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ABSTRACT

Consider elections where the set of candidates is partitioned into
parties, and each party must nominate exactly one candidate. The
Possible President problem asks whether some candidate of a
given party can become the winner of the election for some nom-
inations from other parties. We perform a multivariate compu-
tational complexity analysis of Possible President for a range
of Condorcet-consistent voting rules, namely for Copeland𝛼 for
𝛼 ∈ [0, 1] andMaximin. The parameters we study are the number of
voters, the number of parties, and the maximum size of a party. For
all voting rules under consideration, we obtain dichotomies based
on the number of voters, classifying NP-complete and polynomial-
time solvable cases. Moreover, for each NP-complete variant, we
determine the parameterized complexity of every possible parame-
terization with the studied parameters as either (a) fixed-parameter
tractable, (b)W[1]-hard but in XP, or (c) para-NP-hard, outlining
the limits of tractability for these problems.
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1 INTRODUCTION

Political elections are always preceded by a turbulent phase where
parties select their nominated candidates for the upcoming election.
Clearly, this process has a great influence on the outcome of the
election, and therefore it is only natural that political parties engage
in all kinds of strategic behavior when choosing their nominees.
We focus on the case which models presidential elections in the
sense that each party needs to nominate exactly one person among
its possible candidates for presidency.

A naive approach would expect each party to simply choose
its “best” candidate—however, in practice it is rarely the case that
there is a single candidate that can be considered the best in all
scenarios. Indeed, a given party may find that different candidates
have different chances of winning the upcoming election depend-
ing on the nominees of the remaining parties. Parties may elect
their nominees through primaries (an approach studied by Borodin
et al. [6]), but a more careful process may take into account the
estimated preferences of all voters over the possible nominees, and
not only the preferences of party members.

Following the formal model of candidate nomination proposed
by Faliszewski et al. [12], we assume that the preferences of all
voters over all potential candidates are known, and in the reduced
election obtained as a result of each party nominating a unique
candidate, the preferences of each voter over these nominees are
simply the restriction of its preferences over the whole pool of can-
didates. Faliszewski et al. asked two natural questions: the Possible
President problem asks whether a given party can nominate some

candidate 𝑐 in such a way that 𝑐 can become the winner of the
election for some nominations from the remaining parties, and the
Necessary President problem asks whether some nominee 𝑐 of the
given party will be the winner irrespective of all other nominations.

In this paper we study the Possible President problem in elec-
tion systems that use some Condorcet-consistent voting rule. A can-
didate that defeats all other candidates in a pairwise comparison is
called the Condorcet winner, and voting rules that always choose
the Condorcet winner if it exists are said to be Condorcet-consistent.
We focus our investigations on the Condorcet-consistent voting
rules Maximin and Copeland𝛼 for 𝛼 ∈ [0, 1].

Condorcet-consistent voting rules are widely used in sports com-
petitions, but have also been applied by e.g., the Pirate Party in
Sweden and in Germany, and various organizations such as Debian,
Gentoo Foundation, and Wikimedia [21]. Foley [15] has suggested
to use Condorcet-consistent round-robin voting for primary elec-
tions, followed by a general election between the top two candidates,
to overcome the serious flaw in US presidential elections that the
winner may not be the preferred candidate of the majority of voters.

Related Work. Faliszewski et al. [12] dealt only with Plurality,
arguably the simplest type of elections, and derived several NP-
hardness results for both Possible andNecessary President. They
also showed that when preferences are single-peaked, Necessary
President can be decided in polynomial time. By contrast, they
found that Possible President remains NP-complete even for
single-peaked preferences, though becomes tractable if the candi-
dates of each party appear consecutively on the societal axis.

Misra [18] extended the results of Faliszewski et al. by studying
the parameterized complexity of Possible President. She exam-
ined the number 𝑡 of parties as the parameter, and proved that
the problem is W[2]-hard and in XP, and becomes fixed-parameter
tractable (FPT) with parameter 𝑡 when restricted to 1D-Euclidean
preference profiles. She also strengthened previous results by prov-
ing that Possible President for Plurality is NP-hard even if all
parties have size at most two, and preferences are both single-
peaked and single-crossing; hence, the problem is para-NP-hard
when parameterized by the size of the largest party even on a very
restricted domain. Misra asked whether Possible President for
Plurality is FPT when parameterized by the number of voters; this
questions has been answered negatively by Schlotter et al. in [20].

Possible President for voting rules other than Plurality have
been first treated by Cechlárová et al. [7]. Namely, they dealt with
positional scoring rules (ℓ-Approval, ℓ-Veto, and Borda) and with
Condorcet-consistent rules Copeland, Llull, and Maximin. They
proved that Possible President is NP-hard for each of these rules,
even when the maximum size of a party is two; they left the com-
plexity for Copeland𝛼 with 𝛼 ∈ (0, 1) open.

Schlotter et al. [20] obtained results concerning the parame-
terized complexity of Possible President for several classes of



# voters Copeland𝛼 Copeland𝛼 Maximin Maximin
classical param. 𝑡 classical param. 𝑡

𝑛 = 2
{
𝛼 = 1: P –

}
P –

𝛼 < 1: NP-c open
(T3.1,T3.2) (T4.1)

𝑛 = 3 NP-c open P –
(T3.3) (T4.2)

𝑛 ≥ 4 even NP-c W[1]-h, XP NP-c FPT
(T3.2,T3.6) (T3.8) (T4.3) (T4.4)

𝑛 ≥ 5 odd NP-c W[1]-h, XP NP-c FPT
(T3.3) (T3.9) (T4.3) (T4.4)

Table 1: Summary of our results on the classical and param-

eterized complexity of the Possible President problem.

Our parameterized results for NP-hard cases consider pa-

rameter 𝑡 , the number of parties. “NP-c” and “W[1]-h” stand
for “NP-complete” and “W[1]-hard”, respectively. All our NP-
completeness results hold for maximum party size 𝜎 = 2.

positional scoring rules, including Borda and nontrivial general-
izations of ℓ-Approval and ℓ-Veto. The parameters they examined
were the number of voters, the number of voter types, the number
of parties, the maximum size of a party and their combinations.

Further results concerning elections with parties that nominate
candidates have been provided by Lisowski [16]. He considered
directed graphs called tournaments whose vertices correspond to
candidates, and each directed arc (𝑎, 𝑏) indicates that a majority of
voters prefers candidate 𝑎 to candidate 𝑏. Among others, Lisowski
observed that it is possible to check whether a given party has a
possible Condorcet winner in polynomial time, while the problems
to decide whether a Nash equilibrium exists in the associated game
and whether a given party has a Condorcet winner in some Nash
equilibrium are NP-complete.

For a broader view on research related to candidate nomination,
we refer the reader to Appendix A.
Our contribution.We perform a detailed multivariate complex-
ity analysis using the framework of parameterized complexity for
Possible President for two types of Condorcet-consistent voting
rules: Copeland𝛼 for every 𝛼 ∈ [0, 1] and Maximin. Our parameters
are the following: the number 𝑛 of voters, the number 𝑡 of parties,
and the size 𝜎 of the largest party. Table 1 summarizes our results.

For Copeland𝛼 elections with 𝛼 ∈ [0, 1], we obtain a complete
computational dichotomy for the complexity of Possible Presi-
dent as a function of the number of voters:

Theorem 1.1. Let 𝑛 be a fixed integer and 𝛼 ∈ [0, 1]. Then Pos-

sible President for Copeland
𝛼
is NP-complete when restricted to

instances with 𝑛 voters and maximum party size 𝜎 = 2, if
(a) 𝑛 ≥ 3, or
(b) 𝑛 = 2 and 𝛼 < 1.

By contrast, Possible President for Copeland
1
(i.e., Llull) restricted

to instances with 2 voters is polynomial-time solvable.

It transpires that Possible President for Copeland𝛼 for arbi-
trary 𝛼 ∈ [0, 1] is para-NP-hard when parameterized by 𝑛 + 𝜎 ,
i.e., both the number of voters and the maximum party size. We

strengthen this result by showing that parameterizing the problem
with 𝑡 , the number of parties, the problem remainsW[1]-hard even
if the number of voters is a constant 𝑛 ≥ 4. Since the problem is
easily solvable in 𝜎𝑡𝑛𝑂 (1) time [20], this yields a classification of
all parameterized (NP-hard) variants of Possible President for
Copeland𝛼 , with parameters chosen arbitrarily from {𝑛, 𝜎, 𝑡}, as
either (i) FPT, (ii)W[1]-hard and in XP, or (iii) para-NP-hard.

We remark that despite this complete classification, we leave
the computational complexity open for certain constant values
of 𝑛; namely, we could not resolve the parameterized complexity of
Possible President for Copeland𝛼 for parameter 𝑡 when 𝑛 ∈ {2, 3}.

For the Maximin voting rule, we again obtain a complete di-
chotomy with respect to the number 𝑛 of voters:

Theorem 1.2. Let 𝑛 be a fixed integer. Then Possible President

for Maximin voting rule for instances with 𝑛 voters is

(a) polynomial-time solvable if 𝑛 ≤ 3;
(b) NP-complete if 𝑛 ≥ 4, even for maximum party size 𝜎 = 2.

Contrasting the Copeland𝛼 voting rule, we show that Possible
President forMaximin is FPTwhen parameterized by the number 𝑡
of parties. This tractability result is achieved by a reduction of
our problem to a special polynomial-time solvable version of the
Partitioned Subdigraph Isomorphism problem. Thus, our results
for Maximin yield a complete classification of all parameterized
(NP-hard) variants of the problem as either FPT or para-NP-hard.
In fact, we settle the complexity of the problem for each variant
where 𝑛 and 𝜎 both may be restricted to arbitrary fixed integers as
either NP-complete and FPT with 𝑡 , or polynomial-time solvable.
Techniques. Our algorithmic results use standard techniques from
parameterized complexity and algorithmic graph theory. Our hard-
ness results rely on intricate constructions, and we also develop the
technique of using so-called flat elections with three voters and𝑚
candidates where each candidate defeats exactly 𝑚−1

2 candidates;
this method might be of independent interest.

Results marked with (★) have their proofs deferred to the appen-
dices; the symbol ★ functions as a link to the proof.

2 PRELIMINARIES

We use the notation [𝑖] = {1, 2, . . . , 𝑖} for each positive integer 𝑖 .
We assume familiarity with basic graph theory and the frame-

work of parameterized complexity. Besides providing all necessary
definitions in Appendix B, we refer the reader to the books [8, 11]
for an introduction into parameterized complexity, and to the
books [2, 9] for the standard notation on graphs we adopt.
Elections. An election E = (𝐶,𝑉 , {≻𝑣}𝑣∈𝑉 ) consists of a finite
set 𝐶 of candidates, a finite set 𝑉 of voters, and the preferences
of voters over candidates. We assume that the preferences of each
voter 𝑣 are represented by a strict linear order ≻𝑣 over 𝐶 , where
𝑐 ≻𝑣 𝑐′ means that voter 𝑣 prefers candidate 𝑐 to candidate 𝑐′. We
denote the set of all elections over a set 𝐶 of candidates by E𝐶 . A
voting rule 𝑓 : E𝐶 → 2𝐶 chooses a set of winners of the election.

Our model also includes a partition P = {𝑃1, . . . , 𝑃𝑡 } of the set𝐶
of candidates; each set 𝑃 𝑗 is interpreted as a party that has to decide
whom among its potential candidates to nominate for the election.

Formally, a reduced election arises after all parties have nominated
a unique candidate, leading to a reduced candidate set 𝐶′ ⊆ 𝐶



such that |𝐶′ ∩ 𝑃 𝑗 | = 1 for each 𝑗 ∈ [𝑡]. We can then define the
reduced election as E𝐶′ = (𝐶′,𝑉 , {≻′𝑣}𝑣∈𝑉 ) where the preference
relation ≻′𝑣 of each voter 𝑣 ∈ 𝑉 is the restriction of her original
preference relation ≻𝑣 to 𝐶′.

Now we formulate our problem of interest, as introduced in [12].

Problem Possible President for voting rule 𝑓 :
Input: An election E = (𝑉 ,𝐶, {≻𝑣}𝑣∈𝑉 ) with a set 𝑉 of voters
and a set 𝐶 of candidates, a partition P of 𝐶 into parties, and a
distinguished party 𝑃★ ∈ P.
Question: Is there a candidate 𝑝 ∈ 𝑃★ such that for some nomi-
nations of other parties leading to a reduced candidate set 𝐶′, 𝑝
is the unique winner of the reduced election E𝐶′ according to 𝑓 ?

Notice that we consider the unique winner model, i.e., we aim for
a set of nominations that yield 𝑓 (E𝐶′ ) = {𝑝} for the candidate 𝑝
nominated by the distinguished party in the reduced election E𝐶′ .

Voting rules. In this paper we shall concentrate on two Condorcet-
consistent rules. For two candidates 𝑎, 𝑏 ∈ 𝐶 , we let𝑁E (𝑎, 𝑏) denote
the number of voters who prefer candidate 𝑎 to candidate 𝑏 in elec-
tion E; we shall omit the subscript when E is clear from the context.
If 𝑁E (𝑎, 𝑏) > 𝑁E (𝑏, 𝑎) we say that candidate 𝑎 defeats candidate 𝑏
in E; if 𝑁E (𝑎, 𝑏) = 𝑁E (𝑏, 𝑎) and 𝑎 ≠ 𝑏, then candidates 𝑎 and 𝑏
are tied in E. The Condorcet winner is the candidate that defeats all
other candidates; a voting rule is Condorcet consistent, if it always
selects the Condorcet winner whenever it exists.

The Copeland𝛼 voting rule, as defined by Faliszewski et al. [13],
assigns to some candidate 𝑎 a score of 1 for each candidate de-
feated by 𝑎, and a score of 𝛼 for each candidate tied with 𝑎, so the
Copeland𝛼 -score of𝑎 isCpl𝛼E (𝑎) =

∑
𝑏 defeated by 𝑎 1+

∑
𝑏 tied with 𝑎 𝛼

in an election E. The winners of E are all candidates with the max-
imum score. The voting rule obtained for 𝛼 = 1 is called the Llull
rule, and we refer to the case 𝛼 = 0 as the Copeland rule.

In the Maximin voting rule, the Maximin-score of candidate 𝑎 in
election E over candidate set𝐶 isMME (𝑎) = min𝑏∈𝐶\{𝑎} 𝑁E (𝑎, 𝑏),
and the winners of E are again the candidates with maximum score.

Notice that Copeland𝛼 as well as Maximin winners can be com-
puted efficiently for any election. Therefore it is easy to see that
Possible President for these voting rules belongs to the class NP.

3 COPELAND
𝛼
VOTING RULE

If there are only two voters, in Section 3.1 we show that Possi-
ble President for Copeland𝛼 is polynomially solvable if 𝛼 = 1,
(Theorem 3.1), but NP-hard if 𝛼 < 1 (Theorem 3.2).

For three voters, we show in Section 3.2 that Copeland is NP-
complete (Theorem 3.3). If the number of voters is odd, then no ties
occur, and hence this result holds for Copeland𝛼 for any 𝛼 ∈ [0, 1].
The proof is quite involved, and provides a reduction from a special
variant of the NP-complete problem Maximum Matching with
Couples, using the crucial notion of flat elections.

The case with four or more voters is treated shortly in Section 3.3.
We address the complexity of Possible President for Copeland

when parameterized by the number of parties in Section 3.4.

3.1 Two Voters

Let us first show that Possible President for the Llull voting rule
is easy if there are only two voters. The key observation that yields
tractability is that the “defeat” relation is transitive for two voters:

Observation 1. In an election with two voters, if candidate 𝑎

defeats candidate 𝑏, and 𝑏 defeats candidate 𝑐 , then 𝑎 also defeats 𝑐 .

Proof. Since 𝑏 must follow 𝑎 in the preference lists of both
voters, and 𝑐 must follow 𝑏 in both lists too, we immediately know
that 𝑐 follows 𝑎 in the preference list of both voters. □

Theorem 3.1 (★). Possible President for the Llull voting rule is
polynomial-time solvable if there are only two voters.

Proof sketch. Using Observation 1, one can prove that accord-
ing to the Llull rule, some candidate 𝑝 can be a unique winner in
a reduced election E if and only if 𝑝 defeats every other nominee:
intuitively, assuming that 𝑝 is the unique winner because every
nominee other than 𝑝 is defeated by some other nominee, we arrive
at a cycle in the defeat relation, a contradiction showing that 𝑝 can
become the unique winner only by defeating all nominees.

This offers a quadratic-time algorithm to solve Possible Presi-
dent for Llull voting with two voters: we check for each candidate 𝑝
in the distinguished party 𝑃 whether 𝑝 can become the unique win-
ner, which happens if and only if every other party contains at least
one candidate that is defeated by 𝑝 .

By contrast, a reduction from 3-Coloring shows that Copeland𝛼
for 𝛼 < 1 is intractable already for two voters, even if 𝜎 = 2.

Theorem 3.2 (★). For each 𝛼 ∈ [0, 1), Possible President for

Copeland
𝛼
is NP-complete even for instances with two voters and

maximum party size 𝜎 = 2.

3.2 Three Voters

As already mentioned, for an odd number of voters no two candi-
dates can be tied, so the value of 𝛼 is irrelevant, and the Copeland
and Llull voting rules coincide. We show the following.

Theorem 3.3 (★). Possible President for Copeland isNP-complete

even for three voters and maximum party size 𝜎 = 2.

To showTheorem 3.3, wewill reduce from a special case of anNP-
complete problem Maximum Matching with Couples, described
in Section 3.2.1. We present the most important ingredient of the
reduction, the notion of flat elections in Section 3.2.2, and follow
with a sketch of the reduction in Section 3.2.3.

3.2.1 A special case of Maximum Matching with Couples. We
are going to reduce from a variant of the following problem called
Maximum Matching with Couples. This problem involves a set 𝑆
of singles, a set 𝐶 of couples1 and a set 𝑅 of rooms. Each room has
capacity 2, meaning that it can accommodate either a couple or
at most two singles. Moreover, we need to match everyone to a
room that they find acceptable, where acceptability is described by

1Although in the context of elections𝐶 denotes the set of candidates, this slight clash
of notation will not cause any confusion.



a bipartite graph 𝐺 = ((𝑆 ∪𝐶) ⊎ 𝑅, 𝐸). A complete matching
2 in 𝐺

is then an edge set𝑀 ⊆ 𝐸 that contains exactly one edge incident
to each vertex in 𝑆 ∪𝐶 and satisfies |𝑀 (𝑟 ) ∩ 𝑆 | + 2|𝑀 (𝑟 ) ∩𝐶 | ≤ 2
for each room 𝑟 ∈ 𝑅, where 𝑀 (𝑟 ) = {𝑥 ∈ 𝑆 ∪𝐶 : 𝑟𝑥 ∈ 𝑀} denotes
the set of singles and couples matched to 𝑟 . It is known that the
following problem is NP-complete [4, 5].
ProblemMaximum Matching with Couples:
Input: Sets 𝑆 ,𝐶 , and𝑅 of singles, couples and rooms, respectively,
and a bipartite graph 𝐺 = ((𝑆 ∪𝐶) ⊎ 𝑅, 𝐸).
Question: Is there a complete matching in 𝐺?
We shall use a special case of Maximum Matching with Cou-

ples as specified in Theorem 3.4. The proof of its NP-completeness
relies on a series of simple reduction rules that transform any in-
stance into an equivalent one, achieving the properties required in
Theorem 3.4 step by step; see Appendix C.3.1.

Theorem 3.4 (★). Maximum Matching with Couples remains

NP-complete even if |𝑅 | = |𝑆 |/2 + |𝐶 |, and
• each vertex in the input graph has degree 2 or 3, and
• each room adjacent to both singles and couples is adjacent to

exactly two singles and one couple.

3.2.2 Flat elections with three voters. Working towards a reduction
from Maximum Matching with Couples to Possible President
for Copeland voting with three voters, we next present a construc-
tion for an election E𝑞 over 3𝑞 candidates for some 𝑞 ∈ N+ and with
three voters, in which every candidate defeats the same number
of candidates. We will call such elections flat, i.e., an election is
flat if all candidates receive the same Copeland-score. An election
with𝑚 candidates where𝑚 is odd can only be flat if each candidate
defeats 𝑚−1

2 other candidates. To see this, consider the tournament
underlying the election: clearly, we can only have all out-degrees
equal to some 𝑑 , if the tournament has𝑚 · 𝑑 arcs, i.e.,𝑚 · 𝑑 =

(𝑚
2
)
.

We propose a recursive construction for E𝑞 in Definition 3.5.

Definition 3.5. Let the candidate set of E1 be 𝐶1 = {𝑎, 𝑏, 𝑐}, and
let𝑤 ,𝑤 ′, and𝑤 ′′ be our three voters with preferences

𝑤 : 𝑎, 𝑏, 𝑐;
𝑤 ′ : 𝑐, 𝑎, 𝑏;
𝑤 ′′ : 𝑏, 𝑐, 𝑎.

Notice that 𝑎 defeats 𝑏, 𝑏 defeats 𝑐 , and 𝑐 defeats 𝑎. Therefore, each
of the candidates obtains a Copeland𝛼 -score of 1.

For 𝑞 ≥ 1, we are going to reuse the candidate set 𝐶𝑞 of the
election E𝑞 to construct the candidate set 𝐶𝑞+1 of E𝑞+1 by intro-
ducing three copies of each candidate 𝑐 ∈ 𝐶𝑞 which will be denoted
by 𝑐 ⊙ 1, 𝑐 ⊙ 2, and 𝑐 ⊙ 3. Let 𝐿𝑞 (𝑤), 𝐿𝑞 (𝑤 ′), and 𝐿𝑞 (𝑤 ′′) denote the
preference lists of voters𝑤 ,𝑤 ′, and𝑤 ′′, respectively, in E𝑞 . For a
list 𝐿 of candidates from𝐶𝑞 and each ℎ ∈ [3], let us denote by 𝐿 ⊙ℎ
the list obtained from 𝐿 by replacing each candidate 𝑐 in 𝐿 by its
ℎ-th copy 𝑐 ⊙ ℎ. Using this notation, we are now ready to define
the preferences of the voters in E𝑞+1:

𝑤 : 𝐿𝑞 (𝑤) ⊙ 1, 𝐿𝑞 (𝑤) ⊙ 2, 𝐿𝑞 (𝑤) ⊙ 3;
𝑤 ′ : 𝐿𝑞 (𝑤 ′) ⊙ 3, 𝐿𝑞 (𝑤 ′) ⊙ 1, 𝐿𝑞 (𝑤 ′) ⊙ 2;
𝑤 ′′ : 𝐿𝑞 (𝑤 ′′) ⊙ 2, 𝐿𝑞 (𝑤 ′′) ⊙ 3, 𝐿𝑞 (𝑤 ′′) ⊙ 1.

(1)

2Note that we do not require𝑀 to be a matching in the classic graph-theoretic sense,
since we allow edges in𝑀 to share endpoints in 𝑅.

Notice that each candidate in E𝑞+1 is then of the form

(((𝑥 ⊙ ℎ1) ⊙ ℎ2) · · · ⊙ ℎ𝑞−1) ⊙ ℎ𝑞 (2)

for some 𝑥 ∈ {𝑎, 𝑏, 𝑐} and indices ℎ1, ℎ2, . . . , ℎ𝑞 ∈ [3].
We will say that two candidates 𝑐 and 𝑐′ in E𝑞+1, having the

form (2) for 𝑥 and 𝑥 ′ in {𝑎, 𝑏, 𝑐} and indicesℎ1, . . . , ℎ𝑞 andℎ′1, . . . , ℎ
′
𝑞

from [3], respectively, belong to the same group at level 𝑞′ for some
𝑞′ ∈ [𝑞], if ℎ𝑖 = ℎ′

𝑖
for each 𝑞′ ≤ 𝑖 ≤ 𝑞; accordingly, we define

a 𝑞′-level group as a maximal set of candidates that belong to the
same group at level 𝑞′. Notice that restricting the election E𝑞+1 to
a 𝑞′-level group, we obtain a copy of the election E𝑞′ .

In particular, restricting E𝑞+1 to a 𝑞-level group, that is, to the set
of candidates contained in 𝐿𝑞 (𝑤) ⊙ ℎ for some ℎ ∈ [3], we obtain a
copy of the election E𝑞 . Observing the preferences of the voters as
given in (1), the following facts are immediate:

Observation 2. For each 𝑞 ∈ N, the election E𝑞+1 has the follow-
ing properties:

• each candidate in 𝐿𝑞 (𝑤) ⊙1 defeats all candidates in 𝐿𝑞 (𝑤) ⊙
2, and is defeated by all candidates in 𝐿𝑞 (𝑤) ⊙ 3;

• each candidate in 𝐿𝑞 (𝑤) ⊙2 defeats all candidates in 𝐿𝑞 (𝑤) ⊙
3, and is defeated by all candidates in 𝐿𝑞 (𝑤) ⊙ 1;

• each candidate in 𝐿𝑞 (𝑤) ⊙3 defeats all candidates in 𝐿𝑞 (𝑤) ⊙
1, and is defeated by all candidates in 𝐿𝑞 (𝑤) ⊙ 2.

Furthermore, for each ℎ ∈ [3] and each 𝑐, 𝑐′ ∈ 𝐶𝑞 , candidate 𝑐 ⊙ ℎ
defeats candidate 𝑐′ ⊙ ℎ in E𝑞+1 if and only if 𝑐 defeats 𝑐′ in E𝑞 .

By Observation 2, E𝑞+1 for some 𝑞 ∈ N+ is flat if and only E𝑞 is
flat. Since E1 is flat, we obtain the following consequence.

Observation 3. For each integer 𝑞 ≥ 1, every candidate in 𝐶𝑞

defeats

|𝐶𝑞 |−1
2 =

(3𝑞−1)
2 candidates in E𝑞 , so E𝑞 is a flat election

with 3𝑞 candidates. Moreover, no candidate is preferred to another

candidate by all three voters in E𝑞 .

3.2.3 Reduction for Theorem 3.3. We present a reduction from
the variant of Maximum Matching with Couples described in
Theorem 3.4. Let 𝐺 = ((𝑆 ∪𝐶) ⊎ 𝑅, 𝐸) be the input graph.

High-level description. The main ideas of the reduction are the
way flat elections are used. First, we need a large enough set 𝑇
of teams, over which we have a flat election involving three vot-
ers. Each team in 𝑇 will be either a single, a couple or its copy, a
room, or a dummy, and will be eventually be replaced by a set of
candidates, depending on its type. We will also add a set 𝐴 ∪ 𝐵
of simple candidates, and we fix a simple candidate 𝑎1 to form the
distinguished singleton party in the constructed instance.

Based on our flat election over 𝑇 , we do three modifications:
(i) we insert the simple candidates, (ii) we substitute each team
in 𝑇 with the corresponding candidate lists, and (iii) we move our
distinguished candidate 𝑎1 “to the left” so that it gains one extra
point in the election. The crux of the reduction is to ensure that in
the obtained election, 𝑎1 can become the unique winner if and only
if restricting the election to the relevant candidates (those that are
associated with some team in 𝑇 ) yields a flat election. By carefully
designing the candidate set corresponding to each team and their
ordering within the preference lists (used during the substitution
step), we will ensure that the relevant candidates can form a flat



election if and only if our instance of Maximum Matching with
Couples admits a complete matching.
Candidates and parties. First, we define a party 𝑃𝑟 = {𝑟, 𝑟 ′} for
each room 𝑟 ∈ 𝑅. Next, for each vertex 𝑝 ∈ 𝑆 ∪𝐶 adjacent to 𝑟 in𝐺 ,
we introduce a party 𝑃𝑟𝑝 = {𝑝𝑟 ,¬𝑝𝑟 }. Additionally, we define two
candidates 𝑝 and 𝑝′ for each 𝑝 ∈ 𝑆 ∪𝐶 ; if 𝑝 has degree 3 in𝐺 , then
these two candidates form a single party, and if 𝑝 has degree 2 in𝐺 ,
then 𝑝 and 𝑝′ both form their own singleton party. This way, we
associate four parties with each single 𝑠 ∈ 𝑆 :

• 𝑃𝑟1𝑠 , 𝑃𝑟2𝑠 , {𝑠}, {𝑠′} if 𝑁𝐺 (𝑠) = {𝑟1, 𝑟2},
• 𝑃𝑟1𝑠 , 𝑃𝑟2𝑠 , 𝑃𝑟3𝑠 , {𝑠, 𝑠′} if 𝑁𝐺 (𝑠) = {𝑟1, 𝑟2, 𝑟3}

where𝑁𝐺 (𝑣) denotes the neighborhood of a vertex 𝑣 in𝐺 . Similarly,
there are four parties associated with each couple 𝑐 ∈ 𝐶:

• 𝑃𝑟1𝑐 , 𝑃𝑟2𝑐 , {𝑐}, {𝑐′} if 𝑁𝐺 (𝑐) = {𝑟1, 𝑟2};
• 𝑃𝑟1𝑐 , 𝑃𝑟2𝑐 , 𝑃𝑟3𝑐 , {𝑐, 𝑐′} if 𝑁𝐺 (𝑐) = {𝑟1, 𝑟2, 𝑟3}.

Next, for each couple 𝑐 ∈ 𝐶 , we introduce a copy 𝑥 for each
candidate 𝑥 associated with the couple 𝑐 , yielding a candidate set
{𝑐𝑟 ,¬𝑐𝑟 : 𝑟 ∈ 𝑁𝐺 (𝑐)} ∪ {𝑐, 𝑐′}. We write 𝐶 = {𝑐 : 𝑐 ∈ 𝐶}. With
each 𝑐 ∈ 𝐶 we associate the parties 𝑃𝑟

𝑐
= {𝑥 : 𝑥 ∈ 𝑃𝑟𝑐 } for each

𝑟 ∈ 𝑁𝐺 (𝑐), plus one or two parties formed by 𝑐 and 𝑐′, depending
on whether 𝑐 has degree two or three in𝐺 , so that altogether there
are four parties associated with 𝑐 (as for 𝑐). For practical purposes,
we extend the notation by setting 𝑁𝐺 (𝑐) := 𝑁𝐺 (𝑐) for each 𝑐 ∈ 𝐶 .

We also fix an arbitrary set 𝐷 of dummy teams whose size is the
smallest non-negative integer for which 𝜌 := |𝑅 |+|𝑆 |+2|𝐶 |+|𝐷 | = 3𝑞
for some 𝑞 ∈ N+, and introduce candidates 𝑎𝑑 , 𝑏𝑑 , 𝑐𝑑 for each 𝑑 ∈ 𝐷 ,
each of them forming its own singleton party. Since for each positive
integer 𝑛 there is a power of 3 in the interval [𝑛, 3𝑛] (this is easily
shown by induction on 𝑛), we get |𝐷 | ≤ 2( |𝑆 | + 2|𝐶 | + |𝑅 |).

We call the candidates defined so far relevant candidates, and
denote their set as𝑋 . We further define simple candidates 𝑎1, . . . , 𝑎3𝜌
and 𝑏1, . . . , 𝑏3𝜌 , each of them forming its own singleton party. We
will write 𝐴 = {𝑎1, . . . , 𝑎3𝜌 } and 𝐵 = {𝑏1, . . . , 𝑏3𝜌 }. Notice that the
maximum party size is 𝜎 = 2 in 𝐺 , and the number of parties is
|𝑅 | + 4|𝑆 | + 8|𝐶 | + 3|𝐷 | + 6𝜌 = 9𝜌 . Our distinguished party is {𝑎1}.
Teams and their lists. We refer to the set 𝑇 = 𝑆 ∪𝐶 ∪𝐶 ∪ 𝑅 ∪ 𝐷
as the set of teams. To define the preferences of our voters, 𝑣 , 𝑣 ′,
and 𝑣 ′′, we introduce for each team 𝑡 ∈ 𝑇 three lists that we call
team lists and denote by 𝐹𝑡 , 𝐹 ′𝑡 , and 𝐹

′′
𝑡 . Each of these three lists

contains the same set candidates that we associate with 𝑡 .
Let us start with defining the team lists for each room team 𝑟 ∈ 𝑅.

First, if room 𝑟 is adjacent to singles 𝑠1 and 𝑠2 and a couple 𝑐 in 𝐺 ,
then we set its team list according to (3) below (to the left). Second,
if room 𝑟 is adjacent to two or three singles, 𝑠1, 𝑠2 and possibly 𝑠3,
and no couples in 𝐺 , then we set its team list as in (4).

if 𝑁𝐺 (𝑟 ) = {𝑠1, 𝑠2, 𝑐}:
𝐹𝑟 = 𝑠

𝑟
1, 𝑟 , 𝑠

𝑟
2, 𝑐

𝑟 , 𝑟 ′, 𝑐𝑟 ;
𝐹 ′𝑟 = 𝑠

𝑟
2, 𝑠

𝑟
1, 𝑐

𝑟 , 𝑐𝑟 , 𝑟 , 𝑟 ′;
𝐹 ′′𝑟 = 𝑟, 𝑟 ′, 𝑠𝑟2, 𝑠

𝑟
1, 𝑐

𝑟 , 𝑐𝑟 ;

(3)

if 𝑁𝐺 (𝑟 ) = {𝑠1, 𝑠2, (𝑠3)}:
𝐹𝑟 = 𝑠

𝑟
1, 𝑟 , 𝑠

𝑟
2, 𝑟
′, (𝑠𝑟3);

𝐹 ′𝑟 = (𝑠𝑟3), 𝑠
𝑟
2, 𝑠

𝑟
1, 𝑟 , 𝑟

′;
𝐹 ′′𝑟 = 𝑟, 𝑟 ′, (𝑠𝑟3), 𝑠

𝑟
2, 𝑠

𝑟
1 .

(4)

Third, if room 𝑟 is adjacent to two or three couples, 𝑐1, 𝑐2 and
possibly 𝑐3, and no singles in 𝐺 , then we set

𝐹𝑟 = 𝑐
𝑟
1, 𝑐

𝑟
2, (𝑐

𝑟
3), 𝑟 , 𝑟

′, 𝑐𝑟1, 𝑐
𝑟
2, (𝑐

𝑟
3);

𝐹 ′𝑟 = 𝑐
𝑟
1, 𝑐

𝑟
1, 𝑐

𝑟
2, 𝑐

𝑟
2, (𝑐

𝑟
3), (𝑐

𝑟
3), 𝑟 , 𝑟

′;
𝐹 ′′𝑟 = 𝑟, 𝑟 ′, (𝑐𝑟3), (𝑐

𝑟
3), 𝑐

𝑟
2, 𝑐

𝑟
2, 𝑐

𝑟
1, 𝑐

𝑟
1 .

(5)

In lists (4) and (5), candidates written within parenthesis may not
exist, in which case they should be ignored.

Next, consider a team 𝑝 ∈ 𝑆 ∪𝐶 ∪𝐶 . We set the team lists for 𝑝
depending on the degree of 𝑝 in 𝐺 :

if 𝑁𝐺 (𝑝) = {𝑟1, 𝑟2, 𝑟3}:
𝐹𝑝 = 𝑝, 𝑝′,¬𝑝𝑟1 ,¬𝑝𝑟2 ,¬𝑝𝑟3 ;
𝐹 ′𝑝 = ¬𝑝𝑟3 , 𝑝′,¬𝑝𝑟2 , 𝑝,¬𝑝𝑟1 ;
𝐹 ′′𝑝 = ¬𝑝𝑟1 ,¬𝑝𝑟2 ,¬𝑝𝑟3 , 𝑝, 𝑝′.

(6)

if 𝑁𝐺 (𝑝) = {𝑟1, 𝑟2}:
𝐹𝑝 = 𝑝, 𝑝′,¬𝑝𝑟1 ,¬𝑝𝑟2 ;
𝐹 ′𝑝 = ¬𝑝𝑟1 ,¬𝑝𝑟2 , 𝑝, 𝑝′;
𝐹 ′′𝑝 = 𝑝′,¬𝑝𝑟1 ,¬𝑝𝑟2 , 𝑝 .

(7)

Finally, for each dummy team 𝑑 ∈ 𝐷 , we let

𝐹𝑑 = 𝑎𝑑 , 𝑏𝑑 , 𝑐𝑑 ;
𝐹 ′
𝑑
= 𝑐𝑑 , 𝑎𝑑 , 𝑏𝑑 ;

𝐹 ′′
𝑑
= 𝑏𝑑 , 𝑐𝑑 , 𝑎𝑑 .

(8)

This finishes the definition of the team lists 𝐹𝑡 , 𝐹 ′𝑡 , and 𝐹
′′
𝑡 for each

team 𝑡 ∈ 𝑇 . Observe that the sets of candidates in 𝐹𝑡 taken over
each 𝑡 ∈ 𝑇 form a partition of the set 𝑋 of relevant candidates.

Preferences. In what follows, it will be convenient to fix an or-
dering over 𝑇 and use the notation 𝑇 = {𝑡1, . . . , 𝑡𝜌 }. Consider the
election E𝑞 introduced in Definition 3.5 over 3𝑞 = 𝜌 candidates.
Since |𝑇 | = 3𝑞 , there exists a bijection𝜓 : 𝐶𝑞 → 𝑇 between candi-
dates of E𝑞 and teams in 𝑇 that maps 𝑡𝑖 ∈ 𝑇 to the 𝑖-th candidate
in the preference list of 𝑤 . Using the alias �̃�𝑖 = 𝜓−1 (𝑡𝑖 ) for each
team 𝑡𝑖 ∈ 𝑇 , the election E𝑞 can be written as

election E𝑞 : 𝑤 : �̃�1, �̃�2, . . . , �̃�𝜌 ;
𝑤 ′ : �̃�𝜋 (1) , �̃�𝜋 (2) , . . . , �̃�𝜋 (𝜌 ) ;
𝑤 ′′ : �̃�𝜋 (1) , �̃�𝜋 (1) , . . . , �̃�𝜋 (𝜌 )

(9)

for some permutations 𝜋 and 𝜋 over [𝜌].
We define the permutations 𝜑 and 𝜑 over [3𝜌] based on the

election E𝑞+1 similarly: after renaming the candidates in the elec-
tion E𝑞+1 as �̃�1, �̃�2, . . . , �̃�3𝜌 , the election E𝑞+1 can be re-written as

election E𝑞+1 : 𝑤 : �̃�1, �̃�2, . . . , �̃�3𝜌 ;
𝑤 ′ : �̃�𝜑 (1) , �̃�𝜑 (2) , . . . , �̃�𝜑 (3𝜌 ) ;
𝑤 ′′ : �̃�𝜑 (1) , �̃�𝜑 (1) , . . . , �̃�𝜑 (3𝜌 ) ;

for some permutations 𝜑 and 𝜑 over [3𝜌].
Now we are ready to give the preferences of voters 𝑣 , 𝑣 ′, and 𝑣 ′′:

𝑣 : 𝐹𝑡1 , 𝐹𝑡2 , . . . , 𝐹𝑡𝜌 , 𝑏1, 𝑏2, . . . , 𝑏3𝜌−1, 𝑎1, 𝑏3𝜌 , 𝑎2, 𝑎3, . . . , 𝑎3𝜌 ;
𝑣 ′ : 𝑎𝜑 (1) , . . . , 𝑎𝜑 (3𝜌 ) , 𝐹 ′𝑡𝜋 (1) , . . . , 𝐹

′
𝑡𝜋 (𝜌 ) , 𝑏𝜑 (1) , . . . , 𝑏𝜑 (3𝜌 ) ;

𝑣 ′′ : 𝑏𝜑 (1) , . . . , 𝑏𝜑 (3𝜌 ) , 𝑎𝜑 (1) , . . . , 𝑎𝜑 (3𝜌 ) , 𝐹 ′′𝑡𝜋 (1) , . . . , 𝐹
′′
𝑡𝜋 (𝜌 ) .

Hence, the constructed election is obtained from (9) by substituting
each candidate corresponding to some team 𝑡𝑖 with the team lists
for 𝑡𝑖 , and adding the simple candidates in the appropriate manner.

It is clear that the construction takes polynomial time, since
building the elections E𝑞 and E𝑞+1 takes time polynomial in 3𝑞 ,
and 𝑞 = log3 ( |𝑇 |). Therefore, it remains to prove its correctness.

Connection between solvability of the input instance and

flatness of the election restricted to relevant candidates. To
prove the correctness of our reduction, let us start with the follow-
ing facts, which rely on Observation 3.



• Candidate 𝑎1 defeats 𝑏3𝜌 , all relevant candidates, and no
candidate in 𝐵 \ {𝑏3𝜌 }; additionally 𝑎1 also defeats exactly
half of the candidates in 𝐴 \ {𝑎1}. Therefore,

CplE (𝑎1) = 1 + 3𝜌 + 3𝜌 − 1
2

=
9𝜌 + 1

2
(10)

because 𝑋 is the union of 3𝜌 parties.3
• Candidate 𝑎𝑖 ∈ 𝐴 \ {𝑎1} defeats all relevant candidates, no

candidates in 𝐵, and half of the candidates in𝐴 \ {𝑎𝑖 }. Thus,
CplE (𝑎𝑖 ) = 3𝜌 + 3𝜌−1

2 =
9𝜌−1
2 .

• Candidate 𝑏3𝜌 defeats all candidates in 𝐴 except for 𝑎1, no
relevant candidates, and half of the candidates in 𝐵 \ {𝑏3𝜌 }.
Thus, CplE (𝑏3𝜌 ) = |𝐴| − 1 +

3𝜌−1
2 =

9𝜌−3
2 .

• Candidate 𝑏𝑖 ∈ 𝐵 \ {𝑏3𝜌 } defeats all candidates in 𝐴, no
relevant candidates, and half of the candidates in 𝐵 \ {𝑏𝑖 }.
Thus, CplE (𝑏𝑖 ) = |𝐴| +

3𝜌−1
2 =

9𝜌−1
2 .

• Relevant candidates defeat all candidates in 𝐵 and no can-
didates in 𝐴.

Due to (10), the above observations imply that 𝑎1 is the unique
winner in of the election E resulting from some nominations if and
only if all relevant nominees defeat at most 3𝜌−1

2 relevant nominees,
i.e., if the election E restricted to relevant nominees is flat. In other
words, our instance of Possible President is a “yes”-instance if
and only if there exist nominations of all parties corresponding
to singles, couples, and rooms for which the relevant election E𝑋
below reduced to these nominations becomes flat:

relevant election E𝑋 : 𝑣 : 𝐹𝑡1 , 𝐹𝑡2 , . . . , 𝐹𝑡𝜌 ;
𝑣 ′ : 𝐹 ′𝑡𝜋 (1) , 𝐹

′
𝑡𝜋 (2)

, . . . , 𝐹 ′𝑡𝜋 (𝜌 ) ;
𝑣 ′′ : 𝐹 ′′𝑡𝜋 (1) , 𝐹

′′
𝑡𝜋 (2)

, . . . , 𝐹 ′′𝑡𝜋 (𝜌 ) .
(11)

Recall that𝜓 : 𝐶𝑞 → 𝑇 is a bijection between candidates of E𝑞
and teams in 𝑇 . Comparing (9) and (11), we get the following.

Observation 4. Replacing each candidate 𝑧 in the preference lists

of 𝑤 , 𝑤 ′, and 𝑤 ′′ in the election E𝑞 with 𝐹𝜓 (𝑧 ) , 𝐹
′
𝜓 (𝑥 ) , and 𝐹

′′
𝜓 (𝑥 ) ,

respectively, yields exactly the preference lists of voters 𝑣 , 𝑣 ′, and 𝑣 ′′

in the relevant election E𝑋 .

Observation 4 enables us to take advantage of the structure of
election E𝑞 to establish analogous properties of the constructed
instance. Using the specifics of the team list definitions, we can
show that our instance of Maximum Matching with Couples
admits a complete matching if and only if E𝑋 admits nominations
resulting in a flat election; as we have seen, the latter happens if
and only if the constructed instance of Possible President is a
“yes”-instance. See Appendix C.3.2 for the rest of the proof.

3.3 Four or More Voters

Contrasting Theorem 3.1, showing the tractability of Possible
President for Llull with two voters, a reduction from 3-Coloring
yields NP-hardness for four voters. As it is possible to add two
voters with opposite preferences without changing the election
outcome, Theorems 3.2, 3.3 and 3.6 imply Theorem 1.1.

Theorem 3.6 (★). Possible President for Copeland1 (i.e., Llull)
is NP-complete even for four voters and maximum party size 𝜎 = 2.
3Henceforth, we write CplE (𝑥 ) for the score of candidate 𝑥 whenever 𝛼 is irrelevant.

3.4 Few Parties

In this section we consider the parameterization of Possible Pres-
ident by 𝑡 , the number of parties. As we will see, intractability
persists even if the number of voters is four, and 𝑡 is a parame-
ter. Our starting point is Theorem 3.7 which shows that Possible
President for Copeland𝛼 for 𝛼 < 1 isW[1]-hard with parameter 𝑡 .

Theorem 3.7. For any constant 𝛼 ∈ [0, 1), Possible President
for Copeland

𝛼
isW[1]-hard when parameterized by 𝑡 .

Proof. We provide a reduction from theMulticolored Cliqe
problem. An instance of this problem consists of a graph𝐺 = (𝑈 , 𝐸)
with its vertex set partitioned into 𝑘 independent sets 𝑈1, . . . ,𝑈𝑘 ,
and the question is whether 𝐺 contains a clique of size 𝑘 .Multi-
colored Cliqe is W[1]-hard when parameterized by 𝑘 [14, 19].

We construct an instance of Possible President as follows. The
set of candidates is 𝐶 = 𝑈 ∪ {𝑝, 𝑝′}, our distinguished party is
𝑃 = {𝑝}, and we have further parties 𝑃 ′ = {𝑝′} and 𝑈𝑖 for each
𝑖 ∈ [𝑘]. Thus, we have 𝑡 = 𝑘 + 2 parties.

The set of voters corresponds to the set of “non-edges” in𝐺 , that
is, to 𝐸 = {𝑢𝑢′ : 𝑢 ∈ 𝑈𝑖 , 𝑢′ ∈ 𝑈 𝑗 , 𝑖 < 𝑗, 𝑢𝑢′ ∉ 𝐸}. Namely, for each
𝑒 = 𝑢𝑢′ ∈ 𝐸, we create two voters 𝑣𝑒 and 𝑣 ′𝑒 with preferences as
in (12). We fix an arbitrary ordering over 𝐶 , and write

−→
𝑋 for listing

a set 𝑋 of candidates according to this order, and
←−
𝑋 for its reverse.

𝑣𝑒 : 𝑢,𝑢′,
−−−−−−−−−→
𝑈 \ {𝑢,𝑢′}, 𝑝, 𝑝′

𝑣 ′𝑒 : 𝑝, 𝑝′,
←−−−−−−−−−
𝑈 \ {𝑢,𝑢′}, 𝑢,𝑢′

(12)

Consider a reduced election E obtained by some nominations of
all parties. Notice that Cpl𝛼E (𝑝) = 𝛼𝑘 + 1 and Cpl

𝛼
E (𝑝
′) = 𝛼𝑘 , since

𝑝 defeats 𝑝′, and both are tied with every other candidate.
Assume that𝐺 admits a multicolored clique 𝑆 = {𝑢 (𝑖 ) , . . . , 𝑢 (𝑘 ) }

with 𝑢 (𝑖 ) ∈ 𝑈𝑖 for 𝑖 ∈ [𝑘]. Let each party 𝑈𝑖 nominate 𝑢 (𝑖 ) . As 𝑆
is a clique in 𝐺 , it is an independent set in the complement of 𝐺 ,
so there is no 𝑒 ∈ 𝐸 containing two vertices of 𝑆 corresponding to
two nominated candidates. Thus, each nominee from𝑈 obtains a
Copeland𝛼 score of 𝛼 (𝑘 + 1). Since 𝛼 < 1, this is strictly smaller
than Cpl𝛼E (𝑝), so 𝑝 is the unique winner of the resulting election.

Conversely, assume for the sake of contradiction that 𝑝 is the
unique winner of some reduced election E, but the nominated can-
didates in𝑈 do not form a clique. Let 𝑢 (𝑖 ) ∈ 𝑈𝑖 be a nominee such
that there is an edge 𝑒 ∈ 𝐸 in the complement of 𝐺 between 𝑢 (𝑖 )

and some nominee𝑢 ( 𝑗 ) ∈ 𝑈 𝑗 with 𝑖 < 𝑗 ; we choose 𝑖 as the minimal
index where this happens. Then, due to the two voters correspond-
ing to 𝑒 ∈ 𝐸 we know that candidate 𝑢 (𝑖 ) defeats candidate 𝑢 ( 𝑗 ) ,
and due to our choice of 𝑖 , there is no nominated candidate that
defeats 𝑢 (𝑖 ) . Hence, Cpl𝛼E (𝑢

(𝑖 ) ) ≥ 𝛼𝑘 + 1, a contradiction to our
assumption that 𝑝 is the unique winner in E. □

We can strengthen Theorem 3.7 as follows:

Theorem 3.8 (★). For any constant 𝛼 ∈ [0, 1], Possible President
for Copeland

𝛼
isW[1]-hard when parameterized by 𝑡 , the number

of parties, even if there are only four voters.

We prove Theorem 3.8 in two steps, first for 𝛼 < 1, and then
filling the gap with a more involved reduction for 𝛼 = 1; see Ap-
pendix D.1. Regarding elections with an odd number of voters, we
were able to prove the following:



Theorem 3.9 (★). For any constant 𝛼 ∈ [0, 1], Possible President
for Copeland

𝛼
isW[1]-hard when parameterized by 𝑡 , the number of

parties, even if there are only five voters.

Each of these results uses a reduction from Multicolored
Cliqe, but the constructions become gradually more complicated;
the proof of Theorem 3.9 necessitates also the notion of flat elections
(see Appendix D.2).

We remark that Possible President is inXPwhen parameterized
by 𝑡 , assuming that winner determination can be performed in
polynomial time: there are at most 𝜎𝑡 possibilities for how parties
can choose their nominated candidates, so we can check whether
the distinguished party wins in at least one election resulting from
some nomination strategy in 𝜎𝑡𝑛𝑂 (1) time (see e.g., [20]).

4 MAXIMIN VOTING RULE

Turning to the Maximin voting rule, we investigate how the com-
plexity of Possible President for Maximin depends on the number
of voters (Section 4.1) and on the number of parties (Section 4.2).

4.1 Few Voters

We start by extending the tractability result of Theorem 3.1, dealing
with the Llull voting rule with two voters, to the Maximin voting
rule with two or three voters.

For two voters, tractability again relies on Observation 1 stating
the transitivity of the “defeat” relation. For three voters we say
that candidate 𝑎 strongly defeats a candidate 𝑏, if all three voters
prefer 𝑎 to 𝑏. It is easy to see that the “strong defeat” relation is also
transitive. This implies that some candidate is the unique winner in
a Maximin election if and only if it defeats every other candidate.

Theorem 4.1. Possible President for the Maximin voting rule is

polynomial-time solvable if there are only two voters.

Proof. The theorem hinges on the fact that a nominee 𝑝 is a
unique winner in a Maximin election E if and only if 𝑝 defeats
every other nominee. To see this, first realize that if 𝑝 defeats all
nominees thenMME (𝑝) = 2 and we haveMME (𝑐) = 0 for every
other nominee 𝑐 , so 𝑝 is the unique winner.

Now assume that 𝑝 is the unique winner of a reduced election E.
Clearly, 𝑝 cannot be defeated by any nominee, as that would yield
MME (𝑝) = 0. Neither isMME (𝑝) = 1 possible, as in this case every
other nominee 𝑐 must have Maximin-scoreMME (𝑐) = 0, i.e., has
to be defeated by at least one other nominee. However, by a similar
argument as in the proof of Theorem 3.1, this quickly leads to a
contradiction, because the “defeat” relation cannot contain cycles.

Therefore, onlyMME (𝑝) = 2 is possible, and thus 𝑝 defeats all
nominees. Hence the same quadratic-time algorithm as in Theo-
rem 3.1 solves the Possible President problem also for the Max-
imin voting rule in the case of two voters. □

Theorem 4.2. Possible President for the Maximin voting rule is

polynomial-time solvable if there are only three voters.

Proof. Again, we show that 𝑝 is a unique winner in some elec-
tion E if and only if 𝑝 defeats every other nominee in E. To see this,
first realize that if 𝑝 defeats all nominees, thenMME (𝑝) ≥ 2 and
MME (𝑐) ≤ 1 for every other nominee 𝑐 , so 𝑝 is the unique winner.

Now assume that 𝑝 is the unique winner in some election E.
Clearly, MME (𝑝) = 0 is impossible. If MME (𝑝) = 1, then every
other nominee 𝑐 must have MME (𝑐) = 0. This means that every
nominee other than 𝑝 is strongly defeated by another nominee.
However, this is not possible, as there can be no cycles in the “strong
defeat” relation due to its transitivity. Therefore, MME (𝑝) ≥ 2
must hold, and thus 𝑝 can become the unique winner in an election
resulting from some nominations if and only if each party has a
candidate that is defeated by 𝑝 . From this, the polynomial-time
solvability of the problem follows easily. □

The following theorem shows that for 𝑛 ≥ 4 voters, Possible
President for Maximin is hard even when all parties have size at
most 2. The proof of Theorem 4.3 deals with the case of even and
odd number of voters separately, providing two reductions from
3-SAT. Theorems 4.1, 4.2, and 4.3 together prove Theorem 1.2.

Theorem 4.3 (★). Possible President forMaximin isNP-complete

even for instances where the number of voters is a fixed constant𝑛 ≥ 4,
and the maximum party size is 𝜎 = 2.

4.2 Few Parties

Contrasting Theorem 3.7, we show that if the number of parties is
small, then we can efficiently solve Possible President for Max-
imin. More precisely, we provide an FPT algorithm for this problem
with parameter 𝑡 , the number of parties. This subsection is dedi-
cated to proving the following result.

Theorem 4.4 (★). There exists an algorithm that solves Possible

President for Maximin and runs in FPT time with parameter 𝑡 .

Let our input instance 𝐼 of Possible President be an election
E0 = (𝑉 ,𝐶, {≻𝑣}𝑣∈𝑉 ) whose candidate set 𝐶 is partitioned into
a family P of parties containing a distinguished party 𝑃★ ∈ P.
Our algorithm AlgMM first makes certain guesses about the prop-
erties of a hypothetical solution to 𝐼 , i.e., a nomination strategy
that allows 𝑃★ to become the unique winner in the resulting re-
duced election E. Then, after some preprocessing steps, we reduce
our problem to the following directed variant of the Partitioned
Subgraph Isomorphism problem [1, 17].

Problem Partitioned Subdigraph Isomorphism:

Input: Digraphs 𝐷 and 𝐻 with labelling 𝛾 : 𝑉 (𝐻 ) → 𝑉 (𝐷).
Question: Is there a subdigraph 𝐻 of 𝐻 that is isomorphic to 𝐷 ,
and an isomorphism 𝑓 : 𝑉 (𝐷) → 𝑉 (𝐻 ) that maps each vertex 𝑣
of 𝐷 to a vertex of 𝐻 with label 𝑣 , i.e., satisfies 𝛾 (𝑓 (𝑣)) = 𝑣?
Given an instance of Partitioned Subdigraph Isomorphism,

we may refer to 𝐷 and 𝐻 as the pattern and the host graphs, re-
spectively. We say that 𝐻 is 𝛾-isomorphic to 𝐷 if it satisfies the
requirements given in the problem definition.

It is easy to see that Partitioned Subdigraph Isomorphism
is NP-complete, e.g., by a simple reduction from Multicolored
Cliqe; see the results by Marx [17] for much stronger lower
bounds for the undirected version. However, we will only need
to solve Partitioned Subdigraph Isomorphism in the easy special
case when all vertices of the pattern graph have indegree at most 1.

Lemma 4.5. Partitioned Subdigraph Isomorphism can be solved

in 𝑂 ( |𝑉 (𝐻 ) |2) time if the pattern graph 𝐷 has maximum indegree 1.



Proof. For a vertex 𝑣 in a digraph 𝐺 , let 𝑁 −
𝐺
(𝑣) and 𝑁 +

𝐺
(𝑣)

denote 𝑣 ’s in- and outneighbors in𝐺 , respectively. We will also use
the notation Γ𝑣 = {𝑥 ∈ 𝑉 (𝐻 ) : 𝛾 (𝑥) = 𝑣} for the set of vertices in 𝐻
with label 𝑣 for some 𝑣 ∈ 𝑉 (𝐷).

We introduce two simple rules that reduce the size of the input
instance without changing its solvability. The first rule deals with
vertices in the pattern graph that have indegree 1 and outdegree 0.

Rule A. Let (𝐷,𝐻,𝛾) be an instance of Partitioned Subdigraph
Isomorphism containing a vertex 𝑣 ∈ 𝑉 (𝐷) with 𝑁 +

𝐷
(𝑣) = ∅ and

𝑁 −
𝐷
(𝑣) = {𝑢}. Then delete 𝑣 from 𝐷 , and delete all vertices of Γ𝑢

without out-neighbors in Γ𝑣 , as well as Γ𝑣 itself from 𝐻 .

The second rule deals with vertices in the pattern graph that
have both in- and outdegree 1.

Rule B. Let (𝐷,𝐻,𝛾) be an instance of Partitioned Subdigraph
Isomorphism containing a vertex 𝑣 ∈ 𝑉 (𝐷) with 𝑁 +

𝐷
(𝑣) = {𝑤}

and 𝑁 −
𝐷
(𝑣) = {𝑢} such that (𝑢,𝑤) is not an arc in 𝐷 .4 First delete 𝑣

from 𝐷 and add the arc (𝑢,𝑤) to 𝐷 . Second, delete Γ𝑣 from 𝐻 , and
replace the arcs of 𝐻 contained in Γ𝑢 × Γ𝑤 with the arc set

𝐴𝑢𝑤 = {(𝑥,𝑦) : 𝑥 ∈ Γ𝑢 , 𝑦 ∈ Γ𝑤 , 𝑁 +𝐻 (𝑥) ∩ 𝑁
−
𝐻 (𝑦) ∩ Γ𝑣 ≠ ∅}.

Claim 1 (★). Applying Rule A or B yields an equivalent instance

of Partitioned Subdigraph Isomorphism.

Applying Rules A and B preserves the property that all vertices
in the pattern graph have indegree at most 1. After applying Rule A
exhaustively, we obtain an instance where all vertices of the pattern
graph have in- and outdegree at most one, i.e., the pattern graph
is a disjoint union of directed cycles, paths, and isolated vertices.
In fact, since Rule A is applicable whenever the pattern graph has
a connected component that is a directed path with at least two
vertices, we know that after the exhaustive application of Rule A
we arrive at a pattern graph that is a disjoint union of directed
cycles and isolated vertices. Applying then Rule B exhaustively we
arrive at an instance 𝐼★ whose pattern graph 𝐷★ consists solely of
isolated vertices, possibly with loops. Solving such an instance 𝐼★
is easy: 𝐼★ is a “yes”-instance if and only if the host graph contains
a vertex 𝑓 (𝑣) with label 𝑣 for each 𝑣 ∈ 𝑉 (𝐷★), with 𝑓 (𝑣) having a
loop whenever 𝑣 has an incident loop in 𝐷★.

Notice that applying either of the two rules consists of the dele-
tion of vertices and, possibly, the addition of arcs to the host graph.
Starting from an instance (𝐷,𝐻,𝛾), the total time spent on the for-
mer is 𝑂 ( |𝑉 (𝐻 ) | + |𝑉 (𝐷) |) = 𝑂 ( |𝑉 (𝐻 ) |), whereas the total time
spent on the latter is at most 𝑂 ( |𝑉 (𝐻 ) |2), because no arc is added
more than once to𝐻 . Hence, the total running time is𝑂 (𝑉 |𝐻 |)2. □

We are now ready to describe the steps of AlgMM when run on
the instance (E0,P, 𝑃★); see Appendix E.3 for its correctness.
Step 1. Guess the candidate 𝑝 nominated by 𝑃★ in the reduced

election E, as well as its Maximin-score 𝑠★ = MME (𝑝)
in E.

Step 2. For each party 𝑃 ∈ P\{𝑃★}, guess a party 𝑃 ′ ∈ P\{𝑃} for
which the nominees 𝑐 and 𝑐′ of 𝑃 and 𝑃 ′ in E, respectively,
satisfy 𝑁E (𝑐, 𝑐′) < 𝑠★. Let 𝛿 (𝑃) denote the guessed party.

4In fact, it is not hard to modify Rule B so that it becomes applicable even if (𝑢, 𝑤 ) is
an arc of 𝐷 ; however, the current weaker version of the rule is sufficient for us.

Step 3. Delete every candidate 𝑐 ∈ 𝐶 for which 𝑁E0 (𝑝, 𝑐) < 𝑠★.
Step 4. For each party 𝑃 ∈ P such that 𝛿 (𝑃) = 𝑃★, delete all

candidates 𝑐 ∈ 𝑃 for which 𝑁E0 (𝑐, 𝑝) ≥ 𝑠★.
Step 5. Let 𝑋 be the set of candidates deleted in Steps 3 and 4. If

there is a party 𝑃 ∈ P \ {𝑃★} with 𝑃 ⊆ 𝑋 , then return “no.”
Step 6. Construct a digraph 𝐷 whose vertex set is P \ {𝑃★} and

contains an arc (𝑃 ′, 𝑃) if and only if 𝑃 ′ = 𝛿 (𝑃); hence, each
vertex in 𝐷 has at most one incoming arc.
Construct also a digraph 𝐻 over𝐶 \𝑋 \ 𝑃★ in which (𝑐′, 𝑐)
is an arc if and only if 𝑁E0 (𝑐, 𝑐′) < 𝑠★. We set the label 𝛾 (𝑐)
of each candidate 𝑐 to be the party containing 𝑐 .

Step 7. Solve Partitioned Subdigraph Isomorphism on instance
𝐽 = (𝐷,𝐻,𝛾) using the algorithm of Lemma 4.5, and return
“yes” if and only if 𝐻 admits a subdigraph 𝛾-isomorphic
to 𝐷 . Otherwise return “no.”

5 CONCLUSIONS AND FUTURE RESEARCH

We provided a detailed multivariate complexity analysis of the
Possible President problem in the framework of candidate nom-
ination by parties for several Condorcet-consistent rules; see Ta-
ble 1 for a summary. Our results show a clear difference between
Copeland𝛼 for 𝛼 ∈ [0, 1] and Maximin: although both remain NP-
hard even for a constant number of voters, Possible President
for Maximin becomes tractable (in the parameterized sense) in the
realistic scenario where the number 𝑡 of parties is small, while
Copeland𝛼 remains intractable even then. An intriguing question
we left open is whether Possible President for Copeland with two
or three voters becomes FPT when parameterized by 𝑡 .

For another promising research direction, recall that our algo-
rithms for two voters relied on the transitivity of the “defeat” rela-
tion. Interestingly, the defeat relation is transitive for any number
of voters if preferences are single-peaked. Faliszewski et al. [12]
proved that Possible President for Plurality remainsNP-complete
for such preferences. Misra [18] strengthened this result by showing
NP-hardness for 1D-Euclidean profiles that are both single-peaked
and single-crossing, even with maximum party size 2. What is the
situation for voting rules other than Plurality?

The related Necessary President problem, asking if some can-
didate of a given party can become the winner regardless of nomi-
nations from other parties, was shown to be coNP-complete for Plu-
rality by Faliszewski et al. [12], even with maximum party size two.
Cechlárová et al. [7] added the analogous results for ℓ-Approval,
ℓ-Veto, and Plurality with run-off, and gave integer programs for
Necessary President for further voting rules including Copeland,
Llull, and Maximin. As far as we know, the parameterized complex-
ity of this problem has not been considered yet.
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Appendix A ADDITIONAL RELATEDWORK

The topic of this paper—the problem of nominating the candidates
for an election by parties—is relatively new in the computer science
literature, as it was initiated by Faliszewski et al. [12] only in 2017.
However, the study of the computational complexity of problems
connected with elections where the set of candidates is not fixed
appeared already in the seminal paper by Bartholdi et al. [3] in
1992, in the form of control by adding or deleting candidates. Of
the extensive literature on electoral control, we shall mention in
Section A.1 only results that are closest to the current paper, i.e.,
those that consider Condorcet-consistent voting rules, in particu-
lar, Copeland𝛼 and Maximin. For a broader overview of electoral
control see the survey by Faliszewski and Rothe [27]. Additionally,
in Section A.2 we present a review of alternative approaches to
the study of elections involving parties that may contain either
candidates or voters.

A.1 Control of Elections

In the model introduced by Bartholdi et al. [3] for electoral control,
there is a central authority, the controller, that aims to achieve a
given goal by applying certain control actions. The possible con-
trol actions related to changing the set of candidates range include
adding, deleting, replacing, or partitioning candidates. The aim of
the controller may be constructive, i.e., to make a distinguished
candidate the winner of the election, or destructive, when it aims
to prevent a given candidate from winning the election. In the
combinatorial variant of control, adding or deleting a candidate
automatically requires adding or deleting a whole group of candi-
dates.

Control by partitioning the candidates assumes a two-stage elec-
tion process where the candidate set 𝐶 is partitioned into two
disjoint subsets 𝐶1 and 𝐶2. In a sequential election, the entire elec-
torate first votes on the candidates from𝐶1, while the second stage
of the election is conducted between the winner of the first election
and the candidates of𝐶2. Alternatively, in a run-off election the first
stage consists of two separate elections on the candidate sets 𝐶1
and 𝐶2, and the second stage of the election is conducted over the
set of winners from 𝐶1 and 𝐶2. In such two-stage elections, the
controller may aim to achieve its goal by suitably choosing the
partitioning of the candidate set.

Bartholdi et al. [3] dealt with constructive control and observed
that Condorcet voting is immune to control by adding candidates
but is computationally vulnerable to control by deleting candidates
and by partitioning of candidates for both sequential and run-off
elections. The last results have been strengthened by Erdélyi et
al. [25] who showed that polynomial-time solvability of the run-off
version is preserved even in the case when the cardinality of the
two candidate partition sets should differ by at most one.

Betzler and Uhlmann [23] studied constructive control for the
Llull and Copeland voting rules. They showed that control by delet-
ing candidates for Llull is FPT with respect to the parameter “num-
ber of candidates defeating the distinguished candidate” and control
by deleting candidates for Copeland is NP-hard even when for ev-
ery candidate the number of candidates that are not tied with it
is at most three. If the voting is tie-free, then for any 𝛼 ∈ [0, 1]

control by deleting and adding candidates for Copeland𝛼 election
isW[2]-complete with respect to the parameter “number of deleted
candidates” and “number of added candidates”, respectively. For
Copeland elections, control by deleting candidates is NP-complete
for six voters and control by adding candidates is NP-complete if
there are eight voters. For Llull, control by deleting candidates is
NP-complete for ten voters and control by adding candidates is
NP-complete for eight voters.

A follow-up study is provided by Faliszewski et al. [13]. The
authors showed that Copeland𝛼 for any 𝛼 ∈ [0, 1] is vulnerable to
destructive control via adding, deleting, or partitioning candidates.
Constructive control of all these types is computationally resistant
for 𝛼 ∈ [0, 1] except when the number of added candidates is un-
limited and 𝛼 ∈ {0, 1}. These results have been fine-tuned by Chen
et al. [24]. The authors show that for Copeland𝛼 the constructive
control by adding as well as deleting candidates is NP-hard, the
former if there are 20 voters and the latter for 26 voters.

Gurski and Ross [30] considered approximatin the number of
candidates necessary to add or to delete in order to achieve the
constructive or the destructive aim of the control. They showed that
there is no approximation algorithm with absolute performance
guarantee for optimal constructive control by deleting candidates in
Copeland and by adding candidates in Llull voting schemes, unless
P = NP. Moreover, there is no EPTAS for optimal constructive
control by adding and deleting candidates in Copeland and Llull
voting schemes, unlessW[2] = FPT. Furthermore, Gurski and Ross
proposed binary linear programs for solving the studied control
problems and tested their performance on randomly generated
elections.

For the Maximin voting rule, Liu and Zhu [33] proved that con-
structive control by adding candidates isW[2]-hard with respect
to the parameter “number of added candidates”. Chen et al. [24]
showed that constructive control by adding candidates is NP-hard
even if there are only 10 voters. Maushagen and Rothe [34] proved
studied constructive control by partitioning candidates in Maximin
elections, and proved it to be NP-complete in both the sequential
and the run-off versions.

Combinatorial control was studied in Chen et al. [24]. They
proved that combinatorial constructive control by deleting candi-
dates is NP-hard for Copeland𝛼 and Maximin, even for elections
with only a single voter, using the fact that these voting rules satisfy
the unanimity property (which means that if a candidate 𝑐 is ranked
first by all the voters, then 𝑐 is the unique winner). For destructive
control by deleting candidates they proved NP-hardness for the
Maximin voting rule even in case of five voters, and for Copeland
even in case of three voters. As far as constructive control by adding
candidates is concerned, it is NP-hard even for elections with three
voters for Copeland𝛼 with any 𝛼 ∈ [0, 1] and for Maximin for elec-
tions with only six voters. By contrast, combinatorial destructive
control by adding candidates can be solved in polynomial time.

Erdélyi et al. [26] gave a detailed overview of the results on
computational complexity of election control by adding or deleting
candidates. They complemented the known results by proving that
the constructive control by replacing candidates is NP-complete for
both Copeland𝛼 and Maximin voting rules, while the destructive
control is in P in both cases.



A.2 Elections Involving Parties

Harrenstein et al. [31] present a model for the strategic selection of
party nominees. Each party is fully described by a set of points on
the line (political spectrum) that correspond to the positions of the
candidates the party has to choose its nominee from. Each nominee
then attracts the closest voters compared to all other representatives.
The paper shows that a Nash equilibrium is not guaranteed to exist
even in two party game. Finding a Nash equilibrium isNP-complete
for the general case, but for two competing parties can be computed
in linear time.

In a differentmodel Harrenstein and Turrini [32] consider district-
based elections. In each district, voters rank the nominated candi-
dates and elect the plurality winners. So parties have to strategically
place their candidates in districts so as to maximize the number of
their nominees that get elected. The authors show that deciding the
existence of pure Nash equilibria for these games is NP-complete if
party size is bounded by a constant and Σ𝑃2 -complete for the general
case.

Another model of control with elections involving parties was
introduced by Perek et al. [35]. Unlike in the current paper, the
authors assume that voters, not candidates are partitioned into
parties and voters in the same party vote in the same way. It is
assumed that the most preferred candidate of a given leading party
is the winner of the election. The authors study the computational
complexity of the problems to determine the maximum number of
voters who can leave the leading party without changing the winner
and the minimal number of voters that must leave the leading party
to ensure that the winner will be changed. Perek at al. [35] and
a follow-up paper by Guo et al. [29] classify these problems into
polynomial or NP-complete for several different voting rules.

Appendix B ADDITIONAL NOTATION

Here we provide some additional definitions for concepts appearing
in the paper.

Undirected graphs. An undirected graph 𝐺 is a pair 𝐺 = (𝑈 , 𝐸)
where 𝑈 is the set of vertices and 𝐸 the set of edges in 𝐺 , each
edge connecting two vertices. If an edge 𝑒 connects 𝑢 and 𝑣 , then
we write 𝑒 = 𝑢𝑣 , and we say that 𝑢 and 𝑣 are the endpoints of 𝑒 .
Moreover, 𝑢 and 𝑣 are adjacent to each other, and each of them is
incident to 𝑒 . The neighborhood of a vertex 𝑢 ∈ 𝑈 in 𝐺 is denoted
by 𝑁𝐺 (𝑢) = {𝑣 : 𝑢𝑣 ∈ 𝐸}, and we call |𝑁𝐺 (𝑢) | the degree of 𝑢. If
the set of vertices𝑈 of 𝐺 can be partitioned into two disjoint sets
𝐴 and 𝐵 such that each edge connects a vertex in 𝐴 with a vertex
in 𝐵, then 𝐺 is bipartite, and to stress its bipartition we shall write
𝐺 = (𝐴 ⊎ 𝐵, 𝐸).

Given a subset of vertices 𝐾 ⊂ 𝑈 , we denote by 𝐺 [𝐾] the sub-
graph of 𝐺 induced by 𝐾 , i.e., the graph whose vertex set is 𝐾 and
whose edges are those edges from 𝐸 that connect two vertices in 𝐾 .

A clique is a set of vertices that are pairwise adjacent, and an
independent set is a set of vertices so that they are pairwise non-
adjacent. A set of edges is independent, if no two of them shares an
endpoint.
Directed graphs. A directed graph 𝐷 (or digraph) is a pair (𝑉 ,𝐴)
with vertex set𝑉 and arc set𝐴, where𝐴 ⊆ 𝑉 ×𝑉 ; we will also write
𝑉 (𝐷) to denote the set of vertices in 𝐷 . Each arc 𝑎 = (𝑢, 𝑣) ∈ 𝐴
points from its head vertex 𝑢 ∈ 𝑉 to its tail vertex 𝑣 ∈ 𝑉 . A loop is

an arc of the form (𝑣, 𝑣) for some vertex 𝑣 ∈ 𝑉 . We write 𝑁 −
𝐷
(𝑣) =

{𝑢 : (𝑢, 𝑣) ∈ 𝐴} and 𝑁 +
𝐷
(𝑣) = {𝑢 : (𝑣,𝑢) ∈ 𝐴} to denote the set of

in- and out-neighbors of a vertex 𝑣 ∈ 𝑉 in 𝐷 ; when the digraph 𝐷 is
clear from the context, we may omit the subscript.

A tournament is a directed graph𝐷 = (𝑉 ,𝐴) without loopswhere
for each distinct vertices 𝑢, 𝑣 ∈ 𝑉 , exactly one of (𝑢, 𝑣) and (𝑣,𝑢) is
an arc contained in 𝐴.

Digraphs 𝐷 = (𝑉 ,𝐴) and 𝐷′ = (𝑉 ′, 𝐴′) are isomorphic, if there
exists a mapping 𝑓 : 𝑉 → 𝑉 ′ such that for each 𝑢, 𝑣 ∈ 𝑉 , it holds
that (𝑢, 𝑣) ∈ 𝐴 if and only if (𝑓 (𝑢), 𝑓 (𝑣) ∈ 𝐴′); the function 𝑓 is
then called an isomorphism.
Parameterized complexity. Parameterized complexity was in-
troduced by Downey and Fellows [10] as a tool to deal with hard
problems. Each instance of a parameterized problem 𝑄 is a pair
(𝐼 , 𝑘) consisting of an input 𝐼 and a parameter 𝑘 , which is usually
an integer. A parameterized problem is fixed-parameter tractable

(FPT) if there is an algorithm which correctly determines for each
instance (𝐼 , 𝑘) of the problem whether (𝐼 , 𝑘) is a “yes”-instance in
running time 𝑓 (𝑘) · |𝐼 |𝑂 (1) , where 𝑓 is a computable function.

Analogously to NP-hardness, parameterized complexity theory
offers the notion ofW[1]-hardness; proving that a parameterized
problem 𝑄 isW[1]-hard provides strong evidence that we cannot
expect an FPT algorithm for 𝑄 .W[1]-hardness can be established
via parameterized reductions: given two parameterized problems
𝑄 and 𝑄 ′, a parameterized reduction from 𝑄 to 𝑄 ′ is an algorithm
that runs in FPT time and transforms an instance (𝐼 , 𝑘) of 𝑄 into
an equivalent instance (𝐼 ′, 𝑘′) of 𝑄 ′ such that 𝑘′ ≤ 𝑔(𝑘) for some
computable function 𝑔. If 𝑄 is W[1]-hard, then such a reduction
from 𝑄 to 𝑄 ′ implies that 𝑄 ′ is W[1]-hard as well.

If a parameterized problem 𝑄 is NP-hard for some fixed con-
stant value of the parameter, then 𝑄 is said to be para-NP-hard
with respect to this parameter. By contrast, if 𝑄 can be solved in
polynomial time for all constant values of the parameter, then we
say that 𝑄 is in the class XP. Clearly, FPT ⊆ XP.

Additional notation for elections. Given a reduced election E,
we define the Copeland𝛼 -score of a party 𝑃 as the Copeland𝛼 -score
of its nominated candidate in E, and denote it asCpl𝛼E (𝑃). We define
the Maximin-score of 𝑃 analogously, and denote it asMM(𝑃).

Sometimes, when defining preferences of voters, we assume
that there is an arbitrarily fixed total order 𝜃 given over the set
of all candidates 𝐶 . When we write

−→
𝐴 for some 𝐴 ⊆ 𝐶 we mean

the sequence of candidates in 𝐴 listed according to 𝜃 ; notation
←−
𝐴

denotes the sequence of these candidates in the opposite order.

Appendix C MISSING PROOFS FROM

SECTIONS 3.1 AND 3.2

.

C.1 Proof of Theorem 3.1

Theorem 3.1 (★). Possible President for the Llull voting rule is
polynomial-time solvable if there are only two voters.

Proof. Using Observation 1, it is not hard to prove the following
claim: some candidate 𝑝 contained in our distinguished party can be
a unique winner in an election E resulting from some nominations
if and only if 𝑝 defeats every other nominee.



First, if 𝑝 defeats all other nominees in E, then its Llull-score is
𝑡 − 1, the maximum score possible, while each candidate 𝑐 ∈ 𝐶 \ {𝑝}
is defeated by 𝑝 and hence obtains a Llull-score at most 𝑡 − 2. Thus,
𝑝 is indeed the unique winner of E.

Second, suppose that there exists some candidate 𝑐0 not defeated
by 𝑝 ; we show that 𝑝 cannot be the unique winner in E. Suppose for
the sake of contradiction that 𝑝 has higher Llull-score than every
other nominated candidate. Then each nominee in𝐶 \ {𝑝} has to be
defeated by some other nominee, as otherwise its Llull-score will
be 𝑡 − 1, preventing 𝑝 from being the unique winner. In particular,
𝑐0 must be defeated by some nominee 𝑐1. Similarly, 𝑐1 must also be
defeated by some nominee 𝑐2. Again, 𝑐2 in turn must be defeated
by some nominee 𝑐3. Since we can always repeat this argument
and the number of nominees is finite, we must arrive at a cycle in
the “defeat” relation, contradicting Observation 1.

The claim we have just proved offers a simple quadratic-time
algorithm to solve an instance of Possible President for Llull
voting with two voters: we simply need to check for each candidate
𝑝 in the distinguished party 𝑃 whether each other party 𝑃 ′ contains
at least one candidate 𝑐𝑃 ′ that is defeated by 𝑝 (i.e., is ranked worse
than 𝑝 by both voters). If such a candidate exists for all parties, then
𝑝 can be the unique winner by nominating these candidates, and
thus we output “Yes”; otherwise, we know that 𝑝 cannot be the
unique winner. If no candidate in 𝑃 can be the unique winner, then
we output “No”. □

C.2 Proof of Theorem 3.2

Theorem 3.2 (★). For each 𝛼 ∈ [0, 1), Possible President for

Copeland
𝛼
is NP-complete even for instances with two voters and

maximum party size 𝜎 = 2.

Proof. We reduce from 3-Coloring. Let 𝐺 = (𝑈 , 𝐸) be our
input graph with vertex set 𝑈 = {𝑢1, . . . , 𝑢𝑛}. We construct an
instance of Possible President with voter set {𝑣, 𝑣 ′} and 𝜎 = 2 as
follows.

We let 𝑃 = {𝑝} be our distinguished party, and we create can-
didates 𝑝′1, 𝑝

′
2, 𝑝
′
3, 𝑑, 𝑑

′ as well as candidates 𝑞𝑖 for 𝑖 ∈ [𝑛]; all of
these 𝑛 + 5 candidates form singleton parties. For each color 𝑐 ∈ [3],
we further create a party 𝑃𝑐𝑢𝑖 = {𝑢𝑐

𝑖
, 𝑢𝑐𝑖 } for each 𝑖 ∈ [𝑛], and a

party 𝑃𝑐𝑒 = {𝑒𝑐
𝑖
, 𝑒𝑐

𝑗
} for each edge 𝑒 = 𝑢𝑖𝑢 𝑗 ∈ 𝐸. Then the number

of parties is 𝑡 = 4𝑛 + 3|𝐸 | + 6, and each party has size at most two.
To define the preferences of 𝑣 and 𝑣 ′, we first define certain series

of candidates that we call blocks. For each candidate𝑢𝑐
𝑖
representing

the option of coloring vertex 𝑢𝑖 ∈ 𝑈 with color 𝑐 ∈ [3], we define
the set

𝐴(𝑢𝑐𝑖 ) =
{
𝑒𝑐𝑖 : 𝑒 ∈ 𝐸 is incident to 𝑢𝑖

}
.

Note that if 𝑖 ≠ 𝑗 , then the sets 𝐴(𝑢𝑐
𝑖
) and 𝐴(𝑢𝑐

𝑗
) are disjoint, and if

𝑢𝑖𝑢 𝑗 = 𝑒 ∈ 𝐸, then both of these sets contain exactly one candidate
from the party 𝑃𝑐𝑒 . Moreover, we also have

⋃
𝑖∈[𝑛] 𝐴(𝑢𝑐𝑖 ) =

⋃
𝑒∈𝐸 𝑃

𝑐
𝑒

for each 𝑐 ∈ [3]. Recall the notation introduced in Appendix B that
we write

−→
𝑋 for the ordering of a set 𝑋 of candidates according to

some arbitrary fixed ordering over all candidates, and we write
←−
𝑋

for its reverse. We can now define the following blocks, 𝑋𝑐 and 𝑋𝑐 ,
for each 𝑐 ∈ [3]:

𝑋𝑐 = 𝑢𝑐1,
−−−−→
𝐴(𝑢𝑐1), 𝑢

𝑐
2,
−−−−→
𝐴(𝑢𝑐2), . . . , 𝑢

𝑐
𝑛,
−−−−→
𝐴(𝑢𝑐𝑛);

𝑋𝑐 = 𝑢𝑐𝑛,
←−−−−
𝐴(𝑢𝑐𝑛), 𝑢𝑐𝑛−1,

←−−−−−−−
𝐴(𝑢𝑐𝑛−1), . . . , 𝑢

𝑐
1,
←−−−−
𝐴(𝑢𝑐1).

(13)

We further introduce the following blocks:

𝑌 = 𝑞1, 𝑢
1
1, 𝑢

2
1, 𝑢

3
1, 𝑞2, 𝑢

1
2, 𝑢

2
2, 𝑢

3
2, . . . , 𝑞𝑛, 𝑢

1
𝑛, 𝑢

2
𝑛, 𝑢

3
𝑛 ;

𝑌 = 𝑞𝑛, 𝑢
1
𝑛, 𝑢

2
𝑛, 𝑢

3
𝑛, 𝑞𝑛−1, 𝑢

1
𝑛−1, 𝑢

2
𝑛−1, 𝑢

3
𝑛−1, . . . , 𝑞1, 𝑢

1
1, 𝑢

2
1, 𝑢

3
1 .

Now we can define the preferences of voters 𝑣 and 𝑣 ′ as follows:

𝑣 : 𝑝, 𝑝′1, 𝑝
′
2, 𝑝
′
3, 𝑌 , 𝑋

1, 𝑋 2, 𝑋 3, 𝑑, 𝑑′;

𝑣 ′ : 𝑋 3, 𝑋 2, 𝑋 1, 𝑑, 𝑑′, 𝑌 , 𝑝, 𝑝′1, 𝑝
′
2, 𝑝
′
3 .

First notice thatCpl𝛼E (𝑝) = 3+𝛼 (𝑡−4) in any reduced election E,
because 𝑝 defeats 𝑝′1, 𝑝

′
2, and 𝑝

′
3, and is tied with every other nom-

inee. Define the candidate set 𝑈 𝑖 := {𝑢1𝑖 , 𝑢
2
𝑖 , 𝑢

3
𝑖 } for each 𝑖 ∈ [𝑛],

and the set 𝐴𝑐 of candidates that are present in 𝑋𝑐 (or equivalently,
in 𝑋𝑐 ), i.e., 𝐴𝑐 :=

⋃
𝑒∈𝐸 𝑃

𝑐
𝑒 ∪ {𝑢𝑐𝑖 : 𝑖 ∈ [𝑛]} for each 𝑐 ∈ [3].

Observe the following facts:
• Nominees in

⋃
𝑖∈[𝑛] 𝑈 𝑖 ∪ {𝑝′1, 𝑝

′
2, 𝑝
′
3, 𝑑, 𝑑

′} each defeat at
most two nominees, and have Copeland𝛼 -score less than
Cpl𝛼E (𝑝).

• For each 𝑖 ∈ [𝑛], nominee 𝑞𝑖 is tied with every other nom-
inee except for those in 𝑈 𝑖 , while it defeats all nominees
in𝑈 𝑖 . Therefore,Cpl𝛼E (𝑞𝑖 ) < Cpl𝛼E (𝑝) if and only if at most
two candidates from𝑈 𝑖 are nominated, which in turnmeans
that at least one candidate among {𝑢1

𝑖
, 𝑢2

𝑖
, 𝑢3

𝑖
} is nominated.

• For each 𝑐 ∈ [3], all nominees in 𝐴𝑐 defeat both 𝑑 and 𝑑′,
and are tied with every other nominee not in 𝐴𝑐 . Hence, it
holds that all nominees in 𝐴𝑐 have Copeland𝛼 -score less
than Cpl𝛼E (𝑝) if and only if no nominee in 𝐴𝑐 defeats an-
other nominee in 𝐴𝑐 .

This shows that 𝑝 is the unique winner in the reduced election E
if and only if no nominee in 𝐴𝑐 defeats another nominee in 𝐴𝑐 for
each 𝑐 ∈ [3]. We claim that there exists such an election E resulting
from some nominations if and only if𝐺 admits a proper 3-coloring.

Direction “=⇒”: Suppose first that 𝑝 is the unique winner in E.
By the above observations, for each 𝑖 ∈ [𝑛], at least one candidate
among {𝑢1

𝑖
, 𝑢2

𝑖
, 𝑢3

𝑖
} must be nominated; let us color vertex 𝑢𝑖 with

some (arbitrarily fixed) color 𝑐 ∈ [3] for which 𝑢𝑐
𝑖
is nominated

in E. Using that no nominee in 𝐴𝑐 can defeat another nominee
in𝐴𝑐 , we are going to prove that the constructed coloring is proper.
Assume for contradiction that𝑢𝑖 and𝑢 𝑗 are both colored with some
color 𝑐 ∈ [3], but there is an edge 𝑒 = 𝑢𝑖𝑢 𝑗 ∈ 𝐸. Consider the party
𝑃𝑐𝑒 = {𝑒𝑐

𝑖
, 𝑒𝑐

𝑗
}. If 𝑃𝑐𝑒 nominates 𝑒𝑐

𝑖
, then both 𝑣 and 𝑣 ′ prefer 𝑢𝑐

𝑖
to 𝑒𝑐

𝑖
,

and thus party 𝑃𝑐𝑢𝑖 defeats 𝑃
𝑐
𝑒 , a contradiction to our assumption

on E. If 𝑃𝑐𝑒 nominates 𝑒𝑐
𝑗
, then a symmetric argument shows that

𝑃𝑐𝑢 𝑗
defeats 𝑃𝑐𝑒 ; a contradiction again. Hence, our coloring is indeed

proper.

Direction “⇐=”: Suppose now that 𝜒 : 𝑈 → [3] is a proper
3-coloring of 𝐺 . Let us nominate 𝑢𝜒 (𝑢𝑖 )

𝑖
and also the candidates

in {𝑢𝑐′𝑖 : 𝑐′ ∈ [3], 𝑐′ ≠ 𝜒 (𝑢𝑖 )} for each 𝑖 ∈ [𝑛]. Notice that in this
way, at most two candidates from𝑈 𝑖 are nominated for each 𝑖 ∈ [𝑛].
Furthermore, for each 𝑒 ∈ 𝐸 and 𝑐 ∈ [3], let us nominate the
candidate 𝑒𝑐

𝑖
where 𝑢𝑖 is an (arbitrarily fixed) endpoint of 𝑒 that

does not have color 𝑐; crucially, 𝑒 must admit such an endpoint,
because 𝜒 is a proper coloring, so 𝜒 (𝑢𝑖 ) = 𝜒 (𝑢 𝑗 ) = 𝑐 is not possible.



It remains to show that for each 𝑐 ∈ [3], no candidate from 𝐴𝑐

defeats another in 𝐴𝑐 .
We say that candidates of the form 𝑢𝑐

𝑖
or 𝑒𝑐

𝑖
are associated with

color 𝑐 . First, note that two candidates associated with different
colors are ranked differently by 𝑣 and 𝑣 ′, due to the ordering of the
different blocks in the preference lists of 𝑣 and 𝑣 ′. Hence, it suffices
to consider nominated candidates that are associated with the same
color, say 𝑐 ∈ [3].

Note that each two candidates 𝑢𝑐
𝑖
and 𝑢𝑐

𝑗
for some 𝑖, 𝑗 ∈ [𝑛] are

ranked differently by 𝑣 and 𝑣 ′, because 𝑣 and 𝑣 ′ order the candidates
𝑢𝑐1, . . . , 𝑢

𝑐
𝑛 in exactly the opposite order. Let us now show similarly

that each two candidates 𝑒𝑐
𝑖
and 𝑒𝑐

𝑗
for some 𝑖, 𝑗 ∈ [𝑛] are ranked

differently by 𝑣 and 𝑣 ′. If 𝑖 < 𝑗 , then 𝑣 prefers all candidates in𝐴(𝑢𝑐
𝑖
)

to all candidates in 𝐴(𝑢𝑐
𝑗
), while 𝑣 ′ prefers candidates in 𝐴(𝑢𝑐

𝑗
) to

candidates in 𝐴(𝑢𝑐
𝑖
); the case 𝑖 > 𝑗 is analogous. If 𝑖 = 𝑗 , then 𝑒𝑐

𝑖
and 𝑒𝑐

𝑗
are both contained in 𝐴(𝑢𝑐

𝑖
), and our claim follows from

the fact that 𝑣 and 𝑣 ′ order the candidate set 𝐴(𝑢𝑐
𝑖
) in exactly the

opposite order.
Hence, it remains to compare two candidates 𝑢𝑐

𝑖
and 𝑒𝑐

𝑗
for some

𝑖, 𝑗 ∈ [𝑛] and 𝑒 ∈ 𝐸. If 𝑖 < 𝑗 , then 𝑣 prefers 𝑢𝑐
𝑖
to 𝑒𝑐

𝑗
∈ 𝐴(𝑢𝑐

𝑗
), but 𝑣 ′

prefers 𝑒𝑐
𝑗
to 𝑢𝑐

𝑖
. The case 𝑖 > 𝑗 is analogous. Therefore, the only

possibility when 𝑣 and 𝑣 ′ could order 𝑢𝑐
𝑖
and 𝑒𝑐

𝑗
in the same way

is when 𝑖 = 𝑗 . However, then it is not possible that both 𝑢𝑐
𝑖
and

𝑒𝑐
𝑗
= 𝑒𝑐

𝑖
are nominates, since we only nominate 𝑒𝑐

𝑖
if 𝜒 (𝑢𝑖 ) ≠ 𝑐 , in

which case 𝑢𝑐
𝑖
is not nominated. This proves that there are no two

nominees that are ranked in the same order by 𝑣 and 𝑣 ′. Therefore,
no candidate in 𝐴𝑐 defeats another candidate in 𝐴𝑐 , as required,
finishing the proof. □

C.3 Proof of Theorem 3.3

We start with proving Theorem 3.4 in Appendix C.3.1, then prove
the correctness of the reduction presented in Section 3.2.3 in Ap-
pendix C.3.2.

C.3.1 Proof of Theorem 3.4.

Theorem 3.4 (★). Maximum Matching with Couples remains

NP-complete even if |𝑅 | = |𝑆 |/2 + |𝐶 |, and
• each vertex in the input graph has degree 2 or 3, and
• each room adjacent to both singles and couples is adjacent to

exactly two singles and one couple.

Proof. Let 𝐺 = (𝑆 ⊎ 𝐶, 𝑅, 𝐸) be our input instance with 𝑆 , 𝐶 ,
and 𝑅 being the set of singles, couples, and rooms, respectively.
It is easy to see that by adding the necessary number, namely
2|𝑅 | − (|𝑆 | + 2|𝐶 |), of dummy singles and making them adjacent to
all rooms in 𝐺 we obtain an equivalent instance where a complete
matching necessarily assigns two people (i.e., two singles or one
couple) to each room. Hence, we may assume that |𝑅 | = |𝑆 |/2 + |𝐶 |.
We may further assume that 𝐺 contains no isolated vertices.

Next, we are going to construct an equivalent instance where
each vertex in𝐺 has degree at most 3. We will achieve this through
a series of operations, each one modifying the current instance and
constructing an equivalent instance.

Rule 1 decreases the number of rooms that are adjacent to at
least one single and to at least two couples.

Rule 1. If 𝑟 ∈ 𝑅 is adjacent to at least two couples and at least
one single, then do the following: add a new room 𝑟 ′ and a new
couple 𝑐′, and modify the set of edges by making 𝑐′ adjacent to
both 𝑟 and 𝑟 ′, and then replacing each edge 𝑟𝑠 connecting 𝑟 to a
single 𝑠 ∈ 𝑆 with an edge 𝑟 ′𝑠 . See Figure 1 for an illustration.

𝑟

𝑠1 𝑠2
· · ·

𝑠𝑖 𝑐1 𝑐2
· · ·

𝑐 𝑗

−→

𝑠1 𝑠2
· · ·

𝑠𝑖

𝑟 ′

𝑐1 𝑐2
· · ·

𝑐 𝑗

𝑟

𝑐′

Figure 1: Illustration for Rule 1. Singles, couples, and rooms

are depicted as circles, ellipses, and rectangles, respectively.

We highlighted in light blue those nodes that might be con-

nected to parts of the graph not depicted in the figure.

Claim 2. Applying Rule 1 results in an equivalent instance.

Claim proof. Let 𝐺 = ((𝑆 ∪𝐶) ⊎ 𝑅, 𝐸) be the instance before
applying Rule 1 for some room 𝑟 ∈ 𝑅, and let the resulting instance
be𝐺 ′ = (𝑆 ∪𝐶 ∪ {𝑐′}) ⊎𝑅, 𝐸′). First, observe that given a complete
matching𝑀 for𝐺 , we can construct a complete matching𝑀′ for𝐺 ′
as follows. If𝑀 contains an edge 𝑟𝑐 for some couple 𝐶 , then we set
𝑀′ = 𝑀 ∪ {𝑟 ′𝑐′}. Otherwise, there exist singles 𝑠 and 𝑠′ such that
{𝑠𝑟, 𝑠′𝑟 } ⊆ 𝑀 ; we then set𝑀′ = 𝑀 \ {𝑠𝑟, 𝑠′𝑟 } ∪ {𝑠𝑟 ′, 𝑠′𝑟 ′, 𝑟𝑐′}. It is
straightforward to check that 𝑀′ is a complete matching in both
cases.

For the other direction, suppose now that 𝐺 ′ admits a complete
matching𝑀′. Then either 𝑐′𝑟 ′ ∈ 𝑀 or 𝑐′𝑟 ∈ 𝑀 . In the former case,
the matching𝑀′ \ {𝑐′𝑟 ′} is a complete matching in 𝐺 . In the latter
case, 𝑟 ′ must be adjacent to two singles, say 𝑠 and 𝑠′ in𝑀′; hence,
𝑀 = 𝑀′ \ {𝑐′𝑟, 𝑠𝑟 ′, 𝑠′𝑟 ′} ∪ {𝑠𝑟, 𝑠′𝑟 } is a complete matching in 𝐺 . ◁

Rule 2 deals with rooms that are adjacent to exactly one single
and one couple.

Rule 2. If 𝑟 ∈ 𝑅 is adjacent to exactly one single 𝑠 and exactly one
couple 𝑐 , then delete the edge 𝑟𝑠 .

Claim 3. Rule 2 constructs an equivalent instance.

Claim proof. Since a complete matching needs to match ex-
actly two persons (a couple or two singles) to each room, it is clear
that no such matching can include the edge 𝑟𝑠 , and hence, we can
safely delete it. ◁

Rule 3 reduces the degree of a single who is adjacent to more than
three rooms.

Rule 3. If 𝑠 ∈ 𝑆 is adjacent to at least four rooms 𝑟1, 𝑟2, 𝑟3, and 𝑟4,
then do the following: add new singles 𝑠2, 𝑠3, 𝑠4, and 𝑠★, along with
new rooms 𝑟 ′1 and 𝑟

′
2, and modify the set of edges by deleting the

edges 𝑠𝑟2, 𝑠𝑟3, and 𝑠𝑟4, and adding the edge set

{𝑠2𝑟2, 𝑠3𝑟3, 𝑠4𝑟4, 𝑠𝑟 ′1, 𝑠2𝑟
′
1, 𝑠3𝑟

′
2, 𝑠4𝑟

′
2, 𝑠

★𝑟 ′1, 𝑠
★𝑟 ′2}.

See Figure 2 for an illustration.

Claim 4. Applying Rule 3 results in an equivalent instance.



𝑠

𝑟1 𝑟2 𝑟3 𝑟4

−→

𝑟1 𝑟2 𝑟3 𝑟4

𝑠 𝑠2

𝑟 ′1

𝑠3 𝑠4

𝑟 ′2

𝑠★

Figure 2: Illustration for Rule 3, using the notation of Figure 1.

Double lines depict the edge set 𝑀0 defined in the proof of

Claim 4.

Claim proof. Let 𝐺 = ((𝑆 ∪𝐶) ⊎ 𝑅, 𝐸) be the instance before
applying Rule 3 for some single 𝑠 ∈ 𝑆 , and let the resulting instance
be 𝐺 ′ = ((𝑆 ∪ {𝑠2, 𝑠3, 𝑠4, 𝑠★} ∪𝐶) ⊎ (𝑅 ∪ {𝑟 ′1, 𝑟

′
2}), 𝐸

′).
First assume that 𝐺 admits a complete matching𝑀 . Define the

matching𝑀0 = {𝑠2𝑟 ′1, 𝑠
★𝑟 ′1, 𝑠3𝑟

′
2, 𝑠4𝑟

′
2}. If𝑀 does not contain any of

the edges 𝑠𝑟𝑖 , 𝑖 ∈ {2, 3, 4}, then𝑀′ = 𝑀 ∪𝑀0 is clearly a complete
matching for 𝐺 ′. If 𝑠𝑟2 ∈ 𝑀 , then define 𝑃 as the edge set of the
path (𝑟2, 𝑠2, 𝑟 ′1, 𝑠) in𝐺 , and if 𝑠𝑟𝑖 ∈ 𝑀 for some 𝑖 ∈ {3, 4}, then let 𝑃
be the edge set of the path (𝑟𝑖 , 𝑠𝑖 , 𝑟 ′2, 𝑠

★, 𝑟 ′1, 𝑠) in𝐺
′. In either case, it

is not hard to verify that𝑀′ = (𝑀 ∪𝑀0)△𝑃 is a complete matching
in 𝐺 ′.

Assume now that 𝐺 ′ admits a complete matching 𝑀 . Then 𝑠★
is matched either to 𝑟 ′1 or to 𝑟 ′2, and these two rooms have to
accommodate exactly four among the singles 𝑠★, 𝑠2, 𝑠3, 𝑠4, and 𝑠 .
Hence, at most one single among 𝑠2, 𝑠3, 𝑠4 and 𝑠 is matched to a
room in {𝑟1, 𝑟2, 𝑟3, 𝑟4}; if there is indeed one such room 𝑟𝑖 , then let
𝐹 = {𝑠𝑟𝑖 }, otherwise let 𝐹 = ∅. Then deleting all edges of 𝑀 not
present in 𝐺 ′ and then adding 𝐹 yields a complete matching in 𝐺 .

◁

Rule 4 reduces the degree of a couple who is adjacent to more
than three rooms.

Rule 4. If 𝑐 ∈ 𝐶 is adjacent to rooms 𝑟1, . . . , 𝑟𝑖 for some 𝑖 ≥ 4, then
do the following: replace 𝑐 with new couples 𝑐1, . . . , 𝑐𝑖 , add new
rooms 𝑟 ′1, . . . , 𝑟

′
𝑖−1, and modify the set of edges by deleting all edges

incident to 𝑐 , and adding the edge set {𝑐 𝑗𝑟 𝑗 : 𝑗 ∈ [𝑖]}∪{𝑐 𝑗𝑟 ′𝑗 , 𝑐 𝑗+1𝑟
′
𝑗
:

𝑗 ∈ [𝑖 − 1]}. See Figure 3 for an illustration.

𝑐

𝑟1 𝑟2
· · ·

𝑟𝑖

−→

𝑟1 𝑟2

· · ·

𝑟𝑖−1 𝑟𝑖

𝑐1 𝑐2 𝑐𝑖−1 𝑐𝑖

𝑟 ′1 𝑟 ′2 𝑟 ′
𝑖−1

. . .

Figure 3: Illustration for Rule 4 using the notation of Figure 1.

Double lines depict the edge set 𝑀𝑗 for 𝑗 = 2 defined in the

proof of Claim 5.

Claim 5. Applying Rule 4 results in an equivalent instance.

Claim proof. Let 𝐺 = ((𝑆 ∪𝐶) ⊎ 𝑅, 𝐸) be the instance before
applying Rule 4 for some couple 𝑐 ∈ 𝐶 , and let the resulting instance
be 𝐺 ′ = ((𝑆 ∪ 𝐶′) ⊎ (𝑅 ∪ {𝑟 ′1, . . . , 𝑟

′
𝑖−1}), 𝐸

′) for 𝐶′ = 𝐶 \ {𝑐} ∪
{𝑐1, . . . , 𝑐𝑖 }.

First assume that𝐺 admits a completematching𝑀 . Then 𝑐𝑟 𝑗 ∈ 𝑀
for some 𝑗 ∈ [𝑖]. Let
𝑀𝑗 = {𝑐 𝑗𝑟 𝑗 } ∪ {𝑐ℎ𝑟 ′ℎ : 1 ≤ ℎ < 𝑗} ∪ {𝑐ℎ𝑟 ′ℎ−1 : 𝑗 < ℎ ≤ 𝑖}; (14)

then𝑀′ = 𝑀 \ {𝑐𝑟 𝑗 } ∪𝑀𝑗 is a complete matching in 𝐺 ′.
Conversely, if 𝑀′ is a complete matching in 𝐺 ′, then it is not

hard to see that since the rooms 𝑟 ′1, . . . , 𝑟
′
𝑖−1 must accommodate

all but one couple among 𝑐1, . . . , 𝑐𝑖 , it follows that 𝑀′ contains a
matching𝑀𝑗 of the form (14). In this case,𝑀 = 𝑀′ \𝑀𝑗 ∪ {𝑐𝑟 𝑗 } is
a complete matching in𝑀 . ◁

Rule 5 is obtained from Rule 4 by switching the roles of couples
and rooms.

Rule 5. If 𝑟 ∈ 𝑅 is adjacent to couples 𝑐1, . . . , 𝑐𝑖 for some 𝑖 ≥ 4
and no singles, then do the following: replace 𝑟 with new rooms
𝑟1, . . . , 𝑟𝑖 , add new couples 𝑐′1, . . . , 𝑐

′
𝑖−1, and modify the set of edges

by deleting all edges incident to 𝑟 , and adding the edge set {𝑐 𝑗𝑟 𝑗 : 𝑗 ∈
[𝑖]} ∪ {𝑟 𝑗𝑐′𝑗 , 𝑟 𝑗+1𝑐

′
𝑗
: 𝑗 ∈ [𝑖 − 1]}.

By symmetry, Claim 5 immediately implies the following.

Claim 6. Applying Rule 5 results in an equivalent instance.

Notice that after applying Rule 1 exhaustively, each room that is
adjacent to at least one single can only be adjacent to at most one
couple. Rule 6 deals with such rooms, decreasing their degree in 𝐺
whenever it is more than three.

Rule 6. If 𝑟 ∈ 𝑅 has degree more than three in 𝐺 , and is adjacent
to distinct singles 𝑠1 and 𝑠2 and at most one couple, then do the
following: add a set 𝑆 of new singles, a set 𝐶 of new couples, and a
set 𝑅 of new rooms where

𝑆 = {𝑠′1, 𝑠
′
2, 𝑠1, 𝑠2, 𝑠1∨2, 𝑠1∨2},

𝐶 = {𝑐′, 𝑐1∧2, 𝑐3, 𝑐4, 𝑐5},

𝑅 = {𝑟 ′, 𝑟1, 𝑟2, 𝑟1∧2, 𝑟1∨2, 𝑟3, 𝑟4, 𝑟5},

and then delete the edges 𝑟𝑠1, 𝑟𝑠2, add the edge set 𝐸 where

𝐸 = {𝑠𝑖𝑟𝑖 , 𝑠′𝑖 𝑟𝑖 , 𝑠𝑖𝑟𝑖 , 𝑠
′
𝑖 𝑟𝑖+2, 𝑠1∨2𝑟𝑖+2, 𝑐𝑖+2𝑟𝑖+2, 𝑐𝑖+2𝑟5 : 𝑖 ∈ [2]}

∪ {𝑐5𝑟5, 𝑠1∨2𝑟1∨2, 𝑠1∨2𝑟1∨2, 𝑠1∨2𝑟, 𝑐′𝑟, 𝑐′𝑟 ′, 𝑐1∧2𝑟 ′, 𝑐1∧2𝑟1∧2}
∪ {𝑠′1𝑟1∧2, 𝑠

′
2𝑟1∧2},

and finally, if there is an edge between 𝑟 and a couple 𝑐 in 𝐺 , then
replace 𝑐𝑟 with 𝑐𝑟 ′. See Figure 4 for an illustration.

Claim 7. Applying Rule 6 results in an equivalent instance.

Claim proof. Let 𝐺 = ((𝑆 ∪𝐶) ⊎ 𝑅, 𝐸) be the instance before
applying Rule 6 for some room 𝑟 ∈ 𝑅, and let𝐺 ′ = ((𝑆 ′∪𝐶′)⊎𝑅′, 𝐸′)
denote the resulting instance.

First, we prove that given a complete matching𝑀 for 𝐺 , we can
construct a complete matching 𝑀′ for 𝐺 ′ as follows. Let 𝑀0 be
defined as the edge set

𝑀0 = {𝑠′𝑖 𝑟𝑖 , 𝑠𝑖𝑟𝑖 , 𝑐𝑖+2𝑟𝑖+2 : 𝑖 ∈ [2]}
∪ {𝑐5𝑟5, 𝑠1∨2𝑟1∨2, 𝑠1∨2𝑟1∨2, 𝑐′𝑟 ′, 𝑐1∧2𝑟1∧2};

see again Figure 4. Observe that 𝑀0 ⊆ 𝐸 is a complete matching
for the subgraph of 𝐺 ′ induced by 𝑆 ∪ 𝐶 ∪ 𝑅. Therefore, if the
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Figure 4: Illustration for Rule 6 using the notation of Figure 1.

matching𝑀 does not contain any of the edges 𝐸 \ 𝐸′, which Rule 6
removed from 𝐺 , then𝑀 ∪𝑀0 is a complete matching for 𝐺 ′.

Otherwise, we distinguish between three cases, depending on
how the room 𝑟 is matched in 𝑀 . In each of these case, we will
define an edge set𝑀′. First, if 𝑐𝑟 ∈ 𝑀 for some couple 𝑐 (recall that
there is at most one couple adjacent to 𝑟 in 𝐺), then we set

𝑀′ = 𝑀 \ {𝑐𝑟 } ∪ {𝑐𝑟 ′, 𝑐′𝑟 } ∪ (𝑀0 \ {𝑐′𝑟 ′}) .
Second, if |{𝑠1𝑟, 𝑠2𝑟 } ∩𝑀 | = 1, then assume that 𝑠1𝑟 ∈ 𝑀 ; the case
𝑠2𝑟 ∈ 𝑀 is symmetric. In this case, we let

𝑀′ = (𝑀 ∪𝑀0 \ {𝑠1𝑟, 𝑠′1𝑟1, 𝑐3𝑟3, 𝑐5𝑟5, 𝑠1∨2𝑟1∨2, 𝑠1∨2𝑟1∨2}
∪ {𝑠1𝑟1, 𝑠′1𝑟3, 𝑠1∨2𝑟3, 𝑐3𝑟5, 𝑐5𝑟1∨2, 𝑠1∨2𝑟 .}

Third, if {𝑠1𝑟, 𝑠2𝑟 } ⊆ 𝑀 , then we can define

𝑀′ = 𝑀 ∪𝑀0 \ {𝑠1𝑟, 𝑠2𝑟, 𝑠′1𝑟1, 𝑠
′
2𝑟2, 𝑐1∧2𝑟1∧2, 𝑐

′𝑟 ′}
∪ {𝑠1𝑟1, 𝑠2𝑟2, 𝑠′1𝑟1∧2, 𝑠

′
2𝑟1∧2, 𝑐1∧2𝑟

′, 𝑐′𝑟 }
In each of the three cases, it is straightforward to verify that𝑀′ is
a complete matching for 𝐺 ′.

For the other direction, suppose now that𝑀′ is a complete match-
ing for 𝐺 ′. Again, we will define an edge set𝑀 depending on the
properties of𝑀′.

First assume that 𝑟𝑐′ ∈ 𝑀′. If it further holds that 𝑟 ′𝑐1∧2 ∈
𝑀′, then room 𝑟1∧2 can only be matched to the singles 𝑠′1 and 𝑠

′
2

by 𝑀′, that is, {𝑠′1𝑟1∧2, 𝑠
′
2𝑟1∧2} ⊆ 𝑀

′, because 𝑀′ is a complete
matching. This also implies {𝑠1𝑟1, 𝑠2𝑟2} ⊆ 𝑀′. Note also that no
vertex in 𝑆∪𝐶∪𝑅 other than the vertices 𝑟, 𝑠1, and 𝑠2 can bematched
to a vertex in 𝑆 ∪ 𝐶 ∪ 𝑅 (recall that 𝑟 ′𝑐1∧2 ∈ 𝑀′, so 𝑟 ′ cannot be
matched to any couple in𝐶). However, then𝑀 = 𝑀′ \𝐸∪ {𝑠1𝑟, 𝑠2𝑟 }
is a complete matching for 𝐺 .

Otherwise, if 𝑟𝑐′ ∈ 𝑀′ but 𝑟 ′𝑐1∧2 ∉ 𝑀′, then 𝑟 ′ must be adjacent
to some couple 𝑐 ∈ 𝐶 within𝑀′, and the edge 𝑐𝑟 ′ must have been
added to 𝐸′ by Rule 6 because it found 𝑟𝑐 ∈ 𝐸. In this case, we must
have 𝑐1∧2𝑟1∧2 ∈ 𝑀′, as otherwise 𝑐1∧2 would be unmatched. Since
𝑠1∨2 is not matched to 𝑟 , we also know that 𝑠1∨2𝑟1∨2 ∈ 𝑀′, which in
turn implies 𝑠1∨2𝑟1∨2 ∈ 𝑀′. This yields also {𝑐3𝑟3, 𝑐4𝑟4, 𝑐5𝑟5} ⊆ 𝑀′.
Now, as 𝑠′1 and 𝑠

′
2 both must be covered by 𝑀′ (and they cannot

be matched to 𝑟1∧2), we obtain 𝑠′1𝑟1, 𝑠
′
2𝑟2 ∈ 𝑀 . Since 𝑠𝑖 can only

be matched to 𝑟𝑖 for both 𝑖 ∈ [2], we obtain that 𝑠1𝑟1, 𝑠2𝑟2 ∉ 𝑀 .
Therefore,𝑀 = 𝑀′ \ 𝐸 \ {𝑟 ′𝑐} ∪ {𝑟𝑐} is a complete matching for𝐺 .

It remains to consider the case when 𝑟𝑐′ ∉ 𝑀′. On the one hand,
if 𝑟𝑠1∨2 ∉ 𝑀′, then via a reasoning similar to the previous case,
it is not hard to see that 𝑀0 ⊆ 𝑀′. Thus, setting 𝑀 = 𝑀 \ 𝑀0

is a complete matching for 𝐺 . On the other hand, if 𝑟𝑠1∨2 ∈ 𝑀′,
then we get 𝑟1∨2𝑐5 as otherwise room 𝑟1∨2 is not filled. Hence, 𝑠1∨2
must be matched to 𝑟3 or to 𝑟4. Assume that 𝑠1∨2𝑟3 ∈ 𝑀′; the case
𝑠1∨2𝑟4 ∈ 𝑀′ is symmetric. Then 𝑟3 must be also matched to 𝑠′1,
which implies 𝑠1𝑟1 ∈ 𝑀 . By contrast, 𝑟4 must be matched to 𝑐4.
Since 𝑠′2 cannot be matched to 𝑟1∧2 (because we have 𝑐′𝑟 ′ ∈ 𝑀′ and
𝑐1∧2𝑟1∧2 ∈ 𝑀′ due to 𝑟𝑠1∨2 ∈ 𝑀′), we obtain that 𝑠′2𝑟2 ∈ 𝑀

′, and
consequently, 𝑠2𝑟2 ∉ 𝑀′. This yields that 𝑀 = 𝑀 \ 𝐸 ∪ {𝑠1𝑟 } is a
complete matching for 𝐺 . This finishes the proof. ◁

After applying Rules 1–6 exhaustively, let𝐺★ denote the result-
ing graph. Then singles in𝐺★ have degree at most 3, because Rule 3
is not applicable. Similarly, couples in 𝐺★ have degree at most 3,
because Rule 4 is not applicable. Rooms in 𝐺★ that are adjacent
to at least one single are adjacent to at most one couple, because
Rule 1 is not applicable, and they are adjacent to exactly two singles,
because neither Rule 2 nor Rule 6 is applicable; in particular, they
have degree 3. Lastly, rooms that are only adjacent to couples also
have degree at most 3, because Rule 5 is not applicable. Hence, 𝐺★

has maximum degree at most 3, and fulfills also the requirement of
the theorem on rooms adjacent to both singles and couples. Due to
Claims 2–7, 𝐺★ is equivalent to the original graph 𝐺 when inter-
preted as an instance of Maximum Matching with Couples. Note
also that𝐺★ also fulfills |𝑆★ |/2 + |𝐶★ | = |𝑅★ | where 𝑆★,𝐶★, and 𝑅★
denote the number of singles, couples, and rooms in 𝐺★, respec-
tively; to see this, it suffices to observe that each of the Rules 1–6
maintains this invariant.

Let us now show that applying Rules 1–6 takes polynomial time.
To see this, it suffices to observe the following facts. First, no new
vertex introduced during the application of a rule has degree more
than 3, or is adjacent to a single and more than one couple. Hence,
none of the rules can be applied to these vertices. Second, when ap-
plying one of the rules to a given vertex 𝑣 , the degree of 𝑣 decreases,
except in the case when 𝑣 is a room adjacent only to singles, and
we apply Rule 6. However, this latter can happen to each room at
most once (as after the application of Rule 6, they are adjacent to
a newly introduced couple). Since we can decrease the degree of
some vertex of 𝐺 at most 2|𝐸 | times, and we can apply Rule 6 to
a room adjacent only to singles at most |𝑅 | times, we obtain that
the total number of applying Rules 1–6 is at most 2|𝐸 | + |𝑅 |. Since
applying each rule takes linear time, the construction of 𝐺★ can be
completed in polynomial time.

It remains to deal with vertices of𝐺★ that have degree less than 2.
Let us construct a trivial “no”-instance 𝐺0 containing five rooms
𝑟1, . . . , 𝑟5 and five couples 𝑐1, . . . , 𝑐5 whose underlying graph is the
disjoint union of the complete bipartite graph on couples 𝑐1, 𝑐2, 𝑐3
and rooms 𝑟1, 𝑟2, and the complete bipartite graph on couples 𝑐4, 𝑐5
and rooms 𝑟3, 𝑟4, 𝑟5. We apply the following operations.

Rule 7. If 𝑟 ∈ 𝑅 is a room adjacent to exactly one single but no
couples, then output 𝐺0.

Rule 8. If 𝑠 ∈ 𝑆 has degree 1, then introduce two new rooms 𝑟
and 𝑟 ′, two new singles 𝑠′ and 𝑠′′, and a new couple 𝑐 , then add the
edges 𝑠𝑟 ′, 𝑐𝑟, 𝑠′𝑟, 𝑠′′𝑟, 𝑠′𝑟 ′, 𝑠′′𝑟 ′.

Rule 9. If 𝑣 is a room adjacent only to one couple (and no singles),
or 𝑣 is a couple of degree 1, then introduce two new rooms, 𝑟 and 𝑟 ′,



and two new couples, 𝑐 and 𝑐′, and add the edges 𝑐𝑟, 𝑐′𝑟, 𝑐𝑟 ′, 𝑐′𝑟 ′
plus an additional edge connecting 𝑣 with either 𝑐 or 𝑟 , depending
on whether 𝑣 is a room or a couple.

Claim 8. Applying any of Rules 7–9 results in an equivalent in-

stance.

Claim proof. First, a room 𝑟 adjacent to only one single and
no couples can never be matched two people; hence, an instance
containing such a room is a “no”-instance and hence equivalent
to 𝐺0, which shows that Rule 7 is correct. Second, observe that all
complete matchings in an instance resulting from applying Rule 8
must contain the edges 𝑐𝑟, 𝑠′𝑟 ′, 𝑠′′𝑟 ′ and, hence, cannot match 𝑠
along any of the newly introduced edges. From this, the statement
for Rule 8 follows. Similarly, the newly added rooms 𝑟, 𝑟 ′ and cou-
ples 𝑐, 𝑐′ in Rule 9 can only be matched to each other (in some way)
and not to 𝑣 in all complete matchings. From this, the statement for
Rule 9 follows. ◁

Finally, observe that applying first Rule 7 exhaustively to 𝐺★,
then Rule 8 exhaustively, and then Rule 9 exhaustively (which
takes linear time in total), we ensure that each vertex has degree 2
or 3 in the resulting graph, while also maintaining the remaining
properties required by the theorem. □

C.3.2 Correctness of the reduction presented in Section 3.2.3. Before
proving the correctness of the reduction presented in Section 3.2.3,
we present a simple lemma about flat elections.

Lemma C.1. If E is a flat election with an odd number of voters

whose candidate set is partitioned into pairwise disjoint sets 𝐶1, 𝐶2,
and 𝐶3 such that

• each candidate in 𝐶1 defeats all candidates in 𝐶2,
• each candidate in 𝐶2 defeats all candidates in 𝐶3, and
• each candidate in 𝐶3 defeats all candidates in 𝐶1,

then |𝐶1 | = |𝐶2 | = |𝐶3 |.

Proof. Note that for each 𝑖 ∈ [3], there exists a candidate 𝑐★
𝑖

in 𝐶𝑖 that defeats at least |𝐶𝑖 |−1
2 candidates from 𝐶𝑖 , because for

each pair of candidates in𝐶𝑖 one of them defeats the other (as there
are an odd number of voters), and thus the total number of defeats
within 𝐶𝑖 is |𝐶𝑖 | · ( |𝐶𝑖 |−1)

2 . Recall also that by the conditions of the
lemma, 𝑐★

𝑖
also defeats all candidates in𝐶𝑖+1 where we set𝐶4 := 𝐶1.

Since E is flat, every candidate defeats exactly |𝐶 |−12 candidates,
which implies

|𝐶1 | − 1
2

+ |𝐶2 | ≤
|𝐶 | − 1

2
; (15)

|𝐶2 | − 1
2

+ |𝐶3 | ≤
|𝐶 | − 1

2
; (16)

|𝐶3 | − 1
2

+ |𝐶1 | ≤
|𝐶 | − 1

2
. (17)

Summing up inequalities (15)–17), we obtain 3 |𝐶 |−3
2 on both sides,

which implies that all of these inequalities must hold with equality.
From this, |𝐶1 | = |𝐶2 | = |𝐶3 | follows by simple calculus. □

We are now ready to prove that the reduction presented in Sec-
tion 3.2.3, proving Theorem 3.3, is correct.
Direction “⇐=:”First, assume that E𝑋 admits nominations result-
ing in a flat election. We start with the following claim.

Claim 9. If a set of nominations for the relevant election E𝑋 results

in a flat election, then for each 𝑡 ∈ 𝑇 exactly three candidates from 𝐹𝑡
are nominated, and the restriction of E𝑋 to these three nominees is

flat.

Claim proof. Assume that we are given a set of nominations
that results in a flat election E.

Consider some candidate 𝑧 of E𝑞 written in the form (2) for
some 𝑥 ∈ {𝑎, 𝑏, 𝑐} and indices ℎ1, . . . , ℎ𝑞−1 ∈ [3]. For each index
𝑖 ∈ [𝑞], let 𝑍𝑖,𝑧 denote the candidates of E𝑞 belonging to the same
group as 𝑧 at level 𝑖; set also 𝑍𝑞,𝑧 = 𝐶𝑞 and 𝑍0,𝑧 = {𝑧}. By the
construction of E𝑞 as given in Definition 3.5, we know |𝑍𝑖,𝑧 | = 3𝑖
for each 𝑖 ∈ [𝑞] and 𝑍0,𝑧 ⊂ 𝑍1,𝑧 ⊂ · · · ⊂ 𝑍𝑞−1,𝑧 ⊂ 𝑍𝑞,𝑧 . Moreover,
by Observation 2, the candidate set 𝑍𝑖,𝑧 for some 𝑖 ∈ [𝑞] can be
partitioned as 𝑍𝑖−1,𝑧 ⊎ 𝑍+𝑖−1,𝑧 ⊎ 𝑍

−
𝑖−1,𝑧 where

• candidates in 𝑍𝑖−1,𝑧 defeat all candidates in 𝑍+
𝑖−1,𝑧 ,

• candidates in 𝑍+
𝑖−1,𝑧 defeat all candidates in 𝑍−

𝑖−1,𝑧 , and
• candidates in 𝑍−

𝑖−1,𝑧 defeat all candidates in 𝑍𝑖−1,𝑧
in the election E𝑞 .

For some 𝑧 ∈ 𝐶𝑞 and 𝑖 ∈ [𝑞], let us define the set 𝐹𝑖,𝑧 of candi-
dates in the election E𝑋 as 𝐹𝑖,𝑧 =

⋃{𝐹𝜓 (𝑧 ) : 𝑧 ∈ 𝑍𝑖,𝑧 }; for 𝑖+1 ∈ [𝑞]
we define 𝐹+

𝑖,𝑧
and 𝐹−

𝑖,𝑧
analogously.5 Notice that due to Observa-

tion 4, we have that for each 𝑖 ∈ [𝑞] and 𝑧 ∈ 𝐶𝑞
(a) candidates in 𝐹𝑖−1,𝑧 defeat all candidates in 𝐹+

𝑖−1,𝑧 ,
(b) candidates in 𝐹+

𝑖−1,𝑧 defeat all candidates in 𝐹−
𝑖−1,𝑧 , and

(c) candidates in 𝐹−
𝑖−1,𝑧 defeat all candidates in 𝐹𝑖−1,𝑧

in the election E𝑋 . We are going to prove by induction on 𝑖 that
for each 𝑖 = 𝑞, 𝑞 − 1, . . . , 1, 0 and for each 𝑧 ∈ 𝐶𝑞 ,

(i) there are exactly 3 · 3𝑖 candidates in 𝐹𝑖,𝑧 nominated in E,
and

(ii) nominees in 𝐹𝑖,𝑧 defeat exactly half of the nominees not
contained in 𝐹𝑖,𝑧 .

Statement (i) clearly holds for 𝑖 = 𝑞, because 𝐹𝑞,𝑧 =
⋃{𝐹𝑡 : 𝑡 ∈ 𝑇 } =

𝑋 for every 𝑧 ∈ 𝐶𝑞 , and 𝑋 is the union of 3𝜌 = 3|𝑇 | = 3 · 3𝑞 parties.
Statement (ii) is vacuously true for 𝑖 = 𝑞.

Assume now that the hypothesis holds for 𝑖 , and consider the
statement for 𝑖 − 1. Fix some 𝑧 ∈ 𝐶𝑞 . If the number of nominees is
equal in the three sets 𝐹𝑖−1,𝑧 , 𝐹+𝑖−1,𝑧 , and 𝐹

−
𝑖−1,𝑧 , then statement (i)

holds due to the inductive hypothesis for (i), because the number
of candidates nominated in E in each of these three sets will be 3𝑖 ;
statement (ii) also holds, because each nominee in 𝐹𝑖−1,𝑧 defeats
half of the nominees not in 𝐹𝑖,𝑧 due to the inductive hypothesis
for (ii), as well as all nominees in 𝐹+

𝑖−1,𝑧 , which is exactly half of
the nominees not in 𝐹𝑖−1,𝑧 .

So suppose that one of the sets 𝐹𝑖−1,𝑧 , 𝐹+𝑖−1,𝑧 , and 𝐹
−
𝑖−1,𝑧 contains

more than 3𝑖 nominees in E. In such a case, facts (a)–(c) together
with Lemma C.1 applied to the restriction of E to the nominees
in 𝐹𝑖,𝑧 imply that there exists at least one nominee 𝑐★ in 𝐹𝑖,𝑧 who
defeats more than 3·3𝑖−1

2 nominees from 𝐹𝑖,𝑧 in E. Due to our in-
ductive hypothesis on statements (i) and (ii), we also know that
5With a slight abuse of the notation, 𝐹𝑡 for some 𝑡 ∈ 𝑇 is treated here, as well as at
certain places later, as a set (instead of a list) of candidates from 𝑋 .



candidate 𝑐★ defeats 3·3𝑞−3·3𝑖
2 nominees that are not in 𝐹𝑖,𝑧 . This

yields that

CplE (𝑐★) ≥
3𝜌 − 3 · 3𝑖

2
+ 3 · 3𝑖 + 1

2
>

3𝜌 − 1
2

in total, a contradiction to the flatness of E. This proves the induc-
tion.

In particular, statement (i) for 𝑖 = 0 yields that for each 𝑧 ∈ 𝐶𝑞 ,
there are exactly three nominees in the set 𝐹0,𝑧 = 𝐹𝜓 (𝑧 ) ; here we
used that 𝑍0,𝑧 = {𝑧}. Since this holds for each 𝑧 ∈ 𝐶𝑞 , and 𝜓 is a
bijection, we obtain that 𝐹𝑡 for each team 𝑡 ∈ 𝑇 contains exactly
three nominees in E.

Using statement (ii) for 𝑖 = 0 we also obtain that each nominee
in 𝐹𝑡 for some 𝑡 ∈ 𝑇 defeats half of the nominees not in 𝐹𝑡 ; hence
if any nominee in 𝐹𝑡 would defeat both nominees in 𝐹𝑡 other than
itself, then it would obtain a Copeland-score of 3 |𝑇 |−3

2 + 2, which
again contradicts the flatness of E. ◁

By Claim 9, we know that for each team 𝑡 ∈ 𝑇 , the election E𝑋
restricted to the three nominees contained in 𝐹𝑡 is flat, i.e., each
of these three nominees defeats exactly one other nominee. Recall
that in this restricted election, the preferences of 𝑣 , 𝑣 ′, and 𝑣 ′′ are
exactly the lists given by 𝐹𝑡 , 𝐹 ′𝑡 , and 𝐹

′′
𝑡 , respectively, as defined

in (3)–(8).

Claim 10. If an election with three voters and three candidates is

flat, then it contains no two candidates that are ranked the same way

by all three voters.

Claim proof. Assume w.l.o.g. that candidate 𝑥 is preferred to
candidate 𝑦 by all three voters. Since 𝑦 also must defeat a candidate
due to the flatness of the election, the remaining candidate 𝑧 must
follow 𝑦 in the preference list of at least two voters. However, then
𝑥 also defeats 𝑧, contradicting the assumption of flatness. ◁

We next argue how nominations can result in a flat election
when restricted to the candidate set of certain team lists.

Claim 11. If a set of nominations for the election E𝑋 results in a

flat election, then for each 𝑝 ∈ 𝑆 ∪𝐶 ∪𝐶 , exactly one candidate of

the form 𝑝𝑟 for some 𝑟 ∈ 𝑅 is nominated.

Claim proof. By Claim 9, we know that exactly three candi-
dates from 𝐹𝑝 are nominated. First assume that 𝑝 is a single or couple
of degree 2 in 𝐺 , or a copy of such a couple. In this case, there are
two parties 𝑃𝑟1𝑝 and 𝑃𝑟2𝑝 associated with 𝑝 for some rooms 𝑟1 and 𝑟2.
Moreover, the candidates 𝑝 and 𝑝′ both form a singleton party, and
thus must be nominated. By the definition of 𝐹𝑝 as given in (7),
there are two additional candidates in 𝐹𝑟 , namely ¬𝑝𝑟1 and ¬𝑝𝑟2 .
Due to Claim 9, exactly one of these must be nominated, which
means that exactly one of the candidates 𝑝𝑟1 and 𝑝𝑟2 is nominated.

Assume now that 𝑝 is a single or couple of degree 3 in 𝐺 , or a
copy of such a couple. In this case, there are three parties 𝑃𝑟1𝑝 , 𝑃

𝑟2
𝑝

and 𝑃𝑟3𝑝 associated with 𝑝 for some rooms 𝑟1, 𝑟2, and 𝑟3. Moreover,
candidates 𝑝 and 𝑝′ together form a party, and thus exactly one of
them is nominated. By the definition of 𝐹𝑝 as given in (6), there are
three additional candidates in 𝐹𝑟 , namely ¬𝑝𝑟1 ,¬𝑝𝑟2 , and ¬𝑝𝑟3 . Due
to Claim 9, exactly two of these must be nominated, which means
that exactly one of the candidates 𝑝𝑟1 , 𝑝𝑟2 , and 𝑝𝑟3 is nominated. ◁

The following claim finishes the proof of this direction.

Claim 12. If a set of nominations for the election E𝑋 results in a

flat election, then𝑀 = {𝑝𝑟 : 𝑝 ∈ 𝑆 ∪𝐶, 𝑟 ∈ 𝑅, 𝑝𝑟 is nominated } is a
complete matching for 𝐺 .

Claim proof. Claim 11 implies that 𝑀 contains exactly one
edge incident to each vertex in 𝑆 ∪𝐶 , so it suffices to prove that

|𝑀 (𝑟 ) ∩ 𝑆 | + 2|𝑀 (𝑟 ) ∩𝐶 | ≤ 2 (18)

holds for each room 𝑟 ∈ 𝑅.
Consider a room 𝑟 ∈ 𝑅. Recall that due to Claim 9, there must

be exactly three nominees among the candidates of 𝐹𝑟 . Recall that
𝑃𝑟 ⊆ 𝐹𝑟 , and that exactly one of the candidates in 𝑃𝑟 is nominated.
Let 𝑥 and𝑦 denote the other two nominees in 𝐹𝑟 . Wewill distinguish
between three cases.

First, suppose that 𝑟 is adjacent to one couple 𝑐 and two singles,
say 𝑠1 and 𝑠2, in 𝐺 ; so that is 𝐹𝑟 is defined by (3). Observe that if 𝑥
belongs to some party 𝑃𝑐 or 𝑃𝑐 associated with a couple 𝑐 ∈ 𝐶 or
its copy, then 𝑦 cannot belong to some party 𝑃𝑠 associated with a
single 𝑠 ∈ 𝑆 , because then 𝑦 would be preferred to 𝑥 by all three
voters, which cannot happen by Claim 10. Therefore, only two cases
are possible: either {𝑥,𝑦} = {𝑐𝑟 , 𝑐𝑟 }, which means that𝑀 (𝑟 ) = {𝑐},
or {𝑥,𝑦} = {𝑠𝑟1, 𝑠

𝑟
2}, which means that 𝑀 (𝑟 ) = {𝑠1, 𝑠2}. In either

case, (18) holds.
Second, assume that 𝑟 is only adjacent to singles in𝐺 ; then 𝐹𝑟 is

defined by (4). Due to Claim 9, we know that exactly two among the
candidates {𝑠𝑟 : 𝑠𝑟 ∈ 𝐸} must be nominated besides the nominee
of 𝑃𝑟 ; hence,𝑀 (𝑟 ) contains exactly two singles, and thus (18) holds.

Third, assume that 𝑟 is only adjacent to couples in 𝐺 ; then 𝐹𝑟 is
defined by (5). Again, let 𝑥 and 𝑦 denote the two nominees in 𝐹𝑟
besides the nominee of 𝑃𝑟 . First note that 𝑥 and 𝑦 cannot both be
of the form 𝑐𝑟 for some 𝑐 ∈ 𝐶 , as in that case both of them would
defeat 𝑃𝑟 , which cannot happen by Claim 9. It also cannot happen
that both are of the form 𝑐𝑟 for some 𝑐 ∈ 𝐶 , as in that case 𝑃𝑟 would
defeat both of them, again a contradiction to Claim 9. Hence, it
must be the case that {𝑥,𝑦} = {𝑐𝑟

𝑖
, 𝑐𝑟

𝑗
} for some couples 𝑐𝑖 and 𝑐 𝑗 .

Notice that 𝑐𝑟
𝑖
defeats the nominee of 𝑃𝑟 , and thus, by Claim 9, must

in turn be defeated by 𝑐𝑟
𝑗
. This implies that 𝑐𝑟

𝑗
must precede 𝑐𝑟

𝑖
both

in 𝐹 ′𝑟 and in 𝐹 ′′𝑟 , which can only happen if 𝑐𝑖 = 𝑐 𝑗 . Hence, in this
case we have {𝑥,𝑦} = {𝑐𝑟

𝑖
, 𝑐𝑟
𝑖
} for some couple 𝑐𝑖 ∈ 𝐶 , which means

that𝑀 (𝑟 ) = {𝑐𝑖 }, ensuring (18). ◁

Direction “=⇒:” Assume now that𝑀 ⊆ 𝐸 is a complete matching
for our instance of Maximum Matching with Couples.

Claim 13. Given a complete matching for 𝐺 , there exists a set of

nominations for the constructed instance such that for each team 𝑡 ∈ 𝑇 ,
the restriction of E𝑥 to the candidates of 𝐹𝑡 is a flat election with three

nominees.

Claim proof. For each edge 𝑠𝑟 ∈ 𝐸 incident to a single 𝑆 , let
party 𝑃𝑟𝑠 nominate the candidate 𝑠𝑟 if 𝑠𝑟 ∈ 𝑀 , and ¬𝑠𝑟 otherwise.
Similarly, for each edge 𝑐𝑟 ∈ 𝐸 incident to a couple 𝑐 , let 𝑃𝑟𝑐 nomi-
nate 𝑐𝑟 (and 𝑃𝑐 nominate 𝑐𝑟 ) if 𝑐𝑟 ∈ 𝑀 , and ¬𝑐𝑟 (¬𝑐𝑟 , respectively)
otherwise.

Given a room 𝑟 , we define the nominee of 𝑃𝑟 as follows. If𝑀 (𝑟 )
contains a single that appears as the first candidate in 𝐹𝑟 , then let
𝑃𝑟 nominate 𝑟 , and 𝑟 ′ otherwise. Based on the definitions (3)–(5),



it is straightforward to check that these nominations fulfill the
requirements of the claim for 𝐹𝑡 .

If 𝑝 ∈ 𝑆 ∪ 𝐶 ∪ 𝐶′ is such that 𝑝 and 𝑝′ are both singletons,
then the team lists for 𝑝 are defined by (7). Using that exactly one
candidate of the form 𝑝𝑟 and, consequently, one candidate of the
form ¬𝑝𝑟 is nominated, it follows that the restriction of E𝑋 to the
three nominees in 𝐹𝑝 is a flat election.

By contrast, if 𝑝 ∈ 𝑆 ∪𝐶 ∪𝐶′ is such that candidates 𝑝 and 𝑝′
belong to the same party, then the team lists for 𝑝 are defined by (6).
Since 𝑝 (or the couple whose copy is 𝑝) is incident to exactly one
edge of𝑀 , we know that there are exactly two nominees in 𝐹𝑝 of
the form ¬𝑝𝑟 for some 𝑟 ∈ 𝑅. Let us nominate candidate 𝑝′ if the
first candidate of 𝐹 ′′𝑝 is not nominated, i.e., it is ¬𝑝𝑟 where 𝑝𝑟 ∈ 𝑀 ;
otherwise nominate the candidate 𝑝 . It is straightforward to check
that in this case, the nominations again fulfill the requirements
for 𝐹𝑝 .

Finally, it is trivial that all possible nominations fulfill the re-
quirements for the team lists corresponding to some dummy 𝑑 ∈ 𝐷 ,
as defined in (8). ◁

Consider the nominations guaranteed by Claim 13. Let 𝑡 ∈ 𝑇
be a team. Notice that by Observation 4, a nominee in 𝐹𝑡 defeats
a nominee in 𝐹𝑡 ′ for distinct teams 𝑡 and 𝑡 ′ if and only if 𝜓−1 (𝑡)
defeats𝜓−1 (𝑡 ′) in E𝑞 . Hence, Observation 3 means that each nom-
inee 𝑥 in 𝐹𝑡 defeats exactly (3 |𝑇 |−3)2 nominees from 𝑋 that are not
contained in 𝐹𝑡 . By Claim 13, we also know that 𝑥 defeats exactly
one nominee in 𝐹𝑡 . From this we get CplE (𝑥) =

(3 |𝑇 |−3)
2 + 1 =

(3 |𝑇 |−1)
2 . Hence, the proposed nominations for E𝑋 indeed result

in a flat election. This finishes the proof of the correctness of our
reduction.

C.4 Proof of Theorem 3.6

Theorem 3.6 (★). Possible President for Copeland1 (i.e., Llull)
is NP-complete even for four voters and maximum party size 𝜎 = 2.

Proof. We present a reduction from 3-Coloring that uses some
ideas from the proof of Theorem 3.2. Let 𝐺 = (𝑈 , 𝐸) be our input
graph with vertex set𝑈 = {𝑢1, . . . , 𝑢𝑛}. We construct an instance
of Possible President with voter set {𝑣, 𝑣 ′,𝑤,𝑤 ′} and 𝜎 = 2 as
follows.

We let 𝑃 = {𝑝} be our distinguished party, and we create candi-
dates 𝑞𝑖 for 𝑖 ∈ [𝑛], with each 𝑞𝑖 forming its own singleton party.
For each color 𝑐 ∈ [3], we further create a party 𝑃𝑐𝑢𝑖 = {𝑢

𝑐
𝑖
, 𝑢𝑐𝑖 } for

each 𝑖 ∈ [𝑛], and a party 𝑃𝑐𝑒 = {𝑒𝑐
𝑖
, 𝑒𝑐

𝑗
} for each edge 𝑒 = 𝑢𝑖𝑢 𝑗 ∈ 𝐸.

Then the maximum party size is 𝜎 = 2. We shall use the notation

𝑈 [3] = {𝑢𝑐𝑖 : 𝑖 ∈ [𝑛], 𝑐 ∈ [3]},

𝑈
[3]

= {𝑢𝑐𝑖 : 𝑖 ∈ [𝑛], 𝑐 ∈ [3]},

𝐸 [3] = {𝑒𝑐𝑖 : 𝑒 ∈ 𝐸 is incident to 𝑢𝑖 , 𝑖 ∈ [𝑛], 𝑐 ∈ [3]},
𝑄 = {𝑞1, . . . , 𝑞𝑛},

so that our candidate set is 𝐶0 = {𝑝} ∪𝑄 ∪𝑈 [3] ∪𝑈
[3] ∪ 𝐸 [3] .

To define the preferences of our voters, we will use the definition
of blocks 𝑋𝑐 and 𝑋𝑐 for each color 𝑐 ∈ [3] as defined in (13), and
we additionally introduce the following blocks:

𝑍 = 𝑢11, 𝑢
2
1, 𝑢

3
1, 𝑞1, 𝑢

1
2, 𝑢

2
2, 𝑢

3
2, 𝑞2, . . . , 𝑢

1
𝑛, 𝑢

2
𝑛, 𝑢

3
𝑛, 𝑞𝑛 ;

𝑍 = 𝑢1𝑛, 𝑢
2
𝑛, 𝑢

3
𝑛, 𝑞𝑛, 𝑢

1
𝑛−1, 𝑢

2
𝑛−1, 𝑢

3
𝑛−1, 𝑞𝑛−1, . . . , 𝑢

1
1, 𝑢

2
1, 𝑢

3
1, 𝑞1 .

(19)

Now we are ready to define the preferences of our voters:

𝑣 : 𝑝,
−→
𝑄 ,𝑋 1, 𝑋 2, 𝑋 3,

−−−→
𝑈
[3] ;

𝑣 ′ : 𝑋 3, 𝑋 2, 𝑋 1,
←−−−
𝑈
[3]
,
←−
𝑄 , 𝑝;

𝑤 :
−−−→
𝐸 [3] , 𝑝, 𝑍,

−−−→
𝑈 [3] ;

𝑤 ′ : 𝑍,
←−−−
𝑈 [3] , 𝑝,

←−−−
𝐸 [3] .

For some reduced election E with candidate set 𝐶 ⊂ 𝐶0, let
𝜆E (𝑥) for each 𝑥 ∈ 𝐶 denote the set of nominees that defeat 𝑥 in E.
The following observations follow directly from the preferences of
voters:

• 𝜆E (𝑝) = ∅;
• 𝜆E (𝑢𝑐𝑖 ) ⊇ 𝑄 for each nominee 𝑢𝑐

𝑖
∈ 𝑈 [3] ;

• 𝜆E (𝑢𝑐𝑖 ) ⊇ 𝐸 [3] ∩𝐶 for each nominee 𝑢𝑐𝑖 ∈ 𝑈
[3] .

Notice also that candidates in 𝑄 either are tied with or defeat
every nominee in 𝐶 \𝑈 [3] , and thus can be defeated only by nom-
inees in 𝑈 [3] . However, due to the definition of blocks 𝑍 and 𝑍 ,
each nominee 𝑞𝑖 ∈ 𝑄 is tied with all nominees in𝑈 [3] \ {𝑢1𝑖 , 𝑢

2
𝑖 , 𝑢

3
𝑖 }.

Thus, we also get
𝜆E (𝑞𝑖 ) ⊆ {𝑢1𝑖 , 𝑢

2
𝑖 , 𝑢

3
𝑖 } (20)

for each 𝑖 ∈ [𝑛].
Similarly, note that candidates in 𝐸 [3] are either tied with or

defeat every nominee in 𝐶 \𝑈 [3] , and thus can be defeated only
by nominees in𝑈 [3] . However, due to the definition of blocks 𝑋𝑐

and 𝑋𝑐 for some color 𝑐 ∈ [3], each nominee 𝑒𝑐
𝑖
∈ 𝐸 [3] is tied with

all nominees in𝑈 [3] \ {𝑢𝑐
𝑖
}. Thus, we also get

𝜆E (𝑒𝑐𝑖 ) ⊆ {𝑢
𝑐
𝑖 } (21)

for each nominee 𝑒𝑐
𝑖
in E.

Since Cpl1E (𝑥) = 𝑡 − 1 − 𝜆E (𝑥) for each nominee 𝑥 ∈ 𝐶 , we get
that

Cpl1E (𝑝) = 𝑡 − 1, (22)
which shows that 𝑝 is the unique winner in E if and only if all
nominees in 𝑄 ∪ 𝐸 [3] are defeated by at least one other nominee.

Moreover, for each 𝑖 ∈ [𝑛] and 𝑐 ∈ [3] we obtain that

Cpl1E (𝑢
𝑐
𝑖 ) ≤ 𝑡 − 1 − |𝑄 | = 𝑡 − 1 − 𝑛 if 𝑢𝑐𝑖 ∈ 𝐶; (23)

Cpl1E (𝑢
𝑐
𝑖 ) ≤ 𝑡 − 1 − |𝐸

[3] ∩𝐶 | = 𝑡 − 1 − 3|𝐸 | if 𝑢𝑐𝑖 ∈ 𝐶. (24)

We claim that 𝑝 can be the unique winner in the reduced elec-
tion E if and only if 𝐺 admits a proper 3-coloring.

Direction “=⇒”: Suppose first that 𝑝 is the unique winner in E.
Since each candidate 𝑞𝑖 ∈ 𝑄 must be defeated by at least one
nominee in E due to (22), by (20) we know that at least one candidate
in {𝑢1𝑖 , 𝑢

2
𝑖 , 𝑢

3
𝑖 } must be nominated in E for each 𝑖 ∈ [𝑛]. Thus, for

each 𝑖 ∈ [𝑢] we can fix one candidate𝑢𝑐𝑖 that is nominated in E, and
assign the color 𝑐 to 𝑢𝑖 . We argue that the coloring 𝜒 thus defined
is a proper coloring for 𝐺 .

For the sake of a contradiction, assume that there exists some
edge 𝑒 = 𝑢𝑖𝑢 𝑗 ∈ 𝐸 and color 𝑐 ∈ [3] so that 𝜒 (𝑢𝑖 ) = 𝜒 (𝑢 𝑗 ) = 𝑐 . This
means that both 𝑢𝑐𝑖 and 𝑢

𝑐
𝑗 are nominated in E, and consequently,



neither𝑢𝑐
𝑖
nor𝑢𝑐

𝑗
are nominated due to the definitions of parties 𝑃𝑐𝑢𝑖

and 𝑃𝑐𝑢 𝑗
. By (21), this implies that if candidate 𝑒𝑐

𝑖
is nominated,

then 𝜆(𝑒𝑐
𝑖
) = ∅, and similarly, if 𝑒𝑐

𝑗
is nominated, then 𝜆(𝑒𝑐

𝑗
) = ∅.

Therefore, Cpl1E (𝑃
𝑐
𝑒 ) = 𝑡 −1 = Cpl1E (𝑝) in both cases, contradicting

our assumption that 𝑝 is the unique winner in E. Hence, 𝜒 is indeed
a proper 3-coloring for 𝐺 .

Direction “⇐=”: Suppose now that 𝜒 : 𝑈 → [3] is a proper 3-
coloring of 𝐺 . We provide a nomination strategy for all parties
which yields a reduced election E whose unique winner is 𝑝 .

First, for each 𝑖 ∈ [𝑛] we nominate 𝑢𝜒 (𝑢𝑖 )
𝑖

together with the
candidates in {𝑢𝑐′

𝑖
: 𝑐′ ≠ 𝜒 (𝑢𝑖 )}. By (20), this immediately yields

𝜆E (𝑞𝑖 ) = {𝑢
𝜒 (𝑢𝑖 )
𝑖

} and hence

Cpl1E (𝑞𝑖 ) = 𝑡 − 2. (25)

Next, for each 𝑒 ∈ 𝐸 and color 𝑐 ∈ [3], let us nominate the
candidate 𝑒𝑐

𝑖
where 𝑢𝑖 is an (arbitrarily fixed) endpoint of 𝑒 that

does not have color 𝑐 ; as we have argued in the proof of Theorem 3.2,
𝑒 must admit such an endpoint, because 𝜒 is a proper 3-coloring.
Note that in this case, candidate𝑢𝑐

𝑖
is nominated (by 𝑐 ≠ 𝜒 (𝑢𝑖 )}), so

the nominee 𝑒𝑐
𝑖
is therefore defeated by𝑢𝑐

𝑖
. Hence, Cpl1E (𝑒

𝑐
𝑖
) ≤ 𝑡 −2

follows. Together with our previous observations in (22)–(25), this
means that all nominated candidates have score at most 𝑡 − 2, while
𝑝 has score 𝑡 − 1. Thus 𝑝 is indeed the unique winner in E. □

Appendix D ADDITIONAL MATERIAL FOR

SECTION 3.4

All reductions in this section are from theMulticolored Cliqe
problem which is W[1]-hard when parameterized by the size of
the desired clique [14, 19].
Multicolored Cliqe.
Input: An undirected graph 𝐺 = (𝑈 , 𝐸) with the vertex set 𝑈
partitioned into 𝑘 independent sets𝑈1, . . . ,𝑈𝑘 .
Question: Is there a clique of size 𝑘 in 𝐺?

We now define some notation that will be useful in our reductions
from Multicolored Cliqe.

For each pair of distinct indices 𝑖, 𝑗 ∈ [𝑘] let 𝐸{𝑖, 𝑗 } denote the set
of edges in 𝐺 that run between 𝑈𝑖 and𝑈 𝑗 ; note that 𝐸{𝑖, 𝑗 } = 𝐸{ 𝑗,𝑖 } .
We may assume w.l.o.g. that |𝑈𝑖 | = 𝑛 and |𝐸{𝑖, 𝑗 } | = 𝑚 for every
𝑖, 𝑗 ∈ [𝑘] with 𝑖 ≠ 𝑗 ; thus, we will write 𝑈𝑖 = {𝑢1

𝑖
, . . . , 𝑢𝑛

𝑖
} and

𝐸{𝑖, 𝑗 } = {𝑒1{𝑖, 𝑗 } , . . . , 𝑒
𝑚
{𝑖, 𝑗 } }. Indeed, to achieve this we can simply

add a newly constructed independent edge set of appropriate size
to each set 𝐸{𝑖, 𝑗 } to guarantee |𝐸{𝑖, 𝑗 } | = 𝑚 for all 𝑖 ≠ 𝑗 , and then
add the necessary number of isolated vertices to each vertex set 𝑈𝑖
so that they all have the same size.

For each vertex𝑢 ∈ 𝑈𝑖 , we let 𝐸 𝑗 (𝑢) = {𝑢𝑣 ∈ 𝐸 : 𝑣 ∈ 𝑈 𝑗 } for each
𝑗 ∈ [𝑘] \ {𝑖}, as well as the edge sets 𝐸>𝑖 (𝑢) = ⋃

𝑗∈[𝑘 ], 𝑗>𝑖 𝐸
𝑗 (𝑢)

and 𝐸<𝑖 (𝑢) = ⋃
𝑗∈[𝑘 ], 𝑗<𝑖 𝐸

𝑗 (𝑢).

D.1 Proof of Theorem 3.8.

Theorem 3.8 (★). For any constant 𝛼 ∈ [0, 1], Possible President
for Copeland

𝛼
isW[1]-hard when parameterized by 𝑡 , the number

of parties, even if there are only four voters.

We will prove Theorem 3.8 in two steps, dissecting it into Theo-
rems D.1 and D.2. We start with the following result.

TheoremD.1 (★). For any constant𝛼 ∈ [0, 1), Possible President
for Copeland

𝛼
isW[1]-hard when parameterized by 𝑡 , the number

of parties, even if there are only four voters.

Proof. Let 𝐺 = (𝑈 , 𝐸) and 𝑘 be our instance of theMulticol-
ored Cliqe with𝑈 partitioned into sets𝑈1, . . . ,𝑈𝑘 ; we use all the
notation introduced at the beginning of Appendix D. We define an
instance of Possible President as follows.

First, we set 𝑃 = {𝑝} as our distinguished party. We also intro-
duce a party 𝑃 ′ = {𝑝′}. We add𝑈𝑖 for each 𝑖 ∈ [𝑘], as well as 𝐸{𝑖, 𝑗 }
for each pair {𝑖, 𝑗} ⊆ [𝑘] with 𝑖 ≠ 𝑗 as parties. Thus, we have
𝑡 = 2 + 𝑘 +

(𝑘
2
)
parties. Our four voters will be 𝑣, 𝑣 ′,𝑤, and 𝑤 ′. To

define their preferences, we first construct the following blocks for
each 𝑖 ∈ [𝑘]:

𝐹>𝑖 = 𝑢1𝑖 ,
−−−−−−→
𝐸>𝑖 (𝑢1𝑖 ), 𝑢

2
𝑖 ,
−−−−−−→
𝐸>𝑖 (𝑢2𝑖 ), . . . , 𝑢

𝑛
𝑖 ,
−−−−−−→
𝐸>𝑖 (𝑢𝑛𝑖 );

𝐹>𝑖 =
←−−−−−−
𝐸>𝑖 (𝑢1𝑖 ), 𝑢

1
𝑖 ,
←−−−−−−
𝐸>𝑖 (𝑢2𝑖 ), 𝑢

2
𝑖 , . . . ,

←−−−−−−
𝐸>𝑖 (𝑢𝑛𝑖 ), 𝑢

𝑛
𝑖 ;

𝐹<𝑖 = 𝑢1𝑖 ,
−−−−−−→
𝐸<𝑖 (𝑢1𝑖 ), 𝑢

2
𝑖 ,
−−−−−−→
𝐸<𝑖 (𝑢2𝑖 ), . . . , 𝑢

𝑛
𝑖 ,
−−−−−−→
𝐸<𝑖 (𝑢𝑛𝑖 );

𝐹<𝑖 =
←−−−−−−
𝐸<𝑖 (𝑢1𝑖 ), 𝑢

1
𝑖 ,
←−−−−−−
𝐸<𝑖 (𝑢2𝑖 ), 𝑢

2
𝑖 , . . . ,

←−−−−−−
𝐸<𝑖 (𝑢𝑛𝑖 ), 𝑢

𝑛
𝑖 .

Note that blocks 𝐹>
𝑖

and 𝐹>
𝑖

contain exactly those edges that have
one endpoint in𝑈𝑖 and the other endpoint in some set𝑈 𝑗 with 𝑗 > 𝑖 .
Similarly, blocks 𝐹<

𝑖
and 𝐹<

𝑖
contain exactly those edges that have

one endpoint in𝑈𝑖 and the other endpoint in some set𝑈 𝑗 with 𝑗 < 𝑖 .
This also means that candidates of 𝐸{𝑖, 𝑗 } for some 1 ≤ 𝑖 < 𝑗 ≤ 𝑘
are contained precisely in the blocks 𝐹>

𝑖
, 𝐹>

𝑖
, 𝐹<

𝑗
, and 𝐹<

𝑗
.

We are now ready to define the preferences of our voters:

𝑣 : 𝑝, 𝑝′, 𝐹>1 , 𝐹
>
2 , . . . , 𝐹

>
𝑘−1, 𝐹

>
𝑘
;

𝑣 ′ : 𝐹>
𝑘
, 𝐹>

𝑘−1, . . . , 𝐹
>
2 , 𝐹

>
1 , 𝑝, 𝑝

′;

𝑤 : 𝑝, 𝑝′, 𝐹<1 , 𝐹
<
2 , . . . , 𝐹

<
𝑘−1, 𝐹

<
𝑘
;

𝑤 ′ : 𝐹<
𝑘
, 𝐹<

𝑘−1, . . . , 𝐹
<
2 , 𝐹

<
1 , 𝑝, 𝑝

′ .

Observe that in every reduced election E resulting from some
nominations, 𝑝 receives a score of Cpl𝛼E (𝑝) = 1+𝛼 (𝑡 −2), because it
defeats 𝑝′ and is tied with all remaining nominees. Since 𝛼 < 1, this
implies that 𝑝 is the unique winner of E if and only if no nominee
other than 𝑝 defeats any other nominee in E. We show that such
an election E exists if and only if 𝐺 contains a clique of size 𝑘 .
Direction “=⇒”: Suppose first that 𝑝 is the unique winner in E,
and let 𝑢𝜅 (𝑖 )

𝑖
denote the nominee of party𝑈𝑖 for each 𝑖 ∈ [𝑘]. We

are going to show that the vertices in 𝐾 = {𝑢𝜅 (𝑖 )
𝑖

: 𝑖 ∈ [𝑘]} form a
clique in 𝐺 . Fix some 𝑖, 𝑗 ∈ [𝑘] with 𝑖 < 𝑗 , and let 𝑒 = 𝑢ℎ

𝑖
𝑢ℓ
𝑗
be the

edge nominated by party 𝐸{𝑖, 𝑗 } .
We claim that 𝑒 is incident to 𝑢𝜅 (𝑖 )

𝑖
, that is, ℎ = 𝜅 (𝑖). To see this,

first note that𝑤 and𝑤 ′ rank 𝑢𝜅 (𝑖 )
𝑖

(contained in blocks 𝐹<
𝑖

and 𝐹<
𝑖
)

and 𝑒 (contained in blocks 𝐹<
𝑗
and 𝐹<

𝑗
) differently. Moreover, 𝑣

and 𝑣 ′ both prefer 𝑢𝜅 (𝑖 )
𝑖

to 𝑒 (both contained in blocks 𝐹>
𝑖

and 𝐹>
𝑖
)

exactly if 𝜅 (𝑖) < ℎ, while they both prefer 𝑒 to 𝑢𝜅 (𝑖 )
𝑖

if and only if
𝜅 (𝑖) > ℎ. Since 𝑢𝜅 (𝑖 )

𝑖
and 𝑒 must be tied in E (as do every pair of



candidates not involving 𝑝), we get that only ℎ = 𝜅 (𝑖) is possible,
proving our claim.

An analogous argument shows that 𝑒 is incident to 𝑢𝜅 ( 𝑗 )
𝑗

, that

is, ℓ = 𝜅 ( 𝑗): First, note that 𝑣 and 𝑣 ′ rank 𝑒 and 𝑢𝜅 ( 𝑗 )
𝑗

differently,
because the former is contained in blocks 𝐹>

𝑖
and 𝐹>

𝑖
, while the

latter is contained in blocks 𝐹>
𝑗
and 𝐹>

𝑗
. Moreover, if ℓ < 𝜅 ( 𝑗), then

both 𝑤 and 𝑤 ′ prefer 𝑒 to 𝑢𝜅 ( 𝑗 )
𝑗

, while if ℓ > 𝜅 ( 𝑗), then both 𝑤

and𝑤 ′ prefer 𝑢𝜅 ( 𝑗 )
𝑗

to 𝑒 . Since these two candidates must be tied
in E, we obtain ℓ = 𝜅 ( 𝑗) as required.

Hence, 𝑒 is the edge connecting𝑢𝜅 (𝑖 )
𝑖

and𝑢𝜅 ( 𝑗 )
𝑗

. Since we proved
this for arbitrary indices 𝑖, 𝑗 ∈ [𝑘] with 𝑖 ≠ 𝑗 , it follows that𝐾 forms
a clique in 𝐺 .
Direction “⇐=”: Suppose now that there exists a clique 𝐾 in 𝐺 .
We claim that nominating the vertices and edges of 𝐾 results in
an election E in which 𝑝 is the unique winner. By our previous
observations, it suffices to prove that there exists no nominee 𝑐
other than 𝑝 that defeats another nominee in E.

First, 𝑝′ clearly cannot defeat any other candidate. Second, for
every 𝑖, 𝑗 ∈ [𝑘], the nominee of 𝑈𝑖 cannot defeat the nominee
of 𝑈 𝑗 : voters 𝑣 and 𝑣 ′ rank them differently, because they are in
different blocks within the preferences of 𝑣 and 𝑣 ′, and the same
holds for voters𝑤 and𝑤 ′ as well. Third, for indices 𝑖, 𝑖′, 𝑗, 𝑗 ′ ∈ [𝑘]
with 𝑖 ≠ 𝑗 and 𝑖′ ≠ 𝑗 ′, the nominee of 𝐸{𝑖, 𝑗 } cannot defeat the
nominee of 𝐸{𝑖′, 𝑗 ′ } , because 𝑣 and 𝑣 ′, as well as𝑤 and𝑤 ′, rank them
differently, irrespective whether they belong to different blocks (in
which case the ordering of blocks ensures our claim) or not (in
which case they share an endpoint, and therefore the ordering of
edges within a single block guarantees our claim).

Hence, it remains to show that the nominee of𝑈𝑖 , say 𝑢
𝜅 (𝑖 )
𝑖

, and
the nominee of some party 𝐸{𝑖′, 𝑗 ′ } where 1 ≤ 𝑖′ < 𝑗 ′ ≤ 𝑘 are tied
in E. First, 𝑖 ≠ 𝑖′, then these two nominees are in different blocks
in the votes of 𝑣 and 𝑣 ′, hence are ranked differently by them. If
𝑖 = 𝑖′, then they are again ranked differently by 𝑣 and 𝑣 ′, because
the nominee of 𝐸{𝑖′, 𝑗 ′ } (an edge incident to some vertex in𝑈𝑖′ = 𝑈𝑖 ,
namely, to 𝑢𝜅 (𝑖 )

𝑖
) must be contained in 𝐸>𝑖 (𝑢𝜅 (𝑖 )

𝑖
), and hence is

preferred to 𝑢𝜅 (𝑖 )
𝑖

by 𝑣 ′, while is less preferred than 𝑢𝜅 (𝑖 )
𝑖

by 𝑣 .
Hence, in either case, 𝑣 and 𝑣 ′ rank these two nominees differently.
The analogous argument shows that 𝑤 and 𝑤 ′ also rank them
differently, implying that they are indeed tied in E. This proves
that 𝑝 is indeed the unique nominee that defeats another nominee,
and hence is the unique winner in E, proving the correctness of
our reduction. □

Recall that the intractability result stated in Theorem D.1 does
not hold for 𝛼 = 1. The following theorem fills this gap by a more
sophisticated reduction.

Theorem D.2 (★). For any constant 𝛼 ∈ (0, 1], Possible Pres-

ident for Copeland
𝛼
is W[1]-hard when parameterized by 𝑡 , the

number of parties, even if there are only four voters.

Proof. Let 𝐺 = (𝑈 , 𝐸) and 𝑘 be our instance of theMulticol-
ored Cliqe with𝑈 partitioned into sets𝑈1, . . . ,𝑈𝑘 ; again, we use
all the notation introduced at the beginning of Appendix D. We
define an instance of Possible President as follows.

First, we set 𝑃 = {𝑝} as our distinguished party. We also intro-
duce a party 𝑃 ′ = {𝑝′}. We add𝑈𝑖 for each 𝑖 ∈ [𝑘], as well as 𝐸{𝑖, 𝑗 }
for each pair {𝑖, 𝑗} ⊆ [𝑘] with 𝑖 ≠ 𝑗 as parties. We next define the
following copies of these parties as follows:

𝑈
(𝑐 )
𝑖

= {𝑢ℎ,(𝑐 )
𝑖

: ℎ ∈ [𝑛]} for 𝑖 ∈ [𝑘] and 𝑐 ∈ [𝑘] \ {𝑖};
𝐸
(𝑐 )
{𝑖, 𝑗 } = {𝑒

ℎ,(𝑐 )
{𝑖, 𝑗 } : ℎ ∈ [𝑚]} for 1 ≤ 𝑖 < 𝑗 ≤ 𝑘 and 𝑐 ∈ {0, 1};

𝐴{𝑖, 𝑗 } = {𝑎ℎ{𝑖, 𝑗 } : ℎ ∈ [𝑚]} for 1 ≤ 𝑖 < 𝑗 ≤ 𝑘 ;

We remark that for some edge 𝑒 ∈ 𝐸{𝑖, 𝑗 } we may denote its two
copies as 𝑒 (0) and 𝑒 (1) , ignoring that this edge 𝑒 must have the
form 𝑒 = 𝑒ℎ{𝑖, 𝑗 } for some ℎ ∈ [𝑚].

It will be useful for us to define the following two sets of parties:

Sorig =
⋃
𝑖∈[𝑘 ]

{𝑈𝑖 } ∪
⋃

1≤𝑖< 𝑗≤𝑘
{𝐸{𝑖, 𝑗 } };

Scopy =
⋃

1≤𝑖< 𝑗≤𝑘
{𝑈 ( 𝑗 )

𝑖
,𝑈
(𝑖 )
𝑗
, 𝐸
(0)
{𝑖, 𝑗 } , 𝐸

(1)
{𝑖, 𝑗 } };

We further create certain candidate sets that are not parties;
namely, we create sets 𝐶{𝑖, 𝑗 } and 𝐷{𝑖, 𝑗 } for each 𝑖, 𝑗 ∈ [𝑘] with
𝑖 < 𝑗 , sets 𝐶𝑝 and 𝐷𝑝 , and sets 𝐵𝑆 and 𝐷𝑆 for each party 𝑆 ∈ Sorig.
Each of these sets contains two candidates, both of them forming a
singleton party. Hence, the number of parties is

𝑡 = 2 + 𝑘2 + 4
(
𝑘

2

)
+ 2

(
2
(
𝑘

2

)
+ 2 + 2|Sorig |

)
= 𝑘2 + 12

(
𝑘

2

)
+ 4𝑘 + 6.

Next, we let 𝑣, 𝑣 ′,𝑤, and𝑤 ′ be our four voters. We will define the
preferences of these voters in a piecewise manner: each preference
list will be constructed by concatenating several blocks, where each
block is a list of candidates.

We first construct vertex-copy blocks 𝑌𝑖 and 𝑌𝑖 for each 𝑖 ∈ [𝑘]:

𝑌𝑖 = 𝑢
1
𝑖 ,
−−−−−−−−−−−−−−−→⋃
𝑐∈[𝑘 ]\{𝑖 }

{𝑢1,(𝑐 )
𝑖
}, 𝑢2𝑖 ,

−−−−−−−−−−−−−−−→⋃
𝑐∈[𝑘 ]\{𝑖 }

{𝑢2,(𝑐 )
𝑖
},

. . . , 𝑢𝑛𝑖 ,
−−−−−−−−−−−−−−−→⋃
𝑐∈[𝑘 ]\{𝑖 }

{𝑢𝑛,(𝑐 )
𝑖
}; (26)

𝑌𝑖 = 𝑢
𝑛
𝑖 ,
←−−−−−−−−−−−−−−−⋃
𝑐∈[𝑘 ]\{𝑖 }

{𝑢𝑛,(𝑐 )
𝑖
}, 𝑢𝑛−1𝑖 ,

←−−−−−−−−−−−−−−−−−⋃
𝑐∈[𝑘 ]\{𝑖 }

{𝑢𝑛−1,(𝑐 )
𝑖

},

. . . , 𝑢1𝑖 ,
←−−−−−−−−−−−−−−−⋃
𝑐∈[𝑘 ]\{𝑖 }

{𝑢1,(𝑐 )
𝑖
}. (27)

Similarly, we construct edge-copy blocks 𝐹{𝑖, 𝑗 } and 𝐹{𝑖, 𝑗 } for
each 𝑖, 𝑗 ∈ [𝑘] with 𝑖 < 𝑗 :

𝐹{𝑖, 𝑗 } = 𝑒
1
{𝑖, 𝑗 } , 𝑎

1
{𝑖, 𝑗 } , 𝑒

1,(0)
{𝑖, 𝑗 } ,𝑒

1,(1)
{𝑖, 𝑗 } , 𝑒

2
{𝑖, 𝑗 } , 𝑎

2
{𝑖, 𝑗 } , 𝑒

2,(0)
{𝑖, 𝑗 } , 𝑒

2,(1)
{𝑖, 𝑗 } ,

. . . , 𝑒𝑚{𝑖, 𝑗 } , 𝑎
𝑚
{𝑖, 𝑗 } , 𝑒

𝑚,(0)
{𝑖, 𝑗 } , 𝑒

𝑚,(1)
{𝑖, 𝑗 } , (28)

𝐹{𝑖, 𝑗 } = 𝑒
𝑚
{𝑖, 𝑗 } , 𝑎

𝑚
{𝑖, 𝑗 } , 𝑒

𝑚,(1)
{𝑖, 𝑗 } ,𝑒

𝑚,(0)
{𝑖, 𝑗 } , 𝑒

𝑚−1
{𝑖, 𝑗 } , 𝑎

𝑚−1
{𝑖, 𝑗 } , 𝑒

𝑚−1,(1)
{𝑖, 𝑗 } , 𝑒

𝑚−1,(0)
{𝑖, 𝑗 } ,

. . . , 𝑒1{𝑖, 𝑗 } , 𝑎
1
{𝑖, 𝑗 } , 𝑒

1,(1)
{𝑖, 𝑗 } , 𝑒

1,(0)
{𝑖, 𝑗 } . (29)

Next, we construct blocks DC and D̃C by setting

DC =
−−−−−→
𝐷{1,2} ,

−−−−→
𝐶{1,2} ,

−−−−−→
𝐷{1,3} ,

−−−−→
𝐶{1,3} , . . . ,

−−−−−−−→
𝐷{𝑘−1,𝑘 } ,

−−−−−−−→
𝐶{𝑘−1,𝑘 } ;

D̃C =
←−−−−−−−
𝐷{𝑘−1,𝑘 } ,

←−−−−−−−
𝐶{𝑘−1,𝑘 } ,

←−−−−−−−
𝐷{𝑘−2,𝑘 } ,

←−−−−−−−
𝐶{𝑘−2,𝑘 } , . . . ,

←−−−−−
𝐷{1,2} ,

←−−−−
𝐶{1,2} .



Let us clarify that the block DC contains all lists (−−−−→𝐷{𝑖, 𝑗 } ,
−−−−→
𝐶{𝑖, 𝑗 } )

where 1 ≤ 𝑖 < 𝑗 ≤ 𝑘 in some arbitrarily fixed order, whereas D̃C also
contains all lists (←−−−−𝐷{𝑖, 𝑗 } ,

←−−−−
𝐶{𝑖, 𝑗 } ) where 1 ≤ 𝑖 < 𝑗 ≤ 𝑘 , but exactly

in the reversed ordering.
Similarly, we construct blocks CA and C̃A by setting

CA =
−−−−→
𝐶{1,2} ,

−−−−→
𝐴{1,2} ,

−−−−→
𝐶{1,3} ,

−−−−→
𝐴{1,3} , . . . ,

−−−−−−−→
𝐶{𝑘−1,𝑘 } ,

−−−−−−−→
𝐴{𝑘−1,𝑘 } ;

C̃A =
←−−−−−−−
𝐶{𝑘−1,𝑘 } ,

←−−−−−−−
𝐴{𝑘−1,𝑘 } ,

←−−−−−−−
𝐶{𝑘−2,𝑘 } ,

←−−−−−−−
𝐴{𝑘−2,𝑘 } , . . . ,

←−−−−
𝐶{1,2} ,

←−−−−
𝐴{1,2} .

Next, we construct a block DB by concatenating the lists (−→𝐷𝑆 ,
−→
𝐵𝑆 )

for each party 𝑆 ∈ Sorig in some fixed order, and we obtain the
block D̃B by concatenating the lists (←−𝐷𝑆 ,

←−
𝐵𝑆 ) for 𝑆 ∈ Sorig in the

reversed order.
Similarly, we create a block BS by concatenating the lists (−→𝐵𝑆 ,

−→
𝑆 )

for each party 𝑆 ∈ Sorig in some fixed order, and we obtain the
block B̃S by concatenating the lists (←−𝐵𝑆 ,

←−
𝑆 ) for 𝑆 ∈ Sorig in the

reversed order. We also define the set

𝐷 =
⋃

𝑆∈Sorig
𝐷𝑆 ∪

⋃
1≤𝑖< 𝑗≤𝑘

𝐷{𝑖, 𝑗 } .

Next, let us define incidence blocks 𝐻 (𝑖, 𝑗 ) and 𝐻 (𝑖, 𝑗 ) for each
indices 𝑖, 𝑗 ∈ [𝑘] with 𝑖 ≠ 𝑗 . If 𝑖 < 𝑗 , then we define

𝐻 (𝑖, 𝑗 ) =
−−−−−−−−−−−−−→⋃
𝑒∈𝐸 𝑗 (𝑢1

𝑖
)
{𝑒 (0) }, 𝑢1,( 𝑗 )

𝑖
,
−−−−−−−−−−−−−→⋃
𝑒∈𝐸 𝑗 (𝑢2

𝑖
)
{𝑒 (0) }, 𝑢2,( 𝑗 )

𝑖
,

. . . ,
−−−−−−−−−−−−−→⋃
𝑒∈𝐸 𝑗 (𝑢𝑛

𝑖
)
{𝑒 (0) }, 𝑢𝑛,( 𝑗 )

𝑖
; (30)

𝐻 (𝑖, 𝑗 ) =
←−−−−−−−−−−−−−⋃
𝑒∈𝐸 𝑗 (𝑢𝑛

𝑖
)
{𝑒 (0) }, 𝑢𝑛,( 𝑗 )

𝑖
,
←−−−−−−−−−−−−−−−⋃
𝑒∈𝐸 𝑗 (𝑢𝑛−1

𝑖
)
{𝑒 (0) }, 𝑢𝑛−1,(1)

𝑖
,

. . . ,
←−−−−−−−−−−−−−⋃
𝑒∈𝐸 𝑗 (𝑢1

𝑖
)
{𝑒 (0) }, 𝑢1,(1)

𝑖
. (31)

Otherwise, i.e., if 𝑖 > 𝑗 , then we define

𝐻 (𝑖, 𝑗 ) =
−−−−−−−−−−−−−→⋃
𝑒∈𝐸 𝑗 (𝑢1

𝑖
)
{𝑒 (1) }, 𝑢1,( 𝑗 )

𝑖
,
−−−−−−−−−−−−−→⋃
𝑒∈𝐸 𝑗 (𝑢2

𝑖
)
{𝑒 (1) }, 𝑢2,( 𝑗 )

𝑖
,

. . . ,
−−−−−−−−−−−−−→⋃
𝑒∈𝐸 𝑗 (𝑢𝑛

𝑖
)
{𝑒 (1) }, 𝑢𝑛,( 𝑗 )

𝑖
; (32)

𝐻 (𝑖, 𝑗 ) =
←−−−−−−−−−−−−−⋃
𝑒∈𝐸 𝑗 (𝑢𝑛

𝑖
)
{𝑒 (1) }, 𝑢𝑛,( 𝑗 )

𝑖
,
←−−−−−−−−−−−−−−−⋃
𝑒∈𝐸 𝑗 (𝑢𝑛−1

𝑖
)
{𝑒 (1) }, 𝑢𝑛−1,(1)

𝑖
,

. . . ,
←−−−−−−−−−−−−−⋃
𝑒∈𝐸 𝑗 (𝑢1

𝑖
)
{𝑒 (1) }, 𝑢1,(1)

𝑖
. (33)

We are now ready to define the preference lists of all voters:

𝑣 : DB, DC, 𝑌1, . . . , 𝑌𝑘 , 𝐹{1,2} , . . . , 𝐹{𝑘−1,𝑘 } , 𝑝′, 𝑝,
−→
𝐷𝑝 ,
−→
𝐶𝑝 ;

𝑣 ′ :
←−
𝐷𝑝 ,
←−
𝐶𝑝 , 𝑝

′, 𝑝, 𝐹{𝑘−1,𝑘 } , . . . , 𝐹{1,2} , 𝑌𝑘 , . . . , 𝑌1, D̃C, D̃B;

𝑤 : BS, CA, 𝐻 (1,2) , . . . , 𝐻 (𝑘,𝑘−1) , 𝑝,
−→
𝐷,
−→
𝐶𝑝 , 𝑝

′;

𝑤 ′ :
←−
𝐶𝑝 , 𝑝

′, 𝑝, 𝐻 (𝑘,𝑘−1) , . . . , 𝐻 (1,2) ,
←−
𝐷, C̃A, B̃S.

It is straightforward to verify that all candidates are listed in the
preferences of each of the four voters. It is clear that the presented

reduction can be computed in polynomial time. Moreover, since
the number of parties created is 𝑡 = 𝑂 (𝑘2), it is a parameterized
reduction. It remains to prove its correctness.

We start with some observations regarding the relationship be-
tween the parties in the constructed instance. Observing the pref-
erence lists of 𝑣 and 𝑣 ′, we obtain that both 𝑣 and 𝑣 ′

• prefer candidates in 𝐷𝑆 to candidates in 𝐵𝑆 for each 𝑆 ∈
Sorig due to the definition of DB and D̃B;

• prefer candidates in 𝐷{𝑖, 𝑗 } to candidates in 𝐶{𝑖, 𝑗 } for each
𝑖, 𝑗 ∈ [𝑘] with 𝑖 < 𝑗 due to the definition of DC and D̃C;
• prefer candidate 𝑝′ to 𝑝;
• prefer candidates in 𝐷𝑝 to candidates in 𝐶𝑝 .

Notice also that each pair of candidates that falls into one of the
above categories is ranked differently by𝑤 and𝑤 ′.

Observing the preference lists of𝑤 and𝑤 ′, we obtain that both𝑤
and𝑤 ′

• prefer candidates in 𝐵𝑆 to candidates in 𝑆 for each 𝑆 ∈ Sorig;
• prefer candidates in 𝐶{𝑖, 𝑗 } to candidates in 𝐴{𝑖, 𝑗 } for each
𝑖, 𝑗 ∈ [𝑘] with 𝑖 < 𝑗 ;
• prefer candidates in some party inScopy∪{𝑃} to candidates

in 𝐷 ;
• prefer candidates in 𝐶𝑝 to candidate 𝑝′.

Again, each pair of candidates that falls into one of the above cat-
egories is ranked differently by 𝑣 and 𝑣 ′. Taking into account the
observations of the previous paragraph (and considering again the
preferences of voters where necessary), we obtain that

(a) 𝑝 defeats all candidates in 𝐷 , is defeated by candidate 𝑝′,
and is tied with all remaining candidates;

(b) each party in Scopy defeats all candidates in 𝐷 ;
(c) each party 𝑆 ∈ Sorig is defeated by both candidates in 𝐵𝑆 ;
(d) both candidates in 𝐵𝑆 are defeated by both candidates in𝐷𝑆

for all 𝑆 ∈ Sorig;
(e) both candidates in 𝐶{𝑖, 𝑗 } defeat both candidates in 𝐴{𝑖, 𝑗 }

and are defeated by all candidates in 𝐷{𝑖, 𝑗 } ;
(f) both candidates in 𝐶𝑝 defeat candidate 𝑝′ and are defeated

by both candidates in 𝐷𝑝 .
In particular, statement (a) means that for any reduced election E re-
sulting from some nomination strategy, we get that the Copeland𝛼 -
score of 𝑝 is exactly

Cpl𝛼E (𝑝) = |𝐷 | + 𝛼 (𝑡 − |𝐷 | − 2). (34)

The key properties of a nomination strategy we need is captured
in the following definition.

Definition D.3. We call a set of nominations by parties in Sorig ∪
Scopy valid, if

(i) the nominee of 𝑈𝑖 precedes the nominees of 𝑈 (𝑐 )
𝑖

for each
𝑐 ∈ [𝑘] \ {𝑖} in both blocks 𝑌𝑖 and 𝑌𝑖 , for each 𝑖 ∈ [𝑘];

(ii) the nominee of 𝐸{𝑖, 𝑗 } precedes the nominees of 𝐸 (𝑐 ){𝑖, 𝑗 } for

both 𝑐 ∈ {0, 1} in both blocks 𝐹{𝑖, 𝑗 } and 𝐹{𝑖, 𝑗 } , for each
𝑖, 𝑗 ∈ [𝑘] with 𝑖 < 𝑗 ;

(iii) the nominee of 𝐸 (𝑐 ){𝑖, 𝑗 } , where 𝑐 = 0 if 𝑖 < 𝑗 and 𝑐 = 1 if

𝑖 > 𝑗 , precedes the nominee of 𝑈 ( 𝑗 )
𝑖

in both blocks 𝐻 (𝑖, 𝑗 )
and 𝐻 (𝑖, 𝑗 ) , for each 𝑖, 𝑗 ∈ [𝑘] with 𝑖 ≠ 𝑗 .



Claim 14. There exists a valid nomination for all parties inSorig∪
Scopy if and only if 𝐺 admits a clique of size 𝑘 .

Claim proof. Suppose that there exists a valid nomination. Let
𝑢
𝜅 (𝑖 )
𝑖

denote the nominee of 𝑈𝑖 for each 𝑖 ∈ [𝑘], and let 𝑒𝜅 (𝑖, 𝑗 ){𝑖, 𝑗 }
denote the nominee of 𝐸{𝑖, 𝑗 } for each 𝑖, 𝑗 ∈ [𝑘] with 𝑖 < 𝑗 .

Condition (i) of validity can be satisfied only if for each 𝑐 ∈
[𝑘] \ {𝑖}, the nominee 𝑢ℎ,(𝑐 )

𝑖
of 𝑈 (𝑐 )

𝑖
satisfies, on the one hand,

ℎ ≥ 𝜅 (𝑖) due to the definition of 𝑌𝑖 in (26) and, on the other hand,
ℎ ≤ 𝜅 (𝑖) due to the definition of 𝑌𝑖 in (27). Therefore, 𝑈 (𝑐 )

𝑖
must

nominate the candidate 𝑢𝜅 (𝑖 ),(𝑐 )
𝑖

for each 𝑐 ∈ [𝑘] \ {𝑖} in E. With
an analogous argument based on the definitions of the blocks 𝐹{𝑖, 𝑗 }
and 𝐹{𝑖, 𝑗 } as given in (28)–(29), condition (ii) of validity implies
that 𝐸 (𝑐 ){𝑖, 𝑗 } must nominate the candidate 𝑒𝜅 (𝑖, 𝑗 ),(𝑐 ){𝑖, 𝑗 } in E for both
𝑐 ∈ {0, 1}, for each 𝑖, 𝑗 ∈ [𝑘] with 𝑖 < 𝑗 .

Consider now condition (iii) of validity for some indices 𝑖, 𝑗 ∈ [𝑘]
with 𝑖 < 𝑗 . On the one hand, by the definition of the block 𝐻 (𝑖, 𝑗 ) as
given in (30), we get that the edge 𝑒𝜅 (𝑖, 𝑗 ){𝑖, 𝑗 } must be incident to a vertex

in {𝑢ℎ
𝑖
: 1 ≤ ℎ ≤ 𝜅 (𝑖)}. On the other hand, by the definition of𝐻 (𝑖, 𝑗 )

as given in (31), we get that the edge 𝑒𝜅 (𝑖, 𝑗 ){𝑖, 𝑗 } must be incident to a

vertex in {𝑢ℎ
𝑖
: 𝜅 (𝑖) ≤ ℎ ≤ 𝑛}. Therefore, 𝑒𝜅 (𝑖, 𝑗 ){𝑖, 𝑗 } must be incident

to 𝑢𝜅 (𝑖 )
𝑖

. Consider now the condition (iii) of validity for the index
pair ( 𝑗, 𝑖); recall that 𝑗 > 𝑖 . The definition of the blocks 𝐻 ( 𝑗,𝑖 )
and 𝐻 ( 𝑗,𝑖 ) as given in (32) and (33) implies through an analogous
reasoning that the edge 𝑒𝜅 (𝑖, 𝑗 ){𝑖, 𝑗 } must also be incident to 𝑢𝜅 ( 𝑗 )

𝑗
. Thus,

the vertices 𝑢𝜅 (𝑖 )
𝑖

and 𝑢𝜅 ( 𝑗 )
𝑗

must be connected by an edge. Since
this holds for each 𝑖, 𝑗 ∈ [𝑘] with 𝑖 < 𝑗 , we obtain that 𝐺 indeed
contains a clique of size 𝑘 .

For the other direction, it is straightforward to verify that given
a clique 𝐾 of size 𝑘 in 𝐺 , nominating the vertices and edges of 𝐾 ,
as well as all their copies, yields a set of nominations for parties
in Sorig ∪ Scopy that is valid. ◁

Using Claim 14, it is now not hard to prove the correctness of
the reduction.

Claim 15. If 𝑃 is the unique winner in an election E resulting from

some nominations, then 𝐺 contains a clique of size 𝑘 .

Claim proof. Notice that for 𝑃 to become the unique winner
in E, all nominated candidates in E must have Copeland𝛼 -score
less than Cpl𝛼E (𝑝). Consider the party 𝑈 ( 𝑗 )

𝑖
for some 𝑖, 𝑗 ∈ [𝑘]

with 𝑖 ≠ 𝑗 . By𝑈 ( 𝑗 )
𝑖
∈ Scopy and statement (b), we know that𝑈 ( 𝑗 )

𝑖
defeats all candidates in 𝐷 ; recall that each of these candidates
forms a singleton party, yielding a partial score of |𝐷 | for 𝑈 ( 𝑗 )

𝑖
.

Observing the preference lists, we can see that the only parties that
may defeat 𝑈 ( 𝑗 )

𝑖
are 𝑈𝑖 and either 𝐸 (𝑐 ){𝑖, 𝑗 } where 𝑐 = 0 if 𝑖 < 𝑗 , and

𝑐 = 1 if 𝑖 > 𝑗 ; all remaining 𝑡 − |𝐷 | − 3 parties are tied with 𝑈 ( 𝑗 )
𝑖

in E. Therefore, by (34) we get

Cpl𝛼E (𝑈
( 𝑗 )
𝑖
) ≥ |𝐷 | + 𝛼 (𝑡 − |𝐷 | − 3) = Cpl𝛼E (𝑝).

Moreover, unless both of the two parties mentioned above—namely,
𝑈𝑖 and 𝐸

(𝑐 )
{𝑖, 𝑗 } with 𝑐 defined as 0 if 𝑖 < 𝑗 and as 1 otherwise—defeat

𝑈
( 𝑗 )
𝑖

, we know that the nominee of𝑈 ( 𝑗 )
𝑖

obtains an additional score
of at least 𝛼 from the comparisonwith these two parties. That would
result in𝑈 ( 𝑗 )

𝑖
having Copeland𝛼 -score at least |𝐷 | + 𝛼 (𝑡 − |𝐷 | − 2),

preventing 𝑝 from becoming the unique winner of E, due to (34).
Therefore, both of these two parties must defeat𝑈 ( 𝑗 )

𝑖
, which means

precisely that conditions (i) and (iii) must hold.
Consider now the party 𝐸 (𝑐 ){𝑖, 𝑗 } for some 𝑖, 𝑗 ∈ [𝑘] with 𝑖 < 𝑗 and

𝑐 ∈ {0, 1}. By 𝐸 (𝑐 ){𝑖, 𝑗 } ∈ S
copy and statement (b), we know that 𝐸 (𝑐 ){𝑖, 𝑗 }

defeats all candidates in 𝐷 . Observing the preference lists again,
we can see that the only parties that may defeat 𝐸 (𝑐 ){𝑖, 𝑗 } are 𝐸{𝑖, 𝑗 }
and 𝐴{𝑖, 𝑗 } . Therefore, by (34) we get

Cpl𝛼E (𝐸
(𝑐 )
{𝑖, 𝑗 } ) ≥ |𝐷 | + 𝛼 (𝑡 − |𝐷 | − 3) = Cpl𝛼E (𝑝) .

Again, 𝐸 (𝑐 ){𝑖, 𝑗 } additionally obtains at least 𝛼 score from the com-
parison with parties 𝐸{𝑖, 𝑗 } and 𝐴{𝑖, 𝑗 } , thereby preventing 𝑝 from
becoming the unique winner in E, unless both 𝐸{𝑖, 𝑗 } and 𝐴{𝑖, 𝑗 }
defeat 𝐸 (𝑐 ){𝑖, 𝑗 } . Hence, condition (ii) of validity most also hold.

This proves that the nominations that result in the election E
must be valid, and thus by Claim 14 we know that𝐺 admits a clique
of size 𝑘 . ◁

Claim 16. If𝐺 contains a clique 𝐾 of size 𝑘 , then 𝑃 is a winner in

an election E resulting from some nominations.

Claim proof. For each 𝑖 ∈ [𝑘], define 𝑢𝜅 (𝑖 )
𝑖

as the vertex of 𝐾
in 𝑈𝑖 , and let 𝑒𝜅 (𝑖, 𝑗 ){𝑖, 𝑗 } denote the unique edge in 𝐸{𝑖, 𝑗 } connecting
two vertices of 𝐾 . Let E be the election resulting from the following
nominations:

• party𝑈𝑖 nominates 𝑢𝜅 (𝑖 )
𝑖

for each 𝑖 ∈ [𝑘];
• party𝑈 ( 𝑗 )

𝑖
nominates𝑢𝜅 (𝑖 ),( 𝑗 )

𝑖
for each 𝑖, 𝑗 ∈ [𝑘] with 𝑖 ≠ 𝑗 ;

• party 𝐸{𝑖, 𝑗 } nominates 𝑒𝜅 (𝑖, 𝑗 ){𝑖, 𝑗 } for each 𝑖, 𝑗 ∈ [𝑘] with 𝑖 < 𝑗 ;

• party 𝐸 (𝑐 ){𝑖, 𝑗 } nominates 𝑒𝜅 (𝑖, 𝑗 ),(𝑐 ){𝑖, 𝑗 } for each 𝑖, 𝑗 ∈ [𝑘] with
𝑖 < 𝑗 and 𝑐 ∈ {0, 1};
• party 𝐴{𝑖, 𝑗 } nominates 𝑎𝜅 (𝑖, 𝑗 ){𝑖, 𝑗 } for each 𝑖, 𝑗 ∈ [𝑘] with 𝑖 < 𝑗 .

It is straightforward to verify that the above nominations are
valid. Taking into account statements (b)–(f), it follows that each
party except for 𝑃 is defeated by at least two other parties. Note also
that each party defeats at most |𝐷 | parties. Hence, if some party
other than 𝑃 defeats 𝑘 ≤ |𝐷 | other parties in E, then it must have
Copeland𝛼 -score at most 𝑘+𝛼 (𝑡−𝑘−3), which is less thanCpl𝛼E (𝑝)
due to (34) and 0 < 𝛼 ≤ 1. Therefore, each party other than 𝑃 has
score less than Cpl𝛼E (𝑝), so 𝑃 is indeed the unique winner of the
election E. ◁

The correctness of the reduction now follows from Claims 15
and 16. □

D.2 Proof of Theorem 3.9

Before proving Theorem 3.9, we state a lemma which will be useful
for us. This lemma creates the possibility to construct nearly flat
elections, where we can increase the score of certain candidates
slightly by shifting them “to the left” (i.e., closer to the top) in the
preferences of one voter.



Lemma D.4. If 𝑞 ≥ ⌈log3 ℓ⌉ + ⌈log3 ℓ′⌉ + 1, then 𝐶𝑞 contains

ℓ candidates 𝑐1, . . . , 𝑐ℓ and ℓ candidate sets 𝐶←1, . . . ,𝐶←ℓ , each of

size ℓ′, such that:

• for each 𝑖 ∈ [ℓ], candidate 𝑐𝑖 is directly preceded by the

candidates of 𝐶←𝑖 in the preferences of𝑤 ;

• for each 𝑖 ∈ [ℓ], each candidate in 𝐶←𝑖 defeats 𝑐𝑖 in E𝑞 ;
• the sets {𝑐𝑖 } ∪𝐶←𝑖 for 𝑖 ∈ [ℓ] are pairwise disjoint.

Proof. Set 𝑞′ = ⌈log3 ℓ′⌉, and consider the election E𝑞′+1, de-
fined by (1) with 𝑞′ taking the role of 𝑞. Let 𝑐★ denote the first can-
didate in 𝐿𝑞′ (𝑤) ⊙ 2, and notice that 𝑐★ is preceded by 3𝑞

′ ≥ ℓ′ can-
didates in the preferences of𝑤 , each of whom defeats 𝑐★ in E𝑞′+1;
let 𝐶★ denote this candidate set.

Recall that each (𝑞′ +1)-level group within E𝑞 is a copy of E𝑞′+1,
and hence contains a copy of 𝑐★ and𝐶★. By 3𝑞−(𝑞

′+1) ≥ 3⌈log3 ℓ ⌉ ≥
ℓ , there are at least ℓ such (𝑞′ + 1)-level groups in E𝑞 . Fixing an
arbitrary ordering over these groups, let 𝑐𝑖 and 𝐶←𝑖 be the copy
of 𝑐★ and 𝐶★, respectively, in the 𝑖-th such group for 𝑖 = 1, . . . , ℓ .
It is then clear that the sets {𝑐𝑖 } ∪𝐶←𝑖 are pairwise disjoint, and
that each 𝑐𝑖 is defeated by all candidates of 𝐶←𝑖 . Notice also that
candidates belonging to the same group (at some level) appear
consecutively in each of the preference lists in E𝑞 , and therefore 𝑐𝑖
is directly preceded by the candidates of 𝐶←𝑖 in the preference list
of𝑤 in E𝑞 . □

Theorem 3.9 (★). For any constant 𝛼 ∈ [0, 1], Possible President
for Copeland

𝛼
isW[1]-hard when parameterized by 𝑡 , the number of

parties, even if there are only five voters.

Proof. Let 𝐺 = (𝑈 , 𝐸) and 𝑘 be our instance of theMulticol-
ored Cliqe with𝑈 partitioned into sets𝑈1, . . . ,𝑈𝑘 ; again, we use
all the notation introduced at the beginning of Appendix D. We
define an instance of Possible President as follows.

Candidates and parties.We set 𝑃 = {𝑝} as our distinguished party.
We also add𝑈𝑖 for each 𝑖 ∈ [𝑘], as well as𝐸{𝑖, 𝑗 } ,𝐴(𝑖, 𝑗 ) , and𝐴( 𝑗,𝑖 ) for
each 𝑖, 𝑗 ∈ [𝑘] with 𝑖 < 𝑗 as a party where 𝐴(𝑖, 𝑗 ) and 𝐴( 𝑗,𝑖 ) are two
copies of the edge set 𝐸{𝑖, 𝑗 } defined as 𝐴(𝑖, 𝑗 ) = {𝑎1(𝑖, 𝑗 ) , . . . , 𝑎

𝑚
(𝑖, 𝑗 ) }

for each 𝑖, 𝑗 ∈ [𝑘] for 𝑖 ≠ 𝑗 . We will also add a set 𝐷 of dummy
candidates, each of whom forms its own singleton party. We set
the total number of dummies as

|𝐷 | = 3𝑞+1 − 3
(
𝑘

2

)
− 𝑘 − 1 where (35)

𝑞 = ⌈log3 (𝑘 + 1)⌉ + ⌈log3 𝑘⌉ + 2; (36)

observe that |𝐷 | = 𝑂 (𝑘2). It will be useful for us to set aside a
set 𝐷 ⊆ 𝐷 of dummy candidates for indexing purposes, and to
associate with each 𝑑 ∈ 𝐷 two copies in 𝐷 \ 𝐷 , denoted by 𝑑′

and 𝑑′′, such that |{𝑑, 𝑑′, 𝑑′′ : 𝑑 ∈ 𝐷}| = 3|𝐷 |. We will also use the
notation 𝐷0 = 𝐷 \ {𝑑, 𝑑′, 𝑑′′ : 𝑑 ∈ 𝐷}. We set the sizes of these sets
such that |𝐷0 | = 2𝑘 + 2 and thus by (35) we have

|𝐷 | = |𝐷 | − 2𝑘 − 2
3

= 3𝑞 −
(
𝑘

2

)
− 𝑘 − 1. (37)

The number of parties is 𝑡 = 1 + 𝑘 + 3
(𝑘
2
)
+ |𝐷 | = 𝑂 (𝑘2).

High-level description. We will use the techniques developed in
Sections 3.2.2 and 3.2.3 for proving Theorem 3.3. First, we create

a flat election E𝑞 with three voters, namely 𝑣, 𝑣 ′, and 𝑣 ′′, with
sufficiently large number of candidates so that we can associate a
candidate in E𝑞 with each of the parties 𝑃 and𝑈𝑖 for 𝑖 ∈ [𝑘], as well
as with each edge set 𝐸{𝑖, 𝑗 } for 1 ≤ 𝑖 < 𝑗 ≤ 𝑘 . We then substitute
each candidate of E𝑞 in the preference list of a voter in {𝑣, 𝑣 ′, 𝑣 ′′}
with corresponding team lists, as done in the proof of Theorem 3.3.
Relying on Lemma D.4, we will then shift all candidates in the
party 𝑈𝑖 for 𝑖 ∈ [𝑘], so that each of these parties obtains 𝑘 more
points in a Copeland𝛼 election than the rest of the candidates except
for certain dummy candidates, who lose one point each. Similarly,
we shift candidate 𝑝 so that it gains 2 additional points.

Next, we introduce voters 𝑧 and 𝑧′ whose preferences are al-

most exactly opposed: they rank each pair of candidates differently,
with the exception that a candidate 𝑎ℎ(𝑖, 𝑗 ) of 𝐴(𝑖, 𝑗 ) may defeat can-
didate 𝑢 ∈ 𝑈𝑖 in the preferences of both 𝑧 and 𝑧′ whenever the
edge 𝑒ℎ{𝑖, 𝑗 } is incident to 𝑢. Hence, by choosing nominees for the
parties 𝐴(𝑖, 𝑗 ) for 𝑖, 𝑗 ∈ [𝑘] with 𝑖 ≠ 𝑗 so that they correspond to
edges that are incident to the nominees of the parties 𝑈𝑖 , 𝑖 ∈ [𝑘],
we can decrease the score of each𝑈𝑖 by 𝑘 − 1 points at the cost of
increasing the score of each party 𝐴𝑖, 𝑗 by 1, enabling 𝑝 to become
the unique winner. With a minor adjustment of the scores of the
parties 𝐸{𝑖, 𝑗 } for 𝑖, 𝑗 ∈ [𝑘] with 𝑖 ≠ 𝑗 , we can also ensure that the
team lists associated with the edge set 𝐸{𝑖, 𝑗 } must induce a flat
election, which in turn guarantees that the nominations in 𝐴(𝑖, 𝑗 )
and 𝐴( 𝑗,𝑖 ) are consistent in the sense that they correspond to the
same edge of 𝐸{𝑖, 𝑗 } for each 𝑖, 𝑗 ∈ [𝑘], implying that the nominees
of the parties𝑈𝑖 for 𝑖 ∈ [𝑘] must form a clique in 𝐺 .

Teams and their associated lists. Let us define the following
families of parties:

P𝑈 = {𝑈𝑖 : 𝑖 ∈ [𝑘]},
P𝐸 = {𝐸{𝑖, 𝑗 } : 1 ≤ 𝑖 < 𝑗 ≤ 𝑘},

P
𝐷
= {{𝑑} : 𝑑 ∈ 𝐷}.

We will refer to the family

𝑇 = {𝑃} ∪ P𝑈 ∪ P𝐸 ∪ P𝐷
of parties as the set of our teams. Notice that by (37) we know
|𝑇 | = 3𝑞 . To define the preferences of voters 𝑣 , 𝑣 ′, and 𝑣 ′′, we
introduce team lists 𝐹𝑡 , 𝐹

′
𝑡 , and 𝐹

′′
𝑡 for each team 𝑡 ∈ 𝑇 .

With the distinguished party 𝑃 = {𝑝}, we associate the following
team lists, where 𝑑𝑝 and 𝑑′𝑝 are two dummies in 𝐷0:

𝐹𝑃 = 𝑝, 𝑑𝑝 , 𝑑
′
𝑝 ;

𝐹 ′
𝑃
= 𝑑′𝑝 , 𝑝, 𝑑𝑝 ;

𝐹 ′′
𝑃
= 𝑑𝑝 , 𝑑

′
𝑝 , 𝑝.

(38)

Similarly, with each party𝑈𝑖 for 𝑖 ∈ [𝑘], we associate the following
team lists, where 𝑑𝑖 and 𝑑′𝑖 are two dummies in 𝐷0:

𝐹𝑈𝑖
=
−→
𝑈𝑖 , 𝑑𝑖 , 𝑑

′
𝑖
;

𝐹 ′
𝑈𝑖

= 𝑑′
𝑖
,
−→
𝑈𝑖 , 𝑑𝑖 ;

𝐹 ′′
𝑈𝑖

= 𝑑𝑖 , 𝑑
′
𝑖
,
−→
𝑈𝑖 .

(39)

When defining the above team lists, we always use distinct dum-
mies, so that the team lists in (38)–(39) contain a total of 2𝑘 + 2 =
|{𝑑𝑝 , 𝑑′𝑝 } ∪ {𝑑𝑖 , 𝑑′𝑖 : 𝑖 ∈ [𝑘]}| dummy candidates, using up all of 𝐷0.



Next, we define a team list for each party 𝐸{𝑖, 𝑗 } where 𝑖, 𝑗 ∈ [𝑘]
with 𝑖 < 𝑗 :

𝐹𝐸{𝑖,𝑗 } = 𝑎
1
(𝑖, 𝑗 ) , 𝑒

1
{𝑖, 𝑗 } , 𝑎

1
( 𝑗,𝑖 ) , . . . , 𝑎

𝑚
(𝑖, 𝑗 ) , 𝑒

𝑚
{𝑖, 𝑗 } , 𝑎

𝑚
( 𝑗,𝑖 ) ;

𝐹 ′
𝐸{𝑖,𝑗 }

= 𝑎1( 𝑗,𝑖 ) , 𝑎
1
(𝑖, 𝑗 ) , 𝑒

1
{𝑖, 𝑗 } , . . . , 𝑎

𝑚
( 𝑗,𝑖 ) , 𝑎

𝑚
(𝑖, 𝑗 ) , 𝑒

𝑚
{𝑖, 𝑗 } ;

𝐹 ′′
𝐸{𝑖,𝑗 }

= 𝑒1{𝑖, 𝑗 } , 𝑎
1
( 𝑗,𝑖 ) , 𝑎

1
(𝑖, 𝑗 ) , . . . , 𝑒

𝑚
{𝑖, 𝑗 } , 𝑎

𝑚
( 𝑗,𝑖 ) , 𝑎

𝑚
(𝑖, 𝑗 ) .

(40)

Finally, we define the team list for each 𝑑 ∈ 𝐷 as
𝐹{𝑑 } = 𝑑,𝑑

′, 𝑑′′;
𝐹 ′{𝑑 } = 𝑑

′′, 𝑑, 𝑑′;
𝐹 ′′{𝑑 } = 𝑑

′, 𝑑′′, 𝑑 .
(41)

Preferences. To define the preferences of our five voters, we create
an election E𝐺,𝑘 in three steps. First, based on Definition 3.5 we
create an election E𝜑 that is obtained from the flat election E𝑞 by
using a bijection 𝜑 between our team set𝑇 and the candidate set𝐶𝑞
of E𝑞 , and substituting each candidate of 𝐶𝑞 with the team list of
the corresponding team. Second, we shift certain candidates in E𝜑
so that 𝑝 gains 2 points but parties in P𝑈 gain 𝑘 points each; we
denote by E𝜑,sh the resulting election. Third, we add two additional
voters together with their preferences to obtain E𝐺,𝑘 . Let us explain
these three steps more in detail.
Step 1: Constructing the election E𝜑 . Consider the election E𝑞
defined over candidates set 𝐶𝑞 as in Definition 3.5. Recall that the
number of candidates in E𝑞 is |𝐶𝑞 | = 3𝑞 .

Due to our choice of𝑞 as defined in (36), we can apply Lemma D.4
to E𝑞−1 for ℓ = 𝑘 + 1 and ℓ′ = 𝑘 . We obtain that there are candidate
sets {𝑐𝑖 } ∪𝐶←𝑖 in E𝑞−1 for 𝑖 ∈ [𝑘 + 1] such that

• candidate 𝑐𝑖 is directly preceded by the candidates of 𝐶←𝑖

in the preferences of𝑤 ;
• for each 𝑖 ∈ [ℓ], each candidate in 𝐶←𝑖 defeats 𝑐𝑖 in E𝑞−1;
• the sets {𝑐𝑖 } ∪𝐶←𝑖 for 𝑖 ∈ [𝑘 + 1] are pairwise disjoint and

have size 𝑘 + 1.
We define a bijection 𝜑 from 𝑇 into the set 𝐶𝑞 of candidates in E𝑞
such that 𝜑 (𝑈𝑖 ) = 𝑐𝑖 ⊙ 1 for each 𝑖 ∈ [𝑘], 𝜑 (𝑃) = 𝑐𝑖+1 ⊙ 1, and
moreover, teams in P𝐸 are mapped to candidates in {𝑐 ⊙ 2 : 𝑐 ∈
𝐶𝑞−1}. Notice that such a function exists and can be easily computed
based on E𝑞−1, because |P𝐸 | =

(𝑘
2
)
≤ 3𝑞−1 holds due to our choice

of 𝑞, as defined in (36).
Now, we create the election E𝜑 as follows. For each candidate

in 𝑐 ∈ 𝐶𝑞 , we substitute 𝑐 in the preference list of 𝑣, 𝑣 ′, and 𝑣 ′′ with
the team list 𝐹𝜑−1 (𝑐 ) , 𝐹 ′𝜑−1 (𝑐 ) , and 𝐹

′′
𝜑−1 (𝑐 ) , respectively.

Before proceeding to the next step, let us establish the following
claim.

Claim 17. Let 𝑁 be a set of nominees containing exactly one

candidate from each party in the constructed instance. Then in the

election E𝜑
𝑁

• each nominee 𝑐 ∈ 𝑁 defeats exactly 3 · (3𝑞 − 1)/2 nominees

among those not contained in the same team lists as 𝑐 ;

• CplE𝜑
𝑁
(𝑃) = CplE𝜑

𝑁
(𝑈𝑖 ) = CplE𝜑

𝑁
(𝑑) = 3𝑞+1−1

2 for each

𝑈𝑖 ∈ P𝑈 and each dummy 𝑑 ∈ 𝐷 ;
• candidate 𝑝 , as well as the nominee of𝑈𝑖 for each 𝑖 ∈ [𝑘], is

defeated by each of the 3𝑘 nominees directly preceding it in

the preference list of 𝑣 in E𝜑
𝑁
;

• the nominee of𝑈𝑖 defeats the nominees of𝐴(𝑖, 𝑗 ) and of 𝐸{𝑖, 𝑗 }
for each 𝑖, 𝑗 ∈ [𝑘] with 𝑖 ≠ 𝑗 .

Claim proof. First notice that for each party, there is exactly
one team list containing all of its candidates. In particular, this
means that for any nomination by the parties, each team list con-
tains exactly three nominees. Using that 𝜑 is a bijection, the first
statement of the claim follows from Observation 3.

The second statement follows from the observation that the team
lists containing candidates of 𝑃 , of

⋃
𝑖∈[𝑘 ] 𝑈𝑖 or of𝐷 are all cyclic in

the sense that they can be interpreted as copies of the election E1;
see their definitions in (38), (39), and (41). Hence, these candidates
obtain a score of 3(3𝑞 − 1)/2 + 1 in E𝜑

𝑁
.

To see the the third statement, note that 𝑝 as well as the nominee
of each party in P𝑈 is contained in the team list 𝐹𝜑−1 (𝑐𝑖 ) for some
candidate 𝑐𝑖 ∈ 𝐶𝑞−1, 𝑖 ∈ [𝑘 + 1], resulting from Lemma D.4, and
in particular is listed first among the nominees in 𝐹𝜑−1 (𝑐𝑖 ) in the
preferences of 𝑣 . By our conditions on 𝑐𝑖 and 𝐶←𝑖 , all 3𝑘 nominees
in the team lists associated with the 𝑘 teams that are mapped to
candidates of𝐶←𝑖 by 𝜑 defeat all nominees in 𝐹𝜑−1 (𝑐𝑖 ) in E

𝜑

𝑁
. Since

these 3𝑘 nominees are exactly those that in E𝜑
𝑁
directly precede the

first nominee within 𝐹𝜑−1 (𝑐𝑖 ) in the preferences of 𝑣 , the statement
follows.

Finally, the fourth statement follows from the property of the
election E𝑞 that each candidate in {𝑐 ⊙ 1 : 𝑐 ∈ 𝐶𝑞−1} defeats
every candidate in {𝑐 ⊙ 2 : 𝑐 ∈ 𝐶𝑞−1}; see Definition 3.5. Note
that we also use our condition on 𝜑 that it maps parties in P𝑈
to candidates in {𝑐 ⊙ 1 : 𝑐 ∈ 𝐶𝑞−1} and maps parties in P𝐸 to
candidates in {𝑐 ⊙ 2 : 𝑐 ∈ 𝐶𝑞−1}, and hence, all nominees in the
team lists of some team in P𝑈 defeat all nominees in the team lists
of some team in P𝐸 . ◁

Step 2: Constructing the election E𝜑,sh.We modify E𝜑 by shift-
ing every candidate in𝑈𝑖 to the left (i.e., towards the most-preferred
position) by 𝑘 positions for each 𝑖 ∈ [𝑘], and shifting the candi-
date 𝑝 to the left by 2 positions in the preferences of 𝑣 .

Recall now that due to the third statement of Claim 17, candi-
date 𝑝 , as well as the first candidate in

−→
𝑈𝑖 for each 𝑖 ∈ [𝑘], is pre-

ceded by 3𝑘 dummy candidates in the preferences of 𝑣 in E𝜑 , each
of whom defeats it. Therefore, the shifts applied to the election E𝜑
increase the score of 𝑝 by exactly 2, increase the score of each𝑈𝑖 ,
𝑖 ∈ [𝑘], by exactly 𝑘 , and decrease the score of certain dummy
candidates by 1. Consequently, in any reduced election E𝜑,sh

𝑁
we

get that

CplE𝜑,sh
𝑁

(𝑃) = 3𝑞+1 − 1
2

+ 2 and (42)

CplE𝜑,sh
𝑁

(𝑈𝑖 ) =
3𝑞+1 − 1

2
+ 𝑘. (43)

Notice that for each candidate 𝑒 ∈ 𝐸, the applied shifts do not
change the relative position of 𝑒 with respect to any other candidate.
Step 3: Constructing the election E𝐺,𝑘

. We are going to add
two more voters, 𝑧 and 𝑧′, to the election E𝜑,sh, resulting in the
election E𝐺,𝑘 . To define the preferences of these two additional
voters, we need to define a set 𝐴(𝑢) for each vertex 𝑢 as

𝐴(𝑢) =
{
𝑎ℎ(𝑖, 𝑗 ) : 𝑒

ℎ
{𝑖, 𝑗 } is incident to 𝑢, and 𝑖 is such that 𝑢 ∈ 𝑈𝑖

}
,



containing one copy of each edge incident to 𝑢. Then we can define
the blocks 𝑌𝑖 and 𝑌𝑖 for each 𝑖 ∈ [𝑘] as

𝑌𝑖 :
−−−−→
𝐴(𝑢1𝑖 ), 𝑢

1
𝑖 , . . . ,

−−−−→
𝐴(𝑢𝑛𝑖 ), 𝑢

𝑛
𝑖 ;

𝑌𝑖 :
−−−−→
𝐴(𝑢𝑛𝑖 ), 𝑢

𝑛
𝑖 , . . . ,

−−−−→
𝐴(𝑢1𝑖 ), 𝑢

1
𝑖 .

(44)

We also need to fix an arbitrary dummy 𝑑★ that is contained in
the team list of some team mapped to a candidate in {𝑐 ⊙ 1 : 𝑐 ∈
𝐶𝑞−1} by 𝜑 ; since all such teams contain a dummy in their lists
(recall that teams in P𝐸 are all mapped to {𝑐 ⊙ 2 : 𝑐 ∈ 𝐶𝑞−1} by 𝜑),
such a dummy exists. Notice that 𝑑★ defeats all candidates of each
party in P𝐸 in the election E𝜑 , and hence, also in the election E𝜑,sh.

Finally, we set the preferences of 𝑧 and 𝑧′ as follows:

𝑧 : 𝑝,
−→
𝐸 ,𝑑★,

−−−−−−−→
𝐷 \ {𝑑★}, 𝑌1, 𝑌2, . . . , 𝑌𝑘 ;

𝑧′ : 𝑌𝑘 , 𝑌𝑘−1, . . . , 𝑌1,
←−−−−−−−
𝐷 \ {𝑑★},←−𝐸 ,𝑑★, 𝑝.

(45)

The following claim is immediate from the preferences of voters 𝑧
and 𝑧′, our choice of 𝑑★, and (42).

Claim 18. Let 𝑁 be a set of nominees containing exactly one can-

didate from each party in the constructed instance. Then the nominee

of each party 𝐸{𝑖, 𝑗 } ∈ P𝐸 is defeated by 𝑑★ in E𝜑,sh
𝑁

but defeats 𝑑★

in E𝐺,𝑘 : 𝑁 ; moreover,

CplE𝐺,𝑘

𝑁

(𝑃) = CplE𝜑,sh
𝑁

(𝑃) = 3𝑞+1 − 1
2

+ 2 (46)

Correctness. We claim that there exists a set 𝑁 of nominees (con-
taining exactly one candidate from each party) such that 𝑝 is the
unique winner in the reduced election E𝐺,𝑘

𝑁
if and only if𝐺 contains

a clique of size 𝑘 .

Direction “⇒”: Suppose that 𝑝 is the unique winner in E𝐺,𝑘
𝑁

, that
is, each nominee in 𝑁 \ {𝑝} obtains at most 3𝑞+1−1

2 + 1 points. Let
𝑢
𝜅 (𝑖 )
𝑖

denote the nominee of 𝑈𝑖 for each 𝑖 ∈ [𝑘]. We are going to
show that the vertex set 𝐾 = {𝑢𝜅 (𝑖 )

𝑖
: 𝑖 ∈ [𝑘]} induces a clique in𝐺 .

Fix some 𝑖 ∈ [𝑘]. By (43) and (46) we know that there must
exist a set 𝑁★

𝑖
of at least 𝑘 − 1 nominees that are defeated by 𝑈𝑖

in E𝜑,sh
𝑁

but defeat𝑈𝑖 in E𝐺,𝑘
𝑁

. Clearly, each nominee in 𝑁★
𝑖
must

precede the nominee of𝑈𝑖 , that is,𝑢
𝜅 (𝑖 )
𝑖

in the preferences of both 𝑧
and 𝑧′. Observing the preferences of these voters as given in (45)
and the definition of the blocks 𝑌𝑖 and 𝑌𝑖 in (44), we deduce that
𝑁★
𝑖
⊆ 𝐴(𝑢𝜅 (𝑖 )

𝑖
) for each 𝑖 ∈ [𝑘], and hence, by |𝑁★

𝑖
| ≥ 𝑘 − 1 we get

that 𝐴(𝑢𝜅 (𝑖 )
𝑖
) must contain the nominee of each of the 𝑘 − 1 parties

𝐴(𝑖, 𝑗 ) for 𝑗 ∈ [𝑘] \ {𝑖}. In other words, the edges corresponding to
the nominees of the parties𝐴(𝑖, 𝑗 ) , 𝑗 ∈ [𝑘] \ {𝑖}, must all be incident
to 𝑢𝜅 (𝑖 )

𝑖
.

Consider now a party 𝐴(𝑖, 𝑗 ) for some 𝑖, 𝑗 ∈ [𝑘] with 𝑖 ≠ 𝑗 .
The above arguments imply that the nominee of 𝐴(𝑖, 𝑗 ) defeats at
least 3· (3𝑞−1)

2 + 1 candidates not contained in the team list 𝐹𝐸{𝑖,𝑗 } :
the 3 · (3𝑞 − 1)/2 nominees it already defeated in E𝜑

𝑁
(due to the

first statement of Claim 17), plus the nominee 𝑢𝜅 (𝑖 )
𝑖

that it defeats
in E𝐺,𝑘

𝑁
due to voters 𝑧 and 𝑧′ but not in E𝜑

𝑁
(as shown also by the

third statement of Claim 17).

Similarly, the nominee of 𝐸{𝑖, 𝑗 } defeats at least 3· (3𝑞−1)
2 + 1

candidates not contained in the team list 𝐹𝐸{𝑖,𝑗 } : the 3 · (3𝑞 − 1)/2
nominees it already defeated in E𝜑

𝑁
(due to the first statement of

Claim 17) and hence also defeated in E𝜑,sh
𝑁

(as the shifts applied
in Step 2 do not affect 𝐸{𝑖, 𝑗 } ), plus the dummy 𝑑★ that it defeats
in E𝐺,𝑘

𝑁
due to voters 𝑧 and 𝑧′ but not in E𝜑,sh

𝑁
(due to Claim 18).

This implies that the restriction of E𝐺,𝑘 to the three nominees in
the team list 𝐹𝐸{𝑖,𝑗 } must be flat, as otherwise one of the candidates
nominated by parties 𝐴(𝑖, 𝑗 ) , 𝐴( 𝑗,𝑖 ) , and 𝐸{𝑖, 𝑗 } would gain two addi-
tional points (against the nominees within in the team list 𝐹𝐸{𝑖,𝑗 } )
and thus would obtain a score of 3· (3𝑞−1)

2 +3 = 3𝑞+1−1
2 +2, which by

(46) contradicts the assumption that 𝑝 is the unique winner in E𝐺,𝑘
𝑁

.
Considering the team lists associated with 𝐸{𝑖, 𝑗 } as defined

in (40), it follows in a straightforward way that the restriction
of E𝐺,𝑘 to the three nominees in the team list 𝐹𝐸{𝑖,𝑗 } can only be flat
if 𝐴(𝑖, 𝑗 ) and 𝐴( 𝑗,𝑖 ) both nominate the copies of the same edge, i.e.,
their nominees are 𝑎ℎ(𝑖, 𝑗 ) and 𝑎

ℎ
( 𝑗,𝑖 ) , respectively, for some ℎ ∈ [𝑚].

Therefore, 𝑎ℎ(𝑖, 𝑗 ) ∈ 𝐴(𝑢
𝜅 (𝑖 )
𝑖
) and 𝑎ℎ( 𝑗,𝑖 ) ∈ 𝐴(𝑢

𝜅 ( 𝑗 )
𝑗
) must hold, in

other words, 𝑒ℎ{𝑖, 𝑗 } is incident to both 𝑢𝜅 (𝑖 )
𝑖

and 𝑢𝜅 ( 𝑗 )
𝑗

. Since we
have proved this for arbitrary 𝑖, 𝑗 ∈ [𝑘] with 𝑖 ≠ 𝑗 , it follows that
𝐾 forms a clique in 𝐺 .

Direction “⇒”: Suppose now that 𝐾 = {𝑢𝜅 (𝑖 )
𝑖

: 𝑖 ∈ [𝑘]} induces
a clique in 𝐺 . Consider the election obtained by nominating each
vertex of 𝐾 , as well as each edge 𝑒ℎ{𝑖, 𝑗 } in 𝐺 [𝐾] together with its

copies 𝑎ℎ(𝑖, 𝑗 ) and 𝑎
ℎ
( 𝑗,𝑖 ) , besides nominating 𝑝 and all dummies. Let

𝑁 denote the set of nominees.
Notice that restricting E𝜑 to the nominees contained in some

arbitrarily chosen team list yields a flat election. Hence, it is imme-
diate by Observation 3 that E𝜑

𝑁
is a flat election. The shifts applied

in Step 2 to obtain E𝜑,sh increase the score of 𝑝 by 2, increase the
score of each 𝑈𝑖 ∈ P𝑈 by 𝑘 , and do not change the score of 𝐸{𝑖, 𝑗 } ,
irrespective of the nominations; dummies’ score may decrease but
not increase. Finally, since the nominee of 𝐴(𝑖, 𝑗 ) for some 𝑖, 𝑗 ∈ [𝑘]
with 𝑖 ≠ 𝑗 precedes the candidate of𝑈𝑖 in the preferences of both 𝑧
and 𝑧′ (since it is a copy of an edge incident to the vertex in 𝐾 ∩𝑈𝑖 ),
we get that the addition of voters 𝑧 and 𝑧′ increases the score
of 𝐴(𝑖, 𝑗 ) by 1 for each 𝑖, 𝑗 ∈ [𝑘] with 𝑖 ≠ 𝑗 , and decreases the score
of 𝑈𝑖 by 𝑘 − 1 for each 𝑖 ∈ [𝑘]. Taking into account Claim 18 and
the observation that no dummy’s score may increase due to the
addition of voters 𝑧 and 𝑧′, we get that each party in P𝑈 ∪ P𝐸
as well as each party 𝐴(𝑖, 𝑗 ) , 𝑖, 𝑗 ∈ [𝑘] with 𝑖 ≠ 𝑗 , obtains a score
of 3𝑞+1−1

2 + 1 in E𝐺,𝑘
𝑁

. Hence, 𝑃 is indeed a unique winner in E𝐺,𝑘
𝑁

by (46), finishing the proof of correctness for our reduction. □

Appendix E ADDITIONAL MATERIAL FOR

SECTION 4

E.1 Proof of Theorem 4.3

Theorem 4.3 (★). Possible President forMaximin isNP-complete

even for instances where the number of voters is a fixed constant𝑛 ≥ 4,
and the maximum party size is 𝜎 = 2.



We first prove the statement for four voters in Theorem E.1, and
then for five voters in Theorem E.2; as it is possible to add two
voters with opposite preferences without changing the election
outcome, these results imply Theorem 4.3.

Theorem E.1. Possible President for Maximin is NP-complete

even for instances with four voters and maximum party size 𝜎 = 2.

Proof. We present a reduction from NP-complete 3-SAT prob-
lem. Let the input instance for 3-SAT be a formula 𝜑 =

∧𝑚
𝑘=1 𝑐

𝑘

over a set 𝑋 = {𝑥1, . . . , 𝑥𝑛} of variables that is the conjunction of a
set C = {𝑐𝑘 : 𝑘 ∈ [𝑚]} of clauses, where each clause 𝑐 ∈ C contains
exactly three literals. We may assume w.l.o.g. that 𝜑 is not trivial
in the sense that there is at least one variable that appears both as
a positive and a negative literal in 𝜑 .

We are going to define an instance of Possible President for
Maximin as follows. We let 𝑉 = {𝑣, 𝑣 ′,𝑤,𝑤 ′} be the set of voters.
We let 𝑃 = {𝑝} be our distinguished party, and we define another
party 𝑃 ′ = {𝑝′}. For each variable 𝑥 ∈ 𝑋 we further introduce a
party 𝑃𝑥 = {𝑥, 𝑥}, and for each clause 𝑐 ∈ C we introduce three
parties 𝑃𝑐,𝑗 = {𝑐 𝑗 , 𝑐−𝑗 }, 𝑗 ∈ [3]. Notice that each party has size at
most two.

To provide the preferences of the voters, we introduce some
notation. Let

C− = {𝑐−𝑗 : 𝑐 ∈ C, 𝑗 ∈ [3]} (47)
and 𝐿 = {𝑥, 𝑥 : 𝑥 ∈ 𝑋 } be the set of all literals. For each literal ℓ ∈ 𝐿
we define

𝐴(ℓ) = {𝑐 𝑗 : 𝑐 ∈ C, 𝑗 ∈ [3], ℓ is the 𝑗-th literal in 𝑐}. (48)

We also define the following blocks for each 𝑐 ∈ C and each ℓ ∈ 𝐿:
𝑌𝑐 = 𝑐1, 𝑐2, 𝑐3, 𝑐

−
1 , 𝑐
−
2 , 𝑐
−
3 ;

𝑌𝑐 = 𝑐3, 𝑐2, 𝑐1, 𝑐
−
3 , 𝑐
−
2 , 𝑐
−
1 ;

𝐹ℓ = ℓ,
−−−→
𝐴(ℓ);

𝐹ℓ = ℓ,
←−−−
𝐴(ℓ) .

(49)

Now we are ready to define the preferences of our voters:

𝑣 : 𝑝, 𝑝′,
−→
𝐿 ,𝑌𝑐1 , . . . , 𝑌𝑐𝑚 ;

𝑣 ′ : 𝑝,𝑌𝑐𝑚 , . . . , 𝑌𝑐1 , 𝑝
′,
←−
𝐿 ;

𝑤 :
−−→C−, 𝑝′, 𝐹𝑥1 , . . . , 𝐹𝑥𝑛 , 𝐹𝑥1 , . . . , 𝐹𝑥𝑛 , 𝑝;

𝑤 ′ : 𝐹𝑥𝑛 , . . . , 𝐹𝑥1 , 𝐹𝑥𝑛 , . . . , 𝐹𝑥1 ,
←−−C−, 𝑝′, 𝑝.

We claim that 𝑃 can be the unique winner in some reduced
election E if and only if 𝜑 admits a satisfying truth assignment.

Note first that candidate 𝑝 has Maximin-score MME (𝑝) = 2
because it is tied with every other nominee in E. Thus, 𝑝 is the
unique winner in E if every other nominated candidate obtains
Maximin-score at most one, that is, gets defeated by at least one
other nominee.

Suppose that this indeed happens. Note that it is not possible
that each of the three candidates 𝑐−1 , 𝑐

−
2 , and 𝑐

−
3 is nominated in E

for some 𝑐 ∈ C, as in that case none of the remaining nominees
can defeat these nominees. Hence, for each 𝑐 ∈ C there exists
some 𝑗 ∈ [3] for which 𝑐 𝑗 is nominated by party 𝑃𝑐,𝑗 . Based on
the preferences of the voters, it is straightforward to verify that

candidate 𝑐 𝑗 can only be defeated by the nominee of a party 𝑃𝑥 .
In particular, 𝑐 𝑗 can only be defeated by the literal ℓ for which
𝑐 𝑗 ∈ 𝐴(ℓ). Thus, we get that the 𝑗-th literal in 𝑐 must be nominated.
This immediately implies that the truth assignment that sets exactly
the nominated candidates from 𝐿 as true satisfies 𝜑 , since for each
clause 𝑐 ∈ C it sets at least one literal true.

Assume now that we have a satisfying truth assignment 𝛼 for 𝜑 .
Consider the election E where each party 𝑃𝑥 , 𝑥 ∈ 𝑋 , nominates the
literal set to true by 𝛼 , and where each party 𝑃𝑐,𝑗 , 𝑐 ∈ C and 𝑗 ∈ [3],
nominates 𝑐 𝑗 if and only if the 𝑗-th literal in 𝑐 is set to true by 𝛼 . It
is straightforward to check that 𝑝 is the unique winner in E, since
each nominee other than 𝑝 gets defeated by some other nominee:

• 𝑝′ gets defeated by every nominee in C− (note that there
is at least one nominee in C− by our assumption that 𝜑 is
nontrivial);

• each nominee 𝑐−
𝑗
∈ C− gets defeated by all nominees in

{𝑐1, 𝑐2, 𝑐3}, and at least one of these candidates is nominated
because 𝛼 satisfies 𝜑 ;

• each nominee 𝑐 𝑗 for some 𝑐 ∈ C, 𝑗 ∈ [3] gets defeated by
the 𝑗-th literal in 𝑐 , which is a literal set to true by 𝛼 (since
𝑐 𝑗 is nominated) and thus nominated in E;
• each nominated literal ℓ ∈ 𝐿 is defeated by 𝑝′.

This proves the correctness of our reduction. □

Theorem E.2. Possible President for Maximin is NP-complete

even for instances with five voters and maximum party size 𝜎 = 2.

Proof. We provide a polynomial-time reduction from 3-SAT
based on the reduction presented in the proof of Theorem E.1. We
keep all notation regarding the input instance 𝜑 of 3-SAT, as well
as the notation introduced in (47), (48) and (49). Furthermore, the
set of parties and candidates contains all candidates and parties
defined in the the proof of Theorem E.1, as well as an additional
party 𝑃 ′′ = {𝑝′′}.

We define the set of voters as 𝑉 = {𝑣, 𝑣 ′,𝑤,𝑤 ′, 𝑧}, and define
their preferences as follows:

𝑣 : 𝑝,
−→
𝐿 ,𝑌𝑐1 , . . . , 𝑌𝑐𝑚 , 𝑝

′, 𝑝′′;

𝑣 ′ : 𝑝,𝑌𝑐𝑚 , . . . , 𝑌𝑐1 , 𝑝
′, 𝑝′′,

←−
𝐿 ;

𝑤 : 𝑝′′, 𝐹𝑥1 , . . . , 𝐹𝑥𝑛 , 𝐹𝑥1 , . . . , 𝐹𝑥𝑛 ,
−−→C−, 𝑝′, 𝑝;

𝑤 ′ : 𝑝′, 𝑝′′, 𝐹𝑥𝑛 , . . . , 𝐹𝑥1 , 𝐹𝑥𝑛 , . . . , 𝐹𝑥1 ,
←−−C−, 𝑝

𝑧 :
−−→C−, 𝑝′, 𝑝′′,−→𝐿 ,

−−−−−−−−−−−−−−−−−−→
{𝑐 𝑗 : 𝑐 ∈ C, 𝑗 ∈ [3]}, 𝑝.

We claim that 𝑃 can be the unique winner in the election E
resulting from some nominations for the parties if and only if 𝜑
admits a satisfying truth assignment.

Observe first that candidate 𝑝 has Maximin-scoreMME (𝑝) = 2
in E. Let us further observe the following facts:

• 𝑝′′ defeats each nominee in 𝐿 by 4 : 1;
• 𝑝′ defeats 𝑝′′ by 4 : 1;
• each nominee in C− defeats 𝑝′ by 4 : 1;

Now assume that 𝑝 indeed is the unique winner in E. Then
each candidate 𝑐−

𝑗
∈ C− that is nominated in E must be defeated

by 4 : 1 by some nominee in E; however, it is immediate from
the preferences of the voters that this can only be done by some



nominee in {𝑐1, 𝑐2, 𝑐3}. Hence, we get that for each 𝑐 ∈ C there
exists some 𝑗 ∈ [3] such that 𝑐 𝑗 is nominated in E.

Next consider some nominee 𝑐 𝑗 where 𝑐 ∈ C, 𝑗 ∈ [3]. Again by
construction, it follows that the only nominee that may defeat 𝑐 𝑗
by 4 : 1 is the literal ℓ for which 𝑐 𝑗 ∈ 𝐴(ℓ), that is, the 𝑗-th literal in
clause 𝑐 . Hence, for each clause 𝑐 there must exist a literal in 𝑐 that
is nominated in E. This immediately yields a satisfying assignment
that sets a literal to true if and only if it is nominated in E.

Assume now that 𝜑 admits a satisfying truth assignment 𝛼 . Con-
sider the election E where each party 𝑃𝑥 , 𝑥 ∈ 𝑋 , nominates the
literal set to true by 𝛼 , and where each party 𝑃𝑐,𝑗 , 𝑐 ∈ C and 𝑗 ∈ [3],
nominated 𝑐 𝑗 if and only the 𝑗-th literal in 𝑐 is set to true. Again, it
is straightforward to check that 𝑝 is the unique winner in E, since
every other nominee obtains a Maximin-score at most 1. To see
this, it suffices to complement our earlier observations with the
following:

• there is at least one nominee in C− by our assumption that
𝜑 is nontrivial;
• for each 𝑐 ∈ C there is at least one nominee in {𝑐1, 𝑐2, 𝑐3},

and this nominee defeats each nominee in {𝑐−1 , 𝑐
−
2 , 𝑐
−
3 }

by 4 : 1;
• for each nominee 𝑐 𝑗 , 𝑐 ∈ C and 𝑗 ∈ [3], the 𝑗-th literal ℓ in 𝑐 𝑗

is set to true by 𝛼 and hence is nominated in E; moreover,
ℓ defeats 𝑐 𝑗 by 4 : 1.

This proves the correctness of our reduction. □

E.2 Proof of Claim 1

Claim 1 (★). Applying Rule A or B yields an equivalent instance

of Partitioned Subdigraph Isomorphism.

Proof. Given an instance 𝐼 = (𝐷,𝐻,𝛾) of Partitioned Sub-
digraph Isomorphism we will refer to a subdigraph of 𝐻 that is
𝛾-isomorphic to 𝐷 as a solution for 𝐼 .

Consider Rule A when applied to an instance 𝐼 = (𝐷,𝐻,𝛾), and
let𝑈 = {𝑥 ∈ Γ𝑢 : 𝑁 +

𝐻
(𝑥) ∩ Γ𝑣 = ∅}. First, if 𝐻 is a subdigraph of 𝐻

that is 𝛾-isomorphic to 𝐷 , then the unique vertex of 𝐻 with label 𝑢
must have an out-neighbor with label 𝑣 . Hence, 𝐻 cannot contain
a vertex from 𝑈 , which means that deleting 𝑈 from 𝐻 yields an
instance 𝐼 ′ equivalent to 𝐼 .

The instance 𝐼 ′′ constructed by Rule A is obtained by further
deleting 𝑣 from𝐷 and Γ𝑣 from𝐻 −𝑈 . We show that 𝐼 ′′ is equivalent
to 𝐼 ′ and, hence, to 𝐼 . Assume that 𝐻 is a solution for 𝐼 ′′. Then 𝐻
contains a vertex 𝑥 ∈ 𝑉 (𝐻 − 𝑈 − Γ𝑣) with label 𝑢, and because
𝑥 ∉ 𝑈 , there must exist a vertex 𝑦 in 𝐻 among the out-neighbors
of 𝑥 in𝐻 that has label 𝑣 . Adding the vertex𝑦 and the arc (𝑥,𝑦) to𝐻
yields a solution for the instance 𝐼 ′. Conversely, the solvability of 𝐼 ′
implies the solvability of 𝐼 ′′, because deleting the unique vertex
with label 𝑣 from a solution to 𝐼 ′ yields a solution for 𝐼 ′′.

Consider now Rule B applied to instance 𝐼 = (𝐷,𝐻,𝛾), and let 𝐼 ′
be the constructed instance with digraphs 𝐷′ and 𝐻 ′.

First, if 𝐻 is a subdigraph of 𝐻 that is 𝛾-isomorphic to 𝐷 wit-
nessed by an isomorphism 𝑓 , then (𝑓 (𝑢), 𝑓 (𝑤)) ∈ 𝐴𝑢𝑤 is clear,
due to 𝑓 (𝑣) ∈ 𝑁 +

𝐻
(𝑢) ∩ 𝑁 −

𝐻
(𝑤) ∩ Γ𝑣 . Hence, deleting 𝑓 (𝑣) from 𝐻

and adding the arc (𝑓 (𝑢), (𝑤)) yields a subdigraph of 𝐻 ′ that is
𝛾-isomorphic to 𝐷′.

Conversely, if𝐻 is a solution to 𝐼 ′, then it contains an arc (𝑥,𝑦) ∈
𝐴𝑢𝑤 such that 𝑥 ∈ Γ𝑢 and 𝑦 ∈ Γ𝑤 , because (𝑢,𝑤) is an arc in 𝐷′.
By the definition of 𝐴𝑢𝑤 , it follows that there is a vertex 𝑧 ∈
𝑁 +
𝐻
(𝑢)∩𝑁 −

𝐻
(𝑤)∩Γ𝑣 in𝐻 . Adding 𝑧 and replacing the arc (𝑥,𝑦) with

arcs (𝑥, 𝑧) and (𝑧,𝑦) yields a subdigraph of 𝐻 that is 𝛾-isomorphic
to 𝐷 . This shows that 𝐼 ′ is indeed equivalent with 𝐼 . □

E.3 Proof of Theorem 4.4

Theorem 4.4 (★). There exists an algorithm that solves Possible

President for Maximin and runs in FPT time with parameter 𝑡 .

Lemma E.3. If AlgMM returns “yes”, then the input instance of

Possible President for Maximin is a “yes”-instance.

Proof. AlgMM may only return “yes” in Step 7, which requires
that instance 𝐽 of Partitioned Subdigraph Isomorphism admits
a solution, i.e., a subdigraph 𝐻 of 𝐻 that is 𝛾-isomorphic to 𝐷 .
Note that 𝐶′ := 𝑉 (𝐻 ) contains exactly candidate from each party
in P \ {𝑃★}; let E be the election where the nominees are exactly
𝐶′ ∪ {𝑝}. By Step 3 we know 𝐶′ ∩ 𝑋 = ∅, implying MME (𝑝) =
min𝑐∈𝐶′ 𝑁 (𝑝, 𝑐) ≥ 𝑠★. Consider now some 𝑐 ∈ 𝐶′ nominated by
a party 𝑃 , and let 𝑐′ ∈ 𝐶′ be the vertex of 𝐻 to which 𝛿 (𝑃) is
mapped by the isomorphism witnessing the solution 𝐻 for 𝐽 . As
(𝛿 (𝑃), 𝑃) is an arc in 𝐷 , there must be an arc (𝑐′, 𝑐) in 𝐻 as well. By
construction, this means 𝑁 (𝑐, 𝑐′) < 𝑠★. Hence, we getMME (𝑐) =
min𝑐∈𝐶′∪{𝑝 } 𝑁 (𝑐, 𝑐) ≤ 𝑁 (𝑐, 𝑐′) < 𝑠★. Thus, 𝑝 is indeed the unique
winner in E. □

Lemma E.4. For each “yes”-instance of Possible President for

Maximin, AlgMM returns “yes”.

Proof. Assume that there exists a set of nominations resulting
in an election E where 𝑃★ is the unique winner. Let 𝐶′ denote the
set of nominees in E, and let 𝑐𝑃 denote the nominee of party 𝑃 for
each 𝑃 ∈ P \ {𝑃★}.

Consider the branch of AlgMM where the algorithm’s guesses
are correct, that is, it correctly guesses the nominee 𝑝 of 𝑃★, the
Maximin-score 𝑠★ of 𝑝 in E, as well as a party 𝛿 (𝑃) for each
party 𝑃 ∈ P \ {𝑃★} whose nominee fulfills 𝑁E (𝑐𝑃 , 𝑐𝛿 (𝑃 ) ) < 𝑠★.
Clearly, such a party𝛿 (𝑃) exists, as otherwise 𝑃 would haveMaximin-
score at least 𝑠★ in E.Wewill use the fact that𝑁E0 (𝑐, 𝑐′) = 𝑁E (𝑐, 𝑐′)
holds in any reduced election E of E0 for each two candidates 𝑐
and 𝑐′ that take part in the election E.

First, note that AlgMM cannot return “no” in Step 5, because for
each party 𝑃 ∈ P \ {𝑃★} we know that

(i) 𝑁E0 (𝑝, 𝑐𝑃 ) = 𝑁E (𝑝, 𝑐𝑃 ) ≥ MME (𝑝) = 𝑠★, and that
(ii) if 𝛿 (𝑃) = 𝑃★, then 𝑁E0 (𝑐, 𝑝) = 𝑁E (𝑐, 𝑝) < 𝑠★,

and therefore 𝑐𝑃 is not deleted in Steps 3 and 4, so 𝑐𝑃 ∉ 𝑋 . Hence,
the algorithm reaches Step 7.

It now suffices to show that the subgraph 𝐻 [𝐶′] of 𝐻 spanned
by all nominees in E contains a graph 𝛾-isomorphic to 𝐷 . We show
that the function 𝑓 (𝑃) = 𝑐𝑃 is a good witness for this, i.e, for each
arc (𝑃1, 𝑃2) in 𝐷 there is an arc (𝑓 (𝑃1), 𝑓 (𝑃2)); note that the label
constraint 𝛾 (𝑓 (𝑃)) = 𝛾 (𝑐𝑃 ) = 𝑃 is satisfied automatically for each
𝑃 ∈ P \ {𝑃★}. Recall that (𝑃1, 𝑃2) is an arc in 𝐷 if and only 𝑃1 =

𝛿 (𝑃2). As we assume that the algorithm’s guesses are correct, we get
𝑁 (𝑐𝑃2 , 𝑐𝛿 (𝑃2 ) ) < 𝑠★. Since 𝑓 (𝑃1) = 𝑐𝑃1 = 𝑐𝛿 (𝑃2 ) and 𝑓 (𝑃2) = 𝑐𝑃2 ,
this is equivalent with saying that 𝑁 (𝑓 (𝑃2), 𝑓 (𝑃1)) < 𝑠★. Hence,



by the definition of 𝐻 we get that (𝑓 (𝑃1), 𝑓 (𝑃2)) is an arc in 𝐻 , as
promised. This shows that AlgMM returns “yes” in Step 7. □

Lemmas E.3 and E.4 together imply the correctness of AlgMM,
so to finish the proof of Theorem 4.4, it remains to determine it’s
running time.

The number of possible guesses that the algorithm has to explore
due to Steps 1 and 2 is |𝑃★ | · |𝑉 | · (𝑡 − 1)𝑡−1. For each such guess,
performing Steps 3–6 takes 𝑂 ( |𝑉 | · |𝐶 |2) time, as this is the time
necessary to compute 𝑁E0 (𝑐, 𝑐′) for each two candidates 𝑐 and 𝑐′
in E0. Finally, running the algorithm for Partitioned Subdigraph
Isomorphism guaranteed by Lemma 4.5 takes 𝑂 ( |𝐶 |2) time. Hence,
the overall running time of AlgMM is 𝑂 (𝑡𝑡 · |𝑉 |2 · |𝐶 |3), which is
clearly fixed-parameter tractable with respect to parameter 𝑡 .
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