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Abstract

We consider the Shortest Odd Path problem, where given an undirected
graph G, a weight function on its edges, and two vertices s and t in G, the
aim is to �nd an (s, t)-path with odd length and, among all such paths, of
minimum weight. For the case when the weight function is conservative,
i.e., when every cycle has non-negative total weight, the complexity of the
Shortest Odd Path problem had been open for 20 years, and was recently
shown to be NP-hard.

We give a polynomial-time algorithm for the special case when the weight
function is conservative and the set E− of negative-weight edges forms a
single tree. Our algorithm exploits the strong connection between Short-

est Odd Path and the problem of �nding two internally vertex-disjoint
paths between two terminals in an undirected edge-weighted graph. It also
relies on solving an intermediary problem variant called Shortest Parity-
Constrained Odd Path where for certain edges we have parity constraints
on their position along the path.

Also, we exhibit two FPT algorithms for solving Shortest Odd Path.
The �rst FPT algorithm is parameterized by |E−|, the number of negative
edges, or more generally, by the maximum size of a matching in the subgraph
of G spanned by E−, when the weight function is conservative. Our second
FPT algorithm is parameterized by the treewidth of G, and the algorithm
does not rely on conservativeness.
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1. Introduction

Lovász [24] asked for the complexity of the following question nearly 20
years ago: Given two vertices s and t in an undirected graph G and a weight
function w on the edges of G such that each cycle in G has non-negative
weight, �nd a minimum-weight odd path between s and t. Throughout the
paper, a path is odd (or even) if it contains an odd (even, respectively)
number of edges.

Recently, the problem was shown to be NP-hard by Schlotter and Seb® [23],
even in the case when the weight function is conservative and takes values
only from {−1, 1}. Note that replacing �odd� with �even� does not change
the computational complexity of the problem: �nding a minimum-weight
odd (or even) (s, t)-path (i.e., a path between s and t) in G can easily be
reduced to �nding a minimum-weight even (or odd, respectively) path be-
tween s and a newly added vertex t′ in the graph obtained from G by adding
an edge tt′ with weight 0. Note also that �nding a shortest odd (even) path
between two vertices s and t generalizes the shortest path problem: adding
new vertices t1 and t2 along with 0-weight edges tt2, tt1, and t1t2, a short-
est odd (or even, resp.) (s, t2)-path in the resulting graph yields a shortest
(s, t)-path in the original graph. For undirected graphs with possibly neg-
ative but conservative edge-weights (meaning that there are no cycles with
negative total weight), the shortest path problem is solvable in polynomial
time [24, Chapter 29.2]; however, the usual shortest path algorithms for
directed graphs are not applicable, since bidirecting an edge with negative
weight creates a negative cycle.

If the weights are non-negative, a minimum-weight odd path between
�xed vertices can be found via computing a maximum-weight matching
problem in an auxiliary graph. Thomassen attributes this algorithm to
Edmonds [25], while Grötschel and Pulleybank refer to it as �Waterloo folk-
lore� [13]. A Dijsktra-like algorithm was given for the problem by Derigs [11].
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For the unweighted case, Lapaugh and Papadimitriou [16] gave a linear-time
algorithm that computes an odd (or even) path between two vertices, when-
ever such a path exists; Arkin et al. [1] achieved linear-time solvability even
for �nding a shortest odd (or even) path between two vertices.

The generalized problem of �nding a shortest non-zero path in group-
labeled graphs with non-negative edge weights has also been studied. A
recent work of Iwata and Yamaguchi [14] shows a deterministic and strongly
polynomial-time algorithm for this problem.

For directed graphs, the problem becomes much harder: already decid-
ing whether a path of prescribed parity exists between two given vertices
is NP-hard, as proved independently by Thomassen [25] and by Lapaugh
and Papadimitriou [16]. Building on the connection between even-length
cycles in a directed graph and Pfa�an orientations of bipartite graphs [26],
Robertson, Seymour and Thomas [20], and independently, McCuaig [18] gave
a polynomial-time algorithm for deciding whether a directed graph contains
a cycle of even length. Using advanced algebraic techniques, Björklund, Hus-
feldt and Kaski [3] gave a randomized polynomial-time algorithm for �nding
a shortest even cycle in a directed, unweighted graph.

The closely related problem of �nding parity-constrained induced cycles
in undirected graphs is also of interest. Conforti, Cornuéjols, Kapoor, and
Vu²kovi¢ [8] proved that detecting an even hole (where a hole is an induced
cycle of length at least four) can be done in polynomial time; subsequently,
Chudnovsky, Kawarabayashi, and Seymour [6] gave a simpler algorithm with
a slightly better running time for the problem. Chudnovsky, Scott, Seymour,
and Spirkl [7] recently showed that the problem of detecting if a graph con-
tains an odd hole can also be solved in polynomial time. These algorithms
inspired a wave of further research that aimed to improve running times and
to solve more general problems in this area.

Our results. We consider the Shortest Odd Path problem de�ned as fol-
lows:

Shortest Odd Path:
Input: An undirected graph G = (V,E), a weight func-

tion w : E → R, and two vertices s and t in G.
Goal: Find a minimum-weight odd (s, t)-path.

We solve the Shortest Odd Path problem in polynomial time when
the weight function is conservative and the set E− of negative edges forms a
tree in G. We also present two FPT algorithms for solving Shortest Odd
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Path on graphs with conservative weights. In the �rst FPT algorithm, our
parameter is |E−|, the number of negative edges; in fact, the approach we
use can be extended to yield an FPT algorithm where the parameter is the
size of a maximum matching in G[E−], the subgraph of G spanned by E−.
In the second FPT algorithm, the parameter is the treewidth of G; in fact,
this algorithm does not rely on conservativeness.

Our approach relies on solving a variant of the problem that we call
Shortest Parity-Constrained Odd Path. In order to de�ne this prob-
lem, we give the following de�nition. Let Feven ⊆ E and Fodd ⊆ E be two
disjoint edge sets in G. An odd path Q is (Feven, Fodd)-constrained, if the
sequence number of each edge in Q∩Feven and in Q∩Fodd is even and odd,
respectively. Here, the sequence number of an edge e in Q is i, if e is the i-th
edge on Q; note that since Q is odd, e has an odd (even) sequence number
independently whether we count the edges of Q starting from s or from t.

Using this terminology, we consider the following problem.

Shortest Parity-Constrained Odd Path:
Input: An undirected graph G = (V,E), a weight func-

tion w : E → R, two vertices s and t in G, and disjoint
edge sets Feven ⊆ E and Fodd ⊆ E.

Goal: Find a minimum-weight (Feven, Fodd)-constrained odd
(s, t)-path.

We show that this problem can be solved in polynomial time if all
negative-weight edges are contained in Feven∪Fodd; this result will be useful
for us when developing our algorithms for Shortest Odd Path.

Organization. Basic de�nitions and notation are introduced in Section 2.
Section 3 presents some initial observations and key de�nitions that will
be useful in our algorithms. In Section 4, we present a polynomial-time
algorithm for the Shortest Parity-Constrained Odd Path problem.
In Section 5, we show how to solve the Shortest Odd Path problem
when the weight function is conservative and the negative edges form a tree.
Finally, in Section 6 we develop FPT algorithms for the Shortest Odd

Path problem.

2. Preliminaries

Basic notation. We denote the set of real numbers by R, the rational num-
bers by Q, and the non-negative real numbers by R≥0. Given subsets
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X,Y ⊆ E, the symmetric di�erence of X and Y is denoted by X△Y :=
(X \ Y ) ∪ (Y \X).

Graphs. Let a graphG be a pair (V,E) where V and E are the sets of vertices
and edges, respectively. For two vertices u and v in V , an edge connecting u
and v is denoted by uv or vu. For X ⊆ V and F ⊆ E, the graph obtained by
deleting X or F is denoted by G−X or G− F , respectively. G[F ] denotes
the graph spanned by F , that is, the subgraph of G containing only the edges
of F and all the vertices incident to them. For an edge set F ⊆ E and a
vertex v ∈ V , let dF (v) denote the number of edges in F incident to v.

A walk W in G is a series e1, e2, . . . , eℓ of edges in G for which there exist
vertices v0, v1, . . . , vℓ in G such that ei = vi−1vi for each i ∈ {1, 2, . . . , ℓ};
note that both vertices and edges may appear repeatedly on a walk, and in
this sense we think of the sets of vertices and edges of a walk as multisets in
which an element might appear more than once. In contrast, we denote by
V (W ) and E(W ) the sets of vertices and edges contained by W , respectively,
where each item is taken with multiplicity one. We de�ne the length of W as
|W | = ℓ, and we say thatW is odd (or even) if ℓ is odd (or even, respectively).
The endpoints of W are v0 and vℓ, or in other words, it is a (v0, vℓ)-walk,
while all vertices on W that are not endpoints are inner vertices. If v0 = vℓ,
then we say that W is a closed walk.

A path is a walk on which no vertex appears more than once. We usually
treat a path as a set {e1, e2, . . . , eℓ} of edges for which there exist distinct
vertices v0, v1, . . . , vℓ in G such that ei = vi−1vi for each i ∈ {1, 2, . . . , ℓ}.
For any i and j with 0 ≤ i ≤ j ≤ ℓ, we write P [vi, vj ] for the subpath

of P between vi and vj , consisting of edges ei+1, . . . , ej . Note that since
we associate no direction with P , we have P [vi, vj ] = P [vj , vi]. For indices
i1, i2, . . . , ir, we say that the vertices vi1 , vi2 , . . . , vir follow each other in this

order if i1 ≤ i2 ≤ · · · ≤ ir or i1 ≥ i2 ≥ · · · ≥ ir.
The sequence number of edge ei = vi−1vi ∈ P with respect to v0, denoted

by sqn(ei, P, v0), is i; observe that the sequence number of ei w.r.t. vℓ is ℓ−
i+1. Note that if P is an odd path, then the sequence number of an edge e
on P w.r.t. v0 has the same parity as the sequence number of e w.r.t. vℓ.
Therefore, in such a case we may talk about the parity of the sequence
number of some edge e ∈ P without specifying from which endpoint of P we
count the sequence number, and we may also write sqn(e, P ) to denote the
sequence number of e with respect to one (arbitrarily �xed) endpoint of P .

Two paths P1 and P2 are openly disjoint if they share neither edges nor
vertices except for endpoints of both P1 and P2. A cycle is a set of edges
that can be partitioned into two openly disjoint paths between the same pair
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of endpoints.
As mentioned before, if we have a non-negative weight function, then we

can �nd a solution for the Shortest Odd Path problem e�ciently. Since
�nding a minimum-weight even path can be reduced to �nding a minimum-
weight odd path (as explained in Section 1), we have the following.

Theorem 1 ([25, 13]). Given an undirected graph G = (V,E) with ver-

tices s and t and a non-negative weight function w : E → R≥0, we can �nd

a minimum-weight odd (s, t)-path and a minimum-weight even (s, t)-path in

strongly polynomial time, whenever such paths exist.

A set T ⊆ E of edges in G is connected if for every pair of edges e
and e′ in T , there is a path contained in T containing both e and e′. If
T is connected and acyclic, i.e., contains no cycle, then T is a tree in G.
Note that in accordance with this de�nition, we interpret primarily mostly
as edge sets; nevertheless, sometimes we may also interpret a tree T ⊆ E as
the subgraph of G spanned by the edge set T , and refer to the vertices in
this subgraph as vertices on T . Given two vertices a and b in a tree T , we
denote by T [a, b] the unique path contained in T whose endpoints are a and
b. For an edge uv ∈ T and a path P in T such that uv /∈ P , either T [u, p]
contains v for every vertex p on P , or T [v, p] contains u for every vertex p
on P . In the former case, we say that v is closer to P in T than u.

We say that a weight function w : E → R is conservative, if no cycle in G
has negative weight. Given a weight function w : E → R on the edges of G,
the weight of an edge set F ⊆ E is w(F ) =

∑
e∈F w(f); similarly, the weight

of a walk W = (e1, . . . , eℓ) is w(W ) =
∑ℓ

i=1w(ei).

Derandomization and universal sets. Given a randomized algorithm, a stan-
dard tool for derandomization is the use of universal sets (see e.g., Cygan et
al. [10]). An (n, k)-universal set on an n-element set V is a family U of sub-
sets of V such that for any subset S ⊆ V of size k, the family {A∩S : A ∈ U}
contains all 2k subsets of S.

Theorem 2 ([19]). For any positive integers n and k we can construct an

(n, k)-universal set U of size |U| = 2k · kO(log k) · log n in time O(n · |U|).

Treewidth. Intuitively, treewidth measures how similar a graph is to a tree.
For an undirected graph G, a tree decomposition is a pair (T,B) of a tree T
and a collection B = {Bx : x ∈ V (T)} of bags, where each bag Bx associ-
ated with some node x of T is a subset of vertices in G, with the following
properties. For each edge of G, there is a bag in B that contains both of
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its endpoints. Furthermore, for each vertex v of G, the nodes {x : v ∈ Bx}
in T induce a subtree of T. The width of (T,B) is de�ned as the largest bag
size in B minus one. The treewidth of G is the minimum width over all tree
decompositions of G.

Korhonen [15] gives a 2-approximation for treewidth in the following
result that has a better running time than the known exact algorithms com-
puting treewidth (e.g., Bodlaender [4] with running time 2O(k3)n).

Theorem 3 ([15]). Given a graph G on n vertices and an integer k, there is
an algorithm that outputs a tree decomposition of G of width at most 2k+ 1
or determines that the treewidth of G is larger than k, in 2O(k)n time.

3. Initial observations

Let G = (V,E) be an undirected graph with a conservative weight func-
tion w : E → R. Let E− = {e ∈ E : w(e) < 0} denote the set of negative
edges, and T be the set of negative trees they form. More precisely, let T
be the set of connected components in the subgraph of G spanned by E−,
i.e., T contains those maximal, non-empty subsets of E− that are connected
in G; the acyclicity of each T ∈ T follows from the conservativeness of w.

Lemma 4. If W is a closed walk that does not contain any edge of E− more

than once, then w(W ) ≥ w(E(W )) ≥ 0.

Proof. Let Z be the set of edges appearing an odd number of times on W .
Since any edge used at least twice in W has non-negative weight, we have
w(Z) ≤ w(E(W )) ≤ w(W ). Moreover, since W is a closed walk, each vertex
of V has an even degree in the graph (V,Z). Therefore, (V,Z) is the union
of edge-disjoint cycles, and the conservativeness of w implies w(Z) ≥ 0.

The following de�nition plays a crucial role in our algorithms.

De�nition 5. For a tree T ∈ T , a T -leap L with endpoints a and b is a path
such that V (L) ∩ V (T ) = {a, b} and T ∩ L = ∅. A leap is simply a T -leap
for some T ∈ T . For a path Q, a leap on Q is a subpath of Q that is a leap.
Furthermore, given a T -leap L with endpoints a and b, we refer to the cycle
C = L ∪ T [a, b] as the cycle induced by L. We say that L is parity-changing
if |C| is odd. Finally, the shadow of a T -leap L on Q with endpoints a and b
is the edge set Q ∩ T [a, b], see Figure 1 for an illustration.
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Figure 1: Illustration of a leap. Tree T is represented by straight lines, while the (x, y)-
path Q is shown by curvy lines. The thick orange part of Q forms a T -leap denoted by L.
The shadow of L is highlighted with green.

Remark 6. [Computing parity-changing leaps.] Suppose that T contains
a unique tree T ⊆ E. Then, given two vertices a and b on T , it is not
di�cult to obtain a parity-changing leap with endpoints a and b having
minimum-weight: we simply have to search for a minimum-weight (a, b)-
path in G−T −(V (T )\{a, b}) whose parity di�ers from the parity of T [a, b].
As w restricted to G − T is non-negative, we can apply Theorem 1 to �nd
such a path.

Let us introduce a technical result.

Lemma 7. Let w be a conservative weight function and T be a tree in T . For

two edge sets Q ⊆ E and R ⊆ T , if dQ(v) ≡ dR(v) mod 2 for each v ∈ V ,

then w(Q) ≥ w(R).

Proof. Let Q′ = Q \ R and R′ = R \ Q. Since Q′ and R′ are disjoint sets
with dQ′(v) ≡ dR′(v) mod 2 for any v ∈ V , the edge set Q′ ∪ R′ can be
partitioned into cycles. Therefore, w(Q′) + w(R′) ≥ 0 as w is conservative.
This together with w(R′) ≤ 0 shows that w(Q′) ≥ 0 ≥ w(R′). Using that
w(Q) = w(Q′) + w(Q ∩ R) and w(R) = w(R′) + w(Q ∩ R), we obtain
w(Q) ≥ w(R).

The lemma gives the following corollary by observing that we can assume
w.l.o.g. that a walk Q is an (x, y)-path: if Q contains cycles, then we can
repeatedly delete any cycle from Q, possibly of length 2, so that in the end
we obtain an (x, y)-path whose weight is at most the weight of Q, since w is
conservative.

Corollary 8. Let x, y, x′, y′ be four distinct vertices on a tree T in T .

8



(1) If Q is an (x, y)-walk in G that does not use any edge with negative

weight more than once, then w(Q) ≥ w(T [x, y]).

(2) If Q is an (x, y)-path, Q′ is an (x′, y′)-path, and Q and Q′ are vertex-

disjoint, then w(Q) + w(Q′) ≥ w(T [x, y]△T [x′, y′]).

Lemma 9. Let Q be a minimum-weight odd (s, t)-path in G that contains

as few leaps as possible (among all minimum-weight odd (s, t)-paths). Then
either Q contains no leaps, or it contains at least one parity-changing leap.

Proof. We show that whenever an optimal solution contains a leap, then it
contains at least one parity-changing leap. Let Q be a minimum-weight odd
(s, t)-path with a minimum number of leaps, and suppose that Q contains
at least one leap, but no parity-changing leap. Let T be a tree in T for
which Q contains a T -leap, and let x and y be the �rst and the last vertex,
respectively, of Q on T when we traverse Q in an arbitrarily �xed direction.
Clearly, x ̸= y as Q contains a T -leap and is a path.

Consider the walkW that we obtain if we traverse Q[x, y] in one direction
with the modi�cation that whenever we reach a T -leap L, we replace L by
the path contained in T between the endpoints of L. Since no leap on Q
is parity-changing, |W | has the same parity as |Q[x, y]|. Furthermore, any
walk in T between two �xed vertices x and y has the same parity as |Q[x, y]|,
thus we can replace all edges of Q[x, y] by the path T [x, y] without changing
the parity of Q. Therefore, Q \ Q[x, y] ∪ T [x, y] is an odd (s, t)-path, and
its weight is at most w(Q) by statement (1) of Corollary 8. Moreover, it
contains fewer leaps than Q, contradicting the de�nition of Q.

We remark that if T contains only a single tree, then even a stronger
statement holds: a minimum-weight odd (s, t)-path either uses no leaps,
or it uses exactly one parity-changing leap. However, even in this special
case, a minimum-weight odd (s, t)-path may need to use an arbitrarily large
number of leaps; see Figure 2 for an example. By contrast, a shortest (s, t)-
path intersects each tree T ∈ T in a single (possibly empty) path, so it
never uses leaps. The next result is quite trivial, but we present its proof for
completeness.

Lemma 10. Let P be a minimum-weight (s, t)-path in G, and let T be a

tree in T . Then for any two vertices u and v in V (P ) ∩ V (T ), it holds that
P [u, v] = T [u, v].

Proof. If the statement of the lemma fails, then there exist vertices u and v
in T such that the only vertices of P appearing on T [u, v] are u and v, and
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Figure 2: An example where there is a unique odd (s, t)-path P . The negative tree T− is
shown with purple double lines, and the unique parity-changing leap L is shown with an
orange thick line. The path P must use all leaps in the �gure.

uv is not an edge of P . Then Lemma 4 implies w(P [u, v]) + w(T [u, v]) ≥ 0.
Thus, replacing the subpath P [u, v] of P with T [u, v] results in an (s, t)-path
whose weight is strictly less than w(P ), a contradiction.

4. Parity Constrained Odd Paths

In this section, we consider the Shortest Parity-Constrained Odd

Path problem, a variant of Shortest Odd Path in which some edges have
parity constraints on their position along the path. Let us recall the following
de�nition stated in Section 1.

De�nition 11. Let Feven ⊆ E and Fodd ⊆ E be two disjoint edge sets in G.
An odd path Q is (Feven, Fodd)-constrained if the sequence number of each
edge in Q∩Feven is even, and the sequence number of each edge in Q∩Fodd

is odd. For an illustration, see Figure 3a.

Shortest Parity-Constrained Odd Path:
Input: An undirected graph G = (V,E), a weight func-

tion w : E → R, two vertices s and t in G, and disjoint
edge sets Feven ⊆ E and Fodd ⊆ E.

Goal: Find a minimum-weight (Feven, Fodd)-constrained odd
(s, t)-path.

This problem is a key step for our algorithms solving the Shortest

Odd Path problem. We show that Shortest Parity-Constrained Odd
Path can be solved in polynomial time if all negative edges are contained in
Feven ∪ Fodd, assuming conservative weights.
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(a) Illustration of De�nition 11.
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v2
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v4

t

v5

s′

v′1

v′2

v′3

v′4

t′

v′5

G

G′

(b) Construction for Theorem 12.

Figure 3: (a) Edges in Feven are shown as dotted orange lines, Fodd as dashed green lines,
and E \(Feven∪Fodd) as solid black. Note that there exists three (Feven, Fodd)-constrained
odd (s, t)-paths, namely Q1 = s, v1, v2, v3, v4, t, Q2 = s, v3, v4, t and Q3 = s, v1, v4, t. (b)
Graph H obtained from (a). Removed arcs and vertices are shown in gray. Dashdotted
lines have weight 0, while the rest have original weight.

Theorem 12. If w is conservative and Feven ∪ Fodd contains all nega-

tive edges of the input graph G = (V,E), then the Shortest Parity-

Constrained Odd Path problem can be solved in O(mn+ n2 log n) time,

where n = |V | and m = |E|.

Proof. We present a generalization of the well-known algorithm for deter-
mining a shortest odd (or, equivalently, even) path between two vertices in
an undirected graph with non-negative edge weights.

LetG = (V,E), and let (G,w, s, t, Feven, Fodd) be our input for Shortest
Parity-Constrained Odd Path such that Feven∪Fodd contains all edges
with negative weight. An illustration of the following construction is shown
in Figure 3b. We start by creating a copy G′ of G where each vertex or
edge x in G has a copy x′ in G′. The copy of each edge e ∈ E has the same
weight as e, and additionally, we add a new edge between each vertex v ∈ V
and its copy v′ of weight 0. Finally we delete Feven from G, and we delete
the edge set F ′

odd := {e′ : e ∈ Fodd} as well as vertices s′ and t′ from G′.
Let H denote the graph thus obtained.

We claim that the minimum weight of an (Feven, Fodd)-constrained odd
(s, t)-path in G equals the minimum weight of a perfect matching in H.
First, let Q be an (Feven, Fodd)-constrained odd (s, t)-path. We de�ne an
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edge set MQ as follows:

MQ :={e : e ∈ Q, sqn(e,Q) is odd} ∪ {e′ : e ∈ Q, sqn(e,Q) is even}
∪ {vv′ : v ∈ V \ V (Q)}.

Observe �rst that since Q is (Feven, Fodd)-constrained, each edge of MQ

is present in H. Therefore, it is easy to see that MQ is a perfect matching
in H, and its weight is exactly w(Q).

Second, let M be a perfect matching in H. Let M1 = {e ∈ E : e ∈ M}
and M2 = {e ∈ E : e′ ∈ M}. Consider the multiset QM = M1⊎M2 of edges.
Note that for each vertex v in V \ {s, t}, either v is incident to one edge
of M1 and one edge of M2 (counting multiplicities), or vv′ ∈ M . Vertices s
and t each are incident to one edge of M1 and no edge of M2. Moreover, an
edge e ∈ E may be present both inM1 andM2, but such an edge cannot have
negative weight since Feven ∪ Fodd contains all edges with negative weight.

Therefore, each connected component of the subgraph (V,M1∪M2) of G
is either an odd (s, t)-path Q in G (alternating between M1 and M2), an
even cycle in G, or a single edge in E \ (Feven ∪ Fodd). Recall that each
cycle in G has non-negative weight, as w is conservative. Moreover, each
edge e ∈ E \ (Feven ∪ Fodd) has non-negative weight by our assumption
E− ⊆ Feven ∪ Fodd. Thus w(Q) ≤ w(M), and hence Q is an odd (s, t)-
path of weight at most w(M). Finally, observe that any edge of Feven ∩ Q
belongs to M2 (and not M1), and thus has an even sequence number in Q,
and similarly, any edge of Fodd ∩ Q belongs to M1 (and not M2), and thus
has an odd sequence number in Q, by our construction of H. Therefore,
Q is indeed an (Feven, Fodd)-constrained odd (s, t)-path, and has weight at
most w(M). This proves our claim.

As a consequence, in order to �nd a minimum-weight (Feven, Fodd)- con-
strained odd (s, t)-path, we simply have to construct H, �nd a minimum-
weight perfect matching in H using, e.g., Gabow's algorithm [12], and build
the corresponding odd (s, t)-path as explained above. The overall running
time is O(mn+ n2 log n).

5. Negative edges forming a tree

In this section, we consider the special case of Shortest Odd Path

when the weight function w is conservative, and the set of edges whose
weight is negative forms a tree T− in G. We give an algorithm for solving
the problem in polynomial time, presented as Algorithm 1. An illustration
can be seen in Figure 4.
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The high-level idea of the algorithm is as follows. By Lemma 9, any
shortest odd (s, t)-path either contains no leaps, or it contains a parity-
changing leap, hence our algorithm checks both cases and it generates two
types of paths. First, to �nd a minimum-weight odd (s, t)-path P among
those that contain no leaps, we guess the �rst and the last vertices of P
that appear on T− by picking two vertices a and b. Then we partition the
path T−[a, b] into two sets of alternating edges, and solve an instance of the
Shortest Parity-Constrained Odd Path problem with this partition.
This gives us the �rst type of path. Second, to �nd a minimum-weight odd
(s, t)-path P among those that contain a parity-changing leap L, we guess the
endpoints of L by picking two vertices a and b. Then we compute a minimum-
weight parity-changing leap L′ with endpoints a and b, and construct an odd
(s, t)-path by using L′ and two vertex-disjoint paths from {s, t} to {a, b} of
minimum weight. This gives us the second type of path. The output of the
algorithm is the best path among these two types of solutions.

Remark 13. The task on line 13 is to solve an instance of the Shortest
Two Disjoint Paths problem that, given an undirected graph with con-
servative edge weights and terminals s1, s2, t1, and t2, the goal is to �nd two
vertex-disjoint paths leading from {s1, s2} to {t1, t2} with minimum total
weight. This problem was shown to be NP-hard by Schlotter and Seb® [23]
even with a conservative weight function of the form w : E → {−1, 1}. Nev-
ertheless, if the negative-weight edges form a tree, as in our case, then the
problem can be solved in polynomial time [22].

The algorithm uses the following de�nition.

De�nition 14. Given two distinct vertices a and b on a cycle C, we say
that they cut C into paths C1 and C2 if both C1 and C2 have endpoints a
and b, and C1 ∪ C2 = C.

We �rst prove the correctness of Algorithm 1.

Lemma 15. Algorithm 1 correctly solves the Shortest Odd Path problem

when the weight function is conservative and negative edges form a tree.

Proof. First we show that any path that the algorithm sets as S is an odd
(s, t)-path. This is trivial for the paths on lines 7 and 9. Consider now the
path S⋆ on line 20. Clearly, the paths P ′

s and P ′
t are vertex-disjoint, since

Ps and Pt are vertex-disjoint by de�nition. Second, the vertex shared by P ′
s

and C is x, by the de�nition of x, so the paths P ′
s, C1, and C2 are pairwise

openly disjoint. Similarly, by our choice of y, the paths P ′
t , C1, and C2 are

13



Algorithm 1 Solving Shortest Odd Path with conservative weight func-
tion and the set of negative edges forms a tree.

Input: A graph G = (V,E), a conservative weight function w : E → R,
vertices s, t ∈ V , a set of negative edges T− = {e ∈ E,w(e) < 0}
forming a tree.

Output: A minimum-weight odd (s, t)-path or ∅ if no such path exists.
1: Set S := ∅, wS := ∞.
2: for all distinct vertices a and b on T− do

▷ Computations for �rst type of paths.

3: Set F a
even := {e ∈ T−[a, b] : sqn(e, T−[a, b], a) ≡ 0 mod 2}.

4: Set F a
odd := {e ∈ T−[a, b] : sqn(e, T−[a, b], a) ≡ 1 mod 2}.

5: Set G′ := G− (T− \ T−[a, b]).
6: Compute

Q := Shortest Parity-Constrained Odd Path(G′, w, s, t, F a
even, F

a
odd).

7: if w(Q) < wS then set S := Q, wS := w(S).

8: Compute
Q := Shortest Parity-Constrained Odd Path(G′, w, s, t, F a

odd, F
a
even).

9: if w(Q) < wS then set S := Q, wS := w(S).

10: if ∃ parity-changing leap from a to b then
▷ Computations for second type of paths.

11: Compute a minimum-weight parity-changing leap L with end-
points a and b in G. ▷ See Remark 6.

12: if ∃ two vertex-disjoint paths from {s, t} to {a, b} then
13: Compute two vertex-disjoint paths Ps and Pt from {s, t} to

{a, b} in G that minimizes w(Ps) +w(Pt), with s ∈ V (Ps)
and t ∈ V (Pt). ▷ See Remark 13.

14: Set C := L ∪ T−[a, b].
15: Let x be the vertex of C closest to s on Ps, and set P ′

s :=
Ps[s, x].

16: Let y be the vertex of C closest to t on Pt, and set P ′
t := Pt[y, t].

17: Let C1 and C2 be the two paths into which x and y cut C.
18: Set S1 := P ′

s ∪ C1 ∪ P ′
t and S2 := P ′

s ∪ C2 ∪ P ′
t .

19: if S1 is odd then S⋆ := S1 else S⋆ := S2.

20: if w(S⋆) < wS then set S := S⋆, wS := w(S⋆).

21: if S ̸= ∅ then return S;
22: else return ∅.

14
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(b) Odd paths computed on lines 3�9.
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(c) Odd path computed on lines 11�20.

Figure 4: Example of Shortest Odd Path instance with conservative weights when
running Algorithm 1 for a = v2 and b = v6. With these speci�c a and b, the solution
generated up to this point is given in Figure (c).
(a) Original instance. Tree T− is shown using purple double lines.
(b) Paths obtained on lines 3�9. Deleted edges are shown in gray. Set F a

even is shown
by dotted orange lines, and F a

odd by dashed green lines. Solving the Shortest Parity-

Constrained Odd Path problem with instance (G′, w, s, t, F a
odd, F

a
even) generates the

path on vertices s, v7, b, t which is a shortest odd (s, t)-path in G − T−. Solving the
instance (G′, w, s, t, F a

even, F
a
odd) generates the zigzagged path.

(c) Path obtained on lines 11�20 shown in zigzag. An (s, a)-path of minimum weight is
highlighted in purple and a (t, b)-path of minimum weight is highlighted in green. The
parity-changing leap L = {(a, v7), (v7, b)} is shown in orange.

pairwise openly disjoint. Hence, Si = P ′
s∪Ci∪P ′

t is a path for both i = 1, 2.
Moreover, since L is a parity-changing leap, we know that |C1| + |C2| is
odd. Therefore, exactly one of S1 and S2 is an odd path, and the algorithm
considers it as S⋆ on line 20.

Thus, to prove the correctness of our algorithm, it su�ces to show that
if there exists an odd (s, t)-path of weight w⋆, then our algorithm picks an
odd (s, t)-path of weight at most w⋆.

Let Q⋆ be a shortest odd (s, t)-path with weight w(Q⋆) = w⋆ containing
as few leaps as possible. By Lemma 9, either Q⋆ contains no leaps, or it
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contains a parity-changing leap. See an illustration of the algorithm on
Figure 4.

First assume that Q⋆ contains no leaps. Then, by Lemma 10 either (i)
Q⋆∩T− = ∅, or (ii) Q⋆∩T− is a path containing at least one edge. In case (i),
observe that Q⋆ is a path in G − T−. Hence, it is an (F1, F2)-constrained
path for every pair (F1, F2) of subsets of T−. In fact, for every choice of a
and b, Q⋆ is a solution for the two Shortest Parity-Constrained Odd

Path instances constructed on lines 6 and 8. Consequently, the algorithm
will �nd an odd (s, t)-path with weight at most w⋆ on both lines 6 and 8, and
will select the one with minimum weight in either line 7 or line 9. In case (ii),
let a and b be the endpoints of the path Q⋆ ∩T−, and consider the iteration
of Algorithm 1 when the algorithm picks vertices a and b in the for-loop on
line 2. Let us de�ne F a

even and F a
odd as on lines 3 and 4 of Algorithm 1.

Clearly, Q⋆ is either (F a
even, F

a
odd)-constrained, or (F a

odd, F
a
even)-constrained

for a pair of vertices a, b in T , moreover, it is a path in G′ obtained by
deleting all edges of T from G except those of T−[a, b]. Hence, Algorithm 1
stores a path of weight at most w(Q⋆) = w⋆ either on line 7 or on line 9.
This shows the correctness of the algorithm in the case when Q⋆ contains no
leaps.

Assume now that Q⋆ contains a parity-changing leap L⋆. Let a and b
denote the endpoints of L⋆. Let us consider the iteration of Algorithm 1 when
the for-loop on line 2 chooses a and b; we use the de�nitions on lines 11�20.
Note that Ps and Pt exist, since Q⋆ \L⋆ decomposes into two vertex-disjoint
paths from {s, t} to {a, b}. Observe that S1△S2 = C, and since L is parity-
changing we have that |C| is odd. Hence, exactly one of S1 and S2 is an odd
(s, t)-path. We claim that w(S1) ≤ w⋆ and w(S2) ≤ w⋆. Note that if our
claim holds, then Algorithm 1 stores a path of weight at most w⋆ on line 20,
and hence the correctness of the algorithm follows. Therefore, to show that
Algorithm 1 is correct, it su�ces to prove that

max{w(S1), w(S2)} ≤ w⋆. (1)

Let Q⋆
s and Q⋆

t be the two vertex disjoint paths formed by Q⋆ \L⋆. Since
Q⋆

s and Q⋆
t lead from {s, t} to {a, b}, the de�nition of Ps and Pt implies

w(Ps) + w(Pt) ≤ w(Q⋆
s) + w(Q⋆

t ). Moreover, since L is a minimum-weight
parity-changing leap with endpoints a and b, we also know

w(Ps) + w(Pt) + w(L) ≤ w(Q⋆
s) + w(Q⋆

t ) + w(L⋆) = w(Q⋆) = w⋆. (2)

We distinguish between three cases to prove inequality (1).
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Case A: x and y are both on T−[a, b]. W.l.o.g., the vertices a, x, y, b
follow each other in this order on T−[a, b], as otherwise we switch the names
for a and b. Note that Ps \ P ′

s and Pt \ P ′
t are two vertex-disjoint paths

leading from {x, y} to {a, b}, so by statement (2) of Corollary 8, we have

w(Ps \ P ′
s) + w(Pt \ P ′

t) ≥ w(T−[x, a] ∪ T−[b, y]). (3)

Observe also that among the paths S1 and S2, the one containing leap L
has the larger weight since w(T−[x, y]) < 0. Hence, w(C△T−[x, y]) > 0.
Therefore, inequality (3) together with inequality (2) implies

max{w(S1), w(S2)} = w(P ′
s) + w(T−[x, a]) + w(L) + w(T−[b, y]) + w(P ′

t)

≤ w(P ′
s) + w(Ps \ P ′

s) + w(L) + w(Pt \ P ′
t) + w(P ′

t)

= w(Ps) + w(L) + w(Pt)

≤ w⋆.

Case B: x is on T−[a, b], but y is on L. We may assume that x ∈ V (Ps)
and y ∈ V (Pt), as otherwise we can switch the names of s and t. Next,
we may also assume that Ps ends at b, and Pt ends at a, as otherwise we
can switch the names of a and b. Furthermore, we may even assume that
a ∈ V (S1) and b ∈ V (S2), as otherwise we can switch the names of S1 and S2.
This means that Ps \P ′

s is an (x, b)-path, and Pt \P ′
t is an (a, y)-path; recall

that they are vertex-disjoint as well, by the de�nition of Ps and Pt. Hence,
(Ps \ P ′

s) ∪ L[y, b] ∪ (Pt \ P ′
t) is an (x, a)-walk, and moreover, it does not

contain any negative-weight edge more than once (recall that L ∩ T− = ∅,
since L is a leap). By statement (1) of Corollary 8, this implies

w(Ps \ P ′
s) + w(L[y, b]) + w(Pt \ P ′

t) ≥ w(T−[x, a]).

From this, using also equation (2) we obtain that

w(S1) = w(P ′
s) + w(T−[x, a]) + w(L[y, a]) + w(P ′

t)

≤ w(P ′
s) + w(Ps \ P ′

s) + w(L[y, b]) + w(Pt \ P ′
t) + w(L[y, a]) + w(P ′

t)

= w(Ps) + w(L) + w(Pt)

≤ w⋆.

To prove w(S2) ≤ w⋆ as well, we need to apply statement (1) of Corollary 8
for the (b, x)-path Ps \ P ′

s to get

w(Ps \ P ′
s) ≥ w(T−[b, x]). (4)
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Furthermore, note that (Pt\P ′
t)∪L[y, a] is a closed walk that does not contain

any edge of T− more than once, since Pt \ P ′
t is a path and L ∩ T− = ∅.

Thus, Lemma 4 yields

w(Pt \ P ′
t) + w(L[y, a]) ≥ 0. (5)

Putting inequalities (2), (4) and (5) together we obtain

w(S2) = w(P ′
s) + w(T−[b, x]) + w(L[y, b]) + w(P ′

t)

≤ w(P ′
s) + w(Ps \ P ′

s) + w(L)− w(L[y, a]) + w(P ′
t)

≤ w(Ps) + w(L) + w(Pt \ P ′
t) + w(P ′

t)

= w(Ps) + w(L) + w(Pt)

≤ w⋆.

This shows inequality (1) for Case B.
Case C: Both x and y are on L. W.l.o.g., assume that the vertices

a, x, y, b follow each other in this order on the leap L, as otherwise we can
switch the names of x and y. We may also assume that S1 = P ′

s∪L[x, y]∪P ′
t

while S2 = S1△C, as otherwise we can switch the names of S1 and S2. Note
that Ps \ P ′

s and Pt \ P ′
t are two paths from {x, y} to {a, b} and they are

vertex-disjoint. Thus, their union together with L[x, y] yields a walk from a
to b that contains no negative-weight edge more than once. Statement (1)
of Corollary 8 then implies

w(Ps \ P ′
s) + w(L[x, y]) + w(Pt \ P ′

t) ≥ w(T−[a, b]).

Hence, using also inequality (2), we obtain

w(S2) = w(P ′
s) + w(L[x, a]) + w(T−[a, b]) + w(L[b, y]) + w(P ′

t)

≤ w(P ′
s) + w(L[x, a]) + w(Ps \ P ′

s) + w(L[x, y]) + w(Pt \ P ′
t)

+ w(L[b, y]) + w(P ′
t)

= w(Ps) + w(L) + w(Pt)

≤ w⋆.

To show w(S1) ≤ w⋆, observe that the paths Ps \P ′
s and Pt \P ′

t together
with L[a, x] and L[b, y] form either one or two closed walks, depending on
whether Ps ends at a or at b. Moreover, no edge of T− appears more than
once on these closed walks. Therefore, Lemma 4 yields

w(Ps \ P ′
s) + w(Pt \ P ′

t) + w(L[a, x]) + w(L[b, y]) ≥ 0.
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Thus, we obtain

w(S1) = w(P ′
s) + w(L[x, y]) + w(P ′

t)

≤ w(P ′
s) + w(L[x, y]) + w(P ′

t) + w(Ps \ P ′
s) + w(Pt \ P ′

t)

+ w(L[a, x]) + w(L[b, y])

= w(Ps) + w(L) + w(Pt)

≤ w⋆.

Theorem 16. Shortest Odd Path can be solved in strongly polynomial

time, if the weight function is conservative and the set of negative edges forms

a tree.

Proof. By Lemma 15 we know that Algorithm 1 is correct, so it remains to
bound its running time. Let n = |V | and m = |E| denote the number of
vertices and edges in the input graph G.

Clearly, the for-loop on line 2 is iterated
(
n
2

)
times. Performing lines 3�9

can be done in O(mn+n2 log n) by Theorem 12. For line 11, by Remark 6 we
can obtain a parity-changing leap of minimum weight in strongly polynomial
time, in fact, in time O(mn+ n2 log n) [24].

To perform line 13, we rely on Remark 13. Lines 15�20 can be performed
in O(n + m) time. Hence, if solving an instance of the Shortest Two

Disjoint Paths problem on G on line 13 takes F (n,m) time, then we
obtain an overall running time of O(n2(mn+n2 log n+F (n,m))). Note that
currently the only known upper bound on F (n,m) is F (n,m) = O(n9) [22],
but probably this can be improved.

We remark that there is a strong connection between the Shortest Odd
Path and the Shortest Two Disjoint Paths problems. On the one
hand, line 13 of our algorithm for Shortest Odd Path relies on �nding
two vertex-disjoint paths from two source terminals to two sink terminals.
The need to use such an algorithm as a subroutine seems inevitable: if the
input graph admits a unique parity-changing leap L, then in order to �nd a
shortest odd path between s and t, we may need to �nd two vertex-disjoint
paths that lead from s and t to two vertices of the odd cycle induced by L.

On the other hand, there is a very simple reduction from Shortest

Two Disjoint Paths to Shortest Odd Path. To see this, consider the
equivalent formulation of Shortest Two Disjoint Paths where instead
of two source and two sink terminals in G, we are only given two terminals,
s and t, and the task is to �nd two openly disjoint (s, t)-paths in G while
minimizing their total weight. To solve this problem using an algorithm
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for Shortest Odd Path, we �rst make a copy s′ of s and a copy t′ of t,
and connect the vertices adjacent to s to s′, and the vertices adjacent to t
to t′. Then, subdivide each edge of this graph (halving the weights as well),
and add a new edge tt′ of weight 0. Let us denote by G′ this resulting
graph. We obtain our two (s, t)-paths by computing an odd (s, s′)-path of
minimum weight in graph G′. Indeed, any pair of openly disjoint (s, t)-paths
in G corresponds to an odd (s, s′)-path of the same weight in G, and vice
versa. This reduction shows that the connection between these two problems
is bidirectional.

6. FPT algorithms

In this section, we present two FPT algorithms for solving Shortest

Odd Path when the weight function is conservative. In Section 6.1 we
present two algorithms related to E− the set of edges of negative weight:
the �rst one is regarding the cardinality of E− and the second one uses the
size of the maximum matching in G[E−]. Later, in Section 6.2 we propose an
FPT algorithm where the parameter is the treewidth of the input graph; this
algorithm does not rely on conservativeness but works for arbitrary weights.

6.1. Parametrization by negative edges

This section is divided in two. First, we show a simple FPT algorithm
when the parameter is the number of negative edges. Then, we proceed to a
more interesting parameter, namely the size of a maximum matching in the
graph spanned by all negative-weight edges.

The key idea of the algorithms is to guess for each negative edge e
whether e has an even or odd sequence number on an optimal path. With
this guess, we run an instance of the Shortest Parity-Constrained Odd
Path problem and obtain our solution.

6.1.1. The number of negative edges as parameter

We show that we can solve Shortest Odd Path by an FPT algorithm
with |E−| as the parameter.

Theorem 17. There is an FPT algorithm for Shortest Odd Path with

conservative weights when parameterized by the number |E−| of negative

edges, running in O
(
2|E

−|(mn+ n2 log n)
)
time.

Proof. Let (G,w, s, t) be our input for Shortest Odd Path with graph
G = (V,E), such that E− ⊆ E denotes the set of all edges with negative
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weight. We guess a partition (E−
even, E

−
odd) of E

− so that E−
even and E−

odd con-
tains all negative edges with even and odd sequence number in an optimal
solution for (G,w, s, t), respectively. Then we solve the Shortest Parity-

Constrained Odd Path problem with instance (G,w, s, t, E−
even, E

−
odd) us-

ing Theorem 12, and return the path Q obtained.
To check the correctness of this algorithm, let Q⋆ be an optimal solution

for Shortest Odd Path. As Q is an odd (s, t)-path, w(Q) ≥ w(Q⋆).
Conversely, if our guesses are correct, then Q⋆ is an (E−

even, E
−
odd)-constrained

odd (s, t)-path, and thus w(Q) ≤ w(Q⋆).
For the running time, it is clear that there are 2|E

−| possible guesses, and
getting a solution for the Shortest Parity-Constrained Odd Path

problem can be done in O(mn+ n2 log n) time by Theorem 12. Hence, the
total running time is as stated.

6.1.2. The size of a maximum matching on the negative edges as parameter

Let us now generalize the algorithm of Theorem 17. Let µ(E−) be the
size of a maximum matching in the graph G[E−]. Note that µ(E−) ≤ |E−|
is trivial, and it is also clear that |E−| can be arbitrarily large for any �xed
value of µ(E−); to see this, consider the case when E− is a collection of µ(E−)
stars of arbitrary sizes. Thus, the parameter µ(E−) is substantially weaker
than the parameter |E−|. In the following, µ(E−) is simply denoted by µ.

Theorem 18. There is a randomized FPT algorithm for Shortest Odd

Path with conservative weights that returns an optimal solution to the prob-

lem with probability at least 1− e−1 > 0.632 in O
(
22µ(mn+ n2 log n)

)
time.

Proof. Let (G,w, s, t) be an instance of the Shortest Odd Path prob-
lem with conservative weights. Let E− ⊆ E denote the set of all edges
with negative weight. We would like to get an instance of the Shortest
Parity-Constrained Odd Path problem to solve our problem. Again,
as in Theorem 17, we guess a random partition (E−

even, E
−
odd) of E− by

placing each edge e ∈ E− into E−
even with probability 1

2 , and addition-
ally setting E−

odd = E− \ E−
even. Then we obtain an optimal solution Q for

the Shortest Parity-Constrained Odd Path problem with instance
(G,w, s, t, E−

even, E
−
odd) using Theorem 12. We repeat this procedure τ times

and pick the path Q with the minimum weight, where the value of τ is chosen
later.

The key observation is that if Q⋆ is an optimal solution of the Shortest
Odd Path problem, then the set Q⋆

even ⊆ E− of edges with an even sequence
number in Q⋆ form a matching in G, and similarly, the set Q⋆

odd ⊆ E− of
edges with an odd sequence number in Q⋆ form a matching as well. This

21



implies |Q⋆
even| ≤ µ and |Q⋆

odd| ≤ µ, so Q⋆ contains at most 2µ negative-
weight edges. Hence, we need to guess at most 2µ edges of E− correctly.

The probability of getting a guess where Q⋆
even ⊆ E−

even is
(
1
2

)µ
. Similarly,

the probability of getting a guess where Q⋆
odd ⊆ E−

odd is
(
1
2

)µ
. Since there

might be several optimal paths, the probability of getting a good set E−
even

is at least
(
1
2

)2µ
. Thus, we return a wrong path Q with probability at most(

1−
(
1

2

)2µ
)τ

≤
(
e−(

1
2)

2µ)τ
,

where we use the inequality 1 + x ≤ ex. This implies that we succeed in

returning a minimum-weight path with probability 1−
(
e−(

1
2)

2µ·τ
)
. Setting

τ = 22µ as the number of repetitions, our algorithm succeeds with probability
at least 1− e−1 > 0.632.

The running time depends on the time we need to compute each path Q.
By Theorem 12 and the value of τ , we obtain O

(
22µ(mn+ n2 log n)

)
as

overall running time.

It is straightforward to derandomize the algorithm using a universal set.

Theorem 19. There is a deterministic FPT algorithm for Shortest Odd

Path with conservative weights when parameterized by µ, running in

O
(
f(µ) · (mn log n+ n2(log n)2)

)
time, where f(µ) = 22µ · µO(logµ).

Proof. Let (G,w, s, t) be our instance of Shortest Odd Path; we use the
notation in the proof of Theorem 18. By Theorem 2, one can construct an
(m−, 2µ)-universal set family U on E− of size |U| = 22µ · µO(log µ) · logm−

in time O(m− · |U|), where m− := |E−| = O(m) = O(n2). Hence, instead of
guessing E−

even randomly as in Theorem 18, we can try all sets U ∈ U , and
de�ne E−

even = U ∩ E−. By the de�nition of an (n, 2µ)-universal set family
we obtain that U contains at least one set U⋆ such that Q⋆

even ⊆ U⋆ ∩ E−

and Q⋆
odd ∩ U⋆ = ∅, which su�ces for our algorithm to produce a correct

output. The total running time is O
(
|U| · (mn+ n2 log n)

)
.

6.2. Parametrization by treewidth

In this section we show that Shortest Odd Path can be solved in
linear time on any graph whose treewidth is bounded by a constant, even
when the weight function is not conservative. The main idea is to show that
this problem can be described by monadic second-order formulas.

First, we provide a brief introduction into monadic second-order logic
in Section 6.2.1, and then present our FPT algorithm for Shortest Odd

Path parameterized by treewidth in Section 6.2.2.
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6.2.1. Monadic second-order logic on graphs

Monadic second-order logic can be used to describe graph properties. A
�rst-order formula on graphs is composed of atomic formulas �x = y� and
�Adj(x, y)� over variables using logical connectives ∧ (and), ∨ (or) and ¬
(negation) and logical quanti�ers ∀ and ∃. Every formula de�nes a graph
property by interpreting variables as vertices, and the relation Adj(x, y) as
the vertices corresponding to x and y being adjacent. To facilitate the read-
ing, we also make use of the usual symbols ⇒, ⇔, and ∄.

A wider class of graph properties can be described by monadic second-
order logic. A monadic second-order formula has four types of variables:
variables for vertices and edges (denoted by lower-case letters) and vari-
ables for sets of vertices and sets of edges (denoted by upper-case letters).
The atomic formulas here also contain the Inc(e, v) relation, interpreted as
edge e being incident to vertex v, and the relation of inclusion, denoted as
�x ∈ X�. For example, the graph property of being bipartite is expressed by
the formula Bipartite de�ned as

Bipartite ≡ ∃V1, V2 :
(
∀v : (v ∈ V1 ∨ v ∈ V2) ∧ ¬(v ∈ V1 ∧ v ∈ V2)

)
∧
(
∀v1, v2 : Adj(v1, v2)

⇒
(
(v1 ∈ V1 ∧ v2 ∈ V2) ∨ (v1 ∈ V2 ∧ v2 ∈ V1)

))
,

where v, v1, and v2 are vertex variables, while V1 and V2 are vertex set
variables. We usually denote a monadic second-order formula by φ. We
follow the notation by Satzinger [21], which allows us to use abbreviations
such as ∃v1, v2 : φ(v1, v2) instead of ∃v1∃v2φ(v1, v2), and ∄v ∈ V : φ(v)
instead of ∄v(v ∈ V ∧ φ(v)). Although each variable in φ has an associated
type, we will omit to provide these explicitly whenever they are clear from
the context.

Note that whenever we need to decide whether a given graph G satis�es
formula φ, we also need to provide an interpretation of every free variable
in φ; this way we can use certain vertices or edges in G as constants. For
instance, the following formula expresses whether a �xed vertex s is contained
in a triangle of G:

Triangles ≡ ∃v1, v2 : Adj(s, v1) ∧ Adj(s, v2) ∧ Adj(v1, v2)

For further de�nitions and examples, see Lovász [17] and Cygan et al. [10].

Courcelle proved in [9] that every graph property de�nable in monadic
second-order logic can be decided in linear time on graphs that have bounded
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treewidth. This metatheorem is not enough to solve the Shortest Odd

Path problem on graphs of bounded treewidth, but the extension of monadic
second-order logic developed by Arnborg, Lagergren and Seese [2] enables us
to deal with edge weights. Arnborg et al. de�ned linear EMS extremum prob-

lems, which include problems where the input graph G = (V,E) is equipped
with an evaluation function f , and the task is to �nd the maximum (or the
minimum) of the evaluation term f(P ) :=

∑
e∈P f(e) over all sets P ⊆ E

such that G satis�es a given monadic-second order formula φ(P ) with P as
a free edge set variable in φ.1

Theorem 20 ([2]). For each integer k, every linear EMS extremum problem

can be solved in linear time, assuming that a tree-decomposition of width at

most k is provided for the input graph.

6.2.2. FPT algorithm with parameter treewidth

We are now ready to prove the following result.

Theorem 21. For each �xed integer k, the Shortest Odd Path problem

can be solved in linear time on graphs with treewidth at most k.

Theorem 21 can be proved by using Theorem 20. For this, we need the
following key lemma.

Lemma 22. There exists a monadic second-order formula OddPaths,t(P )
de�ned on a graph G containing two �xed vertices s and t which holds for a

set P of edges in G if and only if P is an odd (s, t)-path in G.

Proof. To de�ne OddPaths,t(P ), we �rst de�ne a series of simple formulas of
monadic second-order logic on our graph G = (V,E). Recall that there is
an atomic symbol Inc(e, v) which holds exactly if e ∈ E, v ∈ V , and e is
incident to v in G.

We start with formulas Deg0(F, v) and Deg1(F, v) which hold for an edge
set F ⊆ E and a vertex v ∈ V if and only if v has degree 0 and 1, respectively,
in G[F ]:

Deg0(F, v) ≡ ∄e : e ∈ F ∧ Inc(e, v),

Deg1(F, v) ≡ ∃e : e ∈ F ∧ Inc(e, v) ∧ (∀f : (f ∈ F ∧ Inc(f, v)) ⇒ (e = f))) .

1We remark that such problems constitute only a small subset of linear EMS extremum
problems; for the precise de�nition, see the paper by Arnborg et al. [2] or the introductory
description by Satzinger [21, Section 3.3].
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Using these, we can easily construct a formula Matching(M) which holds if
and only if the edge set M is a matching in G:

Matching(M) ≡ ∀v : Deg0(M, v) ∨ Deg1(M,v).

We next de�ne formula PartitionE(F, F1, F2) which holds for edge sets F ,
F1, and F2 if and only if (F1, F2) is a partition of F :

PartitionE(F, F1, F2) ≡
(
∄e ∈ E : (e ∈ F1 ∧ e ∈ F2)

)
∧
(
∀e ∈ E : (e ∈ F1 ∨ e ∈ F2) ⇔ (e ∈ F )

)
.

We proceed by de�ning the formula ConnectedE(S) which holds if and only
if the subgraph G[F ] is connected for a given set F of edges:

ConnectedE(F )

≡ ∀F1, F2 :
(
PartitionE(F, F1, F2) ∧ (∃e1 ∈ F1) ∧ (∃e2 ∈ F2)

)
⇒
(
∃v, e1, e2 : e1 ∈ F1 ∧ e2 ∈ F2 ∧ Inc(e1, v) ∧ Inc(e2, v)

)
.

We are now ready to de�ne OddPaths,t(P ) as follows:

OddPaths,t(P ) ≡ ConnectedE(P )

∧
(
∃P1, P2 : PartitionE(P, P1, P2) ∧ Matching(P1)

∧ Matching(P2) ∧ Deg1(P1, s) ∧ Deg0(P2, s)

∧ Deg1(P1, t) ∧ Deg0(P2, t)
)
.

To see the correctness of the formula, �rst assume that S ⊆ E is an odd
(s, t)-path in G. Let S1 and S2 be the set of edges in S with an odd and
even sequence number, respectively. Then (i) (S1, S2) is a partition of S, (ii)
S1 and S2 are both matchings, (iii) s and t both have degree 1 in S1 and
degree 0 in S2, and (iv) G[S] is connected. Hence, G satis�es OddPaths,t(S).

Conversely, suppose that there exists an edge set P such that G satis�es
OddPaths,t(P ). By de�nition, this means that P is connected and can be
partitioned into two matchings, P1 and P2, satisfying also that s and t both
have degree 1 in P1 but have degree 0 in P2. Observe that a connected graph
can only be partitioned into two matchings if and only if it is a path or a
cycle. The degree constraints on s and t then ensure that P is a path with s
and t as its endpoints, and moreover, it is an odd path (since P1 is incident
to both s and t). This proves the correctness of OddPaths,t(P ).

Proof of Theorem 21. By Lemma 22, the Shortest Odd Path problem
can be expressed as a linear EMS extremum problem [2], using the monadic
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second-order formula OddPaths,t(P ) with the evaluation function being the
edge weight function w, so that the evaluation term for P becomes w(P ).
Therefore, Theorem 20 implies that for any class K of graphs of bounded
treewidth, the value

min {w(P ) : P ⊆ E, OddPaths,t(P )}

can be computed in linear time for any graph G = (V,E) ∈ K, edge
weight function w : E → R, and vertices s, t ∈ V , assuming that a tree-
decomposition of G is given as part of the input. Since it is possible to
compute a tree-decomposition of width at most 2k+1 of any n-vertex graph
with treewidth at most k in 2O(k)n time by Theorem 3, the theorem fol-
lows.

We remark that it is also possible to give a direct FPT-algorithm for
Shortest Odd Path parameterized by the treewidth of the input graph
using dynamic programming techniques on a tree-decomposition. Although
the naive method for solving Shortest Odd Path on a graph with n ver-
tices and a tree-decomposition of width k would yield an algorithm running
in kO(k)nO(1) time, it is possible to obtain an ckkO(1)n algorithm for some
constant c using the rank-based approach of Bodlaender et al. [5] in almost
the same way as they do for the Traveling Salesman problem; see Ap-
pendix A for the details.

7. Conclusion

We have identi�ed islands of tractability for the computationally hard
Shortest Odd Path problem. We gave a polynomial-time algorithm for
the case when the weight function is conservative and the set of negative-
weight edges forms a tree. We developed an FPT algorithm for the problem
when parameterized by the number of negative-weight edges, or more gen-
erally, by the size of a maximum matching in the graph spanned by all
negative-weight edges, assuming again conservative weights. We also proved
that Shortest Odd Path is linear-time solvable on graphs of bounded
treewidth, irrespective of the weight function.

A natural direction for further research is to identify additional cases
when the problem becomes computationally tractable. A starting point could
be to generalize our results to the case when the negative-weight edges form
c ≥ 2 trees. Is Shortest Odd Path solvable in polynomial time when c is
a constant? If so, is it �xed-parameter tractable with c as the parameter?
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Appendix A. Dynamic programming for bounded treewidth

We assume that the reader is familiar with the technique and terminology
developed by Bodlaender et al. in their paper [5]. We show the necessary
tools for solving the Shortest Odd Path problem when the graph has
treewidth k, in a similar fashion as the dynamic programming approach for
the Traveling Salesmen problem in [5]. Using the results in [5], one can
show that the running time is ckkO(1)n, for some constant c.

Let us consider a nice tree decomposition (T,B) as de�ned in [5]. Let
r be the root vertex of T; we may assume that the root bag contains only
vertices {s, t}, and we denote it by Br. Given a node x of T, we denote its
bag by Bx, and by Vx the set of all vertices contained in the bag of some
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descendant of x. The subgraph Gx is then de�ned as (Vx, Ex) where Ex is
the set of edges introduced in some descendant of x.

Observe that given a solution to our instance (G,w, s, t), that is, an
odd (s, t)-path P , the edges of P ∩ Ex span a set of vertex-disjoint paths
in the subgraph Gx. For the dynamic programming algorithm, we use
d : Bx → {0, 1, 2} to encode the degree of each vertex in Bx in such a partial
solution P ∩ Ex. Note also that P ∩ Ex naturally de�nes a perfect match-
ing on those vertices of Bx that have degree 1 in P ∩ Ex. We encode this
information in a partition M ∈ Π2

(
d−1(1)

)
where Π2(S) denotes the set of

all partitions over a set S in which each block has size 2. Finally, we encode
the parity of |P ∩ Ex| in an integer p.

For each node x ∈ V (T), we can now de�ne the set Ex(·) of partial
solutions we aim to capture and the table Ax(·) that we are going to compute
at x. More precisely, given a function d ∈ {0, 1, 2}Bx , a partition M ∈
Π2

(
d−1(1)

)
and integer p ∈ {0, 1} we de�ne

Ex(M,d, p) =

{
F ⊆ Ex : ∀v : v ∈ Bx ⇒ degF (v) = d(v)

∧ ∀v : v ∈ Vx \Bx ⇒ degF (v) ∈ {0, 2}
∧ Gx[F ] contains no cycle

∧ ∀u, v ∈ Bx : {u, v} ∈ M

⇒ u and v are connected in Gx[F]

∧ |F | ≡ p mod 2

}
;

Ax(d, p) =

{(
M, min

F∈Ex(M,d,p)
w(F )

)
: M ∈ Π2

(
d−1(1)

)
∧ Ex(M,d, p) ̸= ∅

}
.

Observe that the weight of a minimum-weight odd (s, t)-path can be
found by taking the weight stored in the table Ar(d, 1) for the partition
{{s, t}}, where d(s) = d(t) = 1 and d(v) ∈ {0, 2} for each v ∈ Br \ {s, t}.
We consider the following recurrence for Ax(d, p), depending on the type
of x. Note that we give the recurrence formulas using the operators over
weighted partitions de�ned in [5]. Although Bodlaender et al. [5] use non-
negative integer weights, their machinery also works for integer weights.

Leaf bag Bx. We have Bx = ∅. Then Ax(·) is empty for all possible values,
except for

Ax(∅, 0) = {(∅, 0)}.
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Introduce vertex v with bag Bx. Let y be the child of x, that is, Bx = By∪{v}.
For all d ∈ {0, 1, 2}Bx and p ∈ {0, 1} we set

Ax(d, p) =

{
Ay(d|By , p) if d(v) = 0,

∅ otherwise,

as v has just been introduced, and so it has no neighbours in Gx; therefore,
there is no change in the connectivity or in the parity of partial solutions.

Forget vertex v with bag Bx. Let y be the child of x, that is, By = Bx ∪{v}.
For all d ∈ {0, 1, 2}Bx and p ∈ {0, 1} we set

Ax(d, p) = Ay(d[v → 0], p)∪↓ Ay(d[v → 2], p).

Either v is contained in an optimal solution P or not. If v is contained in P ,
then since v cannot have neighbours outside Vx, the two neighbours of v in P
must be in Vx. Hence, the degree of v in a partial solution must be 0 or 2.
Again, there is no change in parity or in connectivity; however, we need to
discard dominated partitions.

Introduce edge e = uv with bag Bx. Let y be the child of x. We have
Bx = By. For all d ∈ {0, 1, 2}Bx and p ∈ {0, 1} we set

Ax(d, p) = Ay(d, p)∪↓

⋃
↓



∅ d(u) = 0 ∨ d(v) = 0,

gluew (uv,Ay(d[u, v → 0], 1− p)) d(u) = 1 ∧ d(v) = 1,

proj ({v}, gluew (uv,Ay(d[u → 0, v → 1], 1− p))) d(u) = 1 ∧ d(v) = 2,

proj ({u}, gluew (uv,Ay(d[u → 1, v → 0], 1− p))) d(u) = 2 ∧ d(v) = 1,

proj ({u, v}, gluew (uv,Ay(d[u, v → 1], 1− p))) d(u) = 2 ∧ d(v) = 2.

Clearly, a partial solution may not use the edge e, and we keep track of
such partial solutions by keeping all undominated entries from the table
Ay(d, p) computed for the child y. If e is contained in a partial solution F
for x compatible with d and p, then the degree of u in F ∩ Ey = F \ {e} is
smaller by 1 than its degrees in F , and the same holds for v. In particular,
d(u) = 0 or d(v) = 0 is not possible. Furthermore, F and F ∩ Ey have
di�erent parities. The simple case is when both d(u) = 1 and d(v) = 1:
then we can safely add the edge e and use the parity that di�ers from p;
note that this means inserting the block {u, v} into the partition, which we
can achieve by using the gluew operation. If d(u) = 2 or d(v) = 2, then
we �rst need to glue the partitions containing u and v, and then we need
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to use the proj operation to remove those vertices from the partition that
have degree 2 in F but degree 1 in F ∩ Ey (such vertices can be u, v, or
both). Note that the proj({u, v}, ·) operation �lters out those partitions
where projecting out u and v decreases the number of blocks; hence, entries
of Ay(d, p) with partitions containing {u, v} will not be used in the case
d(u) = d(v) = 2. This way we avoid creating cycles.

Join with bag Bx. Let y and z be the children of x, that is, Bx = By = Bz;
let us now denote the �left� degree vector for child y by l and the �right�
degree vector for child z by r. For all d ∈ {0, 1, 2}Bx and p ∈ {0, 1} we set

Ax(d, p) =⋃
↓

l+r=d,
p1+p2 ≡ p mod 2

proj
(
d−1(2) \ (l−1(2) ∪ r−1(2)), join(Ay(l, p1), Az(r, p2))

)
.

Observe that l + r = d is a vector summation as l, r,d ∈ {0, 1, 2}Bx . Com-
bining (M1, w1) ∈ Ay(l, p1) and (M2, w2) ∈ Az(r, p2) to get an entry for
Ax(d, p) can be done if and only if M1 ∪M2 is acyclic and we have the cor-
rect parity. Maintaining acyclicity is equivalent to asking that the vertices
in d−1(2)\ (l−1(2)∪r−1(2)), which are the vertices that have degree 1 in the
partial solutions for y and for z but degree 2 in the partial solution for x,
are connected to vertices in d−1(1) in the resulting partition M1 ⊔M2. We
use the projection operation for ensuring this.

Using the above formulas and applying the framework of [5], it is straightfor-
ward to obtain an algorithm for Shortest Odd Path that runs in ckkO(1)n
time for some constant c on graphs with treewidth at most k, where n denotes
the number of vertices.
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