ 𝐼𝑡 \ 𝐵 and levC (𝑒𝑡) = levD (𝑒𝑡) ≤ 𝑘 . This completes the proof of this claim. �

Observe that 𝑓𝑡 is distinct from 𝑓1, . . . , 𝑓𝑡−1 since {𝑓1, . . . , 𝑓𝑡−1} ⊆ 𝐼𝑡−1 while 𝑓𝑡 ∈ 𝐵 \ 𝐼𝑡−1. Thus, for

each 𝑡 ∈ Z+, we have shown distinct elements 𝑓1, . . . , 𝑓𝑡 in 𝐵, contradicting that |𝐵 | ≤ |𝑉 |. Therefore,
it has to be the case that 𝐷𝑘 ⊆ span(𝐼 ∩𝐶𝑘).

This completes the proof of Lemma 3.3. □

4 POPULAR COMMON INDEPENDENT SET POLYTOPE
This section proves Corollary 1.6 and Theorem 1.7.

As a motivating example, we start by describing the popular colorful forest problem. Let

𝐺 = (𝑈 , 𝐸) be an undirected graph where 𝐸 = 𝐸1 ∪· · · · ∪· 𝐸𝑛 , i.e., 𝐸 is partitioned into 𝑛 color

classes. Equivalently, there are 𝑛 agents 1, . . . , 𝑛 where agent 𝑖 owns the elements in 𝐸𝑖 . For each 𝑖 ,

there is a partial order ≻𝑖 over elements in 𝐸𝑖 .

Recall that 𝑆 ⊆ 𝐸 is a colorful forest if (i) 𝑆 is a forest in 𝐺 and (ii) |𝑆 ∩ 𝐸𝑖 | ≤ 1 for every

𝑖 ∈ {1, . . . , 𝑛}. That is, we seek an acyclic network with diversity, i.e., there is at most one edge

from each color class. We refer to Section 1 on how every agent compares any pair of colorful

forests; for any pair of colorful forests 𝐹 and 𝐹 ′, let 𝜙 (𝐹, 𝐹 ′) be the number of agents that prefer

𝐹 to 𝐹 ′. A colorful forest 𝐹 is popular if 𝜙 (𝐹, 𝐹 ′) ≥ 𝜙 (𝐹 ′, 𝐹) for any colorful forest 𝐹 ′. The popular
colorful forest problem is to decide if a given instance 𝐺 admits a popular colorful forest or not.

Observe that a colorful forest is a common independent set in the intersection of the partition

matroid defined by 𝐸1 ∪· · · · ∪· 𝐸𝑛 and the graphic matroid of 𝐺 . Therefore, this problem is a special

case of the popular common independent set problem.

An input of the general popular common independent set problem is essentially the same as

for the popular common base problem: we are given a partition matroid 𝑀part over a set 𝐸 with

the partition classes of𝑀part being indexed by a finite set 𝑉 , and with each 𝑣 ∈ 𝑉 having a partial

order ≻𝑣 over the partition class 𝐸𝑣 ; we are also given an arbitrary matroid𝑀 = (𝐸,I). Here, it is
not necessarily assumed that the rank of𝑀 is |𝑉 |. We say that 𝑣 ∈ 𝑉 prefers a common independent

18 Kavitha, Makino, Schlotter, and Yokoi

set 𝐼 to a common independent set 𝐼 ′ if either (i) 𝐼 ∩ 𝐸𝑣 is a singleton while 𝐼 ′ ∩ 𝐸𝑣 is empty, or

(ii) both 𝐼 ∩ 𝐸𝑣 and 𝐼 ′ ∩ 𝐸𝑣 are singletons and 𝑣 prefers the element in 𝐼 ∩ 𝐸𝑣 to that in 𝐼 ′ ∩ 𝐸𝑣 . The
value 𝜙 (𝐼 , 𝐼 ′) denotes the number of indices in 𝑉 that prefer 𝐼 to 𝐼 ′.

Definition 4.1. A common independent set 𝐼 of the matroids𝑀part and𝑀 is popular if 𝜙 (𝐼 , 𝐼 ′) ≥
𝜙 (𝐼 ′, 𝐼) for all common independent sets 𝐼 ′.

We now show that Algorithm 1 solves the popular common independent set problem. To this end,

we will construct an auxiliary instance whose common bases correspond to common independent

sets of the original instance.

An auxiliary instance. For each 𝑣 ∈ 𝑉 , add a dummy element 𝑒𝑣 to 𝐸 and call the resulting ground

set 𝐸. The new partition matroid �̂�part is defined by the partition 𝐸 =
Ï

𝑣∈𝑉 (𝐸𝑣∪{𝑒𝑣}). Furthermore,

for each 𝑣 ∈ 𝑉 , the dummy element 𝑒𝑣 will be the worst element in 𝑣 ’s preference order ≻𝑣 , that
is, every 𝑓 ∈ 𝐸𝑣 satisfies 𝑓 ≻𝑣 𝑒𝑣 . To define the other new matroid �̂� , first we add the dummy

elements { 𝑒𝑣 : 𝑣 ∈ 𝑉 } to the ground set 𝐸 of𝑀 as free elements, i.e., for any 𝑣 ∈ 𝑉 , any set 𝑆 ⊆ 𝐸
excluding 𝑒𝑣 cannot span 𝑒𝑣 . As we want to reduce the current problem to the popular common
base problem, we further truncate the matroid with size |𝑉 |, i.e., all sets of size larger than |𝑉 | will
be deleted from the independent set family. Let �̂� denote the resultant matroid.

Observe that there exists a one-to-one correspondence between common independent sets of

𝑀part and𝑀 and common bases of �̂�part and �̂� . Suppose 𝐼 is a common independent set of𝑀part

and𝑀 and let𝑊 ⊆ 𝑉 be the set of indices 𝑣 ∈ 𝑉 with 𝐼 ∩ 𝐸𝑣 = ∅. Let 𝐵 = 𝐼 ∪⋃𝑣∈𝑊 {𝑒𝑣}. Then 𝐵 is

a common base of �̂�part and �̂� . Conversely, given a common base 𝐵 of �̂�part and �̂� , we can obtain

a common independent set 𝐼 of𝑀part and𝑀 by deleting the dummy elements.

Popularity in the original and auxiliary instances. Let 𝐼 and 𝐼 ′ be common independent sets of the

original matroids𝑀part and𝑀 and let 𝐵 and 𝐵′ be the common bases of the auxiliary matroids �̂�part

and �̂� that correspond to 𝐼 and 𝐼 ′, respectively. Observe that 𝜙 (𝐼 , 𝐼 ′) = 𝜙 (𝐵, 𝐵′). Thus, popular
common independent sets of 𝑀part and 𝑀 correspond to popular common bases of �̂�part and �̂� ,

and vice versa. Therefore, the popular common independent set problem reduces to the popular
common base problem, and hence can be solved by Algorithm 1. From this, Corollary 1.6 follows.

The popular common independent set polytope. Every popular common base 𝐵 of the auxiliary

matroids �̂�part and �̂� has a dual certificate as given in Lemma 2.1
9
and Lemma 2.2. We will now

show that dual certificates of the auxiliary instance are even more special than what is given in

Lemma 2.2—along with the properties described there, the following property is also satisfied.

Lemma 4.2. Let 𝐵 be a popular common base of the auxiliary matroids �̂�part and �̂� and let
C = {𝐶1, . . . ,𝐶𝑝 } be a dual certificate for 𝐵. Then 𝑝 ≤ 2.

Proof. Suppose not, i.e., 𝑝 ≥ 3. From the definition of a dual certificate C, we have ∅ ⊊
𝐶1 ⊊ 𝐶2 ⊊ · · · ⊊ 𝐶𝑝 = 𝐸 (see Lemma 2.2). We will now show that 𝐵 ∩ 𝐶1 = ∅. Since we have
span(𝐵∩𝐶1) = 𝐶1, this means𝐶1 = ∅; however this contradicts𝐶1 ≠ ∅. This will give us the desired
contradiction, proving 𝑝 ≤ 2.

In order to show that 𝐵 ∩𝐶1 = ∅, it suffices to prove that for each 𝑣 ∈ 𝑉 , the unique element in

𝐵 ∩ (𝐸𝑣 ∪ {𝑒𝑣}), denoted by 𝐵(𝑣), is not contained in 𝐶1.

• If 𝐵(𝑣) ≠ 𝑒𝑣 , then the dummy element 𝑒𝑣 is not in 𝐵. Since 𝑒𝑣 is not spanned by any set

𝑆 ⊆ 𝐸 with 𝑒𝑣 ∉ 𝑆 and rank(𝑆) < |𝑉 |, the condition span(𝐵 ∩ 𝐶 𝑗) = 𝐶 𝑗 , yielding also

|𝐵 ∩ 𝐶 𝑗 | = rank(𝐶 𝑗), for all 𝑗 = 1, 2, . . . , 𝑝 implies that 𝑒𝑣 ∉ 𝐶 𝑗 for any 𝑗 < 𝑝 . Hence

9
In LP1 and LP2 defined with respect to 𝐵, the set 𝐸𝑣 will be replaced by 𝐸𝑣 ∪ {𝑒𝑣 } and the rank function of �̂� will be used.

Popular Arborescences and Their Matroid Generalization 19

levC (𝑒𝑣) = 𝑝 , which implies that every edge in 𝐸 (C) ∩𝐸𝑣 has level either 𝑝 or 𝑝 − 1. Because

𝑝 ≥ 3, this means that no element of 𝐶1 is present in 𝐸 (C) ∩ 𝐸𝑣 . Thus we have 𝐵(𝑣) ∉ 𝐶1.

• If 𝐵(𝑣) = 𝑒𝑣 , then 𝑒𝑣 ∈ 𝐸 (C). This implies levC (𝑒𝑣) > 1 because 𝑒𝑣 is the worst element in

𝐸𝑣 ∪ {𝑒𝑣}. Hence 𝐵(𝑣) is not in 𝐶1.

In both cases, 𝐵(𝑣) ∉ 𝐶1 for every 𝑣 ∈ 𝑉 . Thus we have 𝐵 ∩𝐶1 = ∅, as desired. □

Lemma 4.2 shows that any dual certificate C for a popular common base 𝐵 in the auxiliary

instance has length at most 2, i.e., 𝐵 has a dual certificate either of the form C = {𝐸} or of the form
C = {𝐶, 𝐸}. Let 𝐵 be the popular common base computed by Algorithm 1 in the auxiliary instance,

and let C be a dual certificate for 𝐵. The following lemma shows that if preferences are weak

rankings, then C is a dual certificate for all popular common bases. Note that this proof crucially

uses the fact that preferences are weak rankings—recall that we use this assumption in Theorem 1.7

as well. Indeed, assuming weak rankings is indispensable there, since themin-cost popular common
independent set problem for partial order preferences is NP-hard, due to the NP-hardness of its
special case, the min-cost popular branching problem with partial order preferences [22].

Lemma 4.3. Assume that preferences are weak rankings and suppose that 𝐵 is the popular common
base computed by Algorithm 1 applied to the auxiliary instance �̂�part and �̂� , and that C is a dual
certificate for 𝐵. Then for any arbitrary popular common base 𝐵′ in the auxiliary instance, we have
(i) 𝐵′ ⊆ 𝐸 (C) and (ii) if C = {𝐶, 𝐸}, then |𝐵′ ∩𝐶 | = rank(𝐶).

Proof. Let (®𝑦, ®𝛼) be the dual variables defined from C as given in Lemma 2.1. That is, 𝑦𝐶 = 1

for each 𝐶 ∈ C and 𝑦𝑆 = 0 for any other 𝑆 ⊆ 𝐸, and 𝛼𝑣 = −| {𝐶 ∈ C : 𝐵(𝑣) ∈ 𝐶 } | for every 𝑣 ∈ 𝑉 .
Note that the length of C is at most two by Lemma 4.2.

Consider LP1 and LP2 defined with respect to 𝐵. Since both 𝐵 and 𝐵′ are popular, their char-
acteristic vectors are both optimal solutions to LP1. Since (®𝑦, ®𝛼) is an optimal solution to LP2,

if C = {𝐶, 𝐸} then we have |𝐵′ ∩𝐶 | = rank(𝐶) by complementary slackness. It remains to show

that 𝐵′ ⊆ 𝐸 (C). We distinguish between two cases, depending on whether the length of C is one

or two.

(1) Suppose that C = {𝐸}. Let D be a dual certificate of 𝐵′ as described in Lemma 2.2. Then

𝐵′ ⊆ 𝐸 (D). Assume that D = {𝐷, 𝐸}, as otherwise D = {𝐸} = C.
Take any 𝑣 ∈ 𝑉 . We are going to show that 𝐵′ (𝑣) ∈ 𝐸 (C). If 𝐵′ (𝑣) ∈ 𝐷 then we have

levD (𝐵′ (𝑣)) = 1 = levC (𝐵′ (𝑣)); along with 𝐵′ (𝑣) ∈ 𝐸 (D), this implies 𝐵′ (𝑣) ∈ 𝐸 (C) by
Claim 3.4. We thus assume that 𝐵′ (𝑣) ∉ 𝐷 .
Since the characteristic vector ®𝑥 of 𝐵 and ®𝑥 ′ of 𝐵′ are optimal solutions to LP1 (defined with

respect to 𝐵) and (®𝑦, ®𝛼) is an optimal solution to LP2 (its dual LP), we will use complementary

slackness. Because 𝑥𝐵 (𝑣) = 1, we have

∑
𝐶∈C:𝐵 (𝑣) ∈𝐶 𝑦𝐶 + 𝛼𝑣 = wt𝐵 (𝐵(𝑣)) = 0. Similarly,

because 𝑥 ′
𝐵′ (𝑣) = 1, we have

∑
𝐶∈C:𝐵′ (𝑣) ∈𝐶 𝑦𝐶 + 𝛼𝑣 = wt𝐵 (𝐵′ (𝑣)). By subtracting the former

from the latter, we obtain∑︁
𝐶∈C:𝐵′ (𝑣) ∈𝐶

𝑦𝐶 −
∑︁

𝐶∈C:𝐵 (𝑣) ∈𝐶

𝑦𝐶 = wt𝐵 (𝐵′ (𝑣)). (2)

Since C = {𝐸}, the left-hand side is 1 − 1 = 0. By this wt𝐵 (𝐵′ (𝑣)) = 0, which implies

𝐵(𝑣) ∼𝑣 𝐵′ (𝑣). The fact 𝐵(𝑣) ∈ 𝐸 (C) implies that 𝐵(𝑣) is maximal with respect to ≻𝑣
in 𝐸𝑣 ∪ {𝑒𝑣}. Because ≻𝑣 is a weak ranking, 𝐵(𝑣) ∼𝑣 𝐵′ (𝑣) means that 𝐵′ (𝑣) is also maximal,

and hence 𝐵′ (𝑣) ∈ 𝐸 (C) follows.
(2) Suppose now that C = {𝐶, 𝐸}. Let D be a dual certificate of 𝐵′. Then we have D = {𝐷, 𝐸}

and 𝐷 ⊆ 𝐶 by Lemma 3.3. Take any 𝑣 ∈ 𝑉 . We are going to show that 𝐵′ (𝑣) ∈ 𝐸 (C). If

20 Kavitha, Makino, Schlotter, and Yokoi

𝐵′ (𝑣) ∉ 𝐶 (respectively, if 𝐵′ (𝑣) ∈ 𝐷), then 𝐵′ (𝑣) ∉ 𝐷 (respectively, 𝐵′ (𝑣) ∈ 𝐶); hence in
these cases we get levC (𝐵′ (𝑣)) = levD (𝐵′ (𝑣)). This fact along with 𝐵′ (𝑣) ∈ 𝐸 (D) implies

that 𝐵′ (𝑣) ∈ 𝐸 (C), by Claim 3.4. Therefore, let us assume that 𝐵′ (𝑣) ∈ 𝐶 \ 𝐷 .
By the same analysis as given in Case 1, Equation (2) holds. Let us also consider LP1 and LP2

defined with respect to 𝐵′ (instead of 𝐵). Let (®𝑧, ®𝛽) be the optimal solution of LP2 corre-

sponding toD. As before, the characteristic vectors of 𝐵 and 𝐵′ are optimal solutions to LP1.

By the same argument (with 𝐵′, 𝐵 and D taking the places of 𝐵, 𝐵′, and C, respectively),
we have: ∑︁

�̂�∈D:𝐵 (𝑣) ∈�̂�

𝑧�̂� −
∑︁

�̂�∈D:𝐵′ (𝑣) ∈�̂�

𝑧�̂� = wt𝐵′ (𝐵(𝑣)) . (3)

Since 𝐵′ (𝑣) ∈ 𝐶 , the left-hand side of (2) is 1 or 0, and so is wt𝐵 (𝐵′ (𝑣)), which implies that

we have 𝐵′ (𝑣) ≻𝑣 𝐵(𝑣) or 𝐵′ (𝑣) ∼𝑣 𝐵(𝑣). Furthermore, since 𝐵′ (𝑣) ∉ 𝐷 , the left-hand side

of (3) is 1 or 0, and so is wt𝐵′ (𝐵(𝑣)), which implies that 𝐵(𝑣) ≻𝑣 𝐵′ (𝑣) or 𝐵(𝑣) ∼𝑣 𝐵′ (𝑣).
Therefore we must have 𝐵′ (𝑣) ∼𝑣 𝐵(𝑣). Hence 𝐵(𝑣) ∈ 𝐶 follows from (2).

We have shown that𝐵′ (𝑣) ∼𝑣 𝐵(𝑣) and𝐵(𝑣) ∈ 𝐶 .We also have𝐵′ (𝑣) ∈ 𝐶 . Since𝐵(𝑣) ∈ 𝐸 (C),
we see that 𝐵(𝑣) is maximal in𝐶 ∩ (𝐸𝑣 ∪ {𝑒𝑣}) and dominates all elements in (𝐸𝑣 ∪ {𝑒𝑣}) \𝐶
with respect to ≻𝑣 . Since ≻𝑣 is a weak ranking and 𝐵′ (𝑣) ∼𝑣 𝐵(𝑣), the element 𝐵′ (𝑣) ∈ 𝐶
also satisfies these conditions, and hence 𝐵′ (𝑣) ∈ 𝐸 (C).

Thus, in both cases we have 𝐵′ (𝑣) ∈ 𝐸 (C) for every 𝑣 ∈ 𝑉 . Hence 𝐵′ ⊆ 𝐸 (C). □

By Lemma 4.3, any popular common base 𝐵′ in the auxiliary instance (consisting of �̂�part and �̂�)

satisfies 𝐵′ ⊆ 𝐸 (C) and |𝐵′ ∩ 𝐶 | = rank(𝐶) if C = {𝐶, 𝐸}. Conversely, any common base 𝐵′ in
the auxiliary instance that satisfies these conditions is popular by Lemma 2.2. Therefore the set

of all popular common bases in the auxiliary instance can be described as a face of the matroid

intersection polytope of �̂�part and �̂� . Since a popular common independent sets in the original

instance (consisting of 𝑀part and 𝑀) is obtained by deleting the dummy elements from popular

common bases in the auxiliary instance, Theorem 1.7 follows. We now restate this result more

explicitly as Theorem 4.4 below. Here, a projection means the deletion of variables corresponding

to the dummy elements { 𝑒𝑣 : 𝑣 ∈ 𝑉 } we have added in the construction of the auxiliary instance.

Theorem 4.4. Assume that preferences are weak rankings and suppose that C = {𝐶, 𝐸} is a dual
certificate for the popular common base returned by Algorithm 1 when applied to the auxiliary
matroids �̂�part and �̂� . Then the popular common independent set polytope of the original instance is
a projection of the polytope that is defined by the constraints

∑
𝑒∈𝐶 𝑥𝑒 = rank(𝐶) and 𝑥𝑒 = 0 for all

𝑒 ∈ 𝐸 \ 𝐸 (C) along with all the constraints of LP1.

5 POPULAR COMMON BASE WITH FORCED/FORBIDDEN ELEMENTS
We prove Theorem 1.8 in this section. Observe that the problem of deciding if there exists a popular

common base 𝐵 such that 𝐵 ⊇ 𝐸+ for a given set 𝐸+ ⊆ 𝐸 of forced elements can be reduced to

the problem of deciding if there exists a popular common base 𝐵 such that certain elements are

forbidden for 𝐵.

Let 𝑉 ′ ⊆ 𝑉 be the set of those elements 𝑣 such that 𝐸𝑣 ∩ 𝐸+ ≠ ∅; clearly, we may assume

|𝐸𝑣 ∩ 𝐸+ | = 1 for each 𝑣 ∈ 𝑉 ′. Let 𝐸′ = ⋃
𝑣∈𝑉 ′ (𝐸𝑣 \ 𝐸+). Since 𝐵 ⊇ 𝐸+ if and only if 𝐵 ∩ 𝐸′ = ∅, it

follows that the problem of deciding if there exists a popular common base 𝐵 such that 𝐸+ ⊆ 𝐵 and

𝐸− ∩ 𝐵 = ∅ reduces to the problem of deciding if there exists a popular common base 𝐵 such that

𝐵 ∩ 𝐸0 = ∅ for a set 𝐸0 ⊆ 𝐸 of forbidden elements.

Popular Arborescences and Their Matroid Generalization 21

Forbidden elements. We present our algorithm that decides if there exists a popular common base

that avoids 𝐸0 for a given subset 𝐸0 of 𝐸 as Algorithm 2. The only difference from the original popular

common base algorithm (Algorithm 1) is in line 4: the new algorithm finds a lexicographically

maximal common independent set in the set 𝐸 (C) \ 𝐸0 instead of 𝐸 (C). Recall that rank(𝐸) = |𝑉 |.

Algorithm 2 The popular common base algorithm with the forbidden element set 𝐸0

1: Initialize 𝑝 = 1 and 𝐶1 = 𝐸. ⊲ Initially we set C = {𝐸}.
2: while 𝑝 ≤ |𝑉 | do
3: Compute the set 𝐸 (C) from the current multichain C = {𝐶1, . . . ,𝐶𝑝 }.
4: Find a common independent set 𝐼 that lexicographically maximizes (|𝐼 ∩𝐶1 |, . . . , |𝐼 ∩𝐶𝑝 |)

subject to 𝐼 ⊆ 𝐸 (C) \ 𝐸0.

5: if |𝐼 ∩𝐶𝑖 | = rank(𝐶𝑖) for every 𝑖 = 1, . . . , 𝑝 then return 𝐼 .

6: Let 𝑘 be the minimum index such that |𝐼 ∩𝐶𝑘 | < rank(𝐶𝑘).
7: Update 𝐶𝑘 ← span(𝐼 ∩𝐶𝑘).
8: if 𝑘 = 𝑝 then 𝑝 ← 𝑝 + 1, 𝐶𝑝 ← 𝐸, and C ← C ∪ {𝐶𝑝 }.
9: Return “The input instance has no popular common base that avoids 𝐸0.”

Theorem 5.1. Let 𝐸0 ⊆ 𝐸. There exists a popular common base 𝐵 such that 𝐵 ∩ 𝐸0 = ∅ if and only
if Algorithm 2 returns a popular common base with no edge of 𝐸0.

Proof. The easy side is to show that if Algorithm 2 returns a common independent set 𝐼 , then

(i) 𝐼 is popular and (ii) 𝐼 ∩ 𝐸0 = ∅. As done in Section 3, let us prune the multichain C into a

chain C′. Because 𝐼 ⊆ 𝐸 (C) \ 𝐸0 and 𝐸 (C) ⊆ 𝐸 (C′), we have 𝐼 ⊆ 𝐸 (C′) \ 𝐸0. Since 𝐼 ⊆ 𝐸 (C′) and
|𝐼 ∩𝐶′𝑖 | = rank(𝐶′𝑖), and hence span(𝐼 ∩𝐶′𝑖) = 𝐶′𝑖 , for every𝐶′𝑖 ∈ C′, it follows from Lemma 2.2 that

𝐼 is a popular common base.

We now show the converse. Suppose that there exists a popular common base 𝐵 in the intersection

of 𝑀part and 𝑀 such that 𝐵 ∩ 𝐸0 = ∅. Let D = {𝐷1, . . . , 𝐷𝑞} be a dual certificate for 𝐵. Then we

have 𝐵 ⊆ 𝐸 (D) \ 𝐸0. It suffices to show that Algorithm 2 maintains the following invariant: the

multichain C = {𝐶1, . . . ,𝐶𝑝 } maintained in the algorithm satisfies 𝑝 ≤ 𝑞 and 𝐷𝑖 ⊆ 𝐶𝑖 for any

𝑖 = 1, 2, . . . , 𝑝 .

We can show a variant of Lemma 3.3, i.e., we can show that when𝐶𝑘 is updated in the algorithm,

𝐷𝑘 ⊆ span(𝐼 ∩ 𝐶𝑘) holds where 𝐼 is a lexicographically maximal common independent set in

𝐸 (C) \ 𝐸0. The proof of Lemma 3.3 works almost as it is. Recall that we sequentially find elements

𝑓1, 𝑒1, 𝑓2, 𝑒2, . . . in the proof of Lemma 3.3. For each 𝑗 = 1, 2, . . . , in addition to the condition 𝑓𝑗 ∈ 𝐸 (C),
we have 𝑓𝑗 ∉ 𝐸0 since 𝑓𝑗 ∈ 𝐵 ⊆ 𝐸 \ 𝐸0. By this, 𝐼 𝑗 = (𝐼 ∩𝐶𝑘) + 𝑓1 − 𝑒1 + 𝑓2 · · · − 𝑒 𝑗−1 + 𝑓𝑗 satisfies
𝐼 𝑗 ⊆ 𝐸 (𝐶) \ 𝐸0 for each 𝑗 . Hence the proof of Lemma 3.3 works with replacing “lex-maximality

subject to 𝐼 ⊆ 𝐸 (C)” by “lex-maximality subject to 𝐼 ⊆ 𝐸 (C) \ 𝐸0”. □

6 MIN-COST POPULAR ARBORESCENCE
We prove Theorem 1.9 in this section. We present a reduction from the Vertex Cover problem,

whose input is an undirected graph 𝐻 and an integer 𝑘 , and asks whether 𝐻 admits a set of 𝑘

vertices that is a vertex cover, that is, contains an endpoint from each edge in 𝐻 .

Our reduction is strongly based on the reduction used in [22, Theorem 6.3] which showed

the NP-hardness of the min-cost popular branching problem when vertices have partial order

preferences. Recall that the min-cost popular branching problem is polynomial-time solvable when

vertices have weak rankings [22] (also implied by Theorem 1.7). Note also that neither the hardness

of min-cost popular branching for partial order preferences [22], nor the hardness of min-cost

22 Kavitha, Makino, Schlotter, and Yokoi

𝑟
𝑤

𝑒𝑢

𝑒𝑣

𝑢0

𝑢1

𝑣0

𝑣1

(a)

| |

| |

| |

| |

| |
| |

|

|

first rank

second rank

third rank

𝐶1 :

𝐶2 :

𝑟
𝑤

𝑒𝑢

𝑒𝑣

𝑢0

𝑢1

𝑣0

𝑣1

(b)

| |

| |

| |

| |

| |
| |

|

|

Fig. 1. Illustration of the reduction in the proof of Theorem 1.9. Figure (a) illustrates the construction showing
a subgraph of 𝐺 , assuming that the input graph 𝐻 contains an edge 𝑒 = 𝑢𝑣 . Edges in 𝐸1, 𝐸2, and 𝐸3 are
depicted with double red, single blue, and dashed green lines, respectively. Edges marked with two, one, and
zero crossbars have cost∞, 1, and 0, respectively. Figure (b) illustrates the popular arborescence 𝐴 in bold,
assuming 𝑣 ∈ 𝑆 and 𝑢 ∉ 𝑆 . The chain 𝐶1 ⊊ 𝐶2 ⊊ 𝐶3 = 𝐸 certifying the popularity of 𝐴 is shown using grey
and dotted ellipses for edges in 𝐶1 and 𝐶2, respectively.

popular assignment for strict preferences [21] implies Theorem 1.9, since the min-cost popular
arborescence problem with strict rankings does not contain either of these problems.

To show the NP-hardness of the min-cost popular arborescence problem when vertices have

strict rankings, we construct a directed graph 𝐺 = (𝑉 ∪ {𝑟 }, 𝐸 = 𝐸1 ∪ 𝐸2 ∪ 𝐸3) as follows; see
Figure 1 for an illustration. We set

𝑉 = {𝑤} ∪ {𝑣0, 𝑣1 : 𝑣 ∈ 𝑉 (𝐻)} ∪ {𝑒𝑢, 𝑒𝑣 : 𝑒 = 𝑢𝑣 ∈ 𝐸 (𝐻)},
𝐸1 = {(𝑒𝑢, 𝑒𝑣), (𝑒𝑣, 𝑒𝑢), (𝑒𝑢,𝑤), (𝑒𝑣,𝑤) : 𝑒 = 𝑢𝑣 ∈ 𝐸 (𝐻)}

∪ {(𝑣0, 𝑣1), (𝑣1, 𝑣0) : 𝑣 ∈ 𝑉 (𝐻)},
𝐸2 = {(𝑟,𝑤)} ∪ {(𝑤, 𝑥) : 𝑥 ∈ 𝑉 (𝐺) \ {𝑟,𝑤}},
𝐸3 = {(𝑟, 𝑣1) : 𝑣 ∈ 𝑉 (𝐻)} ∪ {(𝑢0, 𝑒𝑢), (𝑣0, 𝑒𝑣) : 𝑒 = 𝑢𝑣 ∈ 𝐸 (𝐻)}.

To define the preferences of each vertex in𝐺 , we let all vertices prefer edges of 𝐸1 to edges of 𝐸2,

which in turn are preferred to edges of 𝐸3. Whenever some vertex has more than one incoming

edge in some 𝐸𝑖 , 𝑖 ∈ {1, 2, 3}, then it orders them in some arbitrarily fixed strict order. We set the

cost of each edge in 𝐸3, as well as the cost of all edges entering𝑤 except for (𝑟,𝑤) as∞. We set the

cost of (𝑤, 𝑣1) as 1 for each 𝑣 ∈ 𝑉 (𝐻), and we set the cost of all remaining edges as 0. We define

our budget to be 𝑘 , finishing the construction of our instance of min-cost popular arborescence.
We are going to show that 𝐻 admits a vertex cover of size at most 𝑘 if and only if𝐺 has a popular

arborescence of cost at most 𝑘 .

Suppose first that 𝐴 is a popular arborescence in 𝐺 with cost at most 𝑘 . We prove that the set

𝑆 = {𝑣 ∈ 𝑉 (𝐻) : (𝑤, 𝑣1) ∈ 𝐴} is a vertex cover in 𝐻 . Since each edge (𝑤, 𝑣1) has cost 1, our budget

implies |𝑆 | ≤ 𝑘 .
For a vertex 𝑣 ∈ 𝑉 (𝐻) and an edge 𝑒 = 𝑢𝑣 ∈ 𝐸 (𝐻), let 𝐴𝑣 = 𝐴 ∩ (𝛿 (𝑣0) ∪ 𝛿 (𝑣1)) and 𝐴𝑒 = 𝐴 ∩
(𝛿 (𝑒𝑢) ∪𝛿 (𝑒𝑣)), respectively. We note that each 𝑣 ∈ 𝑉 (𝐻) satisfies that𝐴𝑣 is either {(𝑤, 𝑣0), (𝑣0, 𝑣1)}

Popular Arborescences and Their Matroid Generalization 23

or {(𝑤, 𝑣1), (𝑣1, 𝑣0)}. Indeed, if this is not the case, we have 𝐴𝑣 = {(𝑤, 𝑣0), (𝑤, 𝑣1)}, since 𝐴 is an

arborescence with finite cost. However, this contradicts the popularity of 𝐴, since 𝐴 \ {(𝑤, 𝑣1)} ∪
{(𝑣0, 𝑣1)} is more popular than 𝐴. We can similarly show that each 𝑒 = 𝑢𝑣 ∈ 𝐸 (𝐻) satisfies that
𝐴𝑒 is either {(𝑤, 𝑒𝑢), (𝑒𝑢, 𝑒𝑣)} or {(𝑤, 𝑒𝑣), (𝑒𝑣, 𝑒𝑢)}. Note also that (𝑟,𝑤) ∈ 𝐴, as all other edges
entering𝑤 have infinite cost.

Assume for the sake of contradiction that 𝑆 is not a vertex cover of 𝐻 , i.e., there exists an

edge 𝑒 = 𝑢𝑣 ∈ 𝐸 (𝐻) such that neither (𝑤,𝑢1) nor (𝑤, 𝑣1) is contained in 𝐴. Then we have 𝐴𝑢 =

{(𝑤,𝑢0), (𝑢0, 𝑢1)} and 𝐴𝑣 = (𝑤, 𝑣0), (𝑣0, 𝑣1)}. By symmetry, we assume without loss of generality

that 𝐴𝑒 = {(𝑤, 𝑒𝑢), (𝑒𝑢, 𝑒𝑣)}. Define an edge set 𝐴′ by

𝐴′ = (𝐴 \ (𝐴𝑒 ∪𝐴𝑣 ∪ {(𝑟,𝑤)})) ∪ {(𝑟, 𝑣1), (𝑣1, 𝑣0), (𝑣0, 𝑒𝑣), (𝑒𝑣, 𝑒𝑢), (𝑒𝑢,𝑤)}.

We can see that𝐴′ is an arborescence and is more popular than𝐴, since three vertices, 𝑣0, 𝑒𝑢 , and𝑤 ,

prefer 𝐴′ to 𝐴, while two vertices, 𝑣1 and 𝑒𝑣 , prefer 𝐴 to 𝐴′, and all others are indifferent between

them. This proves that 𝑆 is a vertex cover of 𝐻 .

For the other direction, assume that 𝑆 is a vertex cover in 𝐻 . We construct a popular arbores-

cence 𝐴 of cost |𝑆 | in 𝐺 . For each 𝑒 ∈ 𝐸 (𝐻) we fix an endpoint 𝜎 (𝑒) of 𝑒 that is contained in 𝑆 , and

we denote by 𝜎 (𝑒) the other endpoint of 𝑒 (which may or may not be in 𝑆). Let

𝐴 = {(𝑟,𝑤)} ∪ {(𝑤, 𝑣1), (𝑣1, 𝑣0) : 𝑣 ∈ 𝑆}
∪ {(𝑤, 𝑣0), (𝑣0, 𝑣1) : 𝑣 ∈ 𝑉 (𝐻) \ 𝑆}
∪ {(𝑤, 𝑒�̄� (𝑒)), (𝑒�̄� (𝑒) , 𝑒𝜎 (𝑒)) : 𝑒 ∈ 𝐸 (𝐻)}.

It is straightforward to verify that 𝐴 is an arborescence and its cost is exactly |𝑆 |. Hence it remains

to prove its popularity, which is done by showing a dual certificate C for 𝐴.

To define C, let us first define a set 𝑋 = {𝑤} ∪ {𝑒𝑢, 𝑒𝑣 : 𝑒 = 𝑢𝑣 ∈ 𝐸 (𝐻)} ∪ {𝑣0, 𝑣1 : 𝑣 ∈ 𝑆} of
vertices in 𝐺 . Then we set C = {𝐶1,𝐶2,𝐶3} where

𝐶1 = {(𝑒𝑢, 𝑒𝑣), (𝑒𝑣, 𝑒𝑢) : 𝑒 = 𝑢𝑣 ∈ 𝐸 (𝐻)} ∪ {(𝑣0, 𝑣1), (𝑣1, 𝑣0) : 𝑣 ∈ 𝑆},
𝐶2 = {𝑓 ∈ 𝐸 (𝐻) : 𝑓 has two endpoints in 𝑋 } ∪ {(𝑣0, 𝑣1), (𝑣1, 𝑣0) : 𝑣 ∈ 𝑉 (𝐻) \ 𝑆},
𝐶3 =𝐸.

Let us first check that rank(𝐶𝑖) = |𝐴 ∩𝐶𝑖 | for each 𝐶𝑖 ∈ C. Clearly, 𝐶1 consists of mutually vertex-

disjoint 2-cycles, and 𝐴 contains an edge from each of them. Thus rank(𝐶1) = |𝐴∩𝐶1 | follows. The
edge set𝐶2 consists of all edges induced by the vertices of 𝑋 , together with another set of mutually

vertex-disjoint 2-cycles that share no vertex with 𝑋 . It is easy to verify that 𝐴 ∩𝐶2 contains an

edge from each of the 2-cycles in question, as well as a directed tree containing all vertices of 𝑋 .

Thus, rank(𝐶2) = |𝐴 ∩𝐶2 | holds. Since 𝐴 is an arborescence, rank(𝐶3) = rank(𝐸) = |𝑉 | = |𝐴 ∩𝐶3 |
is obvious. Observe that for each 𝑖 ∈ {1, 2, 3} we have span(𝐶𝑖) = 𝐶𝑖 , and hence rank(𝐶𝑖) = |𝐴∩𝐶𝑖 |
implies span(𝐴 ∩𝐶𝑖) = 𝐶𝑖 .

It remains to see that 𝐴 ⊆ 𝐸 (C). First, 𝐴(𝑤) = (𝑟,𝑤) is the unique incoming edge of 𝑤 with

C-level 3. For each 𝑣 ∈ 𝑆 , lev∗C (𝑣0) = 2 while lev∗C (𝑣1) = 3, and by their preferences both 𝐴(𝑣0) =
(𝑣1, 𝑣0) and 𝐴(𝑣1) = (𝑤, 𝑣1) are in 𝐸 (C). For each 𝑣 ∈ 𝑉 (𝐻) \ 𝑆 , lev∗C (𝑣0) = lev∗C (𝑣1) = 3, and hence

both 𝐴(𝑣0) = (𝑤, 𝑣0) and 𝐴(𝑣1) = (𝑣0, 𝑣1) are in 𝐸 (C). Finally, consider an edge 𝑒 = 𝑢𝑣 ∈ 𝐸 (𝐻)
with 𝜎 (𝑒) = 𝑣 ∈ 𝑆 . As lev∗C (𝑒𝑢) ≤ 3, and since 𝑒𝑢 prefers (𝑤, 𝑒𝑢) to (𝑢0, 𝑒𝑢), we know that the edge

𝐴(𝑒𝑢) = (𝑤, 𝑒𝑢) ∈ 𝐶2 is contained in 𝐸 (C). By contrast, since 𝑣 ∈ 𝑆 implies 𝑣0 ∈ 𝑋 , we obtain
lev∗C (𝑒𝑣) = 2, and therefore the edge 𝐴(𝑒𝑣) = (𝑒𝑢, 𝑒𝑣) ∈ 𝐶1 is contained in 𝐸 (C). By Lemma 2.2, this

proves that 𝐴 is indeed a popular arborescence.

24 Kavitha, Makino, Schlotter, and Yokoi

𝑎𝑢,1 𝑏𝑢,1 𝑎𝑢,2 𝑏𝑢,2 𝑎𝑢,3 𝑏𝑢,3

𝑢0 𝑢1

𝑟

𝐶𝑢

Fig. 2. Illustration of a gadget 𝐺𝑢 in the proof of Theorem 1.10. Preferences are encoded using line types and
colors as in Figure 1.

7 MINIMUM UNPOPULARITY MARGIN ARBORESCENCE
We prove Theorem 1.10 in this section. It is easy to see that the problem is in NP, since given an

arborescence 𝐴 we can verify 𝜇 (𝐴) ≤ 𝑘 efficiently, assuming that a dual certificate for 𝐴 (i.e., a

solution for LP2 with objective value 𝑘) is provided.

To prove NP-hardness, we present a reduction from the following NP-hard variant of the Exact

3-Cover problem [17]. The input contains a set 𝑈 of size 3𝑛 and a set family S = {𝑆1, . . . , 𝑆3𝑛}
where 𝑆𝑖 ⊆ 𝑈 and |𝑆𝑖 | = 3 for each 𝑆𝑖 ∈ S, and each 𝑢 ∈ 𝑈 is contained in exactly three sets from S.
The task is to decide whether there exist 𝑛 sets in S whose union is𝑈 .

Our reduction draws inspiration from the reduction used in [22, Theorem 4.6] which proved the

NP-hardness of the 𝑘-unpopularity margin branching problem when vertices have partial order

preferences. Recall that this problem was shown to be polynomial-time solvable when vertices

have weak rankings [22]. Note also that Theorem 1.10 does not follow from the NP-hardness of
either the 𝑘-unpopularity margin branching problem [22] or the 𝑘-unpopularity margin assignment
problem [21].

To show the NP-hardness of the 𝑘-unpopularity margin arborescence problem when vertices

have strict rankings, we construct a directed graph 𝐺 = (𝑉 ∪ {𝑟 }, 𝐸 = 𝐸1 ∪ 𝐸2 ∪ 𝐸3) as follows;
see Figure 2 for an illustration. For each 𝑢 ∈ 𝑈 we construct a gadget 𝐺𝑢 whose vertex set is

{𝑢0, 𝑢1} ∪𝐴𝑢 ∪ 𝐵𝑢 where 𝐴𝑢 = {𝑎𝑢,1, 𝑎𝑢,2, 𝑎𝑢,3} and 𝐵𝑢 = {𝑏𝑢,1, 𝑏𝑢,2, 𝑏𝑢,3}. First we add four 2-cycles,

with all their edges in 𝐸1, on vertex sets {𝑎𝑢,𝑖 , 𝑏𝑢,𝑖 } for each 𝑖 = 1, 2, 3, as well as on {𝑢0, 𝑢1}; these 8|𝑈 |
edges comprise 𝐸1. We next add edges of 𝐸2: first, we stitch together the three 2-cycles on 𝐴𝑢 ∪ 𝐵𝑢
with edges (𝑎𝑢,3, 𝑏𝑢,2), (𝑎𝑢,2, 𝑏𝑢,1), and (𝑎𝑢,1, 𝑏𝑢,3); second, we add all possible edges between {𝑢0, 𝑢1}
and 𝐴𝑢 , creating a bidirected 𝐾2,3. We denote the unique 6-cycle on 𝐴𝑢 ∪ 𝐵𝑢 as𝐶𝑢 . This finishes the

construction of our gadget 𝐺𝑢 . To complete the definition of 𝐺 , it remains to define 𝐸3. To this end,

for each 𝑢 ∈ 𝑈 we fix an arbitrary ordering over the three sets of S containing 𝑢, and denote them

as 𝑆 (𝑢, 1), 𝑆 (𝑢, 2), and 𝑆 (𝑢, 3). We then let

𝐸3 = {(𝑟,𝑢0), (𝑟,𝑢1) : 𝑢 ∈ 𝑈 } ∪ {(𝑏𝑢,𝑖 , 𝑏𝑣,𝑗) : ∃𝑆 ∈ S such that 𝑆 = 𝑆 (𝑢, 𝑖) = 𝑆 (𝑣, 𝑗)}.
To define the preferences of each vertex in𝐺 , we let all vertices prefer edges of 𝐸1 to those in 𝐸2,

which in turn are preferred to edges of 𝐸3. Whenever some vertex has more than one incoming

edge in some 𝐸𝑖 , 𝑖 ∈ {1, 2, 3}, then it orders them in some fixed strict order with the only constraint

that edges from 𝑢0 are preferred to edges from 𝑢1 for each 𝑢 ∈ 𝑈 .

We are going to show that our instance of Exact 3-Cover is solvable if and only if 𝐺 admits an

arborescence with 𝜇 (𝐴) ≤ 2𝑛.

Popular Arborescences and Their Matroid Generalization 25

−3 −2 −2 −3 −3 −2

−1 −2

𝐶1 :

𝐶2 :

𝑎𝑢,1 𝑏𝑢,1 𝑎𝑢,2 𝑏𝑢,2 𝑎𝑢,3 𝑏𝑢,3

𝑢0 𝑢1

𝑟

Fig. 3. Illustration of the arborescence 𝐴 in the proof of Theorem 1.10, shown in bold, together with a feasible
dual solution (®𝑦, ®𝛼) certifying 𝜇 (𝐴) ≤ 2𝑛. The figure assumes 𝜎 (𝑢) = 2. The chain𝐶1 ⊊ 𝐶2 ⊊ 𝐶3 = 𝐸 is shown
using grey and dotted ellipses for edges in 𝐶1 and 𝐶2, respectively, while the values 𝛼𝑣 , 𝑣 ∈ 𝑉 , are written
within the corresponding vertices.

First, assume that there exists some T ⊆ S of size 𝑛 that covers each 𝑢 ∈ 𝑈 exactly once. Let

𝜎 (𝑢) denote the index in {1, 2, 3} for which 𝑆 (𝑢, 𝜎 (𝑢)) ∈ T . We then let

𝐴 =
⋃
𝑢∈𝑈
{(𝑟,𝑢0), (𝑢0, 𝑢1), (𝑢0, 𝑎𝑢,𝜎 (𝑢)), (𝑎𝑢,𝜎 (𝑢) , 𝑏𝑢,𝜎 (𝑢))} ∪ (𝐶𝑢 \ {𝑒 ∈ 𝐶𝑢 : 𝑒 is incident to 𝑏𝑢,𝜎 (𝑢) }) .

Note that𝐴 is an arborescence in𝐺 . To prove that the unpopularity margin of𝐴 is at most 2𝑛, we

will use the fact that, by definition, 𝜇 (𝐴) = max𝐴′ 𝜙 (𝐴′, 𝐴) − 𝜙 (𝐴,𝐴′) is the optimal value of LP1.

Therefore, to show that 𝜇 (𝐴) ≤ 2𝑛 it suffices to give a dual feasible solution with objective value 2𝑛.

To this end, we define a chain C = {𝐶1,𝐶2,𝐶3} with 𝐶1 ⊊ 𝐶2 ⊊ 𝐶3 = 𝐸 by setting

𝐶1 = {(𝑎𝑢,𝑖 , 𝑏𝑢,𝑖), (𝑏𝑢,𝑖 , 𝑎𝑢,𝑖) : 𝑢 ∈ 𝑈 , 𝑖 ∈ {1, 2, 3}},

𝐶2 =
⋃

{𝑢,𝑣,𝑧}∈T
{𝑒 ∈ 𝐸 : 𝑒 has both endpoints in 𝑉 (𝐺𝑢) ∪𝑉 (𝐺𝑣) ∪𝑉 (𝐺𝑧)}.

Note that rank(𝐶1) = 3|𝑈 |, rank(𝐶2) = (3 · 8 − 1)𝑛 = 7|𝑈 | + 2𝑛, and rank(𝐶3) = 8|𝑈 |.
To define a feasible solution (®𝑦, ®𝛼) for LP2, for each 𝑆 ⊆ 𝐸 we let 𝑦𝑆 = 1 if 𝑆 ∈ C, and 𝑦𝑆 = 0

otherwise; we also set

𝛼𝑎𝑢,𝑖 =

{
−3 if 𝑖 ≠ 𝜎 (𝑢),
−2 if 𝑖 = 𝜎 (𝑢), 𝛼𝑢0

= −1,

𝛼𝑏𝑢,𝑖 =

{
−2 if 𝑖 ≠ 𝜎 (𝑢),
−3 if 𝑖 = 𝜎 (𝑢), 𝛼𝑢1

= −2,

for each 𝑢 ∈ 𝑈 . See Figure 3 for an illustration. The objective value of (®𝑦, ®𝛼) is∑︁
𝐶𝑖 ∈C

rank(𝐶𝑖) +
∑︁
𝑣∈𝑉

𝛼𝑣 = 3|𝑈 | + 7|𝑈 | + 2𝑛 + 8|𝑈 | − 18|𝑈 | = 2𝑛.

Therefore, to prove that 𝐴 has unpopularity margin at most 2𝑛, it suffices to show that (®𝑦, ®𝛼) is a
feasible solution for LP2, as stated by Claim 7.1 below.

Claim 7.1. (®𝑦, ®𝛼) is a feasible solution for LP2.

Claim proof. We need to verify that

|{𝐶 ∈ C : 𝑒 ∈ 𝐶}| + 𝛼𝑣 ≥ wt𝐴 (𝑒) (4)

26 Kavitha, Makino, Schlotter, and Yokoi

holds for each edge 𝑒 entering some vertex 𝑣 . First assume 𝑒 ∈ 𝐶1, in which case 𝑒 is contained

in three sets of C. If 𝑒 ∈ 𝐶1 ∩ 𝐴, then wt𝐴 (𝑒) = 0 and 𝛼𝑣 = −3 ensures (4). If 𝑒 ∈ 𝐶1 \ 𝐴, then
wt𝐴 (𝑒) = 1 but 𝛼𝑣 = −2, so (4) is again satisfied.

Second, assume 𝑒 ∈ 𝐶2 \𝐶1, in which case 𝑒 is contained in two sets from C. If 𝑒 ∈ 𝐶2 ∩𝐴, then
𝛼𝑣 = −2, which implies (4). If 𝑒 ∈ 𝐶2 \𝐴, then we distinguish between two cases: if 𝑣 = 𝑢0 for some

𝑢 ∈ 𝑈 , then wt𝐴 (𝑒) = 1 and 𝛼𝑣 = −1; otherwise wt𝐴 (𝑒) = −1 and 𝛼𝑣 ≥ −3 (note that here we used

that all vertices 𝑎𝑢,𝑖 prefer (𝑢0, 𝑎𝑢,𝑖) to (𝑢1, 𝑎𝑢,𝑖)). Hence, 𝑒 again satisfies (4).

Third, assume 𝑒 ∈ 𝐶3 \𝐶2, in which case 𝑒 is contained in one set from C. Let 𝐺𝑢 be the gadget

entered by 𝑒 . If 𝑒 = (𝑟,𝑢0) ∈ 𝐴, then wt𝐴 (𝑒) = 0 and 𝛼𝑣 = 𝛼𝑢0
= −1, and thus (4) holds. Otherwise

wt𝐴 (𝑒) = −1. Let 𝑇 be the set in T containing 𝑢. Note that either 𝑣 = 𝑢1 or 𝑣 = 𝑏𝑢,𝑗 for some

𝑗 ≠ 𝜎 (𝑢), because all edges entering 𝑏𝑢,𝜎 (𝑢) are contained in 𝐶2, since they each originate in some

gadget 𝐺𝑧 with 𝑧 ∈ 𝑇 . Therefore, we have 𝛼𝑣 = −2 in both cases, which implies (4) for 𝑒 . �

For the other direction, assume that 𝐺 admits an arborescence 𝐴 with 𝜇 (𝐴) ≤ 2𝑛. Let 𝐵 be an

arborescence that yields an optimal solution for LP1, maximizing 𝜙 (𝐵,𝐴) − 𝜙 (𝐴, 𝐵) ≤ 2𝑛. First

note that we can assume that 𝐴 is Pareto-optimal in the sense that there is no arborescence that is

weakly preferred by all vertices to 𝐴, and strictly preferred by at least one vertex to 𝐴. Similarly,

we can choose 𝐵 to be Pareto-optimal as well. Consequently, for any two edges 𝑒, 𝑒′ ∈ 𝐸1 forming a

2-cycle, both 𝐴 and 𝐵 uses at least one of 𝑒 and 𝑒′.
For some 𝑋 ⊆ 𝑉 and two arborescences 𝐴′ and 𝐴′′, let 𝜙𝑋 (𝐴′, 𝐴′′) denote the number of vertices

in 𝑋 that prefer 𝐴′ to 𝐴′′. We say that a gadget 𝐺𝑢 is clean, if 𝜙𝑉 (𝐺𝑢) (𝐵,𝐴) − 𝜙𝑉 (𝐺𝑢) (𝐴, 𝐵) ≤ 0. Let

𝑈★ = {𝑢 : 𝐺𝑢 is clean}.

Claim 7.2. If 𝐺𝑢 is clean, then a unique edge of 𝐴 enters 𝐺𝑢 , and it comes from 𝑟 .

Claim proof. Assume for the sake of contradiction that the claim does not hold for some𝑢 ∈ 𝑈★
;

this means that 𝐴 must reach 𝐺𝑢 through an edge 𝑒 ∈ 𝐸3 pointing to some vertex of 𝐵𝑢 ; let 𝑏𝑢,𝑗
denote this vertex. Let 𝑢ℎ be the vertex where 𝐵 enters {𝑢0, 𝑢1}; then (𝑢ℎ, 𝑢1−ℎ) ∈ 𝐵. Define 𝐵′ as
follows:

𝐵′ =𝐵 \ {𝛿 (𝑥) : 𝑥 ∈ 𝑉 (𝐺𝑢)}
∪ {(𝑟,𝑢1−ℎ), (𝑢1−ℎ, 𝑢ℎ), (𝑢0, 𝑎𝑢,𝑗+1), (𝑎𝑢,𝑗+1, 𝑏𝑢,𝑗+1)}
∪ (𝐶𝑢 \ 𝛿 (𝑎𝑢,𝑗+1) \ 𝛿 (𝑏𝑢,𝑗+1))

where indices are taken modulo 3 (so 𝑎𝑢,4 = 𝑎𝑢,1 and 𝑏𝑢,4 = 𝑏𝑢,1).

Observe that 𝐵′ is an arborescence. If (𝑢0, 𝑎𝑢,𝑗+1) ∉ 𝐴, then (𝑏𝑢,𝑗+1, 𝑎𝑢,𝑗+1) ∈ 𝐴, and thus vertices

𝑢ℎ , 𝑏𝑢,𝑗 , and 𝑏𝑢,𝑗+1 all prefer 𝐵
′
to 𝐴, while vertices 𝑢1−ℎ and 𝑎𝑢,𝑗+1 prefer 𝐴 to 𝐵′. If (𝑢0, 𝑎𝑢,𝑗+1) ∈ 𝐴,

then vertices 𝑢ℎ and 𝑏𝑢,𝑗 prefer 𝐵
′
to 𝐴, vertex 𝑢1−ℎ prefers 𝐴 to 𝐵′, while 𝑎𝑢,𝑗+1 and 𝑏𝑢,𝑗+1 are

indifferent between them; note (𝑎𝑢,𝑗+1, 𝑏𝑢,𝑗+1) ∈ 𝐴 ∩ 𝐵′. Furthermore, if 𝑏𝑢,𝑗−1 prefers 𝐴 to 𝐵′, then
(𝑎𝑢,𝑗−1, 𝑏𝑢,𝑗−1) ∈ 𝐴, and therefore 𝑎𝑢,𝑗−1 prefers 𝐵′ to 𝐴. Summing up all these facts, we obtain

𝜙𝑉 (𝐺𝑢) (𝐵′, 𝐴) −𝜙𝑉 (𝐺𝑢) (𝐴, 𝐵′) ≥ 1 which in turn implies 𝜙 (𝐵′, 𝐴) −𝜙 (𝐴, 𝐵′) > 𝜙 (𝐵,𝐴) −𝜙 (𝐴, 𝐵), a
contradiction to our choice of 𝐵. �

By Claim 7.2, for each 𝑢 ∈ 𝑈★
there exists a vertex 𝑢 ∈ {𝑢0, 𝑢1} for which (𝑟,𝑢) ∈ 𝐴. We can also

assume w.l.o.g. that𝐴 and 𝐵 coincide on𝐺𝑢 , since otherwise we can replace 𝐵 with the arborescence

𝐵★ = 𝐵 \ {𝛿 (𝑥) : 𝑥 ∈ 𝑉 (𝐺𝑢), 𝑢 ∈ 𝑈★} ∪ {𝐴(𝑥) : 𝑥 ∈ 𝑉 (𝐺𝑢), 𝑢 ∈ 𝑈★}, since 𝐵★ is also optimal

for LP2. As a consequence, we know that𝐺𝑢 is clean if and only if 𝜙𝑉 (𝐺𝑢) (𝐵,𝐴) −𝜙𝑉 (𝐺𝑢) (𝐴, 𝐵) = 0.

By 𝜇 (𝐴) = 𝜙 (𝐵,𝐴) − 𝜙 (𝐴, 𝐵) = ∑
𝑢∈𝑈 𝜙𝑉 (𝐺𝑢) (𝐵,𝐴) − 𝜙𝑉 (𝐺𝑢) (𝐴, 𝐵) ≤ 2𝑛, we know that there

are at least |𝑈 | − 2𝑛 = 𝑛 clean gadgets. Furthermore, we get that for each 𝑢 ∈ 𝑈★
there exists

some 𝑖 ∈ {1, 2, 3} for which 𝐴(𝑎𝑢,𝑖) comes from {𝑢0, 𝑢1}; let 𝜎 (𝑢) denote this index.

Popular Arborescences and Their Matroid Generalization 27

Claim 7.3. If 𝑢 ∈ 𝑈★, then the tail of each edge 𝑓 ∈ 𝛿 (𝑏𝑢,𝜎 (𝑢)) ∩ 𝐸3 is a descendant of 𝑢 in 𝐵.

Claim proof. Define 𝐵𝑓 as follows:

𝐵𝑓 =𝐵 \ {𝛿 (𝑥) : 𝑥 ∈ 𝑉 (𝐶𝑢) or 𝑥 = 𝑢} ∪ {𝑓 , (𝑎𝑢,𝜎 (𝑢) , 𝑢)} ∪ (𝐶𝑢 \ 𝛿 (𝑏𝑢,𝜎 (𝑢))) .

Observe that there is an edge from 𝑢 to the other vertex of {𝑢0, 𝑢1} shared by 𝐴 and 𝐵𝑓 .

Suppose that 𝐵𝑓 is an arborescence. Note that vertices 𝑢 and 𝑎𝑢,𝜎 (𝑢) prefer 𝐵𝑓 to 𝐴, while

vertex 𝑏𝑢,𝜎 (𝑢) prefers 𝐴 to 𝐵𝑓 (because (𝑎𝑢,𝜎 (𝑢) , 𝑏𝑢,𝜎 (𝑢)) ∈ 𝐴). Furthermore, if some 𝑏𝑢,𝑖 , 𝑖 ≠ 𝜎 (𝑢),
prefers 𝐴 to 𝐵𝑓 , then 𝑎𝑢,𝑖 prefers 𝐵𝑓 to 𝐴. Hence, 𝜙𝑉 (𝐺𝑢) (𝐵𝑓 , 𝐴) −𝜙𝑉 (𝐺𝑢) (𝐴, 𝐵𝑓) ≥ 1, which implies

also 𝜙 (𝐵𝑓 , 𝐴) − 𝜙 (𝐴, 𝐵𝑓) > 𝜙 (𝐵,𝐴) − 𝜙 (𝐴, 𝐵), contradicting our choice of 𝐵. Hence, 𝐵𝑓 cannot be

an arborescence, which can only happen if the tail of 𝑓 is a descendant of 𝑢 in 𝐵. �

We claim that T = {𝑆 (𝑢, 𝜎 (𝑢)) : 𝑢 ∈ 𝑈★} is a solution to our instance of Exact 3-Cover. First

observe that T contains at least 𝑛 sets by |𝑈★ | ≥ 𝑛. It remains to show that the sets in T are

pairwise disjoint. We say that𝐺𝑣 is assigned to 𝑢 ∈ 𝑈★
, if 𝑣 ∈ 𝑆 (𝑢, 𝜎 (𝑢)). It suffices to show that no

gadget 𝐺𝑣 can be assigned to more than one vertices in𝑈★
.

Assume for the sake of contradiction that𝐺𝑣 is assigned to both 𝑢 and𝑤 for two distinct vertices

𝑢,𝑤 ∈ 𝑈★
. Then by Claim 7.3 there are two vertices in 𝐵𝑣 , one of them a descendant of 𝑢, the

other a descendant of �̂� . Note that neither 𝑢 nor �̂� is a descendant of the other, since both (𝑟,𝑢)
and (𝑟, �̂�) are edges in 𝐴, and hence, in 𝐵 (recall that 𝐴 and 𝐵 coincide on 𝐺𝑢 and on 𝐺𝑤). This

means that there are two distinct edges entering 𝐵𝑣 , one from a descendant of 𝑢, the other from

a descendant of �̂� . Thus for some 𝑗 ∈ {1, 2, 3}, the edges 𝐵(𝑏𝑣,𝑗) and 𝐵(𝑏𝑣,𝑗+1) are both in 𝐸3,

implying also (𝑏𝑣,𝑗 , 𝑎𝑣,𝑗) ∈ 𝐵 and (𝑏𝑣,𝑗+1, 𝑎𝑣,𝑗+1) ∈ 𝐵, where indices are taken modulo 3 (so 𝑎𝑣,4 = 𝑎𝑣,1
and 𝑏𝑣,4 = 𝑏𝑣,1). However, this contradicts the Pareto-optimality of 𝐵, since replacing 𝐵(𝑏𝑣,𝑗) with
(𝑎𝑣,𝑗+1, 𝑏𝑣,𝑗) in 𝐵 results in an arborescence that 𝑏𝑣,𝑗 prefers to 𝐵, with all other vertices being

indifferent between the two.

This shows that any two sets in T are disjoint, proving the correctness of our reduction.

8 EXTENSIONS AND RELATED RESULTS
Popularity under size constraints. As mentioned in the introduction, the popular largest common

independent set problem can be reduced to the popular common base problem. More generally,

we can reduce the popular size [ℓ,𝑢] common independent set problem to the popular common
base problem, where the goal of the former problem is to find a common independent set that is

popular within the set of all common independent sets whose size is at least ℓ and at most 𝑢 (if

such a solution exists).

We now describe the reduction. Suppose that we are given a partition matroid 𝑀part on 𝐸 =Ï
𝑣∈𝑉 𝐸𝑣 , where each 𝑣 ∈ 𝑉 has a partial order ≻𝑣 over 𝐸𝑣 , and an arbitrary matroid 𝑀 = (𝐸,I).

We define a new instance as follows. For each 𝑣 ∈ 𝑉 , we create a new element 𝑒𝑣 and extend the

domain of ≻𝑣 to 𝐸𝑣 ∪ {𝑒𝑣}, where 𝑒𝑣 is the unique worst element. The new partition is defined as

𝐸′ B
Ï

𝑣∈𝑉 (𝐸𝑣 ∪ {𝑒𝑣}). We define a new matroid𝑀 ′ = (𝐸′,I′) by
I′ = {𝑋 ⊆ 𝐸′ : 𝑋 ∩ 𝐸 ∈ I, |𝑋 ∩ 𝐸 | ≤ 𝑢, |𝑋 ∩ { 𝑒𝑣 : 𝑣 ∈ 𝑉 }| ≤ |𝑉 | − ℓ, |𝑋 | ≤ |𝑉 | }.

Note that we can assume that the rank of𝑀 (i.e., the size of a base in𝑀) is at least ℓ since otherwise

the given instance clearly has no solution. Therefore, the rank of𝑀 ′ is |𝑉 |.
There exists a one-to-one correspondence between common independent sets of sizes in [ℓ,𝑢] in

the original instance and common bases of the new instance. Suppose 𝐼 is a common independent

set with ℓ ≤ |𝐼 | ≤ 𝑢 in the original instance. Let 𝐵 be obtained from 𝐼 by adding 𝑒𝑣 for any 𝑣 ∈ 𝑉
with 𝐼 ∩ 𝐸𝑣 = ∅. Then 𝐵 is a common base in the new instance. Conversely, given a common

base of the new instance, we can obtain a common independent set satisfying the size constraint

28 Kavitha, Makino, Schlotter, and Yokoi

by projecting out the dummy elements. Furthermore, 𝜙 (𝐼 , 𝐼 ′) = 𝜙 (𝐵, 𝐵′) holds for any common

independent sets 𝐼 and 𝐼 ′ of the original instance and their corresponding bases 𝐵 and 𝐵′. Thus, the
reduction is completed.

The reduction used in Section 4 (to reduce the popular common independent set problem to the

popular common base problem) is a special case of this reduction where 𝑢 = |𝑉 | and ℓ = 0.

Popularity under category-wise size constraints. We can also use our popular common base

algorithm (Algorithm 1) to solve the problem of finding a common independent set that is popular

under a kind of diversity constraints. Such constraints have also been considered in [21] in the

context of popular assignments.

Similarly to the above, suppose that a partition matroid on 𝐸 =
Ï

𝑣∈𝑉 𝐸𝑣 with preferences (≻𝑣)𝑣∈𝑉
and an arbitrary matroid 𝑀 = (𝐸,I) are given. We regard 𝑉 as the set of agents. Suppose that

the set 𝑉 is partitioned into 𝑞 categories 𝑃1 ∪· · · · ∪· 𝑃𝑞 , and each category 𝑃𝑘 is associated with

integers ℓ𝑘 and 𝑢𝑘 where ℓ𝑘 ≤ 𝑢𝑘 . We call a common independent set 𝑋 ⊆ 𝐸 admissible if, for each
𝑘 = 1, . . . , 𝑞, we have ℓ𝑘 ≤ | { 𝑣 ∈ 𝑃𝑘 : 𝐸𝑣 ∩ 𝑋 ≠ ∅ } | ≤ 𝑢𝑘 . That is, a set 𝑋 is admissible if, among

the agents in each category 𝑃𝑘 , at least ℓ𝑘 and at most 𝑢𝑘 agents are assigned an element.

The problem of finding a common independent set that is popular within the set of admissible

common independent sets can be reduced to the popular common base problem as follows. Similarly

to the case of size constraints above, for each 𝑣 ∈ 𝑉 , we introduce a dummy element 𝑒𝑣 that is

worst in 𝑣 ’s preference. Moreover, for each category 𝑃𝑘 , we create a set 𝐷𝑘 of dummy agents with

|𝐷𝑘 | = 𝑢𝑘 − ℓ𝑘 . With each dummy agent 𝑑 ∈ 𝐷𝑘 we associate a set {𝑓𝑑 , 𝑔𝑑 } of two new elements,

and these are tied in the preferences of 𝑑 , that is, 𝑓𝑑 ⊁𝑣 𝑔𝑑 and 𝑔𝑑 ⊁𝑑 𝑓𝑑 . Thus, the new ground set

is 𝐸∗ =
⋃

𝑣∈𝑉 (𝐸𝑣 ∪ {𝑒𝑣}) ∪
⋃

𝑑∈𝐷1∪···∪𝐷𝑞
{𝑓𝑑 , 𝑔𝑑 }, and its partition classes are the sets 𝐸𝑣 ∪ {𝑒𝑣} for

𝑣 ∈ 𝑉 and the sets {𝑓𝑑 , 𝑔𝑑 } for 𝑑 ∈ 𝐷𝑘 and 𝑘 ∈ {1, . . . , 𝑞}.
We define a matroid on 𝐸∗. First, for 𝑘 = 1, . . . , 𝑞, let 𝐹𝑘 B { 𝑒𝑣 : 𝑣 ∈ 𝑃𝑘 } ∪ { 𝑓𝑑 : 𝑑 ∈ 𝐷𝑘 } and let

(𝐹𝑘 ,I𝑘) be a uniform matroid defined by I𝑘 = {𝑋 ⊆ 𝐹𝑘 : |𝑋 | ≤ |𝑃𝑘 | − ℓ𝑘 }.
Next, let 𝐸′ B 𝐸 ∪ {𝑔𝑑 : 𝑑 ∈ 𝐷1 ∪ · · · ∪ 𝐷𝑞 } and define a matroid (𝐸′,I′) as the truncation of

the direct sum of𝑀 and the free matroid on {𝑔𝑑 : 𝑑 ∈ 𝐷1 ∪ · · · ∪ 𝐷𝑞 }, that is,

I′ B
{
𝑋 ⊆ 𝐸′ : 𝑋 ∩ 𝐸 ∈ I, |𝑋 | ≤ ∑𝑞

𝑘=1
𝑢𝑘

}
.

Let (𝐸∗,I∗) be the direct sum of all these matroids, i.e., I∗ is defined as

I∗ = {𝑋 ⊆ 𝐸∗ : 𝑋 ∩ 𝐸 ∈ I, |𝑋 ∩ 𝐸′ | ≤ ∑𝑞

𝑘=1
𝑢𝑘 , |𝑋 ∩ 𝐹𝑘 | ≤ |𝑃𝑘 | − ℓ𝑘 for 𝑘 = 1, . . . , 𝑞 }.

We can assume that the size of a base in (𝐸,I) is at least ∑𝑞

𝑘=1
ℓ𝑘 since otherwise the instance

clearly has no admissible set. As we have | {𝑔𝑑 : 𝑑 ∈ 𝐷1 ∪ · · · ∪ 𝐷𝑞 } | =
∑𝑞

𝑘=1
(𝑢𝑘 − ℓ𝑘), the size of

a base in the matroid (𝐸′,I′) is exactly ∑𝑞

𝑘=1
𝑢𝑘 . Also, the size of a base in each (𝐹𝑘 ,I𝑘) is |𝑃𝑘 | − ℓ𝑘

(since |𝐹𝑘 | = |𝑃𝑘 | + 𝑢𝑘 − ℓ𝑘). Thus, the size of a base of the matroid (𝐸∗,I∗) is ∑𝑞

𝑘=1
(|𝑃𝑘 | + 𝑢𝑘 − ℓ𝑘),

which equals the number of agents in the new instance.

We now explain how to transform admissible common independent sets of the original instance to

common bases of the new instance, and vise versa. Let 𝐼 be an admissible common independent set

of the original instance. For each 𝑘 = 1, . . . , 𝑞, let𝑊𝑘 ⊆ 𝑃𝑘 be the set of agents 𝑣 in 𝑃𝑘 with 𝐼 ∩𝐸𝑣 = ∅.
Since 𝐼 is admissible, |𝑃𝑘 | − 𝑢𝑘 ≤ |𝑊𝑘 | ≤ |𝑃𝑘 | − ℓ𝑘 . Set 𝐵 = 𝐼 and augment 𝐵 by adding elements in

the following manner. For each agent 𝑣 in𝑊𝑘 , add the corresponding element 𝑒𝑣 to 𝐵. Note that

|𝑃𝑘 | − ℓ𝑘 − |𝑊𝑘 | is at least 0 and at most𝑢𝑘 − ℓ𝑘 . Take |𝑃𝑘 | − ℓ𝑘 − |𝑊𝑘 | agents 𝑑 from 𝐷𝑘 arbitrarily and

add the corresponding 𝑓𝑑 elements to 𝐵. For the remaining |𝐷𝑘 | − (|𝑃𝑘 | − ℓ𝑘 − |𝑊𝑘 |) = 𝑢𝑘 − |𝑃𝑘 | + |𝑊𝑘 |
agents 𝑑 in 𝐷𝑘 , we add the corresponding 𝑔𝑑 elements to 𝐵. Thus, all agents are assigned elements.

Furthermore, we see that the set 𝐵 satisfies 𝐵∩𝐸 ∈ I, |𝐵∩𝐸′ | = |𝐼 |+∑𝑞

𝑘=1
(𝑢𝑘−|𝑃𝑘 |+ |𝑊𝑘 |) =

∑𝑞

𝑘=1
𝑢𝑘

Popular Arborescences and Their Matroid Generalization 29

(note that

∑𝑞

𝑘=1
(|𝑃𝑘 | − |𝑊𝑘 |) = |𝐼 |), and |𝐵∩𝐹𝑘 | = |𝑃𝑘 | −ℓ𝑘 for each 𝑘 = 1, . . . , 𝑞. Thus, 𝐵 is a common

base in the new instance.

Conversely, let 𝐵 be a common base of the new instance and 𝐼 be obtained by deleting all dummy

elements in 𝐵. Clearly 𝐼 is a common independent set of the original instance. As 𝐵 is a base

in I∗, we have |𝐵 ∩ 𝐹𝑘 | = |𝑃𝑘 | − ℓ𝑘 for each 𝑘 = 1, . . . , 𝑞. Since 𝐹𝑘 = { 𝑒𝑣 : 𝑣 ∈ 𝑃𝑘 } ∪ { 𝑓𝑑 : 𝑑 ∈ 𝐷𝑘 },
this implies |𝐵 ∩ { 𝑒𝑣 : 𝑣 ∈ 𝑃𝑘 } | ≤ |𝑃𝑘 | − ℓ𝑘 . As | { 𝑓𝑑 : 𝑑 ∈ 𝐷𝑘 } | = 𝑢𝑘 − ℓ𝑘 , it also follows that

|𝐵 ∩ { 𝑒𝑣 : 𝑣 ∈ 𝑃𝑘 } | ≥ |𝑃𝑘 | −𝑢𝑘 . Thus, we have |𝑃𝑘 | −𝑢𝑘 ≤ |𝐵 ∩ { 𝑒𝑣 : 𝑣 ∈ 𝑃𝑘 }| ≤ |𝑃𝑘 | − ℓ𝑘 , which is

equivalent to ℓ𝑘 ≤ | { 𝑣 ∈ 𝑃𝑘 : 𝐵 ∩ 𝐸𝑣 ≠ ∅ } | ≤ 𝑢𝑘 . Thus, 𝐼 is admissible in the original instance.

We can also observe that 𝜙 (𝐼 , 𝐼 ′) = 𝜙 (𝐵, 𝐵′) holds for any admissible common independent

sets 𝐼 and 𝐼 ′ of the original instance and their corresponding bases 𝐵 and 𝐵′ in the new instance.

Therefore, a popular admissible common independent set in the original instance corresponds to a

popular common base of the new instance.

Popular fractional solutions. The notion of popularity can be extended to fractional solutions,

or equivalently, probability distributions over integral solutions. A fractional/mixed solution 𝑥 is

popular if there is no fractional (in fact, integral) solution more popular than 𝑥 .

It was shown in [25] using the minimax theorem that popular mixed matchings always exist and

such a fractional/mixed matching can be computed in polynomial time. The same proof shows that

a popular fractional (largest) common independent set always exists and such a fractional solution

can be computed in polynomial time by optimizing over the matroid intersection polytope.

An integral solution 𝐼 is strongly popular if 𝜙 (𝐼 , 𝐼 ′) > 𝜙 (𝐼 ′, 𝐼) for all solutions 𝐼 ′ ≠ 𝐼 . As observed
in [3] in the context of the roommates problem, if a strongly popular solution exists, then it has to

be a unique popular fractional solution. Thus there is a polynomial-time algorithm for the strongly

popular (largest) common independent set problem.

9 CONCLUSIONS
We considered the popular common base problem, which asks to determine the existence of a

popular common base in the intersection of a partition matroid and an arbitrary matroid, where

a partial order preference is associated with each partition class of the partition matroid. We

provided the first polynomial-time algorithm to solve this problem. This problem includes the

popular arborescence problem as a special case, and hence our result affirmatively answers an

open problem posed in [26]. Furthermore, we observed that the popular common independent set
problem can be reduced to the popular common base problem, and hence can be solved by our

algorithm. Utilizing structural observations, we also proved that the min-cost popular common
independent set problem is tractable if preferences are weak rankings.

On the intractability side, we proved that the min-cost popular arborescence problem and the

𝑘-unpopularity margin arborescence problem are both NP-hard even for strict preferences. Note

that the min-cost problem is NP-hard for popular common bases (a fact implied by the NP-hardness
of the popular assignment problem shown in [21], as well as by Theorem 1.9), while it is tractable

for popular common independent sets if preferences are weak rankings by Theorem 1.7. By analogy,

one may expect the problem of finding a common independent set with unpopularity margin

at most 𝑘 to be polynomial-time solvable. However, this is not the case (unless P = NP), since
the 𝑘-unpopularity matching problem is NP-hard even for strict rankings [28]. Note that the 𝑘-
unpopularity margin branching problem is polynomial-time solvable when preferences are weak

rankings, as shown in [22], but this does not contradict the above fact: branchings and matchings

are both special cases of common independent sets (where one matroid is a partition matroid),

but neither of them includes the other. An interesting open question is the following: what is the

complexity of finding an arborescence with unpopularity margin at most 𝑘 , if 𝑘 is a constant?

30 Kavitha, Makino, Schlotter, and Yokoi

ACKNOWLEDGMENTS
We are grateful for inspiring discussions on the popular arborescence problem to Chien-Chung

Huang, Satoru Iwata, Tamás Király, Jannik Matuschke, and Ulrike Schmidt-Kraepelin. We thank the

anonymous reviewers of the conference version of our paper for their valuable comments. We are

grateful to the reviewers of the journal version of our paper for their extremely helpful comments

that have improved the presentation. Telikepalli Kavitha is supported by the Department of Atomic

Energy, Government of India, under project no. RTI4001. Kazuhisa Makino is partially supported

by JSPS KAKENHI Grant Numbers JP20H05967, JP19K22841, and JP20H00609. Ildikó Schlotter is

supported by the Hungarian Academy of Sciences under its Momentum Programme (LP2021-2)

and its János Bolyai Research Scholarship. Yu Yokoi is supported by JST PRESTO Grant Number

JPMJPR212B. This work was supported by JST ERATO Grant Number JPMJER2301, Japan, and the

joint project of Kyoto University and Toyota Motor Corporation, titled “Advanced Mathematical

Science for Mobility Society.”

REFERENCES
[1] David J. Abraham, Robert W. Irving, Telikepalli Kavitha, and Kurt Mehlhorn. 2007. Popular matchings. SIAM J.

Comput. 37, 4 (2007), 1030–1045. https://doi.org/10.1137/06067328X

[2] Frederick C. Bock. 1971. An algorithm to construct a minimum directed spanning tree in a directed network. In

Developments in Operations Research, B. Avi-Itzak (Ed.). Gordon and Breach, New York, 29–44.

[3] Felix Brandt and Martin Bullinger. 2022. Finding and recognizing popular coalition structures. Journal of Artificial
Intelligence Research 74 (2022), 569–626. https://doi.org/10.1613/jair.1.13470

[4] Richard A. Brualdi. 1969. Comments on bases in dependence structures. Bulletin of the Australian Mathematical Society
1, 2 (1969), 161–167. https://doi.org/10.1017/S000497270004140X

[5] Yoeng-jin Chu and Tseng-hong Liu. 1965. On the shortest arborescence of a directed graph. Scientia Sinica 14 (1965),
1396–1400.

[6] M. Condorcet. 1785. Essai sur l’application de l’analyse à la probabilité des décisions rendues à la pluralité des voix.
L’Imprimerie Royale.

[7] Ágnes Cseh. 2017. Popular matchings. In Trends in Computational Social Choice, Ulle Endriss (Ed.). AI Access, Chapter 6,
105–122. https://real.mtak.hu/80750/1/TrendsCOMSOC_06_u.pdf

[8] Andreas Darmann. 2013. Popular spanning trees. International Journal of Foundations of Computer Science 24, 5 (2013),
655 – 677. https://doi.org/10.1142/S0129054113500226

[9] Andreas Darmann. 2016. It is difficult to tell if there is a Condorcet spanning tree. Mathematical Methods of Operations
Research 84, 1 (2016), 94 – 104. https://doi.org/10.1007/s00186-016-0535-3

[10] Andreas Darmann, Christian Klamler, and Ulrich Pferschy. 2011. Finding socially best spanning trees. Theory and
Decision 70, 4 (2011), 511 – 527. https://doi.org/10.1007/s11238-010-9228-1

[11] Jack Edmonds. 1967. Optimum branchings. Journal of Research of the National Institute of Standards 71B (1967),

233–240. https://doi.org/10.6028/jres.071b.032

[12] Jack Edmonds. 1970. Submodular functions, matroids, and certain polyhedra. In Combinatorial Structures and Their
Applications, R. Guy, H. Hanani, N. Sauer, and J. Schönheim (Eds.). 69–87.

[13] András Frank. 1981. A weighted matroid intersection algorithm. Journal of Algorithms 2 (1981), 328–336. https:

//doi.org/10.1016/0196-6774(81)90032-8

[14] David Gale and Lloyd S. Shapley. 1962. College admissions and the stability of marriage. The American Mathematical
Monthly 69, 1 (1962), 9–15. https://doi.org/10.1080/00029890.1962.11989827

[15] Peter Gärdenfors. 1975. Match making: assignments based on bilateral preferences. Behavioural Science 20 (1975),
166–173. https://doi.org/10.1002/bs.3830200304

[16] Michel X. Goemans. 2017. Lecture notes on matroid intersection. Massachusetts Institute of Technology, Combinatorial

Optimization (Spring 2017), https://math.mit.edu/~goemans/18453S17/matroid-intersect-notes.pdf.

[17] Teofilo F. Gonzalez. 1985. Clustering to minimize the maximum intercluster distance. Theoretical Computer Science 38
(1985), 293–306. https://doi.org/10.1016/0304-3975(85)90224-5

[18] Steve Hardt and Lia C. R. Lopes. 2015. Google Votes: A Liquid Democracy Experiment on a Corporate Social Network.
Technical Report. Technical Disclosure Commons. https://www.tdcommons.org/dpubs_series/79

[19] Chien-Chung Huang, Naonori Kakimura, and Naoyuki Kamiyama. 2019. Exact and approximation algorithms for

weighted matroid intersection. Mathematical Programming 177, 1-2 (2019), 85–112. https://dl.acm.org/doi/10.5555/

2884435.2884467

https://doi.org/10.1137/06067328X
https://doi.org/10.1613/jair.1.13470
https://doi.org/10.1017/S000497270004140X
https://real.mtak.hu/80750/1/TrendsCOMSOC_06_u.pdf
https://doi.org/10.1142/S0129054113500226
https://doi.org/10.1007/s00186-016-0535-3
https://doi.org/10.1007/s11238-010-9228-1
https://doi.org/10.6028/jres.071b.032
https://doi.org/10.1016/0196-6774(81)90032-8
https://doi.org/10.1016/0196-6774(81)90032-8
https://doi.org/10.1080/00029890.1962.11989827
https://doi.org/10.1002/bs.3830200304
https://math.mit.edu/~goemans/18453S17/matroid-intersect-notes.pdf
https://doi.org/10.1016/0304-3975(85)90224-5
https://www.tdcommons.org/dpubs_series/79
https://dl.acm.org/doi/10.5555/2884435.2884467
https://dl.acm.org/doi/10.5555/2884435.2884467

Popular Arborescences and Their Matroid Generalization 31

[20] Naoyuki Kamiyama. 2017. Popular matchings with ties and matroid constraints. SIAM Journal on Discrete Mathematics
31, 3 (2017), 1801–1819. https://doi.org/10.1137/15M104918X

[21] Telikepalli Kavitha, Tamás Király, Jannik Matuschke, Ildikó Schlotter, and Ulrike Schmidt-Kraepelin. 2022. The popular

assignment problem: when cardinality is more important than popularity. In Proceedings of the 2022 Annual ACM-SIAM
Symposium on Discrete Algorithms (SODA 2022). SIAM, 103–123. https://doi.org/10.1137/1.9781611977073.6

[22] Telikepalli Kavitha, Tamás Király, Jannik Matuschke, Ildikó Schlotter, and Ulrike Schmidt-Kraepelin. 2022. Popular

branchings and their dual certificates. Mathematical Programming 192, 1 (2022), 567–595. https://doi.org/10.1007/

s10107-021-01659-6

[23] Telikepalli Kavitha, Tamás Király, Jannik Matuschke, Ildikó Schlotter, and Ulrike Schmidt-Kraepelin. 2023. The popular

assignment problem: when cardinality is more important than popularity. https://doi.org/10.48550/arXiv.2110.10984

CoRR, arXiv:2110.10984 [cs.DS].
[24] Telikepalli Kavitha, Kazuhisa Makino, Ildikó Schlotter, and Yu Yokoi. 2024. Arborescences, colorful forests, and

popularity. In Proceedings of the 2024 Annual ACM-SIAM Symposium on Discrete Algorithms (SODA 2024). SIAM,

3724–3746. https://doi.org/10.1137/1.9781611977912.131

[25] Telikepalli Kavitha, Julián Mestre, and Meghana Nasre. 2011. Popular mixed matchings. Theoretical Computer Science
412 (2011), 2679–2690. https://doi.org/10.1007/978-3-642-02927-1_48

[26] Tamás Király. 2019. Popular arborescences. 9th Emléktábla Workshop (Matching Theory). https://users.renyi.hu/

~emlektab/emlektabla9problems.pdf Page 7.

[27] Mohammad Mahdian. 2006. Random popular matchings. In Proceedings of the 7th ACM Conference on Electronic
Commerce (EC 2006). ACM, 238–242. https://doi.org/10.1145/1134707.113473

[28] Richard MatthewMcCutchen. 2008. The least-unpopularity-factor and least-unpopularity-margin criteria for matching

problems with one-sided preferences. In Proceedings of the 8th Latin American Conference on Theoretical Informatics
(LATIN 2008) (Lecture Notes in Computer Science, Vol. 4957). Springer, 593–604. https://doi.org/10.1007/978-3-540-

78773-0_51

[29] Samuel Merrill III and Bernard Grofman. 1999. A Unified Theory of Voting: Directional and Proximity Spatial Models.
Cambridge University Press. https://doi.org/10.1017/CBO9780511605864

[30] Julián Mestre. 2014. Weighted popular matchings. ACM Transactions on Algorithms 10, 1 (2014), article 2. https:

//doi.org/10.1145/2556951

[31] Kei Natsui and Kenjiro Takazawa. 2023. Finding popular branchings in vertex-weighted directed graphs. Theoretical
Computer Science 953 (2023). https://doi.org/10.1016/j.tcs.2023.113799

[32] Ulrike Schmidt-Kraepelin. 2022. Models and Algorithms for Scalable Collective Decision Making. Ph.D. Dissertation. TU
Berlin. https://doi.org/10.14279/depositonce-17956

[33] A. Schrijver. 2003. Combinatorial Optimization - Polyhedra and Efficiency. Vol. 24 of Algorithms and Combinatorics.
Springer-Verlag, Berlin.

[34] Collin T. S. Sng and David F. Manlove. 2010. Popular matchings in the weighted capacitated house allocation problem.

Journal of Discrete Algorithms 8, 2 (2010), 102–116. https://doi.org/10.1016/j.jda.2008.11.008

[35] Robert Endre Tarjan. 1977. Finding optimum branchings. Networks 7, 1 (1977), 25–35. https://doi.org/10.1002/net.

3230070103

https://doi.org/10.1137/15M104918X
https://doi.org/10.1137/1.9781611977073.6
https://doi.org/10.1007/s10107-021-01659-6
https://doi.org/10.1007/s10107-021-01659-6
https://doi.org/10.48550/arXiv.2110.10984
https://doi.org/10.1137/1.9781611977912.131
https://doi.org/10.1007/978-3-642-02927-1_48
https://users.renyi.hu/~emlektab/emlektabla9problems.pdf
https://users.renyi.hu/~emlektab/emlektabla9problems.pdf
https://doi.org/10.1145/1134707.113473
https://doi.org/10.1007/978-3-540-78773-0_51
https://doi.org/10.1007/978-3-540-78773-0_51
https://doi.org/10.1017/CBO9780511605864
https://doi.org/10.1145/2556951
https://doi.org/10.1145/2556951
https://doi.org/10.1016/j.tcs.2023.113799
https://doi.org/10.14279/depositonce-17956
https://doi.org/10.1016/j.jda.2008.11.008
https://doi.org/10.1002/net.3230070103
https://doi.org/10.1002/net.3230070103

32 Kavitha, Makino, Schlotter, and Yokoi

Appendix A EXAMPLES OF ALGORITHM EXECUTION
We illustrate how Algorithm 1 works using some examples. We provide three instances of the

popular arborescence problem. In all of these instances, a digraph is given as𝐺 = (𝑉 ∪ {𝑟 }, 𝐸) with
𝑉 = {𝑎, 𝑏, 𝑐, 𝑑}, and each node 𝑣 ∈ 𝑉 has a strict preference on the set 𝛿 (𝑣) of its incoming edges.

For better readability, for a multichain C = {𝐶1, . . . ,𝐶𝑝 } with 𝐶1 ⊆ · · · ⊆ 𝐶𝑝 we will also use the

notation ⟨𝐶1, . . . ,𝐶𝑝⟩.

A.1 Example 1.
This instance is similar to the one illustrated in Section 1; the only difference is that now the

edge (𝑟, 𝑑) is deleted. In contrast to the case where (𝑟, 𝑑) exists, this instance admits a popular

arborescence, which is found by Algorithm 1 as follows.

The preference orders for the four vertices are as follows:

(𝑏, 𝑎) ≻𝑎 (𝑐, 𝑎) ≻𝑎 (𝑟, 𝑎)
(𝑎, 𝑏) ≻𝑏 (𝑑, 𝑏) ≻𝑏 (𝑟, 𝑏)
(𝑑, 𝑐) ≻𝑐 (𝑎, 𝑐) ≻𝑐 (𝑟, 𝑐)
(𝑐, 𝑑) ≻𝑑 (𝑏, 𝑑).

𝑟

𝑎 𝑏

𝑐 𝑑

first rank

second rank

third rank

For convenience, we denote by 𝐸1, 𝐸2, and 𝐸3 the sets of the first, second and third choice

edges, respectively. That is, 𝐸1 = {(𝑏, 𝑎), (𝑎, 𝑏), (𝑑, 𝑐), (𝑐, 𝑑)}, 𝐸2 = {(𝑐, 𝑎), (𝑑,𝑏), (𝑎, 𝑐), (𝑏, 𝑑)}, and
𝐸3 = {(𝑟, 𝑎), (𝑟, 𝑏), (𝑟, 𝑐)}.

Algorithm Execution. Below we describe the steps in our algorithm.

(1) 𝑝 = 1 and 𝐶1 = 𝐸. Then 𝐸 (C) = 𝐸1 and 𝐼 = {(𝑎, 𝑏), (𝑐, 𝑑)} is a lex-maximal branching in

𝐸 (C). Since |𝐼 ∩𝐶1 | = 2 < 4 = rank(𝐶1), the set 𝐶1 is updated to span(𝐼 ∩𝐶1) = 𝐸1. Since

𝐶1 = 𝐶𝑝 is updated, 𝑝 is incremented and 𝐸 is added to C as 𝐶2.

(2) 𝑝 = 2 and ⟨𝐶1,𝐶2⟩ = ⟨𝐸1, 𝐸⟩. Then 𝐸 (C) = 𝐸1 ∪ 𝐸2 and 𝐼 = {(𝑎, 𝑏), (𝑐, 𝑑), (𝑎, 𝑐)} is a lex-

maximal branching in 𝐸 (C). Since |𝐼 ∩𝐶1 | = 2 = rank(𝐶1) and |𝐼 ∩𝐶2 | = 3 < 4 = rank(𝐶2),
the set 𝐶2 is updated to span(𝐼 ∩𝐶2) = 𝐸1 ∪ 𝐸2. Since 𝐶2 = 𝐶𝑝 is updated, 𝑝 is incremented

and 𝐸 is added to C as 𝐶3.

(3) 𝑝 = 3 and ⟨𝐶1,𝐶2,𝐶3⟩ = ⟨𝐸1, 𝐸1 ∪ 𝐸2, 𝐸⟩. Then 𝐸 (C) = {(𝑐, 𝑑)} ∪ 𝐸2 ∪ 𝐸3 and 𝐼 =

{(𝑐, 𝑑), (𝑐, 𝑎), (𝑑, 𝑏), (𝑟, 𝑐)} is a lex-maximal branching in 𝐸 (C). Since |𝐼 ∩ 𝐶1 | = 1 < 2 =

rank(𝐶1), the set 𝐶1 is updated to span(𝐼 ∩𝐶1) = {(𝑐, 𝑑), (𝑑, 𝑐)}.

(4) 𝑝 = 3 and ⟨𝐶1,𝐶2,𝐶3⟩ = ⟨{(𝑐, 𝑑), (𝑑, 𝑐)}, 𝐸1 ∪ 𝐸2, 𝐸⟩. Then
𝐸 (C) = {(𝑟, 𝑎), (𝑏, 𝑎), (𝑟, 𝑏), (𝑎, 𝑏), (𝑟, 𝑐), (𝑎, 𝑐), (𝑐, 𝑑), (𝑏, 𝑑)}
(all edges on the figure to the right) and we have 𝐼 =

{(𝑟, 𝑎), (𝑎, 𝑏), (𝑎, 𝑐), (𝑐, 𝑑)} (thick edges on the figure to the

right) is a lex-maximal branching in 𝐸 (C). Since |𝐼 ∩𝐶𝑖 | =
rank(𝐶𝑖) holds for 𝑖 = 1, 2, 3, the algorithm returns 𝐼 .

𝑟

𝑎 𝑏

𝑐 𝑑

Note that 𝐼 ′ = {(𝑟, 𝑏), (𝑏, 𝑎), (𝑎, 𝑐), (𝑐, 𝑑)} is also a possible output of the algorithm. Indeed, both 𝐼

and 𝐼 ′ are popular arborescences.

Popular Arborescences and Their Matroid Generalization 33

A.2 Example 2.
We next demonstrate how the algorithmworks for an instance that admits no popular arborescences.

Consider the instance illustrated in the intro-

duction. For the reader’s convenience, we include

the same figure again. As observed there, this in-

stance has no popular arborescence.

We denote by 𝐸1, 𝐸2, and 𝐸3 the sets of the first,

second and third rank edges, respectively. Note

that, unlike in Example 1, here 𝐸3 contains (𝑟, 𝑑).

𝑟

𝑎 𝑏

𝑐 𝑑

first rank

second rank

third rank

Algorithm Execution.

(1) The first step is the same as Step 1 in Example 1. That is, 𝑝 = 1, 𝐶1 = 𝐸, 𝐸 (C) = 𝐸1, and

𝐼 = {(𝑎, 𝑏), (𝑐, 𝑑)} is found as a lex-maximal branching in 𝐸 (C). Then, 𝐶1 is updated to

span(𝐼 ∩𝐶1) = 𝐸1, 𝑝 is incremented, and 𝐸 is added to C as 𝐶2.

(2) The second step is also the same as Step 2 in Example 1. That is, 𝑝 = 2, ⟨𝐶1,𝐶2⟩ = ⟨𝐸1, 𝐸⟩,
𝐸 (C) = 𝐸1 ∪ 𝐸2, and 𝐼 = {(𝑎, 𝑏), (𝑐, 𝑑), (𝑎, 𝑐)} is found as a lex-maximal branching in 𝐸 (C).
Then, 𝐶2 is updated to span(𝐼 ∩𝐶2) = 𝐸1 ∪ 𝐸2, 𝑝 is incremented, and 𝐸 is added to C as 𝐶3.

(3) 𝑝 = 3 and ⟨𝐶1,𝐶2,𝐶3⟩ = ⟨𝐸1, 𝐸1 ∪ 𝐸2, 𝐸⟩. Then 𝐸 (C) = 𝐸2 ∪ 𝐸3 (compared to Example 1,

here (𝑟, 𝑑) is included while (𝑐, 𝑑) is excluded) and 𝐼 = {(𝑎, 𝑐), (𝑏, 𝑑), (𝑟, 𝑎), (𝑟, 𝑏)} is a lex-
maximal branching in 𝐸 (C). Since |𝐼 ∩ 𝐶1 | = 0 < 2 = rank(𝐶1), the set 𝐶1 is updated to

span(𝐼 ∩𝐶1) = ∅.
(4) 𝑝 = 3 and ⟨𝐶1,𝐶2,𝐶3⟩ = ⟨∅, 𝐸1∪𝐸2, 𝐸⟩. Then𝐸 (C) = 𝐸1∪𝐸3 and 𝐼 = {(𝑎, 𝑏), (𝑐, 𝑑), (𝑟, 𝑎), (𝑟, 𝑐)}

is a lex-maximal branching in 𝐸 (C). Since |𝐼∩𝐶1 | = rank(𝐶1) and |𝐼∩𝐶2 | = 2 < 3 = rank(𝐶2),
the set 𝐶2 is updated to span(𝐼 ∩𝐶2) = 𝐸1.

(5) 𝑝 = 3 and ⟨𝐶1,𝐶2,𝐶3⟩ = ⟨∅, 𝐸1, 𝐸⟩. Then 𝐸 (C) = 𝐸1 ∪ 𝐸2 and 𝐼 = {(𝑎, 𝑏), (𝑐, 𝑑), (𝑎, 𝑐)} is a
lex-maximal branching in 𝐸 (C). (Observe that these 𝐸 (C) and 𝐼 are the same as Step 2.)

Since |𝐼 ∩𝐶𝑖 | = rank(𝐶𝑖) for 𝑖 = 1, 2 and |𝐼 ∩𝐶3 | = 3 < 4 = rank(𝐶3), the set 𝐶3 is updated

to span(𝐼 ∩𝐶3) = 𝐸1 ∪ 𝐸2, 𝑝 is incremented, and 𝐸 is added to C as 𝐶4.

(6) 𝑝 = 4 and ⟨𝐶1,𝐶2,𝐶3,𝐶4⟩ = ⟨∅, 𝐸1, 𝐸1 ∪ 𝐸2, 𝐸⟩. Then, as in Step 3, 𝐸 (C) = 𝐸2 ∪ 𝐸3 and

𝐼 = {(𝑎, 𝑐), (𝑏, 𝑑), (𝑟, 𝑎), (𝑟, 𝑏)} is a lex-maximal branching in 𝐸 (C). Since |𝐼 ∩𝐶1 | = rank(𝐶1)
and |𝐼 ∩𝐶2 | = 0 < 2 = rank(𝐶2), the set 𝐶2 is updated to span(𝐼 ∩𝐶2) = ∅.

(7) 𝑝 = 4 and ⟨𝐶1,𝐶2,𝐶3,𝐶4⟩ = ⟨∅, ∅, 𝐸1 ∪ 𝐸2, 𝐸⟩. By the same argument as in Step 4, the set 𝐶3

is updated to 𝐸1.

(8) 𝑝 = 4 and ⟨𝐶1,𝐶2,𝐶3,𝐶4⟩ = ⟨∅, ∅, 𝐸1, 𝐸⟩. By the same argument as in Step 5, the set 𝐶4 is

updated to 𝐸1 ∪ 𝐸2, 𝑝 is incremented, and 𝐸 is added to C as 𝐶5.

(9) 𝑝 = 5 and ⟨𝐶1,𝐶2,𝐶3,𝐶4,𝐶5⟩ = ⟨∅, ∅, 𝐸1, 𝐸1∪𝐸2, 𝐸⟩. Since 𝑝 = 5 > 4 = 𝑛 = |𝑉 |, the algorithm
halts with returning “𝐺 has no popular arborescence.”

The reader might observe that whenever𝐶1 becomes empty in the algorithm, then by Lemma 3.3

we can conclude that the instance admits no popular arborescence, since the dual certificate contains

only non-empty sets (Lemma 2.2) and hence 𝐷1 ⊆ 𝐶1 = ∅ is not possible. Therefore, we could in fact

stop the algorithm already in Step 3 when 𝐶1 gets updated to ∅. Nevertheless, the algorithm will

reach a correct answer even without using this observation, as illustrated by the above example.

34 Kavitha, Makino, Schlotter, and Yokoi

A.3 Example 3.
We next provide an example that shows the importance of considering multichains. During the

algorithm’s execution on this instance, C does become a multichain that is not a chain.

The preferences of the four vertices are as follows:

(𝑏, 𝑎) ≻𝑎 (𝑟, 𝑎)
(𝑐, 𝑏) ≻𝑏 (𝑎, 𝑏)
(𝑑, 𝑐) ≻𝑐 (𝑏, 𝑐)
(𝑐, 𝑑)

𝑟 𝑎 𝑏 𝑐 𝑑

first rank

second rank

where (𝑐, 𝑑) is the unique incoming edge of 𝑑 . For convenience, we denote by 𝐸𝑎𝑏𝑐𝑑 , 𝐸𝑏𝑐𝑑 , and 𝐸𝑐𝑑
the edge sets of the induced subgraphs for the vertex sets {𝑎, 𝑏, 𝑐, 𝑑}, {𝑏, 𝑐, 𝑑}, and {𝑐, 𝑑}, respectively.
That is, 𝐸𝑎𝑏𝑐𝑑 = 𝐸 \ {(𝑟, 𝑎)}, 𝐸𝑏𝑐𝑑 = {(𝑏, 𝑐), (𝑐, 𝑏), (𝑐, 𝑑), (𝑑, 𝑐)}, and 𝐸𝑐𝑑 = {(𝑐, 𝑑), (𝑑, 𝑐)}. Note that
{(𝑟, 𝑎), (𝑎, 𝑏), (𝑏, 𝑐), (𝑐, 𝑑)} is the unique arborescence in this instance, and hence it is a popular

arborescence.

Algorithm Execution.

(1) 𝑝 = 1 and 𝐶1 = 𝐸. Then 𝐸 (C) = {(𝑏, 𝑎), (𝑐, 𝑏), (𝑑, 𝑐), (𝑐, 𝑑)} and 𝐼 = {(𝑏, 𝑎), (𝑐, 𝑏), (𝑐, 𝑑)} is a
lex-maximal branching in 𝐸 (C). Since |𝐼 ∩𝐶1 | = 3 < 4 = rank(𝐶1), the set 𝐶1 is updated to

span(𝐼 ∩𝐶1) = 𝐸𝑎𝑏𝑐𝑑 . Since 𝐶1 = 𝐶𝑝 is updated, 𝑝 is incremented and 𝐸 is added to C as 𝐶2.

(2) 𝑝 = 2 and ⟨𝐶1,𝐶2⟩ = ⟨𝐸𝑎𝑏𝑐𝑑 , 𝐸⟩ (shown by braces on the

right). Then 𝐸 (C) = {(𝑟, 𝑎), (𝑏, 𝑎), (𝑐, 𝑏), (𝑑, 𝑐), (𝑐, 𝑑)} (all
edges on the right) and 𝐼 = {(𝑏, 𝑎), (𝑐, 𝑏), (𝑐, 𝑑)} (thick
edges on the right) is a lex-maximal branching in 𝐸 (C).
Since |𝐼 ∩𝐶1 | = rank(𝐶1) and |𝐼 ∩𝐶2 | = 3 < 4 = rank(𝐶2),
𝐶2 is updated to span(𝐼 ∩ 𝐶2) = 𝐸𝑎𝑏𝑐𝑑 . Since 𝐶2 = 𝐶𝑝 is

updated, 𝑝 is incremented and 𝐸 is added to C as 𝐶3.

𝐶1

𝐶2

𝑟 𝑎 𝑏 𝑐 𝑑

(3) 𝑝 = 3 and ⟨𝐶1,𝐶2,𝐶3⟩ = ⟨𝐸𝑎𝑏𝑐𝑑 , 𝐸𝑎𝑏𝑐𝑑 , 𝐸⟩ (so 𝐶1 = 𝐶2).

Then 𝐸 (C) = {(𝑟, 𝑎), (𝑐, 𝑏), (𝑑, 𝑐), (𝑐, 𝑑)}. Note that (𝑏, 𝑎)
is not in 𝐸 (C) as levC ((𝑏, 𝑎)) = 1 while levC ((𝑟, 𝑎)) = 3.

𝐼 = {(𝑟, 𝑎), (𝑐, 𝑏), (𝑐, 𝑑)} is a lex-maximal branching in

𝐸 (C). Since |𝐼 ∩ 𝐶1 | = 2 < 3 = rank(𝐶1), the set 𝐶1 is

updated to span(𝐼 ∩𝐶1) = 𝐸𝑏𝑐𝑑 .

𝐶1 = 𝐶2

𝐶3

𝑟 𝑎 𝑏 𝑐 𝑑

(4) 𝑝 = 3 and ⟨𝐶1,𝐶2,𝐶3⟩ = ⟨𝐸𝑏𝑐𝑑 , 𝐸𝑎𝑏𝑐𝑑 , 𝐸⟩. Then, 𝐸 (C) =
𝐸 \ {(𝑏, 𝑐)} and 𝐼 = {(𝑏, 𝑎), (𝑐, 𝑏), (𝑐, 𝑑)} is a lex-maximal

branching in 𝐸 (C). Since |𝐼 ∩𝐶𝑖 | = rank(𝐶𝑖) for 𝑖 = 1, 2

and |𝐼 ∩ 𝐶3 | = 3 < 4 = rank(𝐶3), the set 𝐶3 is updated

to span(𝐼 ∩ 𝐶3) = 𝐸𝑎𝑏𝑐𝑑 . Since 𝐶3 = 𝐶𝑝 is updated, 𝑝 is

incremented and 𝐸 is added to C as 𝐶4.

𝐶1

𝐶2

𝐶3

𝑟 𝑎 𝑏 𝑐 𝑑

Popular Arborescences and Their Matroid Generalization 35

(5) 𝑝 = 4 and ⟨𝐶1,𝐶2,𝐶3,𝐶4⟩ = ⟨𝐸𝑏𝑐𝑑 , 𝐸𝑎𝑏𝑐𝑑 , 𝐸𝑎𝑏𝑐𝑑 , 𝐸⟩. Then
𝐸 (C) = 𝐸 \ {(𝑏, 𝑎), (𝑏, 𝑐)} and 𝐼 = {(𝑟, 𝑎), (𝑐, 𝑏), (𝑐, 𝑑)} is a
lex-maximal branching in 𝐸 (C). Since |𝐼 ∩𝐶1 | = rank(𝐶1)
and |𝐼 ∩𝐶2 | = 2 < 3 = rank(𝐶2), the set 𝐶2 is updated to

span(𝐼 ∩𝐶2) = 𝐸𝑏𝑐𝑑 .
𝐶1

𝐶2 = 𝐶3

𝐶4

𝑟 𝑎 𝑏 𝑐 𝑑

(6) 𝑝 = 4 and ⟨𝐶1,𝐶2,𝐶3,𝐶4⟩ = ⟨𝐸𝑏𝑐𝑑 , 𝐸𝑏𝑐𝑑 , 𝐸𝑎𝑏𝑐𝑑 , 𝐸⟩. Then
𝐸 (C) = 𝐸 \ {(𝑏, 𝑐), (𝑐, 𝑏)} and 𝐼 = {(𝑟, 𝑎), (𝑎, 𝑏), (𝑐, 𝑑)} is a
lex-maximal branching in 𝐸 (C). Since |𝐼 ∩𝐶1 | = 1 < 2 =

rank(𝐶1), the set 𝐶1 is updated to span(𝐼 ∩𝐶1) = 𝐸𝑐𝑑 . 𝐶1 = 𝐶2

𝐶3

𝐶4

𝑟 𝑎 𝑏 𝑐 𝑑

(7) 𝑝 = 4 and ⟨𝐶1,𝐶2,𝐶3,𝐶4⟩ = ⟨𝐸𝑐𝑑 , 𝐸𝑏𝑐𝑑 , 𝐸𝑎𝑏𝑐𝑑 , 𝐸⟩. Then
𝐸 (C) = 𝐸 and 𝐼 = {(𝑟, 𝑎), (𝑎, 𝑏), (𝑏, 𝑐), (𝑐, 𝑑)} is a lex-

maximal branching in 𝐸 (C). Since |𝐼 ∩ 𝐶𝑖 | = rank(𝐶𝑖)
holds for 𝑖 = 1, 2, 3, 4, the algorithm returns 𝐼 .

𝐶1

𝐶2

𝐶3

𝐶4

𝑟 𝑎 𝑏 𝑐 𝑑

	Abstract
	1 Introduction
	1.1 Popular common base problem
	1.2 Related graph problems and our hardness results
	1.3 Background
	1.4 An overview of our algorithm

	2 Dual Certificates
	3 Our Algorithm
	4 Popular Common Independent Set Polytope
	5 Popular Common Base with Forced/Forbidden Elements
	6 Min-Cost Popular Arborescence
	7 Minimum Unpopularity Margin Arborescence
	8 Extensions and Related Results
	9 Conclusions
	Acknowledgments
	References
	A Examples of Algorithm Execution
	A.1 Example 1.
	A.2 Example 2.
	A.3 Example 3.

