
Parameterized Algorithms for
Optimal Refugee Resettlement
Jiehua Chena,1,*, Ildikó Schlotterb,c,1 and Sofia Simolaa,1

aTU Wien, Austria
bHUN-REN Centre for Economic and Regional Studies, Hungary

cBudapest University of Technology and Economics, Hungary
ORCID (Jiehua Chen): https://orcid.org/0000-0002-8163-1327, ORCID (Ildikó Schlotter):

https://orcid.org/0000-0002-0114-8280, ORCID (Sofia Simola): https://orcid.org/0000-0001-7941-0018

Abstract. We study variants of the Optimal Refugee Resettlement
problem where a set F of refugee families need to be allocated to
a set P of possible places of resettlement in a feasible and optimal
way. Feasibility issues emerge from the assumption that each fam-
ily requires certain services (such as accommodation, school seats,
or medical assistance), while there is an upper and, possibly, a lower
quota on the number of service units provided at a given place. Be-
sides studying the problem of finding a feasible assignment, we also
investigate two natural optimization variants. In the first one, we al-
low families to express preferences over P , and we aim for a Pareto-
optimal assignment. In a more general setting, families can attribute
utilities to each place in P , and the task is to find a feasible as-
signment with maximum total utilities. We study the computational
complexity of all three variants in a multivariate fashion using the
framework of parameterized complexity. We provide fixed-parameter
tractable algorithms for a handful of natural parameterizations, and
complement these tractable cases with tight intractability results.

1 Introduction

At the 2023 Global Refugee Forum, the UN High Commissioner for
Refugees reported that 114 million people are currently displaced
due to persecution, human rights violations, violence, and wars, and
made a direct appeal to everyone to join forces to help refugees find
protection.2 This immense number highlights the critical need for
effective resettlement strategies that cater to diverse populations.

Refugee resettlement involves not just relocating individuals
but also families, each with distinct needs and service require-
ments ranging from accommodation to education and medical assis-
tance. Delacrétaz et al. [15] and Ahani et al. [2] propose a multi-
dimensional and multiple knapsack model to address these chal-
lenges. Their model takes into account the specific needs of refugee
families who require a range of services, as well as the capacity con-
straints of potential hosting places that have specific upper and lower
quotas on the services they can offer. The goal is to determine a fea-
sible assignment from the families to the places which satisfies the
specific needs of the families while ensuring that no place is over-

∗ Corresponding Author. Email: jiehua.chen@tuwien.ac.at.
1 Equal contribution.
2 https://www.unhcr.org/global-refugee-forum-2023

or under-subscribed according to its capacity constraints. Addition-
ally, the model may include a utility score for each family–place pair
which estimates the “profit” that a family may contribute to a place;
such profit could be for example the employment outcome. Optimiz-
ing the assignment means finding a feasible assignment that yields a
maximum total utility.

If we care about the welfare and choices of the refugee families,
we may allow them to express preferences over places which they
find acceptable [15]. A standard optimality criterion in such a case is
Pareto-optimality, which means that we aim for a feasible assignment
for which no other feasible assignment can make one family better
off without making another worse off.

Unfortunately, it is computationally intractable (i.e., NP-hard) to
determine whether a feasible assignment exists [8]. Similarly, it is
NP-hard to find a feasible assignment with maximum total utility or
one that is Pareto-optimal, even if there are no lower quotas [7, 19, 2].
To tackle these complexities, we examine the parameterized com-
plexity of the three computational problems for refugee resettlement
that we study, FEASIBLE-RR, MAXUTIL-RR and PARETO-RR, and
provide parameterized algorithms for them. We focus on canonical
parameters such as the number of places (m), the number of refugee
families (n), the number of services (t), and the desired utility (u∗).
We also consider additional parameters that are motivated from real-
life scenarios, including the maximum number rmax of units required
by a family per service and the maximum utility umax a family can
contribute. The service units can reasonably be assumed to be small
integers in practical situations when a family’s requirements describe
their need for housing (e.g., number of beds or bedrooms) or educa-
tion (e.g., the number of school seats or kindergarten places). Our
study provides new insights into the parameterized complexities of
these problems, presenting fixed-parameter (FPT) algorithms for sev-
eral natural parameterizations, and contrasting these with strong in-
tractability results. See Table 1 for an overview. We summarize our
main contributions as follows.

Single service. We develop an FPT algorithm w.r.t. rmax for FEASI-
BLE-RR; the algorithm also applies to MAXUTIL-RR and PARETO-
RR when all families have the same utilities for all places (equal
utilities) or are indifferent between all of them (equal preferences),
respectively; see Theorem 1. The main idea is to group all families to-
gether that have the same requirements, and group all places together

https://orcid.org/0000-0002-8163-1327
https://orcid.org/0000-0002-0114-8280
https://orcid.org/0000-0001-7941-0018
https://www.unhcr.org/global-refugee-forum-2023

with the same lower and upper quotas. Then, we observe that either
the upper quotas are small (i.e., bounded by a function in rmax) so
we can brute-force search all possible partitions of the families into
different places, or there is a so-called homogeneous ρ-block (see
Section 3 for the formal definition) that can be exchanged across the
places, which enables us to replace the upper quota of each place
with a value bounded by a function of rmax. In this way, we bound
the number of groups of families and places, and can use integer lin-
ear programming (ILP) to obtain an FPT algorithm for rmax.

We also propose an FPT algorithm for the combined parame-
ter m + rmax for the general case when families may have differ-
ent utilities or preferences (Theorem 3). The generalized algorithm
additionally uses the idea that homogeneous ρ-blocks can be ex-
changed across places, and combines dynamic programming with
color-coding [4] to find an optimal solution in FPT time.
Multiple services. In Theorem 6, we extend the FPT algorithm of
Theorem 1 for the setting of equal preferences or utilities to multiple
service types by combining the parameters rmax and t, the number of
services; we use the technique of N -fold integer programming [21].
We present a more general FPT algorithm for PARETO-RR with pa-
rameter rmax+t+mwhich also solves MAXUTIL-RR if the number
of different utility values is bounded (Theorem 7); this result relies on
Lenstra’s result on solving ILPs with bounded dimension [27]. Con-
trasting our algorithmic results, we prove that PARETO- and MAXU-
TIL-RR are both NP-hard already for three places, even if there are
no lower quotas, all upper quotas are 1, and families have equal pref-
erences or utilities, respectively; see Theorem 5.
Related work. The model we study is the same as that of Ahani
et al. [2]. They formulate MAXUTIL-RR via Integer Linear Pro-
gramming (ILP) and study its performance. The same model with-
out lower quotas has attracted previous study: It was introduced in
a working paper by Delacrétaz et al. [14] (see also [15]). The pa-
per provides an algorithm for finding a Pareto-efficient matching
when the preferences are strict, and also studies other stability con-
cepts. Aziz et al. [7] show that finding a Pareto-optimal assignment is
NP-hard even when the families are indifferent between places, and
study a few other stability concepts. Nguyen et al. [30] use fractional
matchings to find group-stable assignments which violate the quotas
only a little. None of the works above focuses on the parameterized
complexity of the problems.

As already mentioned by Ahani et al. [2], the MAXUTIL-RR
problem is a generalization of the MULTIPLE/MULTIDIMENSIONAL

KNAPSACK problem [2]. The parameterized complexity of the latter
has been studied by Gurski et al. [19], and several of our hardness-
results are obtained either directly from them or from modifications
of their reductions. MULTIPLE/MULTIDIMENSIONAL KNAPSACK

however has neither lower quotas nor different profits for items de-
pending on which knapsack they are placed in. They also assume
the sizes and profits are encoded in binary, whereas we assume
they are encoded in unary. Hence, their parameterized algorithms
are not directly applicable to our problems. FEASIBLE-RR gener-
alizes BIN PACKING [22] and hence SIMPLE MULTIDIMENSIONAL

PARTITIONED SUBSET SUM [17]; note that the latter two problems
are equivalent. Since BIN PACKING is W[1]-hard w.r.t. the number
of bins and the bins correspond to the places in our setting, W[1]-
hardness for FEASIBLE-RR follows; see Proposition 1.

The problem can be seen as an extension of different classical
matching problems. We can model MATCHING WITH DIVERSITY

CONSTRAINTS [12, 20, 13, 8, 1, 26] by using services as types. In
the case where we have a single service, the problem can be seen
as a variant of MATCHING WITH SIZES [11, 29], where the service

requirements correspond to the sizes.
Refugee resettlement has also been studied in the literature un-

der other types of models: Online setting [6, 3, 9], one-to-one
housing [5], preferences based on weighted vectors [33], hedonic
games [25], and placing refugees on a graph [23, 28, 32].
Paper structure. In Section 2, we formally define RR. We investi-
gate the case when there is only one service and when there are multi-
ple services in Section 3 and Section 4, respectively. In Section 4, we
first look at the FEASIBLE-RR problem, followed by PARETO-RR
the problem, and finally the MAXUTIL-RR problem. We conclude
with a discussion on potential areas for future research in Section 5.

2 Preliminaries
For an integer z, we use [z] to denote the set {1, 2, . . . , z}. Given
two vectors x and y of same length, we write x ≤ y if for each
coordinate i it holds that x[i] ≤ y[j].

An instance of RR is a tuple (F,P, S, (ri)fi∈F , (cj , c̄j)pj∈P)
with the following information.
– F denotes a set of n refugee families with F = {f1, . . . , fn},
– P denotes a set of m places with P = {p1, . . . , pm}, and
– S denotes a set of t services S = {s1, . . . , st}, such that
– each family fi ∈ F has a requirement vector ri ∈ N

t where,
for every sk ∈ S, the value ri[k] determines how many units of
service sk the family fi requires, and

– each place pj ∈ P has two vectors cj , c̄j ∈ N
t, denoted as lower

quota and upper quota which indicate for every service sk ∈ S,
the minimum and maximum number of units place pj can pro-
vide. Non-zero lower quotas for places may for example follow
from an obligation for a place to house at least a certain number
of refugees. If the lower quota of every place is a zero-vector, then
we say that the instance has no lower quotas.

Assignments. Given an instance of REFUGEE RESETTLEMENT, an
assignment is a function σ∶F → P ∪ {⊥}; we say that fi ∈ F is
assigned to a place pj ∈ P if σ(fi) = pj , and fi is unassigned
if σ(fi) = ⊥. We define the load vector of a place pj ∈ P un-
der σ as load(pj , σ) ≔ ∑fi∈σ

−1(ℓj) ri[k]; for each service sk ∈ S,
load(pj , σ)[k] denotes the number of units that are required by the
refugees that are assigned to pj . An assignment is complete if it does
not leave any families unassigned. An assignment is feasible if for
every place pj ∈ P the load vector is within the lower and upper
quota, i.e., cj ≤ load(pj , σ) ≤ c̄j . Place pj can accommodate a set
of families F ′

⊆ F if ∑fi′∈F
′ ri′[k] ≤ c̄j[k] for each sk ∈ S.

Utilities. Each family may contribute a certain utility to each place.
To model this, each family fi ∈ F expresses an integral utility vec-
tor ui ∈ Z

m, where for every pj ∈ P , the value ui[j] indicates the
utility of family fi if assigned to pj . Note that we also allow negative
utilities, but it will be evident that all hardness results hold even if the
utilities are non-negative. Given an assignment σ, we define the (to-
tal) utility of the assignment as the sum of all utilities obtained by the
families, i.e., util(σ) = ∑pj∈P

∑fi∈σ
−1(pj) ui[j]. We consider two

special kinds of utility vectors. We say that the families have equal
utilities if all utility values ui[j] are equal and positive over all fam-
ilies fi ∈ F and places pj ∈ P , and families have binary utilities if
each utility value is either zero or one.
Preferences and Pareto-optimal assignments. Each family fi ∈ F
may only find a subset of places acceptable and may have a prefer-
ence list ⪰i over the acceptable places, i.e., a weak order over a subset
of P . For a family fi and two places p and p′ in its preference list,
p ⪰i p

′ means that fi weakly prefers p to p′. If p ⪰i p
′ and p′ ⪰i p,

then we write p ∼i p
′ and say that fi is indifferent between p and p′.

We write p ≻i p
′ to denote that fi (strictly) prefers p to p′, meaning

that p ⪰i p
′ but p /⪰i p

′. If the preference list of fi contains p, then fi
finds p acceptable. We assume that each family fi prefers being as-
signed to some place in his preference list over being unassigned;
accordingly, we write p ≻i ⊥. An assignment is acceptable if every
family is either unassigned or assigned to a place it finds acceptable.

We also define equal and dichotomous preferences: If every family
finds every place acceptable and is additionally indifferent between
them, the preferences are equal. If every family is indifferent between
every place it finds acceptable, the preferences are dichotomous.

A feasible and acceptable assignment σ is Pareto-optimal if it ad-
mits no Pareto-improvement, that is, a feasible and acceptable assign-
ment σ′ such that σ′(fi) ⪰i σ(fi) for every fi ∈ F and there exists
at least one family fi′ ∈ F such that σ′(fi′) ≻i′ σ(fi′).

Central problems. We are now ready to define our problems.
FEASIBLE-RR
Input: An instance I of REFUGEE RESETTLEMENT.
Question: Is there a feasible assignment σ for I?

MAXUTIL-RR
Input: An instance I of refugee resettlement, a utility vector
ui ∈ Zm for each family fi ∈ F , and an integer bound u∗.
Question: Is there a feasible assignment σ for I such that
util(σ) ≥ u∗?

PARETO-RR
Input: An instance I of refugee resettlement and a preference
order ⪰i for every fi ∈ F .
Task: Find a feasible and acceptable Pareto-optimal assign-
ment σ for I or report that none exists.

We remark that there is a straightforward way to reduce PARETO-
RR to the optimization variant of MAXUTIL-RR in the following
sense. Suppose that an algorithm A finds a maximum-utility feasible
assignment for each instance of MAXUTIL-RR that admits a feasible
assignment. Such an algorithm can be used to solve an instance I the
PARETO-RR problem as follows.

Observation 1 (⋆). Given an instance I of PARETO-RR, construct
an instance I ′ of MAXUTIL-RR as follows. For each family fi ∈ F :
• for every place pj that fi finds acceptable, set ui[j] = ∣{pj′ ∈
P ∣ pj ⪰i pj′}∣;

• for each place pj that fi finds unacceptable, set ui[j] = −m ⋅ n.
Let σ be a maximum-utility feasible assignment for I ′. If util(σ) > 0,
then σ is a feasible, acceptable, and Pareto-optimal assignment
for I; otherwise there is no feasible and acceptable assignment for I .

Parameterization. We study the following parameters:
• number of places (m = ∣P ∣),
• number of refugee families (n = ∣F ∣),
• number of services (t = ∣S∣),
• maximum number of units required for all services and by all fam-

ilies (rmax = max{ri[k] ∶ fi ∈ F, sk ∈ S}).
We also study the following parameters for MAXUTIL-RR: the

total utility bound u∗ and the maximum utility brought by a family
umax = max{ui[j] ∶ fi ∈ F, pj ∈ P }.

Additionally, we consider the maximum length of the ties in pref-
erence lists. However, this parameter is upper-bounded by m, and
most problems are already hard w.r.t.m. We also consider the highest
upper quota any place has for a service cmax = maxpj∈P,sk∈S c̄j[k],
but discover that this parameter behaves very similarly to the smaller
and better-motivated parameter rmax. Note that we may assume that

Parameter FEASIBLE MAXUTIL PARETO

LQ=0 / LQ≠0 LQ=0 / LQ≠0

m W1h [P1] W1h◦/W1h◦ [P1] W1h=/W1h= [P1]
XP [P7] XP / XP [P7] XP / XP [P7]

rmax FPT [T1] NPh / NPh [T2] NPh / NPh [T2]
eq. util./pref. – – FPT / FPT [T1] FPT / FPT [T1]

m + rmax FPT [T3] FPT / FPT [T3] FPT / FPT [T3]
umax – – NPh◦/NPh◦ [19] – –
u
∗ – – FPT/NPh◦ [T4]/[P1] – –

m + rmax NPh [P2] NPh◦/NPh◦ [19] NPh=/NPh= [T5]/[P2]
t NPh [P1] NPh◦/NPh◦ [19] NPh=/NPh= [7]
n FPT [P6] FPT / FPT [P6] FPT / FPT [P6]
m + t W1h [P1] W1h◦/W1h◦ [P1] W1h=/W1h= [P1]

XP [P7] XP / XP [P7] XP / XP [P7]
t + rmax FPT [T6] NPh / NPh [T2] NPh / NPh [T2]

eq. util./pref. – – FPT/FPT [T6] FPT / FPT [T6]
m + t + rmax FPT [T6] XP / XP,? [P7] FPT / FPT [T7]

binary util. – – FPT [T7] – –
u
∗ – – W1h◦/NPh◦ [19]/[P2] – –

– – XP/NPh◦ [P8]/[P2] – –

Table 1. All three problems are NP-hard in general; see [8], [19, T32],[7,
P7.1]. Above: Results for the single-service case (t = 1). We skip the pa-
rameterization by n since for this case since it is FPT for the more general
case. Below: Results for the general case. Here, we skip the parameterization
by umax since it is already NP-hard for the single-service case. Bold faced
results are obtained in this paper. LQ=0 (resp. LQ≠0) refers to the case when
lower quotas are zero (resp. may be positive). NPh means that the problem re-
mains NP-hard even if the corresponding parameter is constant. All hardness
results hold for dichotomous preferences or binary utilities. Additionally, ◦

(resp. =) means hardness results hold even for equal utilities (resp. prefer-
ences). The results for the remaining parameter combinations are deferred to
Appendix D, Table 2.

for each family there is at least one place that can accommodate it,
otherwise we can remove the family from our instance; this implies
that we can assume cmax ≥ rmax.

We also obtain FPT results w.r.t. the sum of the capacities of the
places, that is, cΣ = ∑pj∈P,sk∈S

c̄j[k], and the sum of the re-
quirements of the families rΣ = ∑fi∈F,sk∈S

ri[k]. If there are no
lower quotas, we also have an FPT result w.r.t. the sum of utilities
uΣ = ∑fi∈F,pj∈S

ui[j]. If the instance has non-zero lower quotas,
then the problem is hard even when all utilities are zero, and this pa-
rameter is not helpful. We also study the complexity w.r.t. the number
of agents who have ties in their preference lists n∼. Discussion on pa-
rameters cΣ, rΣ, uΣ, and n∼ are deferred to Appendix D.

3 Single service
Let us assume that there is only a single service in our input instance.
Thus, we will simply refer to ri[1] as the requirement of a fam-
ily fi ∈ F , and we will write ri = ri[1] accordingly. Observe that
we may assume w.l.o.g. that each family has a positive requirement.
Similarly, we will refer to c̄j[1] and cj[1] as the upper and the lower
quota of a place pj ∈ P , writing also c̄j = c̄j[1] and cj = cj[1].

The reader may observe that when our sole concern is feasibility,
then the problem can be seen as a multidimensional variant of the
classic BIN PACKING or KNAPSACK problems. On one hand, it is not
hard to show that the parameterized hardness of BIN PACKING w.r.t.
the number of bins as parameter translates to parameterized hard-
ness of FEASIBLE-RR w.r.t. the number of places; see Proposition 1.
On the other hand, the textbook dynamic programming technique

for KNAPSACK was used by Gurski et al. [19, Proposition 34] to
solve the so-called MAX MULTIPLE KNAPSACK problem which in
our model coincides with the MAXUTIL-RR problem without lower
quotas. This approach can be adapted in a straightforward way to
solve the MAXUTIL-RR problem even for the case when there are
multiple services and lower quotas; in Proposition 7 we present an
algorithm running in O((cmax)mt

nm) time.

Proposition 1 (⋆). The following problems are W[1]-hard w.r.t. m
for t = 1:
• FEASIBLE-RR;
• PARETO-RR with no lower quotas and equal preferences;
• PARETO-RR when all families have strict preferences;
• MAXUTIL-RR with no lower quotas and equal utilities;
• MAXUTIL-RR with u∗

= 0.

In spite of the strong connection between FEASIBLE-RR and BIN

PACKING (or between MAXUTIL-RR and KNAPSACK), the context
of REFUGEE RESETTLEMENT motivates parameterizations that have
not been studied for these two classical problems. One such parame-
ter is rmax, the maximum units of a service that any refugee family
may require. Theorem 1 presents an efficient algorithm for FEASI-
BLE-RR for the case when rmax is small; the proposed algorithm
can be used to solve PARETO- and MAXUTIL-RR as well, assum-
ing equal preferences or utilities, when the task is to assign as many
refugee families as possible.

Let us introduce an important notion used in our algorithms.
Let ρ denote the least common multiple of all integers in the set
{1, . . . , rmax}; then ρ ≤ (rmax)! is clear. We say that a set F ′

⊆ F
of families is a homogeneous ρ-block, if all families in F ′ have the
same requirement, and their total requirement is exactly ρ.

Observation 2 (⋆). Suppose that the number of services is t = 1. If
F

′
⊆ F is a set of families such that ∑fi∈F

′ ri > rmax(ρ − 1), then
F

′ contains a homogeneous ρ-block.

In the case where rmax is a constant and the families are indif-
ferent between the places, we can use Observation 2 to bound the
number of different possible places. The idea is to observe that while
the location capacities are unbounded, we can bound the “relevant
part” of them by a function of rmax. If the total requirement of fam-
ilies assigned to a place is more than rmax(ρ − 1), there must be
a homogeneous ρ-block among them. We can treat these homoge-
neous ρ-blocks separately from the places they originate from, and
thus bound the upper quotas by a function of rmax. The family re-
quirements are also trivially bounded by rmax.

Since we have now bounded both the maximum requirements of
the families and the capacities of the locations, we can enumerate
all the different ways families may be matched to places. We can
create an ILP that has a variable for each such way and additionally
variables for the homogeneous ρ-blocks. As the number of variables
and constraints is bounded above by a function of rmax, we can solve
this ILP in FPT time w.r.t. rmax [27].

Theorem 1. PARETO- and MAXUTIL-RR are FPT w.r.t. rmax when
t = 1 and families have equal preferences or utilities, respectively.

Proof. We start by showing that we can find an assignment that
matches the maximum number of families in FPT time w.r.t. rmax.
Under equal preferences (resp. utilities) this assignment must maxi-
mize utility (resp. be Pareto-optimal).

We start by defining two functions which will be useful for typing
places by their service quotas: the function arg res∶N → N and the

cj c̄j

res(c̄j − cj − rmax + 1)res(cj)

rmax − 1

Compulsory
homogeneous ρ-blocks

Optional
homogeneous ρ-blocks

Configuration

Figure 1. Illustration for the proof of Theorem 1. The bar shows the upper
and lower quotas of a place, and the green area represents the requirements of
the families matched to it.

function res∶N→ {0, . . . , rmax(ρ − 1)}:

res(x) = max
α∈N

{x − α ⋅ ρ ∶ x − α ⋅ ρ ≤ rmax(ρ − 1)}

arg res(x) = argmax
α∈N

{x − α ⋅ ρ ∶ x − α ⋅ ρ ≤ rmax(ρ − 1)}.

Observe that ∀x ∈ N, x = ρ ⋅ arg res(x) + res(x). (1)

Using the res function we can associate each place with a type τP .
Let τP (pj) = (res(cj), x), where

x={ res(c̄j − cj − rmax +1) + rmax− 1, if c̄j − cj ≥ rmax− 1,

c̄j − cj , otherwise.

The first element of the type tells us the lower quota of the place
after we have discounted all the homogeneous ρ-blocks that are used
to satisfy the lower quota. The second element tells us the size of
the “optional” quota c̄j − cj when we have again discounted all the
homogeneous ρ-blocks that this part may contain. We however only
compute the residue on the part of c̄j−cj that is larger than rmax−1.
This is because the total requirements of the families that are used to
satisfy cj may be slightly greater than cj , and thus there may be a
family whose requirement is partially counted for c̄j − cj , however
it may have been used for a homogeneous ρ-block. See Figure 1 for
intuition of how the lower and upper quotas of a place are divided
into the configuration and homogeneous ρ-blocks.

Let T P
= {0, . . . , rmax(ρ−1)}×{0, . . . , rmax(ρ−1)+rmax−1}

be the set of possible place types. It is clear that their number is
bounded above by r2maxρ

2, which is a function of rmax. We addi-
tionally know that every place must have arg res(cj) many homo-
geneous ρ-blocks assigned to it. We call these compulsory homoge-
neous ρ-blocks. Similarly, we may assign at most arg res(c̄j − cj −
rmax + 1) additional homogeneous ρ-blocks to pj , which we call
optional homogeneous ρ-blocks. Because the families are indiffer-
ent between the places, we do not need to keep track of the place the
compulsory and optional homogeneous ρ-blocks belong to, and we
only enforce that the families assigned to compulsory homogeneous
ρ-blocks create exactly the number of compulsory homogeneous ρ-
blocks needed, and the families assigned to optional homogeneous ρ-
blocks create at most the number of optional homogeneous ρ-blocks.

Now with a bound on the upper and lower quotas of the places dis-
counting the homogeneous ρ-blocks, we can enumerate all possible
ways to satisfy these quotas. Let ρ̂ ≔ 2rmax(ρ − 1) + rmax − 1.
This is the maximum sum of requirements that may be assigned to
any place and that are not part of a homogeneous ρ-block. We cre-
ate configurations cF ∈ {0, . . . , ρ̂}rmax that tell us the number of
families of each requirement type. Let us denote the set of possible
configurations CF

≔ {0, . . . , ρ̂}rmax . It is clear that the number of
possible configurations is bounded above by (ρ̂+ 1)rmax , which is a
function of rmax.

We say that a place type τP is suitable for a configuration cF if
τ
P [1] ≤ ∑r∈[rmax] c

F [r] ⋅ r ≤ τP [1] + τP [2]. This means that if

the families are assigned to a place according to the configuration, its
upper and lower quotas are satisfied.

We create an ILP with the following variables and constants:
• non-negative integer variables br and b̄r for each r ∈ [rmax],

representing the number of compulsory or optional, respectively,
homogeneous ρ-blocks filled with families of requirement r.

• non-negative integer variable x(τP , cF) for every τ
P

∈ T P ,
c
F

∈ C
F such that τP is suitable for cF , counting the number

of places of type τP that are assigned families according to con-
figuration cF .

• mτP is the number of places of type τP for each τP ∈ T P ;
• B = ∑pj∈P

arg res(cj) (resp. B = ∑pj∈P
arg res(max(c̄j −

cj − rmax + 1), 0)) is the number of compulsory (resp. optional)
homogeneous ρ-blocks;

• nr is the number of families fi ∈ F such that ri = r, for each
r ∈ [rmax].
We create the following ILP:

(ILP1)

max ∑
r∈[rmax]

⎛
⎜⎜⎜⎜⎜⎜
⎝

ρ
r (br + b̄r) + ∑

τ
P
∈T P

c
F
∈C

F

c
F [r]x(τP , cF)

⎞
⎟⎟⎟⎟⎟⎟
⎠

s.t.

∀τ
P
∈ T P

∶ ∑
c
F
∈C

F

c
F is suitable for τP

x(τP , cF) = mτP (2)

∑
r∈[rmax]

br = B and ∑
r∈[rmax]

b̄r ≤ B (3)

∀r ∈ [rmax]∶
ρ
r (br + b̄r) + ∑

τ
P
∈T P

c
F
∈C

F

c
F [r]x(τP , cF) ≤ nr (4)

Constraint (2) enforces that every place has families matched to
it according to some suitable configuration. Constraint (3) enforces
that every compulsory homogeneous ρ-block is filled with refugee
families and that no non-existing optional homogeneous ρ-blocks
are filled with refugee families. Constraint (4) enforces that for each
service-requirement, only available number of refugees are used. The
objective function formulates the total number of families assigned.

It is clear that the number of variables is bounded above by
2rmax + (ρ̂ + 1)rmaxr

2
maxρ

2, and the number of constraints by
3r

2
maxρ

2 + rmax, which are functions of rmax. Thus the problem
can be solved in FPT time w.r.t. rmax [27]. The correctness of this
approach follows from Claim 1.

Claim 1 (⋆). ILP1 admits a solution with value u∗ if and only if
there is an assignment of families with utility u∗.

When preferences or utilities are not equal, parameterization
by rmax alone does not yield fixed-parameter tractability: as estab-
lished by Theorem 2, the case rmax = cmax = 2 is NP-hard even in
a very restricted case, when there are no lower quotas, families have
dichotomous preferences (or binary utilities), and each family finds
at most two places acceptable (or of positive utility).

Let us remark that a slightly weaker result (the statement with-
out the condition that each family finds exactly two places accept-
able, or has positive utility for exactly two paces) follows via a
fairly straightforward reduction from the MATCHING WITH COU-
PLES problem [11, 18].

Theorem 2 (⋆). PARETO-RR and MAXUTIL-RR for t = 1 are NP-
hard even when rmax = cmax = 2 and there are no lower quotas.

The result holds for PARETO-RR even if all families have dichoto-
mous preferences and find exactly two places acceptable, and for
MAXUTIL-RR even if utilities are binary and each family has posi-
tive utilities for exactly two places.

To tackle the computational intractability of Theorem 2, we focus
on the parameter m + rmax and propose an FPT algorithm with this
parameterization in Theorem 3.

To prove Theorem 3, we are going to present an algorithm for
MAXUTIL-RR that constructs a feasible assignment with maximum
utility, or concludes that no feasible assignment exists. By Obser-
vation 1, such an algorithm can be used to solve the PARETO-RR
problem as well. Let I denote our input instance of MAXUTIL-RR.

We use a two-phase dynamic programming approach based on the
following key idea: once we have obtained an optimal assignment σ
for a partial instance J , then a small modification to this partial in-
stance results in an instance J ′ that admits an optimal assignment σ′

that is “close” to σ. By guessing how σ
′ differs from σ, we can com-

pute σ′ efficiently. Let us give a high-level view of our algorithm.
In the first phase, we disregard lower quotas, and starting from an

instance with only a single family, we add families one by one. For
each i ∈ [n], let Fi = {f1, . . . , fi} denote the set of the first i fami-
lies, and Ii the instance obtained by restricting I to Fi and setting all
lower quotas as zero. Starting from a maximum-utility feasible as-
signment σ1 for I1, we construct a maximum-utility feasible assign-
ment σi for i = 2, . . . , n by slightly modifying the assignment σi−1.

In the second phase, starting from the instance Î0 = In without
lower quotas, we define a sequence Î1, . . . , ÎcΣ of instances where
each instance is obtained from the previous one by raising the lower
quota of a single place by one in an arbitrary way so long as the
lower quotas for I are not exceeded; notice that this implies I = ÎcΣ
where cΣ = ∑pj∈P

cj . Then starting from σ̂0 ∶= σn we compute a
maximum-utility feasible assignment σ̂q for q = 1, . . . , cΣ from the
assignment σ̂q−1 by applying small modifications.

Theorem 3. MAXUTIL- and PARETO-RR for t = 1 are FPT
w.r.t. m + rmax.

Proof. We may assume w.l.o.g. that there exists a feasible assign-
ment for Ii with maximum utility that is complete. Indeed, to ensure
this for each i ∈ [n], we can simply create a dummy place whose
upper quota is ∑fh∈F rh and towards which all families have zero
utility; this also shows that we can assumem ≥ 2. For brevity’s sake,
we say that an assignment is optimal if it is feasible and complete,
and has maximum utility among all feasible assignments.

Let ρ⋆m = m
m ⋅ ρ ⋅ rmax. Notice that since ρ is a function of rmax,

we know that ρ⋆m is a function of m and rmax only.
The first phase of our algorithm relies on Claim 2, which proves

that given an optimal assignment σi for Ii for some i ∈ [n − 1], we
can obtain an optimal assignment for Ii+1 whose distance from σi is
bounded by a function of m and rmax. We measure the distance of
two assignments σ and σ′ as the total requirement of all families that
are assigned to different places by σ and σ′, that is,

∆(σ, σ′) = ∑ {rh∶ fh ∈ F∩, σ(fh) ≠ σ′(fh)} ,

where F∩ is the intersection of the domains of σ and σ′.

Claim 2 (⋆). Suppose that i ∈ [n− 1], and let σi ∶ Fi → P denote
an optimal allocation for Ii. Then there exists an optimal alloca-
tion σi+1 ∶ Fi+1 → P for Ii+1 such that ∆(σi, σi+1) ≤ m ⋅ ρ⋆m.

The second phase of our algorithm relies Claim 3 which is an ana-
log of Claim 2 with a quite similar proof. The proofs of Claims 2

and 3 can be found in Appendices B.5 and B.6. Recall that Ii and Îq
are defined above.

Claim 3 (⋆). Suppose that q ∈ [cΣ], and let σ̂q ∶ F → P denote
an optimal allocation for Îq . Then there exists an optimal alloca-
tion σ̂q+1 ∶ F → P for Îq+1 such that ∆(σ̂q, σ̂q+1) ≤ m ⋅ ρ⋆m.

We are now ready to present our algorithm for MAXUTIL-RR
based on Claims 2 and 3. We use a combination of dynamic pro-
gramming and color-coding.

Initially, we compute a maximum-utility feasible allocation σ1

for I1 by assigning family f1 to a place that can accommodate it,
and among all such places, yields the highest utility for f1. Then, in
the first phase of the algorithm, for each i ∈ [n − 1] we compute
an optimal assignment for Ii+1 by slightly modifying σi. In the sec-
ond phase, starting from the assignment σ̂0 ∶= σn for Î0 ∶= In, we
compute an optimal assignment for Îq by slightly modifying σ̂q−1 for
each q ∈ [cΣ]. In each step of the first and second phases, we apply a
procedure based on color-coding; the remainder of the proof contains
the description of this procedure and its proof of correctness.

Let Icurr be the instance of phase 1 or 2 for which we have al-
ready computed an optimal assignment σcurr, and suppose that Inext

is the next instance for which we aim to compute an optimal assign-
ment σnext. Thus, Inext is either obtained from Icurr by adding some
family fi ∈ F , or by raising the lower quota for one of the places
in P by one. Let Fcurr and Fnext denote the set of families in Icurr and
in Inext, respectively. Due to Claims 2 and 3, we can choose σnext so
that ∆(σnext, σcurr) ≤ m ⋅ ρ⋆m.

Guessing step. Let X(pj , pj′ , r) denote the set of all families with
requirement r that are assigned to pj by σcurr but are moved to pj′
by σnext. We guess the number x(pj , pj′ , r) = ∣X(pj , pj′ , r)∣ for
each pj , pj′ ∈ P and r ∈ [rmax]. By our choice of σnext, we have

∑
j∈[m]

∑
j′∈[m]\{j}

∑
r∈[rmax]

x(pj′ , pj , r) = ∆(σnext, σcurr) ≤ m ⋅ ρ
⋆
m.

Since we need to guess m ⋅ (m − 1) ⋅ rmax values that add up to at
most m ⋅ ρ⋆m, there are no more than (ρ⋆m)m⋅(m−1)⋅rmax possibilities
to choose all values x(pj′ , pj , r). Thus, the number of possibilities
for all our guesses is bounded by a function of m and rmax only.

Color-coding step. We proceed by randomly coloring all families
in Inext with m colors in a uniform and independent way. We say
that a coloring is suitable for σnext, if for each pj ∈ P , all families
in σ−1

next(pj)\σ−1
curr(pj) have color j. Thus, in a suitable coloring, each

family whose assignment changes between σnext and σcurr must be
assigned by σnext to the place corresponding to its color. Considering
that Inext may contain one more family than Icurr, we get

∑
pj∈P

»»»»»σ
−1
next(pj) \ σ−1

curr(pj)
»»»»» ≤ 1 +∆(σnext, σcurr) ≤ m ⋅ ρ

⋆
m + 1.

Therefore, the probability that the algorithm produces a suitable col-
oring is at least m−mρ

⋆
m+1.

Modification step. Assume that our coloring χ is suitable. In the
first phase, this implies that the unique family fi ∈ Fnext \ Fcurr must
be assigned by σnext to pχ(fi). Thus, we fix the assignment on fi
as pχ(fi). We proceed with the remaining families of Fnext as follows.

For each pj , pj′ ∈ P and r ∈ [rmax], we compute the set
D(pj , pj′ , r) ∶= {fh ∈ Fcurr ∶ σcurr(fh) = pj , χ(fh) = j

′
, rh = r};

the suitability of χ means that X(pj , pj′ , r) ⊆ D(pj , pj′ , r). With

each family fh ∈ D(pj , pj′ , r), we associate the value u
j
′

h − u
j
h

which describes the increase in utility caused by moving ah from pj
to pj′ . We order the families in D(pj , pj′ , r) in a non-increasing or-
der of these values, and we pick the first x(pj , pj′ , r) families ac-
cording to this ordering; denote the obtained set D̃(pj , pj′ , r). We
can now define σ′

i+1 as follows for each fh ∈ Fcurr:

σ
′
next(fh) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩

pχ(fh) if fh ∈ Fnext \ Fcurr;

pj′ if ∃j, r ∶ fh ∈ D̃(pj , pj′ , r);
σcurr(fh) otherwise.

Observe that the total requirement of all families assigned to some
place pj ∈ P is the same in σ′

next as in σnext, due to the definition σ′
next

and the correctness of our guesses. Therefore, σ′
next is feasible. Fur-

thermore,

∑
fh∈Fcurr,

pj=σ
′
next(fh)

uh[j] = util(pj , σcurr) + ∑
∃j,j′,r∶

fh∈D̃(pj ,pj′ ,r)

(uh[j ′] − uh[j])

≥ util(pj , σcurr) + ∑
∃j,j′,r∶

fh∈X(pj ,pj′ ,r)

(uh[j ′] − uh[j]) = ∑
fh∈Fcurr,

pj=σnext(fh)

uh[j]

where the inequality follows from our choice of the sets D̃(pj , pj′ , r)
and the facts ∣D̃(pj , pj′ , r)∣ = ∣X(pj , pj′ , r)∣ and X(pj , pj′ , r) ⊆

D(pj , pj′ , r), which in turn follow from our assumptions that our
guesses are correct and that the coloring χ is suitable. Since σ′

next

coincides with σnext on Fnext \Fcurr, the above inequality implies that
σ
′
next is a maximum-utility feasible assignment for Inext, proving the

correctness of our algorithm.
The presented algorithm can be derandomized using standard

techniques, based on (n,m ⋅ ρ⋆m + 1)-perfect families of perfect
hash functions [4]. Since both the number of possible guesses and
the number of families that we have to color correctly are bounded
by a function of m + rmax, the modification procedure applied in
the first or second phases of the algorithm runs in FPT time when
parameterized by m + rmax. As we have to carry out this procedure
n+ cΣ times and we can assume w.l.o.g. that cΣ ≤ n ⋅ rmax, the total
running time is FPT w.r.t. m + rmax.

We close this section by showing that if the desired total utility u∗

is small and there are no lower quotas, then MAXUTIL-RR for t = 1
can be solved efficiently. Recall that with lower quotas, even the case
u
∗
= 0 is NP-hard by Proposition 1. The algorithm of Theorem 4,

presented in Appendix B.7, starts with a greedily computed assign-
ment, and then deletes irrelevant families to obtain an equivalent in-
stance with at most (u∗)3 families that can be solved efficiently.

Theorem 4 (⋆). MAXUTIL- and PARETO-RR for t = 1 are FPT
w.r.t. u∗, the desired utility, if there are no lower quotas.

4 Multiple services
Let us now consider the model when there are several services, i.e.,
t > 1. We start with a strong intractability result for FEASIBLE-RR.
Then we focus in Pareto-optimality, and propose several algorithms
that solve PARETO-RR but not MAXUTIL-RR, contrasted by tight
hardness results. We close by investigating MAXUTIL-RR.

Feasibility. When the number of services can be unbounded, then
a simple reduction from INDEPENDENT SET by Gurski et al. [19,
Theorem 23] shows that MAXUTIL-RR is NP-hard even if m = 1,
there are no lower quotas and the utilities are equal. With a slight
modification of their reduction, we obtain Proposition 2 which shows
the NP-hardness of FEASIBLE-RR in a very restricted setting.

Proposition 2 (⋆). The following problems are NP-hard even if
cmax = rmax = 1 and m = 1∶
• FEASIBLE-RR;
• PARETO-RR with equal preferences;
• MAXUTIL-RR with equal utilities.

Pareto-optimality. The reduction from INDEPENDENT SET used
by Gurski et al. [19] and also in Proposition 2 can be adapted to show
the NP-hardness of PARETO-RR in the case when there are no lower
quotas, m = 2, and we allow cmax to be unbounded; see Propo-
sition 3. Notice that in instances without lower quotas, a feasible,
acceptable and Pareto-optimal assignment always exists. Hence, our
hardness results for PARETO-RR rely on the following fact.

Observation 3 (⋆). Given an instance I of PARETO-RR with di-
chotomous preferences, we can decide the existence of a feasible,
acceptable and complete assignment for I by solving PARETO-RR
on I .

Proposition 3 (⋆). PARETO- and MAXUTIL-RR are NP-hard even
if m = 2, rmax = 1, there are no lower quotas, and families have
equal preferences or utilities.

In the reduction proving Proposition 3, the value cmax is un-
bounded. Next, we show a reduction from 3-COLORING proving that
even the case when cmax = 1 is NP-hard if there are at least 3 places.

Theorem 5 (⋆). PARETO- and MAXUTIL-RR are NP-hard even
when m = 3, cmax = 1, there are no lower quotas, and families have
equal preferences or utilities, respectively.

Contrasting the intractability result of Proposition 3 form = 2, we
show that a simple, greedy algorithm solves PARETO-RR for m = 1
in polynomial time assuming that there are no lower quotas.

Proposition 4 (⋆). PARETO-RR for m = 1 is polynomial-time solv-
able if there are no lower quotas.

Our next results shows that PARETO-RR can be solved efficiently
if there are only a few families whose preferences contain ties, as-
suming that there are no lower quotas. Recall that in the presence of
lower quotas, PARETO-RR is NP-hard even if t = 1 and n∼ = 0,
i.e., all preferences are strict, as shown in Proposition 1. The algo-
rithm of Proposition 5 first applies serial dictatorship among families
whose preferences do not contain ties, and then tries all possible as-
signments for the remaining families.

Proposition 5 (⋆). PARETO-RR is FPT w.r.t. the number of families
with ties n∼, if there are no lower quotas.

Maximizing utility. Let us start with a simple fixed-parameter
tractable algorithm for MAXUTIL-RR w.r.t n, the number of fam-
ilies. Proposition 6 presents an FPT algorithm for parameter n based
on the following approach: We first guess the partitioning F of fam-
ilies arising from a maximum-weight feasible assignment, and then
we map the partitions of F to the places by computing a maximum-
weight matching in an auxiliary bipartite graph.

Proposition 6 (⋆). FEASIBLE-, PARETO-, and MAXUTIL-RR are
FPT w.r.t. n.

Let us now present a generalization of Theorem 1 for MAXUTIL-
RR restricted to equal preferences. The algorithm for Theorem 6 is
based upon an N -fold IP formulation for this problem. By Observa-
tion 1, the obtained algorithm also implies tractability for PARETO-
RR for equal utilities.

Theorem 6 (⋆). FEASIBLE-RR, PARETO-RR for equal preferences,
and MAXUTIL-RR for equal utilities, are FPT w.r.t. t + rmax.

Our next algorithm is applicable in a more general case than The-
orem 6 (which works only when preferences or utilities are equal) at
the cost of setting m + t + rmax as the parameter (recall that the pa-
rameter considered in Theorem 6 is t+rmax). Theorem 6 is based on
an ILP formulation that solves PARETO-RR for arbitrary preferences
as well as MAXUTIL-RR for a broad range of utilities.

Theorem 7 (⋆). The following problems are FPT w.r.t. parameter
m + t + rmax∶
• PARETO-RR,
• MAXUTIL-RR on instances where the number of different utility

values is at most g(m+t+rmax) for some computable function g.

Proof sketch. The main idea is that there is no need to distinguish
between families that have the same utilities and requirements. Since
the number of possible requirement vectors and the number of pos-
sible utility vectors are both bounded by a function of the parameter,
the number of family types will also be bounded. This allows us to
define a variable for each place and family type describing the num-
ber of families of a given type assigned to a given place. The resulting
ILP contains a bounded number of variables and constraints, and is
therefore solvable by standard techniques in FPT time [27].

Taking an even stronger parameterization than Theorem 7, namely
m + t + cmax, yields fixed-parameter tractability: in Proposition 7
we present an algorithm running in O((cmax)mt

nm) time. This al-
gorithm is a straightforward adaptation of the textbook dynamic pro-
gramming method for KNAPSACK. The same approach was also used
by Gurski et al. [19, Proposition 34] to solve a simpler variant of
MAXUTIL-RR without lower quotas and with a single service.

Proposition 7 (⋆). FEASIBLE-, PARETO-RR, and MAXUTIL-RR
are in XP w.r.t. m + t and are FPT w.r.t. m + t + cmax.

We close this section by mentioning that a simple XP algorithm ex-
ists for the case when the parameter is the desired total utility u∗, and
there are no lower quotas (cf. Proposition 1 stating the intractability
of the case u∗

= 0 when lower quotas are allowed).

Proposition 8 (⋆). FEASIBLE-, PARETO- and MAXUTIL-RR are in
XP w.r.t. the desired utility u∗ if there are no lower quotas.

5 Conclusion
We provided a comprehensive parameterized complexity analysis for
three variants of REFUGEE RESETTLEMENT, which focus on ensur-
ing feasibility, maximizing utility, and achieving Pareto optimality.
There remain some interesting parameter combinations for which the
complexity of these problems is open, e.g., is MAXUTIL-RR FPT
with parameter m + t + rmax for arbitrary utilities? Another excit-
ing line of future research is to explore the possibilities of tailoring
the proposed algorithms to efficiently solve practical instances, and
determining which parameterizations are the most relevant in differ-
ent real-world applications.We believe that our ILP algorithms could
perform substantially faster then their theoretical bounds, as the cur-
rent day ILP solvers are efficient. However, it could also be that a
straightforward ILP formulation with a variable for each family and
each place outperforms our specialized formulations.

Acknowledgements

Jiehua Chen and Sofia Simola are supported by the Vienna Sci-
ence and Technology Fund (WWTF) [10.47379/VRG18012]. Ildikó
Schlotter is supported by the Hungarian Academy of Sciences un-
der its Momentum Programme (LP2021-2) and its János Bolyai Re-
search Scholarship.

References
[1] A. Abdulkadiroğlu. College admissions with affirmative action. Inter-

national Journal of Game Theory, 33:535–549, 2005.
[2] N. Ahani, T. Andersson, A. Martinello, A. Teytelboym, and A. C. Trapp.

Placement optimization in refugee resettlement. Operations Research,
69(5):1468–1486, 2021.

[3] N. Ahani, P. Gölz, A. D. Procaccia, A. Teytelboym, and A. C. Trapp.
Dynamic placement in refugee resettlement. Operations Research, 72
(3):1087–1104, 2023.

[4] N. Alon, R. Yuster, and U. Zwick. Color-coding. Journal of the ACM,
42(4):844–856, 1995.

[5] T. Andersson and L. Ehlers. Assigning refugees to landlords in Sweden:
Efficient, stable, and maximum matchings. The Scandinavian Journal
of Economics, 122(3):937–965, 2020.

[6] T. Andersson, L. Ehlers, and A. Martinello. Dynamic refugee match-
ing. Technical Report 2018-10, Université de Montréal, Département
de sciences économiques, 2018.

[7] H. Aziz, J. Chen, S. Gaspers, and Z. Sun. Stability and Pareto opti-
mality in refugee allocation matchings. In Proceedings of the 17th In-
ternational Conference on Autonomous Agents and MultiAgent Systems
(AAMAS 2018), pages 964–972, 2018.

[8] H. Aziz, S. Gaspers, Z. Sun, and T. Walsh. From matching with diversity
constraints to matching with regional quotas. In Proceedings of the
18th International Conference on Autonomous Agents and Multiagent
Systems (AAMAS 2019), pages 377–385, 2019.

[9] K. Bansak and E. Paulson. Outcome-driven dynamic refugee assign-
ment with allocation balancing. Operations Research, 2024. doi:
10.1287/opre.2022.0445.

[10] P. Berman, M. Karpinski, and A. D. Scott. Approximation hardness of
short symmetric instances of MAX-3SAT. Technical Report TR03-049,
Electronic Colloquium on Computational Complexity, 2003.

[11] P. Biró and E. McDermid. Matching with sizes (or scheduling with
processing set restrictions). Discrete Applied Mathematics, 164:61–67,
2014.

[12] P. Biró, T. Fleiner, R. W. Irving, and D. Manlove. The College Admis-
sions problem with lower and common quotas. Theoretical Computer
Science, 411(34-36):3136–3153, 2010.

[13] J. Chen, R. Ganian, and T. Hamm. Stable matchings with diversity
constraints: Affirmative action is beyond NP. In Proceedings of the 29th
International Joint Conference on Artificial Intelligence (IJCAI 2020),
pages 146–152, 2020.

[14] D. Delacrétaz, S. D. Kominers, and A. Teytelboym. Refugee resettle-
ment, 2016. Working paper. Available at http://www.t8el.com/jmp.pdf.

[15] D. Delacrétaz, S. D. Kominers, and A. Teytelboym. Matching mecha-
nisms for refugee resettlement. American Economic Review, 113(10):
2689–2717, 2023.

[16] F. Eisenbrand, C. Hunkenschröder, and K.-M. Klein. Faster Algorithms
for Integer Programs with Block Structure. In 45th International Col-
loquium on Automata, Languages, and Programming (ICALP 2018),
volume 107, pages 49:1–49:13, 2018.

[17] R. Ganian, S. Ordyniak, and C. S. Rahul. Group activity selection with
few agent types. Algorithmica, 85(5):1111–1155, 2023.

[18] C. A. Glass and H. Kellerer. Parallel machine scheduling with job as-
signment restrictions. Naval Research Logistics, 54(3):250–257, 2007.

[19] F. Gurski, C. Rehs, and J. Rethmann. Knapsack problems: A parameter-
ized point of view. Theoretical Computer Science, 775:93–108, 2019.

[20] K. Hamada, K. Iwama, and S. Miyazaki. The Hospitals/Residents prob-
lem with lower quotas. Algorithmica, 74(1):440–465, 2016.

[21] R. Hemmecke, S. Onn, and L. Romanchuk. n-fold integer program-
ming in cubic time. Mathematical Programming, Series A, 137:325–
341, 2013.

[22] K. Jansen, S. Kratsch, D. Marx, and I. Schlotter. Bin packing with fixed
number of bins revisited. Journal of Computer and System Sciences, 79
(1):39–49, 2013.

[23] D. Knop and S. Schierreich. Host community respecting refugee
housing. In Proceedings of the 2023 International Conference on

Autonomous Agents and Multiagent Systems (AAMAS 2023), page
966–975, Richland, SC, 2023.

[24] D. Knop, M. Koutecký, and M. Mnich. Combinatorial n-fold Integer
Programming and applications. Math. Program., 184(1):1–34, 2020.

[25] B. Kuckuck, J. Rothe, and A. Weißenfeld. Refugee allocation in the
setting of hedonic games. In Proceedings of the 6th International Con-
ference on Algorithmic Decision Theory (ADT 2019), pages 65–80.
Springer, 2019.

[26] R. Kurata, N. Hamada, A. Iwasaki, and M. Yokoo. Controlled school
choice with soft bounds and overlapping types. Journal of Artificial
Intelligence Research, 58:153–184, 2017.

[27] H. W. Lenstra Jr. Integer programming with a fixed number of variables.
Mathematics of Operations Research, 8(4):538–548, 1983.

[28] G. Lisowski and Š. Schierreich. Swap stability in refugee housing: A
story about anonymous preferences. The 10th European Starting AI
Researchers’ Symposium (STAIRS), 2023.

[29] E. J. McDermid and D. F. Manlove. Keeping partners together: algo-
rithmic results for the hospitals/residents problem with couples. Journal
of Combinatorial Optimization, 19:279–303, 2010.

[30] H. Nguyen, T. Nguyen, and A. Teytelboym. Stability in matching mar-
kets with complex constraints. Management Science, 67(12):7438–
7454, 2021.

[31] K. Pietrzak. On the parameterized complexity of the fixed alpha-
bet shortest common supersequence and longest common subsequence
problems. Journal of Computer and System Sciences, 67(4):757–771,
2003.

[32] Š. Schierreich. Anonymous refugee housing with upper-bounds, 2023.
arXiv preprint, arXiv:2308.09501.

[33] P. Xepapadeas and I. Mourtos. Refugee allocation mechanisms: Theory
and applications for the European Union. Operational Research, 22(4):
4557–4584, 2022.

Appendix A Additional material for Section 2

A.1 Example for REFUGEE RESETTLEMENT

Consider an instance of REFUGEE RESETTLEMENT with four fam-
ilies, f1, f2, f3, and f4, two places p1 and p2. Families may require
two kinds of services: housing, which is determined directly by the
number of people in the family, and school seats for their children.

The requirement of the families is as follows.

f1: r1 = (4, 2), i.e., a family of four with two school-age children;
f2: r2 = (2, 0), i.e., a family of two, no children;
f3: r3 = (6, 2), i.e., a family of six with two school-age children;
f4: r4 = (3, 1), i.e., a family of three with one school-age child.

Place p1 offers housing for at most 10 people, while place p2 can
house at most 8 people. To promote diversity, both places aim to
enroll at least two refugee children in their schools, and both have
three school seats to offer. Hence, the lower and upper quotas are as
follows:

p1: c1 = (0, 2) and c̄1 = (10, 3);
p2: c2 = (0, 2) and c̄2 = (8, 3).

Both places are acceptable to each refugee family, and the prefer-
ences of the families are defined as

f1: p1 ≻ p2;
f2: p2 ≻ p1;
f3: p2 ≻ p1;
f4: p2 ≻ p1.

Alternatively, families may have the following utility vectors:

f1: u1 = (2, 1);
f2: u2 = (1, 2);
f3: u3 = (1, 2);
f4: u4 = (1, 2).

Consider the assignment σ that assigns families f2 and f3 to p1,
and assigns families f1 and f4 to p2. It is clear that

(0, 2) = c1 ≤ ∑
fi∈σ

−1(p1)
ri = (8, 2) ≤ c̄1 = (10, 3) and

(0, 2) = c2 ≤ ∑
fi∈σ

−1(p1)
ri = (7, 3) ≤ c̄2 = (8, 3),

implying that σ is a feasible assignment.
It is also not hard to see that σ is Pareto-optimal as well. To see

this, consider first family f4 who is assigned to its favorite place. No-
tice that once we decide to assign f4 to p2, neither f2 nor f3 may be
additionally assigned to p2: the former would violate the upper quota
of p2 to house at most 8 people, while the latter would violate the
lower quota of p2 to enroll at least two children in its school (un-
less some further family is added, violating the upper quota). Notice
also that once f2 and f3 are both assigned to p1, it is not possible
to accommodate f1 alongside them at p1, as that would violate the
upper quota of p1 to house at most 10 people. Therefore, without
disimproving the situation of f4, we cannot improve the situation
of any other family in any feasible assignment, showing the Pareto-
optimality of σ.

It is also clear that in the setting with utilities, the total utility of σ
is util(σ) = 3 ⋅ 1 + 2 = 5.

Consider now the assignment σ′ that assigns families f1 and f4

to p1, and assigns families f2 and f3 to p2. It is clear that

(0, 2) = c1 ≤ ∑
fi∈σ

′−1(p1)
ri = (7, 3) ≤ c̄1 = (10, 3) and

(0, 2) = c2 ≤ ∑
fi∈σ

′−1(p1)
ri = (8, 2) ≤ c̄2 = (8, 3),

implying that σ′ is a feasible assignment.
We claim that σ′ is a maximum-utility feasible assignment.

Clearly, its utility is util(σ′) = 3 ⋅ 2 + 1 = 7. Thus, any assign-
ment whose utility exceeds util(σ′) must assign all families to the
place for which they have utility 2. However, such an assignment is
not feasible, as assigning each of f2, f3, and f4 to p2 would violate
its upper quota to house at most 8 people.

A.2 Proof of Observation 1

Observation 1 (⋆). Given an instance I of PARETO-RR, construct
an instance I ′ of MAXUTIL-RR as follows. For each family fi ∈ F :
• for every place pj that fi finds acceptable, set ui[j] = ∣{pj′ ∈
P ∣ pj ⪰i pj′}∣;

• for each place pj that fi finds unacceptable, set ui[j] = −m ⋅ n.
Let σ be a maximum-utility feasible assignment for I ′. If util(σ) > 0,
then σ is a feasible, acceptable, and Pareto-optimal assignment
for I; otherwise there is no feasible and acceptable assignment for I .

Proof. Clearly, σ has positive utility if σ is an acceptable assignment
for I , and it has negative utility if it is unacceptable for I (since
already one utility value of −m⋅n guarantees util(σ) < 0). Hence, if
util(σ) < 0, then no feasible assignment exists for I . Otherwise, we
know that σ is feasible for I . Since σ has maximum utility among
all assignments, it is necessarily Pareto-optimal, because a Pareto-
improvement would imply an assignment with greater utility value.

Appendix B Additional material for Section 3
B.1 Proof of Proposition 1

Proposition 1 (⋆). The following problems are W[1]-hard w.r.t. m
for t = 1:
• FEASIBLE-RR;
• PARETO-RR with no lower quotas and equal preferences;
• PARETO-RR when all families have strict preferences;
• MAXUTIL-RR with no lower quotas and equal utilities;
• MAXUTIL-RR with u∗

= 0.

Proof. We give a reduction from the following variant of BIN PACK-
ING. The input instance IBP contains item sizes a1, . . . , an and an
integer k, and the question is whether these items can be allocated
into k bins such that the total size of items allocated to each bin is
exactly B = (∑n

i=1 ai)/k, the bin size. This problem is known to be
W[1]-hard w.r.t. k [22].

Let us construct an instance IFRR of FEASIBLE-RR with t = 1.
We define families f1, . . . , fn and set the requirement of family fi
as ai for each i ∈ [n]. We also define places p1, . . . , pk, each with
its lower and upper quota both set to B. Then IFRR admits a feasible
assignment if and only if our BIN PACKING instance IBP is solvable;
this proves the result for FEASIBLE-RR.

To obtain a PARETO-RR instance IPRR, we can reset the lower
quotas to zero, and set equal preferences for each family. Then IPRR

admits a feasible and complete assignment if and only if IBP admits

a solution, because the total requirement of the families is kB which
equals the total upper quota of the places. It remains to recall that
by Observation 3, we can decide whether a feasible and complete as-
signment exists for IPRR by solving PARETO-RR on IPRR. This proves
the first result for PARETO-RR.

Next we show that PARETO-RR is W[1]-hard even when all fam-
ilies have strict preferences. Assume, towards a contradiction, that
there is an algorithm that can find a Pareto-optimal feasible and ac-
ceptable assignment in FPT time w.r.t. m. We show that such an al-
gorithm could be used to solve FEASIBLE-RR in FPT time w.r.t. m,
contradicting the first result unless FPT = W[1]. Let I be an instance
of FEASIBLE-RR. We reduce it to an instance I≻ of PARETO-RR
by giving every family arbitrary complete strict preferences over the
places. The instances are otherwise identical. Observe that any as-
signment of I≻ is acceptable, and an assignment σ is feasible on I≻

if and only if it is feasible on I . If an algorithm for PARETO-RR
finds a Pareto-optimal feasible and acceptable assignment σ for I≻,
then σ is also a feasible assignment of I , and we can report I is
a yes-instance. Correspondingly, if an algorithm for PARETO-RR re-
ports there is no feasible and acceptable Pareto-optimal assignment σ
of I≻, then there is no feasible and acceptable assignment of I≻, and
thus no feasible assignment of I , and we can report I is a no-instance.

It is straightforward to check that by setting unit utilities instead
of equal preferences we obtain an instance IMURR of MAXUTIL-RR
that is equivalent with IPRR in the sense that IMURR admits a feasible
assignment with utility at least kB if and only if IPRR admits a com-
plete and feasible assignment, proving the fourth statement of the
theorem. Finally, the hardness results for FEASIBLE-RR also hold
for MAXUTIL-RR even if we set all utilities as zero and u∗

= 0,
proving the last statement.

B.2 Proof of Observation 2

Observation 2 (⋆). Suppose that the number of services is t = 1. If
F

′
⊆ F is a set of families such that ∑fi∈F

′ ri > rmax(ρ − 1), then
F

′ contains a homogeneous ρ-block.

Proof. Group families in F ′ according to their requirements so that
families with the same requirement are contained in one group.
Clearly, if there is a group whose total requirement is at least ρ, then
this group contains a homogeneous ρ-block, because ρ is divisible by
the (common) requirement of the families in the group. If each group
has total requirement at most ρ − 1, then the total requirement of all
families in F ′ is at most rmax(ρ − 1), as required.

B.3 Proof of Claim 1

Claim 1 (⋆). ILP1 admits a solution with value u∗ if and only if
there is an assignment of families with utility u∗.

Proof. We prove the two directions of the claim separately.

Claim 4. If ILP1 admits a solution with value u∗, then there is an
assignment of families with utility u∗.

Proof. Assume there is a solution to the constructed ILP-instance
with value u∗. We construct an assignment σ. Start with σ(fi) = ⊥

for every fi ∈ F .
Let us create a counter βr for each r ∈ [rmax] and initialize it by

setting βr ≔ br . Similarly, let us create a counter ψj for each place
pj ∈ P and initialize it by setting ψj ≔ arg res(cj).

Step 1. We build σ as follows: While there exists some r ∈ [rmax]
such that βr > 0,

(i) choose pj ∈ P such that ψj > 0,
(ii) assign a homogeneous ρ-block with requirement r to pj , and

(iii) update βr ≔ βr − 1 and ψj ≔ ψj − 1.
Since the solution is valid, by Constraint (3) we know that

∑r∈[rmax] br = B = ∑pj∈P
arg res(cj). Therefore at the end of

the process, ∑r∈[rmax] βr = ∑pj∈P
ψj = 0.

Step 2. Next we assign the families that are matched in optional ho-
mogeneous ρ-blocks. Let us create a counter β̄r for each r ∈ [rmax]
and initialize β̄r ≔ b̄r . Similarly, let us create a counter ψ̄j for each
pj ∈ P and initialize ψ̄j ≔ arg res(max(c − cj − rmax + 1, 0)).

We build σ as follows: While there exists some r ∈ [rmax] such
that β̄r > 0,

(i) choose pj ∈ P such that ψ̄j > 0,
(ii) assign a homogeneous ρ-block with requirement r to pj , and

(iii) update β̄r ≔ β̄r − 1 and ψ̄j ≔ ψ̄j − 1.
Since the solution is valid, by Constraint (3) we know that

∑r∈[rmax] b̄r ≤ B = ∑pj∈P
arg res(max(c − cj − rmax + 1, 0)).

Therefore while ∑r∈[rmax] β̄r ≥ 0, we can always find pj ∈ P such
that ψj > 0.

Step 3. Finally, we look at every place type τP ∈ T P . We have

∑
c
F
∈C

F

c
F is suitable for τP

x(τP , cF) = mτP (5)

due to Constraint (2), wheremτP is the number of places of type τP .
For each place type τP do the following: for each cF ∈ C

F , assign
x(τP , cF) many families to places of type τP according to config-
uration cF : for each place pj of type τP , we assign a set of fam-
ilies having configuration cF to pj , i.e., for each r ∈ [rmax], we
assign cF [r] many families with requirement r to the place pj . By
the equality in (5), every place of type τP will be treated exactly once
in this step.

Correctness. This concludes the description of the assignment.
It remains to show that this assignment is feasible and matches u∗

many agents. We start by showing that the quotas of the places are
respected. Let pj ∈ P be an arbitrary place and let τPj be the type
of pj . In Step 1, we assign arg res(cj) many homogeneous ρ-blocks
to pj . In Step 2, we assign at most arg res(max(c−cj−rmax+1, 0))
many homogeneous ρ-blocks to pj . In Step 3, we choose some
c
F

∈ C
F that is suitable for τPj and assign families accordingly.

Thus, τPj [1] ≤ R ≤ τ
P
j [1] + τ

P
j [2] holds for the total require-

ment R of the families assigned to pj in Step 3. Thus R ≥ res(cj).
Therefore, the total requirement of the families assigned to pj is at

least ρ ⋅ arg res(cj) + res(cj)
(1)
= cj , as required.

If c̄ − cj ≥ rmax − 1, then we know

R ≤ res(cj) + res(c̄j − cj − rmax + 1) + rmax − 1.

Otherwise, R ≤ res(cj) + c̄j − cj .
If c̄ − cj ≥ rmax − 1, then the total requirement of the families

assigned to pj is at most

ρ ⋅ arg res(cj) + ρ ⋅ arg res(c̄j − cj − rmax + 1) + res(cj)
+ res(c̄j − cj − rmax + 1) + rmax − 1

(1)
= cj + c̄j − cj − rmax + 1 + rmax − 1 = c̄j ,

as required.
Otherwise, the total requirement of the families assigned to pj is

at most ρ ⋅arg res(cj)+0+ res(cj)+ c̄j −cj
(1)
= cj + c̄j −cj = c̄j ,

as required.
Next, we show that all the families that are assigned in σ exist. Let

r ∈ [rmax] be an arbitrary service requirement. Whenever we match
a homogeneous ρ-block of requirement r, we match ρ

r
many families

of this requirement. Therefore in Step 1 we match ρ

r
⋅ br families

of requirement i. Similarly, in Step 2 we match ρ

r
⋅ b̄r families of

requirement r. In Step 3 we assign cF [r] ⋅x(τP , cF) many families
for each τP ∈ T P

, c
F

∈ C
F . Thus the total number of families of

requirement r matched is

ρ
r (br + b̄r) + ∑

τ
P
∈T P

c
F
∈C

F

c
F [r]x(τP , cF).

By Constraint (4) this is at most nr , which is the number of families
of requirement r.

With the same reasoning, the total number of families matched is

∑
r∈[rmax]

ρ
r (br + b̄r) + ∑

τ
P
∈T P

c
F
∈C

F

c
F [r]x(τP , cF),

which is exactly the value of our solution to ILP1, and thus equals u∗.
⊲

Claim 5. If there is a feasible assignment that matches u∗ many
agents, then ILP1 admits a solution of value u∗.

Proof. Let σ be a feasible assignment that matches u∗ many agents.
We start by initializing br ≔ 0 and b̄r ≔ 0 for every r ∈ [rmax].

For each r ∈ [rmax], we also construct sets Aρ
r , Āρ

r and Ar(cF)
for each cF ∈ C

F ; each of these sets will contain families with re-
quirement r. The set Aρ

r will contain families that are matched to
compulsory homogeneous ρ-blocks, Āρ

r the families matched to op-
tional homogeneous ρ-blocks, and Ar(cF) will contain families that
are part of the configurations.

For each place pj ∈ P , choose an arbitrary subset of families
F

1
j ⊆ σ

−1(pj) such that ∑fi∈F
1
j
ri ≥ cj and moreover, for each

family fi∗ ∈ F
1
j we have ∑fi∈F

1
j \{fi∗ } ri < cj ; that is, the fam-

ilies in F 1
j satisfy the lower quota of pj , and removing any fam-

ily from F
1
j means the lower quota is no longer satisfied. Since σ

is feasible, such a set must exist. Let d ≔ ∑fi∈F
1
j
ri − cj ; this is

the amount by which the total requirement of the families in F 1
j ex-

ceeds cj . Observe that by construction, 0 ≤ d ≤ rmax − 1.
If ∑fi∈F

1
j
ri − d > rmax(ρ− 1), then we start an iteration as fol-

lows. Clearly, ∑fi∈F
1
j
ri > rmax(ρ− 1) holds, so by Observation 2,

there must be a homogeneous ρ-block F ′
j contained in F 1

j . Let the
requirement of the families in F ′

j be r ∈ [rmax]. We create a new
subset F 2

j ≔ F
1
j \ F ′

j and increment the value of the variable br by
one. We also add the families in F ′

j to Aρ
r . Observe that there are

precisely ρ

r
families in F ′

j . We repeat this process until we reach k
such that ∑fi∈F

k
j
ri − d ≤ rmax(ρ − 1).

Since ∑fi∈F
1
j
ri − d = cj by construction, we stop when

∑fi∈F
k
j
ri − d ≤ rmax(ρ − 1), and in each iteration we remove ρ

from the total requirement, we observe that the number k of it-
erations is precisely arg res(cj), and ∑fi∈F

k
j
ri − d = res(cj).

Therefore we increment the variables {br ∶ r ∈ [rmax]} precisely
∑pj∈P

arg res(cj) times. This shows the first part of Constraint (3).

Similarly, consider F̄ 1
j ≔ σ

−1(pj)\F 1
j . Intuitively, these families

are assigned to pj but they are not necessary for satisfying the lower
quota of pj .

If ∑fi∈F̄
1
j
ri−rmax+d+1 > rmax(ρ−1), then we start a second

iteration as follows. Clearly, ∑fi∈F̄
1
j
ri > rmax(ρ − 1) holds, so by

Observation 2, there must be a homogeneous ρ-block F ′
j contained

in F̄ 1
j . Let the requirement of the families in F ′

j be r ∈ [rmax]. We
create a new subset F̄ 2

j ≔ F̄
1
j \ F ′

j and increment the value of the
variable b̄r by one. We repeat this process until we reach k′ such that
∑

fi∈F̄
k′
j

ri − rmax + d + 1 ≤ rmax(ρ − 1).

Observe that by the definition of d,

∑
fi∈F̄

1
j

ri − rmax + d + 1 = ∑
fi∈F̄

1
j

ri + ∑
fi∈F

1
j

ri − cj − rmax + 1

≤ c̄j − cj − rmax + 1.

If c̄j − cj ≥ rmax − 1, then

k
′
− 1 ≤ arg res(c̄j − cj − rmax + 1),

and thus

∑
fi∈F̄

k
j

ri − rmax + d + 1 ≤ res(c̄j − cj − rmax + 1).

By contrast, if c̄j − cj < rmax − 1, then we never remove homo-

geneous ρ-blocks from pj , and F̄ k
′

j = F̄
1
j . Thus, we increment the

variables {b̄r ∶ r ∈ [rmax]} throughout the whole process performed
for each place pj ∈ P at most

∑
pj∈P

arg res(max(cj − c̄j − rmax + 1, 0))

times, which shows the second part of Constraint (3).

After finishing the two iterations for finding F k
j and F̄ k

′

j , we iden-
tify the configuration cFj ∈ C

F whose r-th coordinate satisfies

c
F
j [r] = ∣{fh ∈ F

k
j ∪ F̄

k
′

j ∶ rh = r}∣

for each r ∈ [rmax]. We then add to Ar(cFj) the cFj [r] fami-

lies in the set {fh ∈ F
k
j ∪ F̄

k
′

j ∶ rh = r}. By construction,
∑

fi∈F
k
j ∪F̄k′

j
ri = ∑r∈[rmax] c

F
j [r] ⋅ r. Let τPj be the type of pj .

We increment the variable x(τPj , cFj) by one. We now show that τPj
is suitable for cFj .

Recall that ∑fi∈F
k
j
ri − d = res(cj) = τ

P
j [1] for each pj ∈ P .

Therefore,

τ
P
j [1] = ∑

fi∈F
k
j ∪F̄k′

j

ri − d ≤ ∑
fi∈F

k
j ∪F̄k′

j

ri ≤ ∑
r∈[rmax]

c
F [r] ⋅ r,

as required. It remains to show that

∑
r∈[rmax]

c
F
j [r] ⋅ r ≤ τP [1] + τP [2].

We distinguish between two cases.

Case 1: c̄j − cj ≥ rmax − 1. Then

∑
fi∈F̄

k′
j

ri + d ≤ res(c̄j − cj − rmax + 1) + rmax − 1 = τ
P [2].

Therefore,

∑
r∈[rmax]

c
F [r] ⋅ r = ∑

fi∈F
k
j ∪F̄k′

j

ri = ∑
fi∈F

k
j

ri − d + ∑
fi∈F̄

k′
j

ri + d

≤ res(cj) + res(c̄ − cj − rmax + 1) + rmax − 1

= τ
P
j [1] + τPj [2],

as required.

Case 2: c̄j − cj < rmax − 1. In this case, τPj [2] = c̄j − cj .
Recall that σ is a valid assignment, so ∑fi∈F

1
j
ri +∑fi∈F̄

1
j
ri ≤ c̄j .

Therefore we obtain that

∑
fi∈F̄

k′
j

ri = ∑
fi∈F̄

1
j

ri ≤ c̄j − ∑
fi∈F

1
j

ri = c̄j − cj − d = τ
P
j [2] − d

which is equivalent to

∑
fi∈F̄

k′
j

ri + d ≤ τ
P
j [2].

Thus

∑
r∈[rmax]

c
F [r] ⋅ r = ∑

fi∈F
k
j ∪F̄k′

j

ri = ∑
fi∈F

k
j

ri − d + ∑
fi∈F̄

k′
j

ri + d

≤ τ
P
j [1] + τPj [2],

as required.
For each place type τP , every place of type τP increments a sin-

gle variable in {x(τP , cF) ∶ cF ∈ C
F
, c

F is suitable for τP }. Thus
∑{x(τP , cF) ∶ cF ∈ C

F
, c

F is suitable for τP } = mτP , which
proves Constraint (2).

Next, let us prove Constraint (4). Let r ∈ [rmax] be a ser-
vice requirement. Observe that the sets Aρ

r , Ā
ρ
r , and Ar(cF) for

c
F

∈ C
F are all subsets of {fh ∈ F ∶ rh = r} as only fam-

ilies of requirement r are added to these sets. Moreover, they are
pairwise disjoint, as any family is added to at most one set. Fi-
nally, the set of families matched to some place under σ is precisely
A

ρ
r ∪ Ā

ρ
r ∪ ⋃cF ∈CF Ar(cF), as every family that is matched to a

place is added to one of these sets.
Each time we incremented variable br by one, we added ρ

r
fami-

lies to Aρ
r . Thus ∣Aρ

r∣ =
ρ

r
br . Similarly, each time we incremented

variable b̄r by one, we added ρ

r
families to Āρ

r . Thus ∣Āρ
r∣ =

ρ

r
b̄r .

Finally, for every c
F

∈ C
F , anytime we incremented a variable

in {x(τP , cF) ∶ τ
P

∈ T P } by one, we added c
F [r] families

to Ar(cF). Thus ∣Ar(cF)∣ = ∑τP
∈T P c

F [r]x(τP , cF).
Therefore we can conclude that the number of families of require-

ment r matched under σ is precisely

∣Aρ
r∣ + ∣Āρ

r∣ + ∑
cF ∈CF

∣Ar(cF)∣

=
ρ
r br +

ρ
r b̄r + ∑

cF ∈CF

∑
τP

∈T P

c
F [r]x(τP , cF)

=
ρ
r (br + b̄r) + ∑

τ
P
∈T P

c
F
∈C

F

c
F [r]x(τP , cF).

Since there are nr families of requirement r, we get

ρ
r (br + b̄r) + ∑

τ
P
∈T P

c
F
∈C

F

c
F [r]x(τP , cF) ≤ nr.

This proves Constraint (4).
We deduce that the number of families matched under σ is

∑
r∈[rmax]

ρ
r (br + b̄r) + ∑

τ
P
∈T P

c
F
∈C

F

c
F [r]x(τP , cF).

Because σ matches u∗ many families, the value of the constructed
solution for ILP1 is exactly u∗. ⊲

Claims 4 and 5 together prove the correctness of our ILP.

B.4 Proof of Theorem 2

Theorem 2 (⋆). PARETO-RR and MAXUTIL-RR for t = 1 are NP-
hard even when rmax = cmax = 2 and there are no lower quotas.
The result holds for PARETO-RR even if all families have dichoto-
mous preferences and find exactly two places acceptable, and for
MAXUTIL-RR even if utilities are binary and each family has posi-
tive utilities for exactly two places.

Proof. Here we present a reduction from the variant of 3-SAT where
each literal appears exactly twice. Let our input be a formula φ =

⋀C∈C C over a setX of variables where both literals x and x appear
exactly twice in φ for each x ∈ X , and each clause C ∈ C contains
exactly three distinct literals. This problem is NP-hard [10]. We con-
struct an instance I of PARETO-RR with t = 1 and without lower
quotas as follows.

We set {fx, x1, x2, x1, x2 ∶ x ∈ X} as the set of families; we set
the requirement of all families in FX ∶= {fx ∶ x ∈ X} as two, and
the requirement of all remaining families as one. We introduce two
places, px and px, for each variable x ∈ X and a place pC for each
clause C ∈ C. We set the upper quota of every place as two. Note
that rmax = cmax = 2, as promised.

We next define the set of acceptable places for each family. First,
for each literal ℓ (that is, for each ℓ ∈ {x, x ∶ x ∈ X}), the family ℓh

for some h ∈ [2] corresponds to the h-th occurrence of the literal ℓ,
and hence finds two places acceptable: pℓ and pC(ℓ,h) where C(ℓ, h)
is the clause containing the h-th occurrence of literal ℓ. Second, for
each variable x ∈ X , the family fx finds px and px acceptable.
We set dichotomous preferences for all families, so each family is
indifferent between the two places they find acceptable.

Claim 6. I admits a feasible, acceptable and complete assignment
if and only if φ is satisfiable.

Proof. Suppose first that φ admits a satisfying truth assignment. We
define an assignment σ for I as follows. For each variable x ∈ X
set to true, the family fx is assigned to the place px, the two fam-
ilies x1 and x2 that correspond to false literals are assigned to the
places pC(x,1) and pC(x,2), respectively, while the two families x1

and x2 that correspond to true literals are assigned to px. Similarly,
For each variable y ∈ X set to false, the family fy is assigned
to the place py , the two families y1 and y2 that correspond to false
literals are assigned to the places pC(y,1) and pC(y,2), respectively,
while the two families y1 and y2 that correspond to true literals are
assigned to py . Observe that σ never assigns families with a total re-
quirement more than two to a place, because each clause contains at

most two literals that evaluate to false, and thus each place pC ,
C ∈ C accommodates at most two families under σ, both with re-
quirement one. Therefore, σ is feasible, and it is straightforward to
verify that it is complete and acceptable as well.

Suppose now that σ is an assignment for I that is feasible, accept-
able, and complete. We set each variable x ∈ X to true if and
only if σ(fx) = px. In other words, we set a literal ℓ to false ex-
actly if the place pℓ is occupied by a family in FX . To show that
each clause is satisfied, let us assume for the sake of contradiction
that we set all three literals in some clause C to false. This means
that for each literal ℓ appearing in C, the place pℓ accommodates
a family in FX . Since each such family has requirement two, which
equals the upper quota of pℓ, we get that σ must assign the families ℓ1

and ℓ2 elsewhere due to its feasibility. Since σ respects acceptability
and is complete, it must assign ℓ1 and ℓ2 to the clauses C(ℓ, 1) and
C(ℓ, 2), respectively. In particular, the three families that correspond
to the literals appearing in C (that is, the families ℓh1

1 , ℓ
h2
2 , and ℓh3

3

for which C(ℓj , hj) = C for j ∈ [3]) can only be assigned to pC ,
contradicting the feasibility of σ. This shows that the constructed
truth assignment satisfies φ, and hence, the claim holds. ⊲

The result for PARETO-RR follows from Claim 6 due to Obser-
vation 3, and from that, the NP-hardness for MAXUTIL-RR follows
from Observation 1.

B.5 Proof of Claim 2

Claim 2 (⋆). Suppose that i ∈ [n− 1], and let σi ∶ Fi → P denote
an optimal allocation for Ii. Then there exists an optimal alloca-
tion σi+1 ∶ Fi+1 → P for Ii+1 such that ∆(σi, σi+1) ≤ m ⋅ ρ⋆m.

Proof. It will be useful for us to define an integer ρj recursively for
each j ∈ [m] by setting

ρj = { rmax(ρ − 1) for j = 1
ρj−1 ⋅ (m − 1) + ρ + rmax for j = 2, . . . ,m.

(6)

It is straightforward to verify by simple calculus that ρm ≤ ρ
⋆
m (re-

lying also on our assumption that m ≥ 2).
Let σi+1 be an optimal allocation for Ii+1 that minimizes

∆(σi, σi+1). Consider the the movement of families when the allo-
cation changes from σi to σi+1; we will refer to this as the relocation.
For two distinct places pj and pj′ , let d(pj , pj′) be the total require-
ment of all families moving from pj into pj′ under the relocation. De-
fine also d in(pj) ∶= ∑pj′∈P \{pj} d(pj′ , pj) as the total requirement
of families in Fi moving into pj under the relocation. As both σi

and σi+1 are complete, we know ∆(σi, σi+1) = ∑pj∈P
d

in(pj).

We will prove that d in(pj) ≤ ρm for each pj ∈ P . From this
∆(σi, σi+1) = ∑pj∈P

d
in(pj) ≤ mρm ≤ mρ

⋆
m follows, prov-

ing the claim. Assume for the sake of contradiction that there exists
some pj0 ∈ P with d in(pj0) > ρm.

An acyclic auxiliary graph Gρ. We proceed with defining an aux-
iliary digraph Gρ defined over P in which (pj , pj′) is an arc if and
only if d(pj , pj′) > ρ1; recall that ρ1 = rmax(ρ − 1). Notice that by
Observation 2, for each arc e in Gρ we know that the set of families
moving from the tail of e to the head of e under the relocation con-
tains a homogeneous ρ-block; letBe be such a homogeneous ρ-block
corresponding to e.

We claim that Gρ is acyclic. Suppose for the sake of contradic-
tion that a set C of arcs forms a directed cycle in Gρ. Consider the
assignment σ′

i+1 for Ii+1 obtained from σi+1 by moving all families

contained in FC ∶= ∪e∈CBe to the place they were assigned un-
der σi, i.e., “backward” along the cycle C. Since all homogeneous
ρ-blocks have the same total requirement ρ, the assignment σ′

i+1 is
feasible for Ii+1. Moreover, since ∆(σi, σ

′
i+1) < ∆(σi, σi+1), we

know that util(σ′
i+1) < util(σi+1), due to our choice of σi+1. This

means

∑
fh∈FC ,pj=σi(fh)

uh[j] < ∑
fh∈FC ,pj=σi+1(fh)

uh[j]. (7)

Let us now construct an assignment σ′
i from σi by moving all fam-

ilies contained in FC to the place they are assigned under σi+1, i.e.,
“forward” along the cycle C. Again, σ′

i is feasible for Ii. Moreover,
by (7) we know that util(σ′

i) > util(σi), which contradicts the opti-
mality of σi. We obtain that Gρ is indeed acyclic.
Finding a path P⋆ in Gρ. Let P⊣ denote the set of places with free
capacity at least ρ under σi, i.e. P⊣ = {pj ∶ c̄j ≥ ρ+ load(pj , σi)}.
We define P⊢ analogously, to contain places with free capacity at
least ρ under σi+1, so P⊢ = {pj ∶ c̄j ≥ ρ + load(pj , σi+1)}. We are
going to construct a path from P⊢ to P⊣ in Gρ.

Define a chain from pj0 to P⊣ as a sequence pj0 , pj1 , . . . , pj∼m
such that (i) pj∼m ∈ P⊣, and (ii) d(pjh−1 , pjh) > ρm−h for each inte-

ger h with 0 < h ≤
∼m. We build such a chain by induction. We start

from the sequence containing only pj0 , and maintain condition (ii)
as an invariant; note that (ii) holds trivially for the sequence pj0 . So
suppose that we have already built a sequence pj0 , pj1 , . . . , pjh for
which condition (ii) holds. If pjh ∈ P⊣, then we are done, as the se-
quence fulfills condition (i) as well, and thus is a chain. If pjh ∉ P⊣

then, by the definition of P⊣, the free capacity of pjh under σi is less
than ρ. This implies that the families moving out from pjh under the
relocation must have total requirement greater than d in(pjh) − ρ (as
otherwise the families moving into pjh during the relocation would
not fit). Since these families must move into some place in P \{pjh},
there must exist some pjh+1 ∈ P \ {pjh} for which

d(pjh , pjh+1) ≥
d

in(pjh) − ρ
m − 1

>
ρm−h − ρ
m − 1

> ρm−h−1

where the second inequality follows from condition (ii) if h > 0, and
from the assumption that d in(pj0) > ρm in the case h = 0; the third
equality follows from the definition of ρm−h which satisfies

ρm−h − ρ − rmax

m − 1
= ρm−h−1.

Hence, we can pick pjh+1 as the next place in the chain, since the
sequence pj0 , pj1 , . . . , pjh , pjh+1 fulfills condition (ii). Since Gρ is
acyclic and ∣P ∣ is finite, the existence of a chain from pj0 to P⊣

follows.
Next, we similarly build a back-chain fromP⊢ to pj′0 = pj0 , which

is defined as a sequence pj′∼m′
, . . . , pj′1 , pj

′
0

such that (i’) pj′∼m′
∈ P⊢,

and (ii’) d(pj′h , pj′h−1
) > ρm−h for each integer h with 0 < h ≤

∼m
′
.

Because d in(pj0) > ρm, we know that there exists some place pj′1
for which d(pj′1 , pj0) ≥ d

in(pj0)/(m− 1) > ρm/(m− 1) > ρm−1.
We build our back-chain starting from the sequence pj′1 , pj0 by in-
duction, using the same technique we applied to build our chain in
the previous paragraph.

Namely, suppose that we already have a sequence
pj′h , . . . , pj

′
1
, pj0 for which condition (ii’) holds. If pj′h ∈ P⊢,

then we are done, as the sequence fulfills condition (i’) as well,
and thus is a back-chain. If pj′h ∉ P⊢ then, by the defini-
tion of P⊢, the free capacity of pj′h under σi+1 is less than ρ.

However, d(pj′h , pj′h−1
) > ρm−h by condition (ii’); there-

fore, taking into account that fi+1 might be assigned to pj′h
by σi+1, we obtain that the total requirement of families moving
into pj′h under the relocation (recall that this excludes fi+1) is

d
in(pj′h) > d(pj′h , pj′h−1

) − ρ − ri+1 > ρm−h − ρ − rmax. Since
these families must have come from some place in P \ {pj′h}, we
know that there exists some place pj′h+1

∈ P for which

d(pj′h+1
, pj′h) ≥

d
in(pj′h)
m − 1

>
ρm−h − ρ − rmax

m − 1
= ρm−h−1.

Hence, we can pick pj′h+1
as the next place in the back-chain, be-

cause the sequence pj′h+1
, pj′h , . . . , pj

′
1
, pj0 fulfills condition (ii’).

Since Gρ is acyclic and ∣P ∣ is finite, the existence of a back-chain
from P⊢ to pj0 follows.

Consider the sequence P⋆ of places obtained by concatenating our
back-chain from P⊢ to pj0 with the chain from pj0 to P⊣. Observe
that by conditions (ii) and (ii’), there is an arc in Gρ from each place
in P⋆ to the next place in P⋆. SinceGρ is acyclic, this means that P⋆

forms a path in Gρ.
The contradiction implied by our path P⋆. It remains to show
that the existence of our path P⋆ from P⊢ to P⊣ in Gρ leads to a
contradiction. Let E(P⋆) denote the set of arcs on this path, and
define FP⋆ = ⋃e∈E(P⋆)Be, that is, FP⋆ is the union of homoge-
neous ρ-blocks corresponding to the arcs on P⋆. Define the assign-
ment σ′

i+1 for Ii+1 obtained from σi+1 by moving all families con-
tained in FP⋆ to the place they were assigned under σi, i.e., “back-
ward” along the path P⋆. Since all homogeneous ρ-blocks have the
same total requirement ρ and, in addition, the first place on P⋆ be-
longs to P⊢ and thus has free capacity at least ρ under σi+1 that
can be used to accommodate the superblock corresponding to the
first arc of P⋆, we get that σ′

i+1 is feasible for Ii+1. Moreover, since
∆(σi, σ

′
i+1) < ∆(σi, σi+1), we know that util(σ′

i+1) < util(σi+1)
due to our choice of σi+1, which yields

∑
fh∈FP⋆ ,pj=σi(fh)

uh[j] < ∑
fh∈FP⋆ ,pj=σi+1(fh)

uh[j]. (8)

Let us now construct an assignment σ′
i from σi by moving all fam-

ilies contained in FP⋆ to the place they are assigned under σi+1, i.e.,
“forward” along the path P⋆. Again, σ′

i is feasible for Ii, because
the last place on P⋆ belongs to P⊣. Due to (8), util(σ′

i) > util(σi),
which contradicts to the optimality of σ. This contradiction proves
the claim.

B.6 Proof of Claim 3

Claim 3 (⋆). Suppose that q ∈ [cΣ], and let σ̂q ∶ F → P denote
an optimal allocation for Îq . Then there exists an optimal alloca-
tion σ̂q+1 ∶ F → P for Îq+1 such that ∆(σ̂q, σ̂q+1) ≤ m ⋅ ρ⋆m.

Proof. The proof is similar to the proof of Claim 2. Let cj and c
′
j

denote the lower quotas given for some location pj ∈ P in Îq and
in Îq+1, respectively; then cj = c

′
j holds for each place pj but one,

and ∑j∈[m] c
′
j = 1 +∑j∈[m] cj . Let σ̂q+1 be an optimal allocation

for Îq+1 that minimizes ∆(σ̂q, σ̂q+1). Consider the situation where
the allocation changes from σ̂q to σ̂q+1; we will refer to this as the
relocation.

For distinct places pj and pj′ , let d̂(pj , pj′) be the total require-
ment of all families moving from pj into pj′ under the reloca-
tion. Define also the values d̂ in(pj) ∶= ∑pj′∈P \{pj} d̂(pj′ , pj) and

d̂
out(pj) ∶= ∑pj′∈P \{pj} d̂(pj , pj′) as the total requirement of fam-

ilies moving into pj and out of pj , respectively, under the reloca-
tion. As both σ̂q and σ̂q+1 are complete assignments, we know that
∆(σ̂q, σ̂q+1) = ∑pj∈P

d̂
in(pj) = ∑pj∈P

d̂
out(pj).

Recall the definition of values ρh for h ∈ [m] as defined by 6.
We will prove that d̂ in(pj) ≤ ρm for each pj ∈ P . From this
∆(σ̂q, σ̂q+1) = ∑pj∈P

d̂
in(pj) ≤ m ⋅ ρm ≤ m ⋅ ρ⋆m follows, imply-

ing the claim. Assume for the sake of contradiction that there exists
some pj0 ∈ P with d̂ in(pj0) > ρm.

An acyclic auxiliary graph Ĝρ. We proceed with defining an aux-
iliary digraph Ĝρ defined over P in which (pj , pj′) is an arc exactly
if d̂(pj , pj′) > ρ1. Notice that by Observation 2, for each arc e in Ĝρ

we know that the set of families moving from the tail of e to the head
of e under the relocation contains a homogeneous ρ-block; let Be be
such a homogeneous ρ-block corresponding to e.

It is straightforward to see that the same argument used in the
proof of Claim 2 for showing that Gρ is acyclic can be applied to
prove that Ĝρ is acyclic. However, to find a path in Ĝρ that leads to a
contradiction, we need a more careful, somewhat different argument.

Finding a path P̂⋆ in Gρ. Let P̂⊣ contain those places pj ∈ P
where

(a⊣) load(pj , σ̂q) ≤ c̄j − ρ, and
(b⊣) load(pj , σ̂q+1) ≥ c

′
j + ρ.

Analogously, let P̂⊢ contain those places pj ∈ P where

(a⊢) load(pj , σ̂q+1) ≤ c̄j − ρ, and
(b⊢) load(pj , σ̂q) ≥ cj + ρ.

Define a chain from pj0 to P̂⊣ as a sequence pj0 , pj1 , . . . , pj∼m
such that (i) pj∼m ∈ P̂⊣, and (ii) d̂(pjh−1 , pjh) > ρm−h for each inte-

ger h with 0 < h ≤
∼m. We build such a chain by induction. We start

from the sequence containing only pj0 , and maintain condition (ii)
as an invariant; note that (ii) holds trivially for the sequence pj0 . So
suppose that we have already built a sequence pj0 , pj1 , . . . , pjh for
which condition (ii) holds. If pjh ∈ P̂⊣, then we are done, as the se-
quence fulfills condition (i) as well, and thus is a chain. If pjh ∉ P̂⊣,
then either condition (a⊣) or condition (b⊣) does not hold for pjh .

First let us assume that pjh does not satisfy condition (a⊣). Then

c̄jh − ρ < load(pj , σ̂q)
= load(pj , σ̂q+1) − d̂ in(pjh) + d̂

out(pjh)
≤ c̄jh − d̂

in(pjh) + d̂
out(pjh).

From this, we get that

d̂
out(pjh) > d̂

in(pjh) − ρ. (9)

Assume now that pjh violates condition (b⊣). Then

cjh + 1 ≥ c
′
jh

> load(pjh , σ̂q+1) − ρ
= load(pjh , σ̂q) + d̂ in(pjh) − d̂

out(pjh) − ρ
≥ cjh + d̂

in(pjh) − d̂
out(pjh) − ρ,

which implies

d̂
out(pjh) > d̂

in(pjh) − ρ − 1. (10)

Hence, (10) holds in both cases.
Since the families moving out from pjh must move into some

place in P \ {pjh}, there must exist some pjh+1 ∈ P \ {pjh} for
which

d̂(pjh , pjh+1) ≥
d̂

in(pjh) − ρ − 1

m − 1
>
ρm−h − ρ − rmax

m − 1
= ρm−h−1

(11)
where the second inequality follows from condition (ii) if h > 0, and
from the assumption that d in(pj0) > ρm in the case h = 0. Hence,
we can pick pjh+1 as the next place in the chain, as the sequence
pj0 , pj1 , . . . , pjh , pjh+1 fulfills condition (ii). SinceGρ is acyclic and
∣P ∣ is finite, the existence of a chain from pj0 to P̂⊣ follows.

Next, we similarly build a back-chain from P̂⊢ to pj′0 = pj0 , which
is a sequence pj′∼m′

, . . . , pj′1 , pj
′
0

such that (i’) pj′∼m′
∈ P̂⊢, and (ii’)

d̂(pj′h , pj′h−1
) > ρm−h for each integer h with 0 < h ≤

∼m
′
. Because

d̂
in(pj0) > ρm, there must exist some place pj′1 ∈ P \ {pj0} for

which d̂(pj′1 , pj0) ≥ d̂
in(pj0)/(m− 1) > ρm/(m− 1) > ρm−1. We

build our back-chain starting from the sequence pj′1 , pj0 by induc-
tion.

Suppose that we already have a sequence pj′h , . . . , pj′1 , pj0 for
which condition (ii’) holds. If pj′h ∈ P̂⊢, then we are done, as the
sequence fulfills condition (i’) as well, and thus is a back-chain. If
pj′h ∉ P̂⊢, then either condition (a⊢) or condition (b⊢) fails for pj′h .

First, assume that condition (a⊢) fails for pj′h . Then

c̄j′h − ρ < load(pj′h , σ̂q+1)
= load(pj′h , σ̂q) + d̂ in(pj′h) − d̂

out(pj′h)
≤ c̄j′h + d̂

in(pj′h) − d̂
out(pj′h),

which implies
d̂

in(pj′h) > d̂
out(pj′h) − ρ. (12)

Second, assume that condition (b⊢) fails for pj′h . Then

cj′h
≤ c

′
j′h

≤ load(pj′h , σ̂q+1)

= load(pj′h , σ̂q) + d̂ in(pj′h) − d̂
out(pj′h)

< cj′h
+ ρ + d̂

in(pj′h) − d̂
out(pj′h)

which again implies (12).
Since the families moving into pj′h must have come from some

place in P \ {pj′h}, there must exist some place pj′h+1
∈ P \ {pj′h}

for which

d(pj′h+1
, pj′h) ≥

d
in(pj′h)
m − 1

>
ρm−j − ρ
m − 1

> ρm−j−1.

Hence, we can pick pj′h+1
as the next place in the back-chain, be-

cause the sequence pj′h+1
, pj′h , . . . , pj

′
1
, pj0 fulfills condition (ii’).

Since Ĝρ is acyclic and ∣P ∣ is finite, the existence of a back-chain
from P̂⊢ to pj0 follows.

Consider the sequence P̂⋆ of places obtained by concatenating our
back-chain from P̂⊢ to pj0 with the chain from pj0 to P̂⊣. Observe
that by conditions (ii) and (ii’), there is an arc in Ĝρ from each place
in P̂⋆ to the next place in P̂⋆. SinceGρ is acyclic, this means that P̂⋆

forms a path in Ĝρ.

The contradiction implied by our path P̂⋆. It remains to show that
the existence of our path P̂⋆ from P̂⊢ to P⊣ in Ĝρ leads to a con-
tradiction. Let E(P̂⋆) denote the set of arcs on this path, and define

FP̂⋆ = ⋃e∈E(P̂⋆)Be, that is, FP̂⋆ is the union of homogeneous ρ-

blocks corresponding to the arcs on P̂⋆. Define the assignment σ̂′
q+1

for Ii+1 obtained from σ̂q+1 by moving all families contained in FP̂⋆

to the place they were assigned under σ̂q , i.e., “backward” along the
path P̂⋆. Let us show that σ̂′

q+1 is feasible for Îq+1.
Since the first place pp

j′
∼m

′
on P̂⋆ belongs to P⊢, by condition (a⊢)

it has free capacity at least ρ under σ̂q+1 that can be used to ac-
commodate the superblock corresponding to the first arc of P̂⋆, so
the upper quota of pp

j′
∼m

′
is not exceeded under σ̂′

q+1. Since the last

place ppj∼m
on P̂⋆ belongs to P⊣, removing a homogeneous ρ-block

from the families assigned by σ̂q+1 to ppj∼
m

does not violate its lower

quota due to condition (b⊣). Since all homogeneous ρ-blocks have
the same total requirement ρ, it also follows that the lower and upper
quotas are respected by σ̂′

q+1 for all remaining places as well. This
proves that σ̂′

q+1 is feasible for Îq+1.
Moreover, since ∆(σ̂q, σ̂

′
q+1) < ∆(σ̂q, σ̂q+1), we know that the

total utility of σ̂′
q+1 is less than that of σ̂q+1, due to our choice

of σ̂q+1, which yields

∑
fh∈FP̂⋆ ,pj=σ̂q(fh)

uh[j] < ∑
fh∈FP̂⋆ ,pj=σ̂q+1(fh)

uh[j]. (13)

Let us now construct an assignment σ̂′
q from σ̂q by moving all

families contained in FP̂⋆ to the place they are assigned under σ̂q+1,
i.e., “forward” along the path P̂⋆. Again, we can show that σ̂′

q is
feasible for Îq .

The last place on P̂⋆ belongs to P⊣, and therefore by condi-
tion (a⊣) can accommodate a homogeneous ρ-block besides the fam-
ilies assigned to it by σ̂q . The first place on P̂⋆ belongs to P⊢, and
thus by condition (b⊢) we can remove a homogeneous ρ-block from
among the families assigned to it by σ̂q without violating its lower
quota. Feasibility is therefore maintained at all places, as promised.
Due to (13), the utility of σ̂′

q exceeds the utility of σ̂q , which contra-
dicts the optimality of σ̂q . This contradiction proves the claim.

B.7 Proof of Theorem 4

Theorem 4 (⋆). MAXUTIL- and PARETO-RR for t = 1 are FPT
w.r.t. u∗, the desired utility, if there are no lower quotas.

Proof. Let I denote our input instance. We present an algorithm
which, in polynomial time, produces an equivalent instance I ′ with at
most (u∗)3 families. Applying Proposition 6 to I ′ then yields fixed-
parameter tractability for parameter u∗.

We start by checking whether there exists a family fi ∈ F and a
place pj ∈ P such that pj can accommodate fi and ui[j] ≥ u

∗. If
so, we output the assignment that assigns fi to pj and leaves every
other family unassigned.

Otherwise, we proceed by greedily assigning families to places so
that (i) the assignment remains feasible, and (ii) each family fi ∈ F
assigned to some place pj ∈ P has positive utility for that place, i.e.,
ui[j] ≥ 1. Let σ0 be the feasible assignment obtained at the end of
this greedy process.

If util(σ0) ≥ u
∗, then we output σ0. Otherwise, consider those

places and families that are “relevant” according to σ0, namely the
sets P0 = {pj ∈ P ∶ σ−1

0 (pj) ≠ ∅} and F0 = {fi ∶ σ0(fi) ≠⊥}.
First, we mark each family in F0. Next, for each pj ∈ P0 and each
γ ∈ [u∗], we order all families in Fj,γ ∶= {fi ∈ F ∶ ui[j] = γ}

according to their requirement in a non-decreasing manner, and mark
the first u∗ families in this ordering (or all of them, if ∣Fj,γ∣ < u

∗).
We define an instance I ′ of MAXUTIL-RR by deleting all unmarked
families.

Let F ′ be the set of families in I ′, that is, the families we have
marked; we claim ∣F ′∣ ≤ (u∗)3. First, due to condition (ii), we know
that ∣F0∣ < u

∗ and ∣P0∣ < u
∗ follows from util(σ0) < u

∗. Addi-
tionally, we marked at most u∗ families from Fj,γ for each pj ∈ P0

and γ ∈ [u∗]. Summing this for all values of pj and γ, we get at
most (u∗ − 1)(u∗)2 families. Taking into account the at most u∗

families in F0, we get that there at most (u∗)3 marked families, as
promised.

Claim 7. I ′ is equivalent with I .

Proof. Clearly, a feasible assignment for I ′ is also feasible for I ,
and has the same utility in both instances. Suppose now that σ is a
feasible assignment for I with util(σ) ≥ u∗; we construct a feasible
assignment for I ′ with utility at least u∗ as follows.

First, for each family in F ′, we let σ′ and σ coincide. Let P ⋆ con-
tain all places that have at least one family assigned to them by σ.
Now, for each pj ∈ P

⋆ and each γ ∈ [u∗], we take the ordering
of Fj,γ used in the marking process (recall that the families in Fj,γ

were ordered in a non-decreasing way according to their require-
ments), and we pick nj,γ families one by one from Fj,γ among those
that are not yet assigned to some place by σ′, always picking the first
family available, where

nj,γ =
»»»»»{fi ∈ F \ F ′

∶ fi ∈ σ
−1(pj),ui[j] = γ}

»»»»» .

We let σ′ assign the picked families to pj . This process stops once the
number of assigned families reaches u∗ or we have iterated through
all places in P ⋆ and all utility values γ ∈ [u∗]. We set σ′(fi) =⊥

for all families of fi ∈ F
′ left unassigned thus far.

Let us show that for each pj ∈ P
⋆ and γ ∈ [u∗], we are always

able to pick a marked family from Fj,γ during the above process.
Assume first that we have marked the first u∗ families from Fj,γ .
Then due to our stopping condition, at each step there are less than u∗

families in Fj,γ that are already assigned by σ′ to some place, so
at each step when we pick the first available family from Fj,γ , we
pick a marked family. Second, assume that ∣Fj,γ∣ < u∗, and thus all
families in Fj,γ are marked. In this case, there is no family in F \F ′

that has utility γ for pj , due to the definition of Fj,γ . However, this
implies nj,γ = 0. This proves that all picked families are in F ′, and
hence, σ′ is an assignment for I ′.

We next show that util(σ′) ≥ u∗. On one hand, this is clear if the
algorithm stops because it has assigned at least u∗ families, since all
families contribute at least 1 to the total utility of σ′. On the other
hand, if the algorithm stops because it has iterated over all possi-
ble places and utility values considered, then we know that at each
place pj ∈ P

⋆ and for each γ ∈ [u∗], there are exactly the same
number of families assigned to pj by σ and σ′, due to our definition
of nj,γ . This implies

util(σ′) = ∑
pj∈P

⋆

∑
fi∈σ

′ −1(pj)
ui[j]

= ∑
pj∈P

⋆

⎛
⎜⎜
⎝

∑
fi∈σ

′ −1(pj)∩σ−1(pj)
ui[j] + ∑

γ∈[u∗]
γ ⋅ nj,γ

⎞
⎟⎟
⎠

= ∑
pj∈P

⋆

∑
fi∈σ

−1(pj)
ui[j] = util(σ) ≥ u∗

.

It remains to show that σ′ is feasible. Consider some pj ∈ P
⋆.

Clearly the families that both σ and σ
′ assign to pj , i.e., those

in σ−1(pj)∩F ′, contribute the same amount to the load of σ and σ′.
Let rj,γ denote the maximum requirement of any marked family
in Fj,γ . Consider the families in σ−1(pj) \ F ′, and partition this
set according to the utility values these families have for pj . Con-
sider some γ ∈ [u∗]. Since each family fi in σ−1(pj) \ F ′ with
ui[j] = γ is unmarked, it has requirement at least rj,γ . By contrast,
the nj,γ families assigned to pj from Fj,γ during the picking process
are all marked, and thus have requirement at most rj,γ . Hence, we
get

load(pj , σ′) = ∑
fi∈σ

′ −1(pj)
ri

≤ ∑
fi∈σ

′ −1(pj)∩σ−1(pj)
ri + ∑

γ∈[u∗]
rj,γ ⋅ nj,γ

≤ ∑
fi∈σ

−1(pj)
ri = load(pj , σ).

Thus, σ is a feasible assignment for I ′ with utility at least u∗, as
required. ⊲

The result for MAXUTILRR now follows from Claim 7 and
Proposition 6, and the result for PARETO-RR follows by Observa-
tion 1.

We remark that it is possible to reduce the number of places as
well: it suffices to keep (at most) u∗ places for each family fi ∈ F

′

among those which can accommodate it: we need to pick them in
non-decreasing order of fi’s utility for them. This yields a “pseudo-
kernelization” algorithm for parameter u∗ in the sense that it pro-
duces an equivalent instance where both the number of families and
the number of places is bounded by a function of u∗; however, the
requirement values and the upper quotas may be unbounded.

Appendix C Additional material for Section 4
C.1 Proof of Proposition 2

Proposition 2 (⋆). The following problems are NP-hard even if
cmax = rmax = 1 and m = 1∶
• FEASIBLE-RR;
• PARETO-RR with equal preferences;
• MAXUTIL-RR with equal utilities.

Proof. We present a reduction from MULTICOLORED INDEPEN-
DENT SET to FEASIBLE-RR. In this problem, we are given a
graph G = (V,E) and an integer k, with the vertex set of G par-
titioned into k sets V1, . . . , Vk; the task is to decide whether there
exists an independent set of size k that contains one vertex from each
set Vi, i ∈ [k]. This problem is NP-hard and, in fact, W[1]-hard
when parameterized by k [31].3

We construct an instance of FEASIBLE-RR with a single location p
as follows. We set V as the set of families, and E ∪ {s1, . . . , sk}
as the set of services, with p offering exactly one unit from every
service. Each family v ∈ Vi for some i ∈ [k] requires one unit of
each service associated with its incident edges, and one unit of si.
We set the lower quota for p as 1 for each service si, i ∈ [k], and
as 0 for each service in E.

3 Pietrzak dealt with the MULTICOLORED (or PARTITIONED) CLIQUE prob-
lem, but the claimed hardness results follow immediately from his results.

Notice that a feasible assignment assigns at least one vertex from
each set Vi, i ∈ [k], to p. Moreover, no two vertices assigned to p
can be adjacent, as the edge connecting them corresponds to a ser-
vice from which both of these two vertices (i.e., families) need one
unit. Thus, a feasible assignment yields an independent set in G con-
taining a vertex from each set Vi, i ∈ [k]. Vice versa, assigning such
an independent set to p satisfies all lower and upper quotas, and thus
yields a feasible assignment.

Finally, observe that adding arbitrary preferences or utilities to
the constructed instance of FEASIBLE-RR we obtain an instance of
PARETO- or MAXUTIL-RR respectively, that is equivalent with the
original input instance.

C.2 Proof of Observation 3

Observation 3 (⋆). Given an instance I of PARETO-RR with di-
chotomous preferences, we can decide the existence of a feasible,
acceptable and complete assignment for I by solving PARETO-RR
on I .

Proof. It suffices to observe that there exists a feasible, acceptable
and complete (fac, for short) assignment if and only if every fea-
sible, acceptable and Pareto-optimal (faP, for short) assignment is
complete. Clearly, a fac assignment is necessarily Pareto-optimal,
since families are indifferent between places that they find accept-
able. On the other hand, if there exists a fac assignment σ, then each
faP assignment must be complete, as otherwise σ would be a Pareto-
improvement for it.

C.3 Proof of Proposition 3

Proposition 3 (⋆). PARETO- and MAXUTIL-RR are NP-hard even
if m = 2, rmax = 1, there are no lower quotas, and families have
equal preferences or utilities.

Proof. We present a reduction from INDEPENDENT SET to PARETO-
RR that is similar to the proof of Proposition 2. Let (G, k) be our
input instance with G = (V,E).

We set V as the set of families, E ∪ {s⋆} as the set of services,
and P = {p⋆, p} as the set of places, with both places acceptable for
each family. Place p⋆ offers exactly one unit of each service in E,
and offers k units of service s⋆. Place p offers offers ∣V ∣−k units of
every service. Moreover, each family v ∈ V requires one unit of each
service associated with its incident edges, and one unit of service s⋆.

Note that p can accommodate an arbitrary set of ∣V ∣ − k families
(but not more), while p⋆ can accommodate at most k families corre-
sponding to an independent set. Thus, G admits an independent set
of size k if and only if I admits a feasible and complete assignment.
From this, the result for PARETO-RR follows by Observation 3.

By adding equal utilities to the constructed instance and setting
the desired utility as u∗

= ∣V ∣, we obtain an instance where an allo-
cation reaches the desired utility if and only if it is complete. From
this, the result for MAXUTIL-RR follows.

C.4 Proof of Theorem 5

Theorem 5 (⋆). PARETO- and MAXUTIL-RR are NP-hard even
when m = 3, cmax = 1, there are no lower quotas, and families have
equal preferences or utilities, respectively.

Proof. We present a reduction from 3-COLORING; let G = (V,E)
be the input graph. We create an instance I of PARETO-RR with
equal preferences and without lower quotas as follows.

First, we set V as the set of families, E as the set of services, and
P = {p1, p2, p3} as the set of places, with all places acceptable for
each family. Each place offers exactly one unit of each service in E,
and each family v ∈ V requires one unit of each service associated
with its incident edges.

Notice that a feasible assignment cannot assign two families cor-
responding to adjacent vertices to the same place, as the edge con-
necting them represents a service required by both of them. Thus, the
families assigned to a given place must form an independent set inG.

We claim that a feasible and complete assignment for I exists if
and only if G admits a proper 3-coloring. First, if σ is a complete
and feasible assignment, then it yields a proper 3-coloring of G by
the above reasoning. Second, if G is 3-colorable, then a 3-coloring
ofG yields a feasible and complete assignment, since there is no ser-
vice from which a color class requires more than one unit. Since the
families have equal, and hence, dichotomous preferences, by Obser-
vation 3 we can decide the 3-colorability of G by solving PARETO-
RR on I .

To obtain NP-hardness for MAXUTIL-RR, we set equal utilities
and u∗

= ∣V ∣ as the desired utility, so that an assignment has utility
at least u∗ exactly if it is complete. The result then follows from the
above reasoning.

C.5 Proof of Proposition 4

Proposition 4 (⋆). PARETO-RR for m = 1 is polynomial-time solv-
able if there are no lower quotas.

Proof. Let P = {p1}. The key observation is that a feasible and
acceptable assignment σ is Pareto-optimal if and only if it non-
wasteful, meaning that there exists no unassigned family fi ∈ F that
finds p1 acceptable and for which σ−1(p1)∪ {fi} can be accommo-
dated at p1. First, if σ is non-wasteful, then we cannot accommodate
any more families in p1 without disimproving some family, so σ is
Pareto-optimal. Second, if σ is Pareto-optimal, then it must be non-
wasteful as well: indeed, the existence of an unassigned family fi
that finds p1 acceptable and for which σ−1(p1)∪{fi} can be accom-
modated at p1 implies that assigning fi to p1 alongside the families
in σ−1(p1) yields a Pareto-improvement over σ.

It remains to show that we can find a non-wasteful and feasible
assignment in polynomial time. Start with an empty assignment and
iterate over the families that find p1 acceptable. If p1 can accommo-
date such a family alongside everyone already assigned to p1, assign
the family to p1. The resulting assignment is feasible and acceptable,
because we never assign a family to a place it finds unacceptable.
It is also non-wasteful, because if the place cannot accommodate a
family fi during the iteration when fi is considered, it also cannot
accommodate fi at any later point during the algorithm.

C.6 Proof of Proposition 5

Proposition 5 (⋆). PARETO-RR is FPT w.r.t. the number of families
with ties n∼, if there are no lower quotas.

Proof. Our approach is to first apply serial dictatorship for each fam-
ily whose preferences do not contain ties, and then try all possible
assignments for the remaining families.

Let F≻ denote the set of those families in our input instance I
whose preferences are a linear order over the subset of P they find
acceptable (i.e., whose preference list does not contain ties). By re-
indexing the set F , we may assume that F≻ = {f1, . . . , fn−n∼

}.

In the first phase of the algorithm, starting from an empty assign-
ment, we iterate over i = 1, . . . , n − n∼ and, at the i-th iteration, as-
sign the family fi to the place most preferred by fi among all places
in P that are acceptable for fi and can accommodate fi alongside
the families already assigned to it. Let σ≻ denote the assignment ob-
tained at the end of this iteration.

In the second phase of the algorithm, we delete the families F≻

from the instance, and reduce the upper quota of each place pj ∈ P
with the load vector of load(pj , σ≻). We then solve PARETO-RR-
on the obtained instance I ′ by applying Proposition 6; let σ∼ denote
the returned assignment (note that there always exists a feasible and
acceptable assignment, since there are no lower quotas for I). We
return the assignment σ ∶= σ∼ ∪ σ≻.4

The feasibility and acceptability follows from the feasibility and
acceptability of σ≻ in I , and of σ∼ in I ′, as well as the fact that the
upper quota for pj in I ′ is set to c̄j − load(pj , σ≻). To see that σ
is Pareto-optimal as well, assume for the sake of contradiction that
some assignment σ′ is a Pareto-improvement over σ.

First, observe that σ′(fi) = σ≻(fi) for each fi ∈ F≻: indeed, as-
suming otherwise, we obtain that there exists some family fi such
that σ′(fi′) = σ≻(fi′) for each i′ < i, but σ′(fi) ≻i σ≻(fi); how-
ever, this either contradicts the definition of σ≻ or the feasibility or
acceptability of σ′. Therefore, we know that the restriction of σ′ to I ′

must be a Pareto-improvement over σ∼ which contradicts the correct-
ness of our algorithm for Proposition 6. Hence, our algorithm always
produces a correct output.

C.7 Proof of Proposition 6

Proposition 6 (⋆). FEASIBLE-, PARETO-, and MAXUTIL-RR are
FPT w.r.t. n.

Proof. We present an algorithm for MAXUTIL-RR, the result then
follows from Observation 1.

Assume that our input instance I admits a feasible assignment, and
let σ be such an assignment with maximum utility. Our algorithm
first guesses the set family F = {σ−1(pj) ∶ pj ∈ P, σ(pj) ≠ ∅};
since F is a partition of a subset of F , there are O(nn) possible
guesses to try.

The algorithm next creates the following edge-weighted bipartite
graph G = (F ∪ P,E). A set of families Γ ∈ F is adjacent in G
to some place pj if and only if cj ≤ ∑fi∈Γ

ri ≤ c̄j , and we set the
weight of the edge connecting Γ and pj (if it exists) as ∑fi∈Γ

ui[j].
We compute a maximum-weight matching M

⋆ among those that
cover the set F ⋆

= {fi ∈ F ∶ ci ≠ 0}; this can be done in
O((n + m)3) time using e.g., the Hungarian algorithm. The algo-
rithm outputs the assignment that to each place pj covered by M⋆

assigns the families contained in Γ ∈ F where {Γ, pj} ∈M⋆.
The correctness of this algorithm follows from the observation that

every matching M in G that covers F ⋆ corresponds to a feasible
assignment whose utility is the weight of M , and vice versa; note
that feasibility is guaranteed by the definition of the edge set of G
and the condition that the matching covers F ⋆. The total running
time of the algorithm is O(nn+3).

C.8 Proof of Theorem 6

Theorem 6 (⋆). FEASIBLE-RR, PARETO-RR for equal preferences,
and MAXUTIL-RR for equal utilities, are FPT w.r.t. t + rmax.

4 Since the domains of σ∼ and σ≻ partition F , taking the union of σ∼ and σ≻

yields an assignment for I .

Proof. We present an N -fold IP for MAXUTIL-RR with equal util-
ities as follows. First, let R = {ri ∶ fi ∈ F } contain all re-
quirement vectors associated with some family in our input in-
stance. By possibly re-indexing the families in F , we can ensure
R = {r1, . . . , r∣R∣}. Note that ∣R∣ ≤ (rmax + 1)t due to the def-
inition of rmax. Let also nr denote the number of families with re-
quirement vector r ∈ R.

We introduce a variable x(pj , r) for each pj ∈ P and r ∈ R
which is interpreted as the number of families with requirement vec-
tor r assigned to pj . Additionally, we introduce “slack” variables
y(pj , sk) for each place pj ∈ P and service sk ∈ S interpreted as
the available free capacity for service sk at place pj . Consider the
following integer program ILPN :

(ILPN) max ∑
pj∈P,r∈R

x(pj , r) such that

∀pj ∈ P, sk ∈ S ∶ y(pj , sk) + ∑
r∈R

r[k]x(pj , r) = c̄j[k] (14)

∀r ∈ R ∶ ∑
pj∈P

x(pj , r) ≤ nr (15)

∀pj ∈ P, r ∈ R ∶ 0 ≤ x(pj , r) (16)

∀pj ∈ P, sk ∈ S ∶ 0 ≤ y(pj , sk) ≤ c̄j[k] − cj[k] (17)

Claim 8. There exists an integer solution to ILPN with value u∗ if
and only if there exists a feasible assignments for I with utility u∗.

Proof. Interpret x(pj , r) as the number of families with requirement
vector r assigned to some place pj , and y(pj , sk) as the unused ca-
pacity of pj for service sk. Then constraints (14) and (17) for each
pj ∈ P and sk ∈ S express the condition that the total requirement
for service sk of all families assigned to pj should be at least cj[k]
and at most c̄j[k]. Constraints (15) and (16) express the condition
that for each r ∈ R, the total number of families with requirement r
assigned to some place in P should not exceed nr . This shows that
constraints (14)–(17) together characterize feasibility assignments.

It remains to note that since utilities are equal, the total utility of an
assignment is proportional to the number of families assigned, which
is expressed by the objective function. ⊲

Claim 9 (⋆). ILPN is anN -fold IP forN = m with constraintA(m)

where A = (I∣R∣ 0

AR It
) for some AR with ∣∣AR∥∣∞ ≤ rmax, and Ih

denotes the identity matrix of size h × h for each h ∈ N.

Proof. Define the following matrices and vectors:

AR = (r1 r2 . . . r∣R∣) ∈ Nt×∣R∣

xj = (x(pj , r1) x(pj , r2) . . . x(pj , r∣R∣))⊤ ∈ Z∣R∣

yj = (y(pj , s1) y(pj , s2) . . . y(pj , st))⊤ ∈ Zt

Then constraints (14) for all r ∈ R but fixed pj ∈ P can be written
as

(AR It) ⋅ (
xj

yj

) = c̄j . (18)

Gathering (18) for every j ∈ [m], we obtain

⎛
⎜⎜⎜⎜⎜⎜⎜⎜
⎝

AR It 0 . . . 0

0 AR It . . . 0

⋮ ⋮ ⋱ ⋮

0 0 . . . AR It

⎞
⎟⎟⎟⎟⎟⎟⎟⎟
⎠
⋅

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

x1

y1

x2

y2

⋮

xm

ym

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜
⎝

c̄1

c̄2

⋮

c̄m

⎞
⎟⎟⎟⎟⎟⎟⎟⎟
⎠
. (19)

Constraints (15) for all r ∈ R can be written as

(I∣R∣ I∣R∣ . . . , I∣R∣) ⋅
⎛
⎜⎜⎜⎜⎜⎜⎜⎜
⎝

x1

x2

⋮

xm

⎞
⎟⎟⎟⎟⎟⎟⎟⎟
⎠
≤

⎛
⎜⎜⎜⎜⎜⎜⎜⎜
⎝

nr1

nr2

⋮

nr∣R∣

⎞
⎟⎟⎟⎟⎟⎟⎟⎟
⎠
. (20)

Recall also that N -fold IPs can handle lower and upper bounds on
variables, as required by constraints (16) and (17). Therefore, we can
observe that, summing up equations (19) and inequalities (20), con-
straints (14)–(17) can be formed as an N -fold IP5 whose coefficient
matrix is

A
(m)

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

I∣R∣ 0 I∣R∣ 0 . . . , I∣R∣ 0

AR It 0 . . . 0

0 AR It . . . 0

⋮ ⋮ ⋱ ⋮

0 0 . . . AR It

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

.

for the matrix A = (I∣R∣ 0

AR It
). ⊲

The algorithm by Hemmecke et al [21, Theorem 6.2] solves such

an N -fold IP for N = m in time ∣∣A∣∣O(t⋅∣R∣2+∣R∣⋅t2)
∞ ⋅ m3 ⋅ L

where L denotes the binary encoding of the constants on the right-
hand side of the IP, the upper and lower quotas, and the objec-
tive function6; in our case L = O(log(n + m + cmax)). Recall
that ∣R∣ ≤ (rmax + 1)t, and that each entry in A is an integer at
most rmax. We can observe that the running time is fixed-parameter
tractable w.r.t. parameter t + rmax.

C.9 Proof of Theorem 7

Theorem 7 (⋆). The following problems are FPT w.r.t. parameter
m + t + rmax∶
• PARETO-RR,
• MAXUTIL-RR on instances where the number of different utility

values is at most g(m+t+rmax) for some computable function g.

Proof. Recall that the reduction from PARETO-RR to MAXUTIL-
RR described in Observation 1 constructs an instance where utility
values fall into the range [m] with the sole exception of −m ⋅ n;
hence, the number of different utility values is at mostm+1. Hence,
it suffices to solve MAXUTIL-RR, as the first result follows from the
second one.

We are going to present an ILP for MAXUTIL-RR.

5 The fact that (20) is not an equality but an inequality does not cause prob-
lems, as shown by Knop et al. in the full version of their paper [24].

6 See Eisenbrand et al. [16] for a more recent, slightly faster algorithm.

First, let R = {ri ∶ fi ∈ F } contain all requirement vectors
associated with some family in our input instance I of MAXUTIL-
RR. Then ∣R∣ ≤ (rmax + 1)t due to the definition of rmax. Second,
let U = {ui ∶ fi ∈ F } contain all utility vectors associated with
some family. Since the number of different utility values is at most
g(m + t + rmax), we know that- ∣U∣ ≤ (g(m + t + rmax))m.

We define the type of a family fi ∈ F as (ri,ui), so two fami-
lies have the same type, if they have the same requirement and utility
vectors. Let T denote the set of all family types appearing in the in-
stance; then ∣T ∣ ≤ ∣R∣ ⋅ ∣U∣ ≤ (rmax + 1)t ⋅ (g(m+ t+ rmax))m,
so the number of family types is bounded by a function of the pa-
rameter. We define the two type sets T(r,⋅) = {(r,u) ∈ T ∶ u ∈ U}
and T(⋅,u) = {(r,u) ∈ T ∶ r ∈ R}. Also, for each type τ ∈ T we
let nτ denote the number of families of type τ in the instance.

We introduce a variable x(pj , τ) for each pj ∈ P and τ ∈ T
which is interpreted as the number of families of type τ assigned
to pj . The number of variables is therefore ∣T ∣ ⋅ m. Consider the
following integer program ILP2:

(ILP2) max ∑
pj∈P

∑
u∈U

∑
τ∈T(⋅,u)

u[j] ⋅ x(pj , τ) such that

∀pj ∈ P ∶ cj ≤ f ∑
r∈R

∑
τ∈T(r,⋅)

x(pj , τ) ⋅ r ≤ c̄j (21)

∀τ ∈ T ∶ 0 ≤ ∑
pj∈P

x(pj , τ) ≤ nτ (22)

Claim 10 (⋆). There exists an integer solution to ILP2 with value u∗

if and only if there exists a feasible assignments for I with utility u∗.

Proof. Interpret x(pj , τ) as the number of families of type τ that are
assigned to place pj . Then for each pj ∈ P ,

∑
r∈R

∑
τ∈T(r,⋅)

x(pj , τ) ⋅ r,

formulates exactly the load of pj , which implies that constraint (21)
expresses the condition of feasibility. Moreover, for each family
type τ ∈ T , the expression ∑pj∈P

x(pj , τ) formulates the total
number families of type τ assigned to some place. Hence, con-
straint (22) expresses the condition that the assignment can only as-
sign at most nτ families in total. This means that integer solutions
to ILP2 correspond to feasible assignments for I , and vice versa. Fi-
nally, notice that the expression

∑
pj∈P

∑
u∈U

∑
τ∈T(⋅,u)

u[j] ⋅ x(pj , τ)

formulates exactly the utility of the assignment, and thus a solution
for ILP2 with value u∗ implies the existence of a feasible assign-
ment σ with util(σ) = u∗, and vice versa. ⊲

Since the number of variables in ILP2 is bounded by a function of
the parameterm+t+rmax and the number of constraints is FPT w.r.t.
to the parameter, the problem can be solved in FPT time [27].

C.10 Proof of Proposition 7

Proposition 7 (⋆). FEASIBLE-, PARETO-RR, and MAXUTIL-RR
are in XP w.r.t. m + t and are FPT w.r.t. m + t + cmax.

Proof. We present an algorithm for MAXUTIL-RR; due to Observa-
tion 1, this can be used to solve PARETO-RR as well. Our approach is
a straightforward adaptation of the textbook dynamic programming
for KNAPSACK.

A load state is a tuple (ℓ1, . . . , ℓm) of vectors where ℓj ∈ Nt sat-
isfies ℓj ≤ c̄j for each pj ∈ P . Define Λ as the set of all load states,
and observe that ∣Λ∣ ≤ (cmax)mt. Define also Fi = {f1, . . . , fi} for
each i ∈ [n].

For each possible load state λ = (ℓ1, . . . , ℓm) ∈ Λ and each fam-
ily i ∈ [n] we compute the maximum utility T (λ, i) that can be
achieved by some assignment σ ∶ Fi → P with load(pj , σ) = ℓj
for each j ∈ [m]; if no such assignment exists, then we will write
T (λ, i) = −∞.

We start by computing the values T (λ, i), for i = 1 and for each
load state λ = (ℓ1, . . . , ℓm) ∈ Λ as follows:
• if ℓj = r1 for some j ∈ [m] and ℓj′ = 0 for each j ′ ∈ [m] \ {j},

then T (λ, 1) = u1[j];
• if ℓj = 0 for each j ∈ [m], then T (λ, 1) = 0;
• otherwise T (λ, 1) = −∞.
The correctness of these values can be seen by observing that there
are exactly m + 1 possible assignments for F1: either we leave fam-
ily fi unassigned, or we assign it to one of the places in P . Notice
that we do not require feasibility in the definition of T (λ, i).

After the above initialization for the case i = 1, we compute the
values T [λ, i] for each i = 2, . . . , n and for all λ ∈ Λ using the
following recursive formula. Let λ = (ℓ1, . . . , ℓm); then

T (λ, i) = max

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
T (λ, i − 1), max

j∈[m]
ℓj≥ri

{T (λ(j)
, i − 1) + ui[j]}

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
(23)

where
λ
(j)

= (ℓ1, . . . , ℓj−1, ℓj − ri, ℓj+1, ℓm). (24)

Finally, the algorithm returns the maximum utility achievable by
some feasible load state, that is, its output is

max{T ((ℓ1, . . . , ℓm), n) ∶ cj ≤ ℓj ≤ c̄j for each j ∈ [m]}.

Claim 11. Equation (23) correctly computes T (λ, i) for each λ ∈ Λ
and i ≥ 2.

Proof. We prove the claim by recursion on i, building on the fact
that the algorithm computes the values for T (λ, 1) for each λ ∈ Λ
correctly. Thus, suppose that the computations are correct for i − 1,
and consider the formula (23) for i.

Consider some load state λ = (ℓ1, . . . , ℓm) ∈ Λ. Assume first
that σ ∶ Fi → P is an assignment with maximum utility among
those that satisfy load(pj , σ) = ℓj for each j ∈ [m]; this means
T (λ, i) = util(σ). Let σ′ denote the restriction of σ to Fi−1. If σ
leaves fi unassigned, then the load of every place is the same under σ′

and under σ, which implies T [λ, i − 1] ≥ util(σ) by our inductive
hypothesis for i − 1. If σ assigns fi to some place pj ∈ P , then
the load of pj under σ′ is ℓj − ri, while the load of every other
place pj′ ∈ P \ {pj} is the same as under σ, that is, ℓj′ . This means
that T [λ(j)

, i − 1] ≥ util(σ′) = util(σ) − ui[j] where λ(j) is
defined by (24), again using our hypothesis. Hence, irrespective of
the value σ(fi), the value on the right-hand side of (23) is at least
util(σ) = T (λ, i).

It remains to show the reverse direction, so assume that the right-
hand side of (23) is û; we are going create an assignment σ̂ which
satisfies load(pj , σ̂) = ℓj for each j ∈ [m] and has utility at least û.

First, if û = T (λ, i − 1), then by our inductive hypothesis we know
that there exists an assignment σ ∶ Fi−1 → P with util(σ) = û and
satisfying ℓj = load(pj , σ) for each j ∈ [m]. Then setting σ̂ = σ
is sufficient. Otherwise, the right-hand side of (23) must be defined
by û = T (λ(j)

, i − 1) for some index j ∈ [m]. By our inductive
hypothesis, there exists some assignment σ′ ∶ Fi−1 → P with utility
u
⋆ − ui[j] that yields the load state λ(j) as defined by (24), i.e., for

which the load of pj is ℓj − ri while the load of each remaining
place pj′ is ℓj′ . In this case, we can extend σ′ by assigning fi to pj ,
giving us the assignment σ̂ with the required properties and utility û.

⊲

Due to Claim 11 and by the definitions of the function T (⋅),
the correctness of our algorithm follows. Each computation step de-
scribed by the recursion (23) requires O(m) time, and we perform
it at most ∣Λ∣n times. By ∣Λ∣ ≤ (1 + cmax)mt, the overall running
time is (1 + cmax)mt

O(nm).
By using standard techniques, we can not only compute the utility

of an optimal, feasible assignment, but also determine a maximum-
utility feasible assignment itself.

C.11 Proof of Proposition 8

Proposition 8 (⋆). FEASIBLE-, PARETO- and MAXUTIL-RR are in
XP w.r.t. the desired utility u∗ if there are no lower quotas.

Proof. Since there are no lower quotas, we have no reason to match
a family fi ∈ F to a place pj ∈ P if ui[j] ≤ 0. Since utilities
are integral, every pair fi ∈ F, pj ∈ P such that σ(fi) = pj and
ui[j] > 0 contributes at least 1 to the final utility. Thus we can
iterate over all subsets of family-place pairs of size at most u∗ such
that every pair has a positive utility, and verify whether any of them
gives raise to a feasible assignment σ with util(σ) ≥ u

∗. There are
at most O((nm)u

∗

) subsets of pairs.

Appendix D Further parameterizations

In this section we discuss our results regarding parameters that were
not included in detail in the main paper. We show FPT results for the
parameters rΣ, cΣ, and uΣ, and present in Tables 2 and 3 a nearly
complete complexity picture regarding the parameters umax, u

∗,
and n∼.

We define n∼ as the number of families who have ties in their pref-
erences. That is, the number of families fi ∈ F such that there are
two places pj , pj′ ∈ P such that fi finds both pj and pj′ accept-
able and is indifferent between them. Many of the hardness-results
for this parameter follow from the fact that PARETO-RR is NP-hard
even when there is only one place, which is why we did not include it
in the main paper. We do however discover that PARETO-RR is FPT
w.r.t. n∼ when there are no lower quotas (Proposition 5).

Note that families with all-zero requirement vectors can be as-
signed arbitrarily without affecting the feasibility, and thus we may
disregard such families and assume that n ≤ ∑fi∈F

∑sk∈S
ri[k] =

rΣ. Therefore, Proposition 6 implies fixed-parameter tractability of
our problems when parameterized by the sum of all requirements.

Corollary 1. FEASIBLE-, PARETO-, and MAXUTIL-RR are FPT
w.r.t. rΣ.

Another simple observation yields fixed-parameter tractability for
parameter uΣ in the case when there are no lower quotas. Indeed,

Other param. umax u
∗

LQ=0 / LQ≠0 LQ=0 / LQ≠0

− NPh◦/NPh◦ [19] FPT/NPh◦ [T4]/[P1]
m W1h◦/W1h◦ [P1] FPT/W1h◦ [T4]/[P1]

XP/XP [P7] FPT/XP [T4]/[P7]
rmax NPh/NPh [T2] FPT/?, XP+ [T4]/[R3]

eq. util. FPT/FPT [T1] FPT/FPT [T1]

− NPh◦/NPh◦ [19] W1h◦/NPh◦ [19]/[P1]
XP/NPh◦ [P8]/[P1]

t NPh◦/NPh◦ [19] ?,XP/NPh◦ [P8]/[P1]
m NPh◦/NPh◦ [19] W1h◦/NPh◦ [19]/[P2]

XP/NPh◦ [P8]/[P2]
rmax NPh◦/NPh◦ [19] W1h◦/NPh◦ [19]/[P2]

XP/NPh◦ [P8]/[P2]

m + t W1h◦/W1h◦ [P1] ?/W1h◦ [P1]
XP/XP [P7] XP/XP [P7]

m + rmax NPh◦/NPh◦ [19] W1h◦/NPh◦ [19]/[P2]
XP/NPh◦ [P8]/[P2]

t + rmax NPh/NPh [T2] ?,XP/? [P8]
eq. util. FPT/FPT [T6] FPT/FPT [T6]

m + t + rmax FPT/FPT+ [R2] FPT/FPT+ [R2]

Table 2. Additional results regarding parameters u∗ and umax for MAXU-
TIL-RR. Above: Results for the single-service case (t = 1). We skip the pa-
rameterization by n since for this case since it is FPT for the more general
case. Bold faced ones are obtained in this paper. LQ=0 (resp. LQ≠0) refers to
the case when lower quotas are zero (resp. may be positive). Here, NPh means
that the problem remains NP-hard even if the corresponding parameter(s) are
constant. All hardness results hold for binary utilities. Additionally, ◦ means
hardness results hold even for equal utilities, and + means the algorithm only
works when the utilities are non-negative.

Other param. n∼

LQ=0 / LQ≠0

− FPT/NPh [P5]/[P1]
m FPT/W1h [P5]/[P1]

FPT/XP [P5]/[P7]
rmax FPT/NPh [P5]/[R1]

− FPT/NPh [P5]/[P2]

m FPT/NPh [P5]/[P2]
t FPT/NPh [P5]/[P1]
rmax FPT/NPh [P5]/[P2]

m + t FPT/W1h [P5]/[P1]
FPT/XP [P5]/[P7]

m + rmax FPT/NPh [P5]/[P2]
t + rmax FPT/NPh [P5]/[R1]

m + t + rmax FPT/FPT [T7]
Table 3. Additional results regarding parameter n∼ for PARETO-RR. Since
the problem is FPT w.r.t. n∼ when there are no lower quotas by Proposition 5,
we only look at the general case. Above: Results for the single-service case
(t = 1). We skip the parameterization by n since for this case since it is FPT
for the more general case. Here, NPh means that the problem remains NP-
hard even if the corresponding parameter(s) are constant.

in such a case we can discard all families with all-zero utility vec-
tors, as they can be deleted from any assignment without changing
its feasibility, acceptability, or total utility. Therefore, we may as-
sume that n ≤ ∑fi∈F

∑pj∈P
ui[j] = uΣ, leading to the following

consequence of Proposition 6.

Corollary 2. MAXUTIL-RR is FPT w.r.t. uΣ if there are no lower
quotas.

Finally, it is also not hard to see that setting cΣ as the parameter
also yields fixed-parameter tractability.

Proposition 9. FEASIBLE-, PARETO-, and MAXUTIL-RR are FPT
w.r.t. cΣ.

Proof. By definition, we have cmax ≤ cΣ. It is also clear we can
discard all places with all-zero upper quotas, which means that we
may assume m ≤ cΣ. Finally, we can also discard all services for
which every place has zero upper quota (removing also all families
that require such a service), implying that we may suppose t ≤ cΣ.
Hence we have m + t + cmax ≤ 3cΣ, and the result follows from
Proposition 7.

D.1 Additonal Results

In this section, we make some remarks on how existing results can be
modified to show parameterized results regarding umax, u

∗ and n∼.

Remark 1. PARETO-RR for t = 1 is NP-hard even when rmax =

cmax = 2 and no family has ties in its preferences.

Proof. We modify the proof of Theorem 2. Observe that the total
service requirements of the families are R = 6∣X∣, and the total
upper quotas of the localities are Q = 2∣C∣ + 4∣X∣. Since every
literal appears in two clauses, and each clause has three literals, there
are 4∣X∣

3
clauses. Thus Q = 2

4∣X∣
3

+ 4∣X∣ ≥ 6∣X∣ = R. We create
Q−R many dummy families which each require one unit of service.
They find all places acceptable, and rank them in an arbitrary order.
We also modify the preferences of the existing families so that they
rank all the families they find acceptable in an arbitrary order. Now,
n∼ = 0. We set the lower quotas of the places equal to their upper
quotas.

Now there is a feasible and acceptable assignment if and only
if there is an assignment that assigns every family to a place it
finds acceptable. Since the dummy families find every place accept-
able, it is sufficient to look into finding an assignment that places
the original families to a place they find acceptable. The proof of
Theorem 2 shows this is NP-hard. Since a Pareto-optimal, feasible,
and acceptable assignment must assign every family to a place they
find acceptable, PARETO-RR must be NP-hard even when t = 1,
rmax = cmax = 2 and no family has ties in its preferences.

Remark 2. If utilities are non-negative, MAXUTIL-RR is FPT w.r.t.
m+ t+ rmax + umax. If there are no lower bounds, MAXUTIL-RR
is FPT w.r.t. m + t + rmax + umax regardless of the utilities.

Proof. If there are no lower bounds, we can set any negative utility
to −1. There is never a reason to match a family to a place where it
has negative utility.

We can observe the statement from the proof of Theorem 7. We
know that the number of different utility vectors families may have
is at most (umax + 1)m (or (umax + 2)m when there are no lower
bounds) and the number of different requirement vectors is, as be-
fore, at most (rmax + 1)t. Thus the number of different family types
is at most um

max(rmax+1)t (or (umax+2)m(rmax+1)t when there
are no lower bounds), which is a function of the parameter. Rest of
the proof proceeds as in the proof of Theorem 7.

Remark 3. MAXUTIL-RR is XP w.r.t. rmax + u∗ when t = 1 and
the utilities are non-negative.

Proof. Similarly to the proof of Proposition 8, we iterate over all the
size at most u∗ subsets of family-place pairs, and see if assigning
them according to the pairs gives sufficient utility. If yes, we assign
the families in the pairs to their places and update the upper and lower
quotas accordingly. As we have already obtained sufficient utility, we
can ignore the utilities of the families and use Theorem 1 to find a
feasible assignment for the updated instance in FPT-time w.r.t. rmax.

	Introduction
	Preliminaries
	Single service
	Multiple services
	Conclusion
	Additional material for Section ??
	Example for Refugee Resettlement
	Proof of rem:maxutil-vs-pareto

	Additional material for Section ??
	Proof of prop:wtbinpacking
	Proof of obs:superblock
	Proof of clm:ILP-rmax-iff
	Proof of thm:satwithties
	Proof of clm:DPbyfamilies-bounded-diff
	Proof of clm:DPbyfamilies-bounded-diff-2
	Proof of prop:fpt-finalutilt1

	Additional material for Section ??
	Proof of propfeashardm
	Proof of obs:Pareto-vs-completeness
	Proof of prop:paretotwolocs
	Proof of thm:paretolocmaxcap
	Proof of thm:paretoPm1
	Proof of prop:fpttieno
	Proof of prop:fpt-n
	Proof of thm:fptservmaxreq
	Proof of thm:fptservmaxcaploc
	Proof of xp:mt
	Proof of xp:finalutil

	Further parameterizations
	Additonal Results

