
Odd Paths, Cycles and T -joins:

Connections and Algorithms

Ildikó Schlotter1,2 and András Sebő3

1HUN-REN Centre for Economic and Regional Studies, Hungary;
schlotter.ildiko@krtk.hun-ren.hu

2Budapest University of Technology and Economics, Hungary
3CNRS, Univ. Grenoble Alpes, France; andras.sebo@grenoble-inp.fr

Abstract

Minimizing the weight of an edge set satisfying parity constraints is a challenging branch of
combinatorial optimization as witnessed by the binary hypergraph chapter of Alexander Schri-
jver’s book “Combinatorial Optimization” (Chapter 80). This area contains relevant graph
theory problems including open cases of the Max Cut problem and some multiflow problems.
We clarify the interconnections between some of these problems and establish three levels of
difficulties. On the one hand, we prove that the Shortest Odd Path problem in undirected
graphs without cycles of negative total weight and several related problems are NP-hard, set-
tling a long-standing open question asked by Lovász (Open Problem 27 in Schrijver’s book
“Combinatorial Optimization”). On the other hand, we provide an algorithm for the closely
related and well-studied Minimum-weight Odd T -Join problem for non-negative weights:
our algorithm runs in FPT time parameterized by c, where c is the number of connected
components in some efficiently computed minimum-weight T -join. If negative weights are also
allowed, then finding a minimum-weight odd {s, t}-join is equivalent to the Minimum-weight
Odd T -Join problem for arbitrary weights, whose complexity is still only conjectured to be
polynomially solvable. The analogous problems for digraphs are also considered.

1 Introduction

The Minimum-weight Odd T -Join problem (MOTJ) asks for an odd-cardinality T -join of
minimum weight for a given subset T of vertices in an undirected, edge-weighted graph. The
MOTJ problem is the graph special case of optimization in binary hypergraphs. This area contains
relevant problems on graphs, including open cases of the Max Cut problem, or some multiflow
problems. Stimulating minimax conjectures of Seymour’s have been solved in special cases (see
e.g. Guenin and Abdi [1, 2, 17]) but optimization algorithms were not well-known, not even for
cases where the minimax theorems conjectured by Seymour hold.

1

In this paper we study a handful of interconnected optimization problems in undirected,
edge-weighted graphs that involve parity constraints on certain edge sets. Such problems are
considered in a general framework under the term of “binary hypergraphs” [23, Chapter 80],
subject to a huge number of deep results and conjectures since the seventies until now (see
e.g., [1, 2, 12, 16, 17, 25]; those published before 2002 are summarized in Schrijver’s book [23]). A
first round of problems like T -joins or odd cycles for non-negative edge-weights have been studied
in the last century [10, 14]. Then time has come for adding more binary constraints [12, 16, 17],
bringing in new results and new challenges.

In this work we consider the main algorithmic challenges. Among other variants, we study in
undirected graphs the problems of finding a minimum-weight odd T -join (MOTJ) for arbitrary
weights, and for conservative weights the shortest odd cycle (SOC) or the shortest odd path
between two given vertices (SOP). The edge-weights are said to be conservative if there are no
cycles with negative total weight. Our results are the following:

(a) The variant of SOC where the solution has to contain a given vertex of the graph is NP-
hard, implying NP-hardness for the SOP problem as well. The complexity of the latter has
been an open question by Lovász (Open Problem 27 in Schrijver’s book [23]) for the last
more than twenty years.

(b) The MOTJ problem for non-negative weights can be solved in 2|T |/2O(n4) time on an n-
vertex graph. Our method is based on structural properties of shortest cycles in graphs with
conservative weights, yielding an algorithm for SOC that is efficient when negative-weight
edges span a bounded number of components.

(c) The SOC problem for conservative weights is polynomially equivalent to MOTJ, and al-
though we do solve certain special cases in polynomial time, it remains open in general.

We prove in addition that finding two openly disjoint paths between two vertices with min-
imum total weight in an undirected graph with conservative weights in NP-hard; this problem
has, quite surprisingly, also been open. A major benefit of our results is finding connections
among a so far chaotic set of influential problems, and sorting them into NP-hard, polynomial-
time solvable, and open cases (cf. (a), (b), and (c) respectively). We will also see that some of the
analogous problems for digraphs are easily reducible to tractable problems, while some others are
equivalent with the problems we prove to be NP-hard (see Sections 4 and 5); some new related
open problems also arise (see Section 5.3).

The SOP problem contains the following classical problem SP:

SHORTEST PATH IN UNDIRECTED CONSERVATIVE GRAPHS (SP)
Input: An undirected graph G = (V,E) with weights w : E → Z, s, t ∈ V , and k ∈ Z.
Question: Is G conservative with w, and if so, is there a path between s and t of weight at
most k?

2

Indeed, to solve SP using SOP, simply add a new vertex t′, and add both an edge and a
path of two edges from t to t′, each with weight 0, then find a shortest odd (s, t′)-path. As it
is well-known, SP can be solved in polynomial time, but this cannot be done via shortest path
algorithms for conservative digraphs:

To solve SP by using techniques developed for digraphs, we would have to include each edge
in both directions, and negative edges would lead to negative cycles consisting of two edges.
Moreover, the algorithms for directed graphs are all based on the fact that subpaths of shortest
paths are shortest and the triangle inequality holds, which is not true in the undirected case. In
fact, it is well-known from the very first results of matching theory that SP is both conceptually
and algorithmically equivalent to finding a minimum weight perfect matching in a graph (see
some details and references in the first paragraph of Section 5.1).

Requiring odd cardinality from the paths to be optimized on, will lead, as mentioned, to
NP-completeness. In fact, our NP-hardness proof for SOP shows also the NP-hardness of the
Shortest Odd Cycle through a Point (SOCp) problem that asks for a shortest odd cycle
containing a given vertex in an undirected graph with conservative edge weights.

However, the Shortest Odd Cycle (SOC) problem of finding a shortest odd cycle in undi-
rected conservative graphs seems significantly easier. The SOC problem has been studied from
multiple aspects and under various names; one of these is MOTJ. Although SOC is known to
be in RP when edge weights are uniformly 1 (Geelen and Kapadia [12], see more about it in
Section 3), its polynomial-time solvability remains open! The study of SOC and MOTJ has lead
to deep structural results:

Seymour [23, 25] conjectured minimax theorems for the problem of finding a shortest odd T -
join if certain minors are excluded; one of these, the flowing conjecture postulates the existence of
a fractional dual solution for a minimum transversal of odd T -joins, while the cycling conjecture
bets on the existence of an integer dual solution for non-negative weights. We need not and will
not enter these linear programming aspects in this note, but it is interesting to mention that
these conjectures have been solved in the |T | ≤ 2 special case by Guenin and Abdi [1, 2, 17],
without caring about algorithms. On the other hand, a randomized polynomial algorithm has
been given for SOC by Geelen and Kapadia [12], making polynomial-time solvability plausible.
In Section 5.2 we discuss these connections.

Main contribution. On the positive side, in Section 3 we propose a fixed-parameter tractable
(FPT) algorithm for the Shortest Odd Cycle problem for conservative weights, parameterized
by the number of connected components spanned by all negative edges (Theorem 3.7). As a
consequence, MOTJ with non-negative weights can be solved by an algorithm that first computes
a minimum-weight T -join F , and runs in time 2cO(n4) where c is the number of connected
components in F , and n the number of vertices in the graph.

As a further corollary, Cook, Espinoza and Goycoolea’s FPT result [8] for MOTJ with pa-
rameter |T | and non-negative weights follows, with a different proof and slightly different time
complexity (Corollary 3.8).

3

The main surprise – causing at the same time some disappointment – is the NP-completeness
of SOCp (Theorem 4.3), in contrast with SOC, which remains open. As an immediate corollary,
surprisingly, Lovász’s problem SOP is also NP-complete (Corollary 4.4). In Corollary 4.5 we
further obtain NP-completeness of the Disjoint Shortest Paths (DISP) problem, where given
two vertices, s and t in an undirected, conservative graph, the task is to find two openly disjoint
paths between s and t with minimum total weight.

Finally, we present certain connections including equivalences between the studied but still
open problems (Theorem 5.4).

Organization. In Section 2 we introduce the most important notations, terminology and some
basic facts. In Section 3 we make an inventory of the positive results concerning MOTJ. Besides
mentioning some existing results and recalling the main conjecture about MOTJ, simple structural
results are presented for the Shortest Odd Cycle problem in conservative graphs, leading first
to a polynomial algorithm for MOTJ with non-negative weights in the case when we can find
a minimum-weight T -join that is connected (Section 3.1), and then to efficient algorithms for
MOTJ and for SOC (Section 3.2). Our NP-hardness results for the problems SOCp, SOP, and
DISP are presented in Section 4.

The results of the paper reveal new possibilities for considering special cases that may deserve
more focus. We put forward their relations and some open problems concerning them, summarized
in Section 5, together with some conclusions.

2 Preliminaries

We start with basic notation for graph-theoretic concepts and for properties of edge-weight func-
tions. We then proceed by giving the precise definitions of the problems already mentioned in
Section 1 and stating some well-known facts about them that will be useful later on.

Notation for graphs. Given an undirected graph G = (V,E), for some F ⊆ E and v ∈ V
let dF (v) denote the degree of v in F , i.e., the number of edges in F incident to v. Let V (F)
denote the set of vertices that are incident to some edge in F . Let G[F] denote the subgraph
of G spanned by F , that is, the graph (V (F), F).

A cycle in an undirected graph G = (V,E) is a nonempty set C of edges such that G[C] is
connected, and dC(v) = 2 for each vertex v ∈ V (C). In a digraph G = (V,E), a (directed) cycle
additionally satisfies that all in- and out-degrees in G[C] are equal to 1. For two distinct vertices s
and t in a graph, an (s, t)-path has the same definition except that the two endpoints, s and t,
have degree 1 in the undirected case; in the directed case, s has in-degree 0 and out-degree 1,
while t has out-degree 0, and in-degree 1. A cycle C with s ∈ V (C) is also considered to be an
(s, t)-path with s = t. For two sets of vertices S, T ⊆ V of a graph, an (S, T)-path is an (s, t)-path
for some s ∈ S and t ∈ T . If P is a path and a, b ∈ V (P), then the subpath of P between
a, b ∈ V (P) is denoted by P (a, b).

4

Note that we have defined cycles and (s, t)-paths as edge sets. With a slight abuse of termi-
nology, a path in G may also be a subgraph spanned by an (s, t)-path for distinct vertices s and t,
and we also consider a single vertex in G to be a trivial path.

Two paths are said to be vertex-disjoint (or edge-disjoint) if they do not have a common vertex
(or edge, respectively), and they are said to be openly disjoint if they can only share vertices that
are endpoints on both paths.

A T -join in an undirected graph G = (V,E) for some T ⊆ V is a subset of edges J ⊆ E,
such that dJ(v) is odd if v ∈ T , and even if v ∈ V \ T . An ∅-join is the disjoint union of cycles;
inclusionwise minimal, non-empty ∅-joins are exactly the cycles. A T -join with |T | = 2, that is,
with T = {s, t} ⊆ V is the disjoint union of an (s, t)-path and some cycles, so the inclusionwise
minimal ones are (s, t)-paths.

A cycle, a path, a T -join and generally, any edge set is odd (even) if it contains an odd
(respectively, even) number of edges.

Weight functions. We denote by R,R+,Z,Z+, and N the set of real, non-negative real, integer,
non-negative integer, and positive integer numbers, respectively. For a function f : D → R
and some D′ ⊆ D, let f(D′) :=

∑
d∈D′ f(d), as usually. In an optimization problem over a set of

feasible edge sets (e.g., over paths between two vertices, or over all cycles), a w-minimum solution
is one that has minimum weight according to a given edge-weight function w; if w is clear from
the context, we might also say that such a solution is shortest.

An undirected graph G = (V,E) is conservative with weights w : E → R, if w(C) ≥ 0 for any
cycle C of G.

For arbitrary w : E → R and F ⊆ E, let w[F] : E → R denote the function defined by

w[F](e) :=

{
−w(e) if e ∈ F ,
w(e) if e ∈ E \ F .

Denote the symmetric difference of two sets X and Y by X∆Y := (X \ Y) ∪ (Y \X). Then
clearly w[F](X) = w(X \ F) − w(X ∩ F) = w(X∆F) − w(F) for any X ⊆ E. In particular,
F is a w-minimum T -join for some vertex set T , if and only if w[F] is conservative we will
refer to this as Guan’s Lemma (stated by Guan [15] for the “Chinese Postman problem” for non-
negative weights). Indeed, for any cycle X, the set X∆F is also a T -join, therefore w[F](X) =
w(X∆F)− w(F) ≥ 0 by the definition of F .

In order to avoid some ambiguities and irrelevant case analysis, we will normalize any given
rational weight function, thereby simplifying some arguments and algorithms. Given a conser-
vative, rational weight function we first multiply it by the smallest common denominator of its
values, which does not change the optimal sets, increases the size of the input only polynomially,
and can be carried out in polynomial time. An integer weight function w : E → Z is further
normalized by defining w′(e) := 2|E| ·w(e)+ 1 for each edge e ∈ E. The normalized weight func-
tion w′ will then satisfy w′(X) < w′(Y) for each pair of edge sets X and Y with w(X) < w(Y),

5

and equal-weight edge sets of different cardinality get different w′-weights. When searching for
a minimum-weight edge set with a given property, normalization does not essentially change the
problem, since at least one optimal edge set remains optimal. Note that if w is conservative, then
w′ will also be conservative, furthermore, odd sets will have different weights from even ones.
Moreover, the only ∅-join of weight 0 in a conservative graph will be the empty set. We will say
that a weight function is normal if it is obtained as a result of the above normalization method;
in particular, a normal weight function does not assign zero weight to any edge. Since any weight
function can be normalized, assuming normal weight functions does not restrict generality.

Problem definitions and classical results. Consider the following two problems, which differ
only in that the second one confines the searched cycle to contain a given vertex:

SHORTEST ODD CYCLE IN CONSERVATIVE GRAPHS (SOC)
Input: An undirected graph G = (V,E) conservative with w : E → Z and k ∈ Z.
Question: Is there an odd cycle C in G whose weight is at most k?

SHORTEST ODD CYCLE IN CONSERVATIVE GRAPHS THROUGH A POINT
(SOCp)
Input: An undirected graph G = (V,E) conservative with w : E → Z , p ∈ V , and k ∈ Z.
Question: Is there an odd cycle C in G with p ∈ V (C) whose weight is at most k?

The following problem MOTJ is closely related to SOC: on the one hand, MOTJ is a gener-
alization of SOC (consider the case T = ∅, which yields exactly SOC), on the other hand SOC is
exactly the problem of finding the “improving step” for reaching an optimum in MOTJ; the two
problems are therefore polynomially equivalent (cf. Theorem 5.4).

MINIMUM-WEIGHT ODD T -JOIN (MOTJ)
Input: An undirected graph G = (V,E) with w : E → Z, T ⊆ V , and k ∈ Z.
Question: Is there an odd T -join in G with total weight at most k?

The following problem can be thought of as an alternative form of SOCp. It is the following
formulation whose complexity was questioned in Lovász ([23, Open Problem 27, pp. 517]):

SHORTEST ODD PATH IN CONSERVATIVE GRAPHS (SOP)
Input: An undirected graph G = (V,E) conservative with w : E → Z, s, t ∈ V , and k ∈ Z.
Question: Is there an odd (s, t)-path in G with total weight at most k?

We will use the SOCp formulation more in the sequel; the straightforward relation of SOCp
and SOP, in particular their polynomial equivalence, will be apparent from Theorem 4.3 and
Corollary 4.4 thereafter.

Analogously to SOCp and SOP, we also define the problems SECp and SEC by replacing
“odd” with “even” in the definitions.

The problems that will turn out to be NP-hard (SOCp and SOP) will actually already be NP-
hard for conservative weight functions with values in {−1, 1}. We denote the problems restricted

6

to such weight functions by putting ±1 in subscript, for example SOP±1 means SOP restricted
to weight functions taking only values from {−1, 1}. A subscript + means a restriction to non-
negative weights. The following theorem summarizes well-known results:

Theorem 2.1. SP, SOP+, SEP+, SOCp+, SECp+, and SOC+, SEC+ are polynomially solvable.

Proof. SP can be solved in polynomial time ([23, Section 29.2], see explanations in the beginning
of Section 5.1, as mentioned already in the Introduction). SOP+ and SEP+ can be solved in poly-
nomial time by the well-known “Waterloo folklore” algorithm related to Edmonds’ classical work
on matchings [14], see also [23, Section 29.11e]. Then SOCp+ on an instance (G = (V,E), w, p, k)
can be solved by solving SEP+ on (G′ = (V,E \{pr}), w′, p, r, k′) for each edge pr ∈ E incident to
p, where w′ is the restriction of w to E \{pr} and k′ = k−w(pr). We can reduce SECp+ to SOP+

similarly. Finally, SOC+ on an instance (G = (V,E), w, k) can be solved by computing SOCp+
on (G,w, p, k) for all p ∈ V , and SEC+ can be reduced to SECp+ similarly. The execution time
of all these problems is polynomial in the input size.

SOP+ and SEP+ can actually be solved in a simpler and much faster way—in O(m log n)
time on a graph with n vertices and m edges—than finding a maximum-weight matching, due to
Derigs [9]. We will see this in terms of SOC+ and SEC+ being much easier than matchings: they
can be solved by using only Dijkstra’s shortest path algorithm (Proposition 5.1).

Problems concerning odd or even paths are not really different, since they can be reduced to
one another by introducing a new vertex t′ and an edge tt′. However, no such reduction is known
between problems concerning odd and even cycles. In fact, even the existence of non-empty
even cycles happens to be inherently more difficult, to the extent that its complexity is not yet
completely settled in directed graphs; see Proposition 4.2, and in Section 5.1.

We finish the list of helpful preliminaries with further notations and observations:
Given a graph G = (V,E) and a conservative weight function w : E → Z, we denote the set of

edges with negative weight by E− = {e ∈ E : w(e) < 0}, and let us write E+ = E \E−. Observe
that each connected component K of G[E−] is a tree, because w is conservative on G. For any
two vertices u and v in K, let K(u, v) denote the unique (u, v)-path in K.

Proposition 2.2. Suppose G = (V,E) is conservative with w, and P is a w-minimum (u, v)-path
for some vertices u, v ∈ V . Then for each connected component K of G[E−], either P and K are
vertex-disjoint, or their intersection is a path.

Proof. For a contradiction, suppose that there is a connected component K of G[E−] whose
intersection with P is non-empty, and not a path. Then there exist two distinct vertices a and b
in V (P) ∩ V (K) so that K(a, b), is edge-disjoint from P .

Using that w is conservative on G, we get w(P (a, b)∪K(a, b)) ≥ 0. Since every edge in K has
negative weight, this implies w(K(a, b)) < 0 < w(P (a, b)). Then w(P \P (a, b)∪K(a, b)) < w(P),
contradicting the choice of P .

7

3 Are MOTJ and SOC tractable?

In this section we collect evidence that MOTJ is tractable in its full generality, and present some
new cases when this can be already proved.

The conjecture of polynomial-time solvability of MOTJ is first of all supported by Geelen
and Kapadia’s algorithm [12] establishing that MOTJ for uniformly 1 weights belongs to RP,
saving this unweighted special case of the problem from being suspected to be NP-hard (which
would imply NP = RP), and suggesting the following conjecture, which is therefore open and
very tempting already in the unweighted case:

Conjecture 3.1. MOTJ and SOC can be solved in polynomial time.

We stated the conjecture for the general, weighted case, since we anticipate that any algorithm
for the unweighted cardinality case works without essential changes: it is usually easy to follow
what a given algorithm would do after each edge is subdivided into as many parts as its weight,
without actually performing the subdivision.

This conjecture is equivalent with a whole range of equivalent conjectures, since MOTJ can be
reduced to several special cases, including the case when weights are non-negative, or when |T | ≤ 2
(see Theorem 5.4 and some remarks thereafter). However, restricting |T | and simultaneously
assuming non-negative weights seems to make the problem easier (Corollary 3.8), confirming
Conjecture 3.1 under these assumptions. In Section 3.1 we present two approaches for solving
MOTJ+ for |T | = 2, and the second one is generalizable to the case when a minimum T -join
with a bounded number of components is given. In Section 3.2 we investigate the general case
that leads us to an FPT algorithm for the equivalent SOC where the parameter is the number
of connected components spanned by all negative edges. As a corollary we also obtain the fix
parameter tractability of MOTJ+ with parameter |T |, already proved by Cook, Espinoza and
Goycoolea [8], with a slightly worse dependence on |T |, but better on n, the number or vertices
in the input graph.

3.1 MOTJ+ with a connected minimum-weight T -join

We start by proving that MOTJ+ is polynomial-time solvable if |T | ≤ 2, a case for which Sey-
mour’s conjectures mentioned in the introduction have also been proved. (Guenin [17] charac-
terized for |T | ≤ 2, in terms of the two small excluded minors of Seymour, when inclusionwise
minimal odd T -joins are “ideal”; Abdi and Guenin [1,2] proved that in this special case actually
a stronger minimax theorem holds.)

A simple O(n3) algorithm is known in this case from Cook, Espinoza, Goycoolea [8, Proposi-
tion 5.3] (see after Corollary 3.8). Our goal here is to introduce the reader to certain structural
properties of shortest odd cycles in conservative graphs that also allow us to solve MOTJ+ when
a minimum-weight T -join is connected. These properties will then carry us further, to the case
of several components.

8

We first state a clarifying observation on inclusionwise minimal odd T -joins for |T | = 2:

Lemma 3.2 ([2,17]). Let G = (V,E) be a graph, s, t ∈ V , and F ⊆ E. Then F is an inclusionwise
minimal odd {s, t}-join, if and only if it is an odd (s, t)-path or it is of the form P ∪C where P is
an even (s, t)-path and C an odd cycle that is edge-disjoint from P and satisfies |V (P)∩V (C)| ≤ 1.

Proof. Clearly, any odd (s, t)-path and any edge set P ∪ C as defined in the statement of the
lemma is an inclusionwise minimal odd {s, t}-join. Conversely, any {s, t}-join F is the union of an
(s, t)-path P and pairwise edge-disjoint cycles. So if F is an inclusionwise minimal odd {s, t}-join,
then it contains neither even cycles, nor more than one odd cycle. (An even cycle or two odd
cycles could be deleted from F , contradicting minimality.)

If F contains no cycle, then F = P where P is an odd (s, t)-path. Otherwise, F = P ∪ C
where P and C are edge-disjoint, and C is an odd cycle; P is then an even path, since |F | is odd.
It remains to prove that |V (P) ∩ V (C)| ≤ 1.

Suppose for a contradiction |V (P)∩ V (C)| > 1. Traversing P from s to t, let a and b be the
first and say the last encountered vertex of C, respectively. Since |V (P)∩V (C)| ≥ 2 we have that
both a, b exist, a ̸= b, and therefore a and b divide C into two (a, b)-paths, C1 and C2. So P ∪C
contains three, pairwise edge-disjoint (a, b)-paths: P (a, b), C1, and C2, two of which necessarily
have the same parity. Deleting those two from F we still get an odd {s, t}-join, contradicting the
inclusionwise minimality of F .

A simple algorithm for MOTJ+ with |T | = 2. Lemma 3.2 easily yields a simple polynomial
algorithm for finding a minimum-weight odd (or even) {s, t}-join F . Assuming that w is normal,
F is clearly inclusionwise minimal, and thus can be searched in the form given in Lemma 3.2:

Step 1. Compute in the input graph a minimum-weight odd (s, t)-path Podd, a minimum-
weight even (s, t)-path Peven, and a minimum-weight odd cycle C.

Step 2. Let F be the shorter one among Podd and Peven∆C; if their weights are equal, choose
arbitrarily.

The correctness of the above algorithm follows from Lemma 3.2. To see this, it suffices to observe
that Peven∆C is an odd {s, t}-join, and its weight does not exceed that of any P ′∪C ′ where P ′ is
an even path and C ′ an odd cycle edge-disjoint from P ′, since w(P) ≤ w(P ′), and w(C) ≤ w(C ′).
Therefore, by Lemma 3.2 we know that F indeed has minimum weight among all inclusionwise
minimal {s, t}-joins. Furthermore, according to Lemma 2.1, each of Peven, Podd, and C can be
computed in polynomial time.

We also introduce another approach for the case |T | = 2 that brings us closer to the extension
of polynomial solvability of MOTJ+ when a minimum T -join of a constant number of components
can be constructed. Our next algorithm relies heavily on Proposition 3.3, illustrated by Figure 1.
Recall that inclusionwise minimal odd ∅-joins are cycles, and recall also Lemma 3.2 and Guan’s
Lemma. The following observation shows that MOTJ is equivalent to SOC.

9

s t
F

P
C = F ∪ P with w[F](C) = 1;

C is a w[F]-minimal odd cycle.

Figure 1: Illustration of Proposition 3.3. Bold, red lines depict edges of weight −1, and all the
other edges have weight 1. The shortest (s, t)-path F is the middle horizontal line; it is even and
of weight 2. According to Proposition 3.3, P = F∆C is a w-shortest odd {s, t}-join.

Proposition 3.3. Let w : E → R be arbitrary, and T ⊆ V with |T | even. Assume that F is
a w-minimum T -join and |F | is even. Then Fodd is a w-minimum odd T -join if and only if
Fodd = F∆C for some w[F]-minimum odd ∅-join C. In particular, if C is a w[F]-minimum odd
cycle, then F∆C is a w-minimum odd T -join.

Proof. Let F be as in the condition. Then correspondence Fodd ↔ Fodd∆F is a bijection between
odd T -joins and odd ∅-joins. Note further that

w[F](F∆Fodd) = w(Fodd \ F)− w(F \ Fodd) = w(Fodd)− w(F).

Since w(F) is a fixed value, we obtain that F∆Fodd minimizes w[F] over all odd ∅-joins exactly
if Fodd minimizes w over all odd T -joins. It remains to observe that since w[F] is conservative, a
w[F]-minimal odd cycle is always a w[F]-minimal odd ∅-join.

By Proposition 3.3, finding a w-minimum odd T -join in an instance (G,w, T, k) of MOTJ can
be reduced to finding a w[J]-minimum odd cycle in the same graph G where J is a w-minimum
T -join. Next we present Proposition 2.2 for shortest odd cycles:

Lemma 3.4. Suppose the graph G = (V,E) is conservative with w : E → R, and C is a
w-minimum odd cycle. Then for each connected component K of G[E−], either C and K are
vertex-disjoint, or their intersection is a path.

Proof. The proof is essentially the same as that of Proposition 2.2. For a contradiction, suppose
that there is a connected component K of G[E−] whose intersection with C is not a path. Then
there exist two distinct vertices a and b in V (C) ∩ V (K) so that the unique (a, b)-path in K,
denoted by K(a, b), is edge-disjoint from C, and consequently, from both (a, b)-paths C1 and C2

into which a and b divides C; note that |C1| and |C2| have different parity.
Using that w is conservative on G, we get w(Ci∪K(a, b)) ≥ 0 for both i = 1, 2. Recall also that

w(K(a, b)) < 0 since every edge in K has negative w-weight. Hence, w(Ci∪K(a, b)) < w(Ci) and
w(Ci) > 0 for i = 1, 2. Therefore Ci ∪K(a, b) for i = 1, 2 are two cycles of weight less than w(C),
and one of them is odd, a contradiction to the definition of C.

10

Corollary 3.5. Let G = (V,E) be a graph with a normal weight function w : E → R+, let P
be a w-minimum (s, t)-path for some vertices s, t ∈ V , and let C be a w[P]-minimum odd cycle.
Then either C and P are vertex-disjoint, or their intersection is a path.

Proof. Since w is non-negative, a w-minimum (s, t)-path is also a w-minimum {s, t}-join. By
Guan’s Lemma mentioned in the introduction, w[P] is therefore conservative. Since w is non-
negative and normal, we know that w(e) > 0 for all e ∈ E. Therefore, P is a connected component
in the subgraph of negative-weight edges according to w[P], and the statement follows directly
from Lemma 3.4.

Another simple algorithm for MOTJ+ with |T | = 2, i.e., a second polynomial algorithm
for finding a minimum weight odd {s, t}-join for a non-negative weight function w, using Propo-
sition 3.3 and Corollary 3.5. Again, we assume that w is normal.

Step 1. Compute a w-minimum (s, t)-path J . If J is odd, return it and stop.

Step 2. Let C be the cycle of smaller w[J]-value between

(a) a w-shortest odd cycle in E \ J ,
(b) a cycle J(u, v) ∪ P with the smallest w[J]-weight where u, v ∈ V (J), u ̸= v, and P

is a w-minimum (u, v)-path in E \ J of parity different from J(u, v).

Step 3. Return J∆C.

Computing a w-minimum {s, t}-path in Step 1 can be done in polynomial time by Theorem 2.1.
(In fact, we only need SP+ here, solved e.g., by Dijkstra’s algorithm.) Step 2(a) is a SOP+ problem
which is solvable in polynomial time by Theorem 2.1, and so are the SEP+ and SOP+ problems
of Step 2(b). Hence, the above algorithm runs in polynomial time.

Since w is non-negative, the w-minimum (s, t)-path J of Step 1 is a w-minimum {s, t}-join, so
if it is odd, then the algorithm returns the correct result. It remains to prove that the odd cycle C
computed in Step 2 is a w[J]-minimum odd cycle, since then the correctness of the algorithm
follows immediately from Proposition 3.3.

Let C ′ be a w[J]-minimum odd cycle. Recall that w is normal, and hence no edge has weight 0
according to w. Therefore, the edges with negative w[J]-weight are exactly the edges of J , and so
by Corollary 3.5, either C ′ is edge-disjoint from J (implying that C ′ is a w-shortest cycle in E\J),
or C ′ is formed by the union of a non-trivial subpath of J and a path in E \ J of different parity
between the same vertices. Hence, we obtain an odd cycle with w[J]-weight at most w[J](C ′)
either in Step 2(a) or in Step 2(b).

It is not hard to see that the same approach works for solving MOTJ+ for the more gen-
eral case when a connected w-minimum T -join is given. In the next section, we generalize this
algorithm to work without any assumption on the number of components. The running time

11

of the equivalent SOC, however, is fixed-parameter tractable if the parameter is the number of
connected components of negative edges.

3.2 FPT algorithms for SOC and MOTJ+

In this section we show that MOTJ+ is polynomial-time solvable when we are given a w-minimum
T -join with a fixed number of connected components. By Proposition 3.3, this is reduced to
finding a shortest odd cycle with respect to a conservative weight function with a fixed number of
negative components, defined as the connected components of G[E−], the subgraph spanned by
all negative-weight edges. The main result of this section is Theorem 3.7 establishing that SOC
is fixed-parameter tractable with parameter c, the number of negative components of the input
graph.

Finding a shortest odd cycle when there is only one negative component is based on Lemma 3.4
via Corollary 3.5. Even though the assertion in Lemma 3.4 holds for an arbitrary number of
components, a naive, “brute force” approach based on this lemma provides only an algorithm
with ccO(n2(c+1)) running time where n = |V |, which is polynomial if c is fixed, but does not
confirm fixed-parameter tractability. The structural observations of Lemma 3.6 below make it
possible to achieve a running time of 2cO(n4).

To state Lemma 3.6 which, together with the crucial property expressed in Lemma 3.4 will
form the basis of our FPT algorithm with parameter c, we need some additional notation. We
will use the notation [k] := {1, . . . , k} for k ∈ N. Let K1, . . . ,Kc be the edge sets of the negative
components in G. We define the graph GI as GI = (V,EI) where EI = E+∪⋃i∈I Ki for any index
set I ⊆ [c]; in particular, G∅ = (V,E+) and G[c] = G. For F ⊆ E let I(F) := {i ∈ [c] : F ∩Ki ̸= ∅}
denote the set of indices of negative components having an edge in F . Whenever we consider any
subgraph of G with weight function w, we will implicitly use the restriction of w to this subgraph;
this will not cause any confusion.

Lemma 3.6. Suppose that G = (V,E) is conservative with a normal weight function w, and
C ⊆ E is a w-minimum odd cycle partitioned into paths P1, . . . , Pm ⊆ E (m ∈ N,m ≥ 2) so
that the sets I(Pi) ⊆ [c], i ∈ [m], are pairwise disjoint. Then for any family of pairwise disjoint
sets Ii, i ∈ [m], with I(Pi) ⊆ Ii ⊆ [c], statements (a) and (b) hold for Gi := GIi:

(a) Each Pi for i ∈ [m] but at most one is shortest among paths in Gi between the endpoints
of Pi, where the exception is also shortest in Gi among paths of the same parity as Pi.

(b) Suppose that the path P ′
i for each i ∈ [m] is shortest among paths in Gi of the same parity

as Pi between the endpoints of Pi. Then the paths P ′
i , i ∈ [m], are pairwise openly disjoint.

Furthermore, there exists a partition of C into P1, . . . , Pm and index sets I1, . . . , Im satisfying the
above conditions with m ≤ 3 and such that either P1 = {e} for some e ∈ E+ or P1 = C ∩Kj for
some j ∈ [c], and if m = 3, then I1 = I(P1), I2 = I(P2), I3 = [c] \ (I1 ∪ I2), and Pi is shortest
in Gi for i ∈ [3].

12

We call such a partition into two or three paths a compact partition. In a compact partition
the only path Pi that may not be shortest in Gi between its endpoints is the path P1, and only if
m = 2 and P1 = {e} for some e ∈ E+, when an even path shorter than w(e) may exist in G[E+].

Finally, note that the condition on the disjointness of index sets is a formalization of the
requirement that each path of the partition should have “its own negative components” that are
not used by any of the other paths. We know from Lemma 3.4 that the intersections with these
components are paths.

Proof. To see (a), suppose first for a contradiction that there is a path P ′
i in Gi of the same

parity as Pi and between the same endpoints with weight w(P ′
i) < w(Pi). Then C ′ = (C \Pi)∆P ′

i

is an odd ∅-join. Since P ′
i ⊆ EIi , our assumption on the disjointness of Ii from any Ij where

j ̸= i implies that C \ Pi and P ′
i may share only edges in E+. As a consequence, C ′ has weight

at most w(C)− w(Pi) + w(P ′
i) < w(C), a contradiction to the definition of C.

To finish the proof of (a), suppose that there exist two distinct indices i and j in [m] so that
Pi and Pj are not shortest paths between their endpoints in Gi and in Gj , respectively. Then let
P̂i and P̂j be shortest paths between the endpoints of Pi and Pj , respectively, in Gi and Gj . We
conclude that the parity of Pi and Pj differs from the parity of P̂i and P̂j , respectively, since the
former two are shortest for their parity but not shortest, while the latter two are shortest. Using
again our assumptions on Ii and Ij , we obtain that Ĉ = (C \ (Pi ∪ Pj))∆P̂i∆P̂j is an odd ∅-join
with weight at most w(C)− w(Pi)− w(Pj) + w(P̂i) + w(P̂j) < w(C), a contradiction.

In order to prove (b), note first that the paths P ′
i , i ∈ [m], must be pairwise edge-disjoint,

since, using similar arguments as before, we know that any two of them can only share edges
of E+, and if they do have a common edge, then there exists a smaller cycle; more formally:
let i, j ∈ [m] with i ̸= j, and define C ′ := (C \ (Pi ∪ Pj))∆P ′

i∆P ′
j , which is an odd ∅-join with

w(C ′) ≤ w(C), so by the minimality of C the equality holds here. Since I(Pi) ∩ I(Pj) = ∅, a
common edge of P ′

i and P ′
j would have positive weight (since w is normal) which would imply

w(C ′) < w(C). Thus, P ′
i and P ′

j are edge-disjoint.
Suppose now for a contradiction that P ′

i and P ′
j (i, j ∈ [m], i ̸= j) are not openly disjoint,

so there exists some x ∈ V (P ′
i) ∩ V (P ′

j) that is an inner vertex of at least one of P ′
i and P ′

j .
Then C ′, defined as above, contains a cycle C ′′ as a non-empty proper subset, so C ′′ and C ′ \C ′′

partition C ′ into two non-empty ∅-joins, exactly one of which is odd, denote it by Q. Since there
are no cycles of weight 0 in G by the normality of w, we get that w(Q) < w(C ′) = w(C), a
contradiction.

Finally, in order to prove the last sentence of the lemma, choose first P2 ⊆ C so that it
satisfies I(P2) ∩ I(C \ P2) = ∅ and is a shortest path in GI(P2) between two distinct vertices u
and v on C. To see that such a path exists, consider any partition of C into paths Q1 and Q2

with I(Q1) ∩ I(Q2) = ∅; then by (a) at least one Qi, i ∈ [2], is shortest in GI(Qi). Moreover,
choose P2 so that it is inclusionwise maximal among all paths satisfying these requirements.

Choose P1 ⊆ C \P2 so that it is consecutive with P2 on C, and consists either of one positive
edge, or of a negative path that continues until the next positive edge on C. In the latter case,

13

by Lemma 3.4 this path contains the entire intersection of C with the component of G[E−]
containing P1, and therefore I(P1) ∩ I(C \ P1) = ∅, in particular I(P1) ∩ I(P2) = ∅.

If P1 ∪ P2 = C, then we are done, otherwise let P3 := C \ (P1 ∪ P2). Clearly, I(P3) is disjoint
from I(P1) and I(P2), because I(Pi)∩ I(C \ Pi) = ∅ for i = 1, 2. Moreover, defining I1, I2 and I3
as in the statement of the lemma, P3 is also a shortest path in GI3 , as otherwise the partition of C
into two paths {P1 ∪ P2, P3} would contradict (a), since by the maximal choice of P2 we know
that P1 ∪ P2 is also not a shortest path in GI1∪I2 . Similarly, P1 is also a shortest path in GI1 , as
otherwise the partition of C into two paths {P1, P2 ∪ P3} would contradict (a).

We are now ready to present the main result of this section.

FPT-algorithm for SOC with parameter c:

Step 0. Normalize w, and initialize Q = ∅.

Step 1. For all I ⊆ [c], compute a shortest (x, y)-path P (x, y, I) in GI for all x ̸= y ∈ V .

Step 2. For all u, v ∈ V with u ̸= v:

(a) if uv ∈ E+ then let R← {uv}, and perform (c).

(b) if u, v ∈ V (Kj) for some j ∈ [c] then let R← Kj(u, v), and perform (c).

(c) For all x ∈ V , Iu ⊆ [c] \ I(R) and Iv = [c] \ (Iu ∪ I(R)):

if Q = R ∪ P (u, x, Iu) ∪ P (x, v, Iv) is an odd cycle, then add Q to Q.

Step 3. If Q ≠ ∅, then return Q ∈ Q with the minimum weight; otherwise return “There is
no odd cycle in G”.

Running time. Step 0 can be performed in linear time, as explained in Section 2. Step 1
computes shortest paths for all pairs of vertices in 2c different graphs with conservative weights.
By Theorem 2.1, the SP problem can be solved in polynomial time; the book by Korte and
Vygen describes an O(n4) time algorithm [19, Theorem 12.14] for this problem. Step 2 has O(n2)
iterations, and inside each of these (c) in turn checks for at most 2cn edge sets whether it forms
an odd cycle. As this takes O(n) time for each set, Step 2 takes altogether 2cO(n4) time, so this
is the total time used by the FPT-algorithm:

Theorem 3.7. If G is non-bipartite, the above algorithm returns a w-minimum odd cycle, and
its running time is 2cO(n4).

Proof. We have already proved the assertion on the complexity, so let us prove the correctness
of our algorithm.

If G is bipartite, R ∪ P (u, x, Iu) ∪ P (x, v, Iv) of Step 2 is even for all possible choices, since it
is a closed walk in a bipartite graph. So Q remains empty, and the algorithm returns a correct

14

answer. Otherwise let C be a shortest odd cycle; we show that the algorithm puts into Q an odd
cycle of the same weight as C, and thus returns a correct solution.

By the final assertion of Lemma 3.6, C admits a compact partition P1, . . . , Pm, where P1

either consists of an edge uv ∈ E+, corresponding to a choice in Step 2(a) of our algorithm, or
P1 = C ∩Kj for some j ∈ [c], that is, P1 is a negative path between two distinct vertices u and v
in Kj , corresponding to a choice in Step 2(b). Hence, at least once in Step 2 the path P1 gets
chosen as R. Recall that in our compact partition, any other path Pi (2 ≤ i ≤ m ≤ 3) in the
partition is shortest in Gi where Gi = GI(Pi).

Now if m = 2, then P2 is a shortest (u, v)-path in G2. Consider the choice of Step 2(c)
for P (u, x, Iu) with x := v and Iu := I(P2). Since with these choices P (u, x, Iu) = P (u, v, I2) is
also a shortest (u, v)-path in G2, we get w(P (u, x, Iu)) = w(P2). Since w is normal, we also know
that P (u, x, Iu) has the same parity as P2. Since now P (x, v, Iv) = P (v, v, Iv) is a trivial path
independently of the choice of Iv, we get that w(P (x, v, Iv)) = 0. By claim (b) of Lemma 3.6,
we also know that P1 and P (u, x, Iu) are openly disjoint, thus Q is a cycle. Moreover, the weight
of Q = P1 ∪P (u, x, Iu)∪P (v, x, Iv) is w(P1)+w(P2) = w(C). Hence, Q has the same weight and
then by normality also the same parity as C, and is therefore a w-minimum odd cycle contained
in Q, as claimed.

If m = 3, then the shortest path P2 in G2 and the shortest path P3 in G3 have a common
endpoint, denote it by x. Again, setting Iu := I(P2) we get that Iv = [c]\(I(P1)∪I(P2)) = I3 also
holds by our definitions. Moreover, P (u, x, Iu) and P (x, v, Iv) have the same weight and, by the
normality of w, the same parity as P2 and P3, respectively. Applying claim (b) of Lemma 3.6 to
the paths P1, P (u, x, Iu), and P (x, v, Iv), we get that they are mutually openly disjoint. Hence,
we can conclude again that Q = P1 ∪ P (u, x, Iu)∪ P (v, x, Iv) is a cycle, and has the same weight
and parity as C.

It is easy to see that the w ≥ 0 special case of the FPT-algorithm consists only of n shortest
path computations and does not rely on matchings. (Indeed, then the enumeration of the com-
ponents of E− disappears, and one execution of Dijkstra’s shortest path algorithm computes a
shortest path from a given vertex to any other.) This is not surprising, since it is well-known
that an odd walk can be determined by n shortest path computations in an auxiliary graph, both
for undirected and directed graphs (see Proposition 5.1). The same method is not suitable for
determining shortest even cycles, since the proof of Lemma 3.6 relies on symmetric differences and
∅-joins, and heavily uses the fact that a shortest odd ∅-join contains a shortest odd cycle, while
a shortest even ∅-join is the empty edge set, having weight 0. In undirected graphs shortest even
cycles for non-negative weights can be of course determined by solving SOP+ problems (solvable
in polynomial time according to Theorem 2.1) for the endpoints of edges. However, for directed
graphs the problem is more difficult (see in Section 5.1, under the paragraph “Digraphs”).

Theorem 3.7 has the immediate consequence for MOTJ+ that after computing a w-minimum
T -join F , a w-minimum odd T -join can be computed in 2cO(n4) time where c denotes the number
of connected components of F .

15

Indeed, computing F takes O(n3) time for any T , see [23, Section 29.2]. If F is odd, we are
done. If not, by Proposition 3.3 the minimum odd T -join problem is equivalent to determining a
w[F]-shortest odd cycle C in the graph G, and the set of negative edges of w[F] has at most c
negative components.

Since any inclusionwise minimal T -join consists of at most |T |/2 connected components, we
also obtain the following:

Corollary 3.8. Given an instance (G,w, T) of MOTJ where w is non-negative, a w-minimum
odd T -join (if it exists) can be computed in 2|T |/2O(n4) time.

As already mentioned, the fact that MOTJ+ can be solved in FPT time parameterized by |T |
has already been proved by Cook, Espinoza and Goycoolea [8, Proposition 5.3]. Their algorithm
runs in time O(2|T | + |T |2n2 + n3), so its dependence on n is better than in Corollary 3.8, but
their dependence on |T | is slightly worse.

4 NP-completeness

We present now a well-known NP-complete problem that will be reduced to SOCp. Its planar
special case is known to be one of the simplest open disjoint paths problems.

BACK AND FORTH PATHS (BFP)
Input: A digraph Ĝ = (V̂ , Ê) and s ̸= t ∈ V̂ .
Question: Are there two openly disjoint paths, one from s to t, the other from t to s?

Theorem 4.1 ([11, Theorem 2], see also [23, p. 1225, footnote 6]). BFP is NP-complete.

Before proving the main NP-completeness results we are interested in, it will be useful to
deduce the NP-completeness of the directed versions of SOCp+, SOP+, that immediately follow
from this theorem, and already for non-negative weights:

Proposition 4.2 ([20, 26]). The directed variants of the SOCp+, SECp+, SOP+ and SEP+

problems are all NP-complete.

The proof of Lapaugh and Papadimitriou, that of Thomassen and ours were found indepen-
dently: the NP-complete problems used for the reductions slightly differ from one another, but
they are all from [11]. We include our version of the proof to show, in a simpler situation, the
starting step of our NP-completeness proof for undirected graphs.

Proof. The directed variant of SOCp+ is NP-complete, because given an instance (G, s, t) of
BFP, subdividing each edge of G and then splitting t into an in-copy tin and an out-copy tout in
the usual way (with all incoming edges arriving at tin and all outgoing edges leaving from tout,
and with a new edge tintout), there exists an odd cycle going through s in the constructed digraph
if and only if there is a pair of back and forth paths between s and t in the original digraph. Now,

16

the directed version of SEP+ is also NP-complete, since finding a shortest odd cycle through s
can be done by finding a shortest even path from s to an in-neighbor of s. Clearly, the directed
variants of SOP+ and SEP+ are equivalent, because we can flip the parity of all paths starting
at a vertex s by subdividing each edge leaving s; the same trick shows that the directed variants
of SOCp+ and SECp+ are equivalent.

The proof shows that already the existence versions of the problems in Proposition 4.2 are
NP-hard. However, we remark that for planar graphs the complexity of BFP is open [23, p. 1225,
footnote 8] and so seems to be the complexity of SOCp for conservative planar undirected graphs
or SOC+ for directed planar graphs.

The polynomial-time solvability of SOC for non-negative weights is straightforward (Proposi-
tion 5.1), but SOC in conservative directed graphs is a more difficult problem because neither the
tentative generalizations of Lemmas 3.4 and 3.6 hold for directed graphs. There is also no rele-
vant indication that these problems could be polynomial-time solvable, contrary to the undirected
case. Are they NP-hard?

We now focus on undirected graphs, and switch to the statement and proof of one of our main
messages:

Theorem 4.3. SOCp±1 is NP-complete, even when the negative edges form a matching, k = 1,
and there exists a vertex t so that G− t is bipartite.

Proof. SOCp±1 is clearly in NP. Let the digraph Ĝ = (V̂ , Ê) with vertices s, t ∈ V̂ be an instance
of BFP, and construct from it an undirected graph as follows. Split each vertex v ∈ V̂ \ {t} to
an out-copy v1 and an in-copy v2, except for leaving t as it is, but defining t1 := t2 := t. For
each arc uv ∈ Ê define an edge u1v2 with w(u1v2) := 1. Furthermore, add an edge v1v2 for each
v ∈ V̂ \ {t} with w(v1v2) := −1.

Denote Vi := {vi : v ∈ V̂ } for i = 1, 2, and E := {u1v2 : uv ∈ Ê} ∪ {v1v2 : v ∈ V̂ \ {t}},
so that the constructed (undirected) graph is G = (V1 ∪ V2, E), and let k := 1. Clearly, the
negative-weight edges form a matching, and thus the weight function w is conservative. Note
that G− t is bipartite, so all odd cycles contain t.

Claim: There exists in Ĝ a cycle Ĉ ⊆ Ê containing s and t if and only if there exists a cycle C
in G with w(C) = 1 containing s1.

Indeed, let Ĉ ⊆ Ê be a (directed) cycle in Ĝ with s, t ∈ V (Ĉ), and let us associate with it the
(undirected) cycle C := {u1v2 : uv ∈ Ĉ} ∪ {v1v2 : v ∈ V (C) \ {t}} in G. The cycle C alternates
between edges of weight 1 and −1 in every vertex but t, so w(C) = 1, and s1 ∈ V (C).

Conversely, a cycle C ⊆ E in G with w(C) = 1 and s1 ∈ V (C) must be an odd cycle due to
its weight, so t ∈ V (C) follows as noted earlier. Moreover, C − t must alternate between edges of
weight −1 and 1, so C corresponds to a directed cycle Ĉ ⊆ Ê containing t. Since s1 ∈ V (C) by
definition, the cycle Ĉ contains both s and t, so the claim is proved.

17

The claim shows that our construction reduces BFP to SOCp±1, since a solution of BFP is
exactly a cycle Ĉ ⊆ Ê in Ĝ with s, t ∈ V (Ĉ), and according to the claim such a cycle exists if
and only if there exists an odd cycle C in G of weight at most 1 containing s1; note that an odd
cycle of weight at most 1 can have neither weight 0 (due to its parity) nor negative weight (due
to conservativeness), so must have weight exactly 1. The instance (G, p := s1, k := 1) of SOCp±1

to which BFP is reduced satisfies the additional assertions, as checked above, so we can conclude
that SOCp±1 is NP-complete and already for the family of the claimed particular instances.

By simply inspecting the instances of the above proof, the NP-hardness of the following
problem of Lovász ([23, Open Problem 27, pp. 517]) is an immediate corollary.

Corollary 4.4. SOP±1 is NP-complete, even when the negative edges form a matching, k = 1,
and there exists a vertex t so that G− t is bipartite.

Proof. SOCp is the special case of SOP where s = t, so we are done. If we want to require s ̸= t,
then with the notation of the proof of Theorem 4.3, observe that the instance (G, s1, k = 1) of
SOCp has a ‘yes’ answer if and only if there exists an odd (s1, s

′)-path of weight k = 1 in the
graph G′ obtained from G by replacing the edge s1s2 with an s′s2 edge of weight −1 for a new
vertex s′.

Note that the reduction keeps planarity, but the complexity of BFP is open for planar graphs,
so we do not know the complexity of SOCp+ for planar graphs.

Let us now consider the following problem which has a strong, although not immediately
straightforward, relationship with the problems we study.

DISJOINT SHORTEST PATHS IN CONSERVATIVE GRAPHS (DISP)
Input: An undirected, conservative graph G = (V,E) with w : E → {1,−1}, s1, s2, t1, t2 ∈ V ,
and k ∈ Z.
Question: Does G contain two vertex-disjoint ({s1, s2}, {t1, t2})-paths with total weight at
most k?

While DISP for non-negative weights is a special case of the well-known minimum cost flow
problem, and it is so for conservative digraphs as well, it seems the question has not even been
asked for conservative undirected graphs! For these, a tentative reduction to digraphs meets
the same obstacle we met for shortest paths in the Introduction (Section 1): directing an edge
with negative weight in both directions creates a negative cycle consisting of two arcs. However,
although the undirected shortest path problem (SP) is still solvable in polynomial time even if
the methods are more difficult than those applied for directed graphs, this is not the case for
DISP. It turns out to be NP-complete, and essentially for the same reason as SOP or SOCp:

Corollary 4.5. DISP is NP-complete, even when the negative edges form a matching, and G is
bipartite.

18

t2

P−

s1 s2
t

s

t1

Figure 2: An example where edges of the path P− have weight −1, shown as red, bold lines,
with all remaining edges having weight 1. An odd cycle containing s must also contain t, and the
unique such cycle yields also a solution for DISP (with vertices s1, s2, t1, t2), and also a shortest
odd (s1, s2)-path. A shortest odd {s1, s2}-join consists of an (s1, s2)-path of 4 edges and weight 0,
and the odd cycle of 5 edges through t1, t, t2, altogether 9 edges with total weight 1.

Proof. We reduce from BFP using the same construction as in the proof of Theorem 4.3 with
the only difference that we split all vertices of the input digraph Ĝ = (V̂ , Ê), including t, add the
edge t1t2 to E, and define w(t1t2) := −1. Then the resulting graph G is bipartite, and (Ĝ, s, t) is
a ‘yes’-instance of BFP if and only if there exists a cycle C of weight 0 in G containing both s1
and t1, which in turn holds if and only if there exist two vertex-disjoint ({s1, s2}, {t1, t2})-paths
of total weight k = 2 in G.

Corollary 4.5 contrasts the well-known fact that finding two disjoint ({s1, s2}, {t1, t2})-paths
for some vertices s1, s2, t1, and t2 with minimum total weight in an undirected graph with
non-negative edge weights is a standard classical minimum-cost flow problem [23]. The example
depicted in Figure 2 gives some intuition on the strong connection between DISP and our problems
SOCp and SOP.

5 Connections, Questions and Conclusion

In this section we establish further connections between the problems we have been studying to
some known results and open questions.

5.1 Classical Results

Forgetting the parity: As mentioned in Section 1, finding a minimum-weight perfect matching
or an undirected shortest path is essentially the same problem, where the complexities are within
O(n) multipliers. This did not play any role in our discussion, but could be useful to understand
for capturing the different levels of difficulties:

Indeed, a shortest (s, t)-path in a conservative graph is obviously the same as an inclusionwise
minimal minimum weight {s, t}-join; finding a minimum-weight T -join for an arbitrary even
vertex set T and any weight function on the edges is, in fine, a minimum-weight perfect matching
problem (see Edmonds [10], cf. [23, Section 29.1, 29.2]).

19

Conversely, and more straightforwardly, a minimum-weight perfect matching in a graph G is
a minimum-weight V (G)-join in the same graph after adding a sufficiently large number (e.g., the
sum of the absolute values of weights) to the weight of each edge. Then a minimum weight T -join
can be determined with n shortest path computations with conservative weight functions, i.e.,
by solving n instances of SP, based on the following idea: fix s, t ∈ T , and observe that an edge
set F is a w-minimum T -join if and only if F = F ′∆P , where F ′ is a w-minimum T \{s, t}-join,
and P is a w[F ′]-minimum (s, t)-path. Even though we do not use this observation here, the
interested reader may want to check it by playing with symmetric differences as we did before.

Non-negative weights: For polynomial algorithms to various problems see Theorem 2.1. Note
that SOC+ is much easier than SOC for both undirected and directed graphs: there is a well-
known method for solving it via n shortest path computations in an auxiliary graph. We state
and prove the exact complexity result for comparison and further reference in Proposition 5.1
below. Strangely, the Odd Path Polyhedron (the “dominant” of odd paths, and the related integer
minimax theorem [24], see also [23, Chapter 29.11e]) have been determined much later.

Proposition 5.1 ([13, Chapter 8.3]). Given an undirected or directed graph with non-negative
weights, a shortest odd cycle can be determined with at most n executions of Dijkstra’s algorithm,
that is, in O(mn+ n2 log n) time.

Proof. Let G = (V,E) be the input graph with edge-weight function w. If G is directed, then
double the vertex set and the edge set of G by taking two distinct copies v1 and v2 of each v ∈ V ,
and for each uv ∈ E adding edges u1v2 and u2v1 with the same weight as uv. It is well-known
and easy to see that the shortest among all (v1, v2)-paths, v ∈ V , in the resulting (undirected)
graph G′ yields a shortest odd cycle in G. Finding n shortest paths for non-negative edge-weights
takes n executions of Dijkstra’s algorithm, proving the claim. We remark that this approach
works despite the fact that there is no one-to-one correspondence between shortest odd (v1, v2)-
paths in G′ and shortest odd cycles through v in G, which highlights a crucial difference between
SOC and SOCp.

For undirected graphs the problem can be reduced to directed graphs by taking each edge in
both directions.

Even though SEC+ is slightly more difficult than SOC+ in undirected graphs it can obvi-
ously be solved with |E(G)| shortest odd path computations SOP+, solved in polynomial time
(Theorem 2.1).

Digraphs: In Section 4 (mainly after Theorem 4.1) we mentioned the complexity for digraphs
of the problems analogous to those we are studying. Similar reductions work for the shortest odd
and even cycle problems through a given vertex (or equivalently, an edge) in a directed graph,
proving that these problems are NP-hard [20], [26], see Proposition 4.2. While for undirected
graphs the shortest odd or even cycles are both similarly easy to determine if all weights are
non-negative, this is not the case for directed graphs. As we have seen in Propostion 5.1, SOC+

20

for directed graphs is as easy as in undirected graphs. By contrast, SEC+ for directed graph is
inherently more difficult, and its complexity is not completely settled: finding any even (directed)
cycle has been an open problem for more than two decades, before solved by Robertson et al. [22]
and McCuaig [21] independently, and the problem of finding a shortest even cycle has been solved
very recently by Björklund et al. [5], but only for unweighted digraphs and with a randomized
algorithm.

Two problems more closely related to our work also remain open:

Problem 5.2. What is the complexity of SOC in digraphs with conservative weights?

The feelings are not really oriented towards polynomial-time solvability, since nothing similar
to Lemma 3.4 seems to be true, driving the search towards enumeration.

Problem 5.3. Is SOCp+ polynomially solvable in planar directed graphs? More generally, what
is the complexity for planar graphs of the problems proved to be NP-hard (for undirected and
directed graphs) in this article?

The source of this questioning is that BFP is open for planar graphs [23, p. 1225, footnote 8].

Odd T -joins: Their properties with respect to packing and covering have been intensively studied
in terms of the “idealness” (integrality) of their blocking polyhedra. Idealness roughly means
that good characterization (minimax) theorems hold for the minimization of odd T -joins for
non-negative weight functions.

The corresponding algorithms and complexity results have been analysed in Section 3, where
we anticipated that non-negativity is not an essential condition in this case. We provide a
precise proof below for the equivalence of arbitrary weight functions with non-negative ones
(Theorem 5.4).

Max Cut: The “min side” of the mentioned minimax theorems concerns transversals of odd
T -joins which, in the simplest case of odd cycles (i.e., T = ∅), are easily seen to be exactly the
complements of cuts: their minimization is equivalent to the Maximum Cut problem, one of the
sample NP-hard problems. However, for planar graphs the duality between faces and vertices
reduces this problem to the shortest T -join problem [3], solving Maximum Cut for planar graphs;
for graphs embeddable into the projective plane the corresponding reduction is to MOTJ, and
only a partial solution could be given to the corresponding special case of MOTJ [7].

SOC versus SOCp: SOC can clearly be reduced to SOCp but the opposite reduction seems
to organically resist. This is an analogous situation to the problem of finding a minimum-weight
odd hole (an induced cycle of cardinality at least four) through a given vertex is NP-complete [4],
while without the requirement of containing a given vertex it has been recently proved to be
polynomially solvable [6].

The applications and relevance of the SOC and MOTJ problems and signs of their tractabil-
ity, mentioned in Section 3 and leading to Conjecture 3.1, makes it interesting to clarify their
polynomial equivalence, which we do in Section 5.2.

21

5.2 Equivalence of SOC and MOTJ

In this section we show that weighted optimization problems on odd T -joins are actually poly-
nomially equivalent to their special case for conservative weight functions, which in turn can be
shown to be equivalent to the case where w is restricted to be non-negative, or T to be empty.

Theorem 5.4. The following problems are polynomially equivalent:

(i) MOTJ;

(ii) MOTJ with conservative weights;

(iii) MOTJ+;

(iv) MOTJ with conservative weights for T = ∅;
(v) SOC with conservative weights.

Proof. A polynomial algorithm for (i), i.e., MOTJ in general, clearly implies one for (ii), which,
in turn, implies one for (iii).

To prove the polynomial-time solvability of (iv) from that of (iii), consider the input of
MOTJ with T = ∅ consisting of a graph G = (V,E) and a conservative w. We can assume that
G contains an even number of negative edges, since otherwise we can simply add to G an edge
of weight −1 incident to a new vertex. Define now a non-negative weighted instance (G, |w|, T)
of MOTJ with T := {v ∈ V : dE−(v) is odd} where E− := {e ∈ E : w(e) < 0}. Then E− is
a |w|-minimum T -join, and it is even. Now by Proposition 3.3, J is a |w|-minimum odd T -join
if and only if C := J∆E− is a w = |w|[E−]-minimum odd ∅-join. Hence, an algorithm for (iii)
applied to (G, |w|, T) yields a solution for our instance (G,w) of (iv).

The claim that polynomial-time solvability of (iv) implies the same for (v) follows by noting
that a solution for (v) can be obtained from a solution for (iv) with the same input instance by
deleting the 0-weight even cycles, and possibly all but one 0-weight odd cycle.

We have thus asserted the path of implications from the polynomial-time solvability of (i) to
that of (v). A polynomial-time algorithm for (i) follows from one for (v) by Proposition 3.3, since
a shortest odd cycle for conservative weights is always a minimum-weight odd ∅-join.

Note that (iv) is a specialization of (ii) to the special case T = ∅, and actually any special T
can play this role of implying a polynomial solution to (i)-(v). (Indeed, to prove this, one only
has to change w to w[J] in the proof of (iv), where J is a w-minimum T -join, and then E− is
changed to E−∆J . In the proof we had T = ∅ and ∅ is a shortest ∅-join in a conservative graph.)
Figure 2 illustrates how much easier it is to find a shortest {s, t}-join than to find a shortest
(s, t)-path in a graph with a conservative weight-function.

Restricting MOTJ with |T | ≤ 2 and requiring at the same time non-negative weights results
in an easy problem, as we have shown in Section 3.1. However, if only one of T and w is restricted,
then the general problem can be reduced to these (seemingly) more special ones, as stated by
Theorem 5.4. The cases where the absolute values of the weights are 1 are not proved to be
essentially easier than general weights for any of the problems, so they also remain wide open.

22

5.3 Conclusion

The MOTJ problem is a relevant combinatorial optimization problem that may be solvable in
polynomial time. The complexity of this problem remains open, but we proved that SOC, poly-
nomially equivalent to MOTJ+ or MOTJ, is fixed-parameter tractable when parameterized by the
number of components of negative edges. If negative weights are also allowed, then finding a
minimum-weight odd {s, t}-join is already equivalent to general MOTJ.

We also proved that the related SOCp, SECp, SOP, SEP, and DISP problems in conserva-
tive undirected graphs are NP-complete, answering a long-standing question of Lovász [23, Prob-
lem 27], and we exhibited some related, polynomial algorithms. At the same time we pointed at
three open challenges for undirected and directed graphs, one of which is MOTJ itself.

Another interesting research direction is now to study the parameterized complexity and ap-
proximability of the SOP problem both for directed and undirected graphs and its other NP-hard
variants. Some initial FPT results have been achieved by part of our research group formed during
the 12th Emléktábla Workshop, Gárdony, Hungary, 2022 [18].

Acknowledgement

The collaboration of the authors has been hosted and supported by the 12th Emléktábla Workshop,
Gárdony, Hungary, July 2022; we would like to express our gratitude for the organizers. Also, we
would like to thank Yutaro Yamaguchi for initiating a research group on the problem of finding
shortest odd paths in conservative graphs, and Alpár Jüttner, Csaba Király, Lydia Mendoza, Gyula
Pap as well as Yutaro for the enjoyable discussions. Ildikó Schlotter acknowledges the support
of the Hungarian Academy of Sciences under its Momentum Programme (LP2021-2), and the
Hungarian Scientific Research Fund (OTKA grants K128611 and K124171).

We thank a very thorough referee for his pertinent comments that induced important correc-
tions!

References

[1] A. Abdi. The cycling property for the clutter of odd st-walks. Master’s thesis, University of
Waterloo, 2014.

[2] A. Abdi, B. Guenin. Packing odd T -joins with at most two terminals, Journal of Graph
Theory, 87(4):587–652, 2018.

[3] F. Barahona. On the complexity of max cut. Rapport de recherche no. 186, Mathématiques
Appliqués et Informatique, Université Scientifique et Médicale de Grenoble, 1980.

[4] D. Bienstock. On the complexity of testing for odd holes and induced odd paths. Discrete
Mathematics, 90(1):85–92, 1991.

23

[5] A. Björklund, T. Husfeldt and P. Kaski. The shortest even cycle problem is tractable. In
Proc. of the 54th Annual ACM SIGACT Symposium on Theory of Computing (STOC
2022), ACM Press, pp. 117–130, 2022.

[6] M. Chudnovsky, A. Scott, P. Seymour, and S. Spirkl. Detecting an odd hole. Journal of the
ACM, 67(1), Article 5, 2020.

[7] É. Colin de Verdière, F. Meunier, A. Sebő, and M. Stehĺık. Max Cut in projective planar
graphs: homologic T -joins and the matching lattice. In preparation.

[8] W. Cook, D.G. Espinoza, M. Goycoolea. Generalized domino-parity inequalities for the sym-
metric traveling salesman problem, Mathematics of Operations Research, 35(2):479–493,
2010.

[9] U. Derigs. An efficient Dijkstra-like labeling method for computing shortest odd/even paths.
Information Processing Letters, 21(5):253–258, 1985.

[10] J. Edmonds. The Chinese postman’s problem. Bulletin of the Operations Research Society
of America, 13, B-73, 1965.

[11] S. Fortune, J. Hopcroft, and J. Wyllie. The directed subgraph homeomorphism problem,
Theoretical Computer Science, 10(2):111–121, 1980.

[12] J. Geelen and R. Kapadia. Computing girth and cogirth in perturbed graphic matroids. Com-
binatorica, 38(1):167–191, 2018.

[13] M. Grötschel, L. Lovász, and A.J. Schrijver. Geometric Algorithms and Combinatorial Op-
timization. Springer, Berlin, 1988.

[14] M. Grötschel and W. Pulleyblank. Weakly bipartite graphs and the max-cut problem. Oper-
ations Research Letters, 1(1):23–27, 1981.

[15] M. Guan. Graphic programming using odd or even points. Chinese Mathematics, 1:273–277,
1962.

[16] B. Guenin. A characterization of weakly bipartite graphs. Journal of Combinatorial Theory,
Series B (83):112–168, 2001.

[17] B. Guenin. Integral polyhedra related to even-cycle and even-cut matroids. Mathematics of
Operations Research, 27(4):693–710, 2002.

[18] A. Jüttner, Cs. Király, L.M. Mendoza-Cadena, Gy. Pap, I. Schlotter, and Y. Yamaguchi.
Shortest odd paths in undirected graphs with conservative weight functions. To appear in
Discrete Applied Mathematics. Available at https: // doi. org/ 10. 48550/ arXiv. 2308.
12653 .

[19] B. Korte, J. Vygen. Combinatorial Optimization. 6th edition, Springer Berlin, Heidelberg,
2018.

24

https://doi.org/10.48550/arXiv.2308.12653
https://doi.org/10.48550/arXiv.2308.12653

[20] A.S. Lapaugh and C.H. Papadimitriou. The even-path problem for graphs and digraphs.
Networks, 14(4):507–513, 1984.

[21] W. McCuaig. Pólya’s permanent problem. Electronic Journal of Combinatorics, 11(1), Ar-
ticle R79, 2004.

[22] N. Robertson, P.D. Seymour and R. Thomas. Permanents, Pfaffian orientations, and even
directed circuits. Annals of Mathematics, 150(3):929–975, 1999.

[23] A. Schrijver. Combinatorial Optimization. Springer-Verlag Berlin Heidelberg, 2003.

[24] A. Schrijver and P.D. Seymour. Packing odd paths. Journal of Combinatorial Theory, Se-
ries B, 62:280–288, 1994.

[25] P.D. Seymour. Matroids and multicommodity flows. European Journal of Combinatorics,
2:257–290, 1981.

[26] C. Thomassen. Even cycles in directed graphs. European Journal of Combinatorics, 6(1):85–
89, 1985.

25

	Introduction
	Preliminaries
	Are MOTJ and SOC tractable?
	MOTJ+ with a connected minimum-weight T-join
	FPT algorithms for SOC and MOTJ+

	NP-completeness
	Connections, Questions and Conclusion
	Classical Results
	Equivalence of SOC and MOTJ
	Conclusion

