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Abstract

We survey the notion of control in various areas
of computational social choice (COMSOC) such
as voting, fair allocation, cooperative game theory,
matching under preferences, and group identifica-
tion. In all these scenarios, control can be exerted,
for instance, by adding or deleting agents with the
goal of influencing the outcome. We conclude by
briefly covering control in some other COMSOC
areas including participatory budgeting, judgment
aggregation, and opinion diffusion.

1 Introduction
Computational social choice was founded by three seminal
papers of Bartholdi et al., and the founding fathers of this
area—at that time new, but now a key topic at all large AI
conferences—focused on control of elections [Bartholdi III
et al., 1992], manipulation, and winner determination. We
survey some central models and results about control in com-
putational social choice since its beginnings. Electoral con-
trol means that a (usually external) agent (called the election
chair) modifies the structure of an election by, e.g., adding or
deleting voters or candidates with the goal of either making a
favorite candidate win (in the constructive case) or preventing
a despised candidate’s victory (in the destructive case).

Along with manipulation and bribery, control attacks on
single-winner elections were the main focus of attention in
the early days of computational social choice. Since then the
study of control has spread like a wildfire over various other
subfields of computational social choice.

Our survey covers control not only in single-winner and
multiwinner voting but also in fair allocation, cooperative
game theory, matching under preferences, and group iden-
tification. In each of these fields, we describe the underlying
models and scenarios and explain how control can be exerted
in them, for instance, by adding or deleting agents with the
goal of influencing the outcome. We give an overview of
some of the main results on control in each of these fields
and highlight a number of open questions and challenges for
future research. Finally, we briefly cover control in participa-
tory budgeting, judgment aggregation, and opinion diffusion.

2 Control in Voting
An election is given as a pair (C,V ) with a set C of candi-
dates and a list V of votes over C. We will assume that votes
are linear orders (but note that there are also other ways of
representing voter preferences, e.g., approval ballots). In or-
der to determine the winner(s) of an election (respectively, its
winning committee(s) of a given size), many single-winner
(respectively, multiwinner) voting rules have been proposed.

A very important class of single-winner voting rules are the
positional scoring protocols where candidates score points
based on their positions in the votes, and whoever scores the
most points wins. Only top-ranked candidates score a point
in plurality, and in the Borda rule each of m candidates score
m − i points when ranked in a vote’s i-th position. For in-
stance, in the election shown in Figure 1, d with a score of 5
is the plurality winner (whereas a, b, and c score only 1, 3,
and 3 points), and b and d with a score of 19 are the Borda
winners (whereas a and c score only 17 points).

Other voting rules are based on pairwise comparisons
of candidates—among those, especially important are the
Condorcet-consistent rules, which elect the Condorcet win-
ner whenever there is one. A Condorcet winner is a candi-
date who beats all other candidates by a majority of votes in
pairwise comparison. Condorcet winners do not always ex-
ist, but if so, they are unique. For example, the Schulze rule
is Condorcet-consistent. Being widely used in practice and
celebrated for its many useful properties, it is based on the
strength of paths in the weighted majority graph (WMG) of
an election (C,V ): There is a vertex for each candidate, and
there is an edge from x to y exactly if the edge weight, de-
fined as the difference DV (x, y) of how many voters prefer
x to y minus how many prefer y to x, is positive (see the
WMGs in Example 1). Define the path strength str(p) as the
weight DV (c, d) of the weakest edge (c, d) on p. For each
pair of distinct candidates c, d ∈ C, define the strength of a
strongest path between c and d as PV (c, d) = max{str(p) ∣
p is a path from c to d}. Now, c ∈ C is a Schulze winner of
(C,V ) if P (c, d) ≥ P (d, c) for each d ∈ C ∖ {c}.
Example 1. Anna (a), Belle (b), Chris (c), and David (d)
run for president of the renowned Association for Advancing
Anonymous Ideas (AAAI). The 12 current AAAI members
eligible to vote cast the ballots shown in Figure 1 (left), where
candidates are ordered from left (most preferred) to right
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Figure 1: An election (left) and its WMG (right)

(least preferred). The corresponding WMG (right) shows that
there is no Condorcet winner (as no vertex has only outgo-
ing edges) and all candidates are Schulze winners. Evil Eve,
though, is not happy about this. Being the election chair,
she has the power to add new voters (whose preferences she
knows). Wishing to make her favorite candidate d the unique
Schulze winner, she adds the (boldfaced) voters v13, . . . , v18,
and we obtain the new election and WMG shown in Figure 2.
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Figure 2: Evil Eve’s control by adding voters

The WMG above shows that Eve has reached her goal:
d alone wins. Fraudulent Frodo, however, is not amused.
By making Eve’s control attack public (thus causing her im-
peachment), he becomes the new election chair. Unlike Eve’s
constructive goal, his goal is purely destructive: He doesn’t
care who wins as long as d is not the only Schulze winner.
Since he doesn’t want to delete the voters just added, he ex-
erts control by deleting b and obtains the election and WMG
shown in Figure 3. Now, Frodo has reached his goal: Each of
a, c, and d win, so d is not a unique Schulze winner. ⌟
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Figure 3: Fraudulent Frodo’s control by deleting a candidate

The scenarios described in Example 1 give rise to defining
the following problems. For constructive control by adding
voters (CCAV), we are given a set C of candidates; two lists
(V and U ) of votes over C, where already registered voters
cast the votes in V , and in U are those of as yet unregistered
voters; a designated candidate c ∈ C; and a positive integer k.
The question is whether there is a sublist U ′ ⊆ U , ∣U ′∣ ≤ k,
such that c wins the election (C,V ∪ U ′). For destructive
control by deleting candidates (DCDC), an election (C,V ),
a designated candidate c ∈ C, and a positive integer k are
given, and we ask whether at most k candidates can be deleted
from C such that c does not win the resulting election.

Two winner models are distinguished: The unique-winner
model requires c to be the only winner in the constructive
case and not winning alone in the destructive case, whereas
the nonunique-winner model only requires c to be one (of
possibly several) winner(s) in the constructive case and not
winning at all in the destructive case. The problems of con-
structive control by deleting voters (CCDV) and by delet-
ing or adding candidates (CCDC and CCAC; Bartholdi et
al. [1992] originally defined the variant CCAUC with an un-
limited number of candidates to be added) and of destruc-
tive control by adding candidates (DCAC) and by adding or
deleting voters (DCAV and DCDV) are defined analogously.

A variety of control scenarios by partition of voters or can-
didates have also been studied. Control by partition of voters,
for instance, models “gerrymandering”—ways of redistrict-
ing voting districts. We omit them here. We also omit defin-
ing and discussing further types of control, such as control
by replacing voters or candidates [Loreggia et al., 2015] and
multimode control attacks [Faliszewski et al., 2011], which
combine various standard control types.

For some of the control scenarios defined above, the elec-
tion chair’s goal can never be reached. For example, con-
structive control by adding candidates is never possible for
the chair in Condorcet voting: If the designated candidate c
is not a Condorcet winner in a given election, c does not beat
all other candidates in pairwise comparison, so c can never
be made a Condorcet winner by adding more candidates. We
then say Condorcet voting is immune (I) to this type of con-
trol. If a voting rule is not immune to some control type, we
say it is susceptible (S) to it, and in that case we consider the
computational complexity of the corresponding problem. If
it can be solved in P, we say the rule is vulnerable (V) to this
control type; and if it is NP-hard, we say the rule is resistant
(R) to it. Table 1 gives an overview of the known complex-
ity results for the four rules and all control scenarios defined
above. Results marked by ∗ are due to Bartholdi et al. [1992];
by † due to Hemaspaandra et al. [2007]; by § due to Rus-
sel [2007]; by $ due to Elkind et al. [2011]; by ♠ due to Parkes
and Xia [2012]; by ‡ due to Menton and Singh [2013]; by d
due to Chen et al. [2017]; by £ due to Loreggia et al. [2015];
by ♡ due to Hemaspaandra and Schnoor [2016]; by ♣ due
to Neveling and Rothe [2021]; by ♢ originally claimed by
Menton and Singh [2013] whose proof was later shown to
be wrong and corrected by Maushagen et al. [2024]; and by
¶ originally claimed by Menton and Singh [2012] but later
stated as open [Menton and Singh, 2013] and re-established
by Maushagen et al. [2024]. Question marks indicate open
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Table 1: Control complexity results for some voting rules

problems and background coloring is used to group each con-
structive with its destructive variant.

Observe that the destructive case never is harder than the
constructive case (note that immunity means that the control
problem is trivial and thus in P). Solving the open cases in
Table 1 for Schulze voting seems to be a challenging task.

Challenge 1. Solve the open cases in Table 1 for Schulze
voting: What is the complexity of DCAC and DCAUC?

The control complexity has also been explored for many
other natural voting rules: for approval voting [Hemaspaan-
dra et al., 2007]; Copeland and Llull voting [Faliszewski et
al., 2009]; k-approval and k-veto [Lin, 2012]; range vot-
ing and normalized range voting [Menton, 2013]; Bucklin
and fallback voting [Erdélyi et al., 2015]; veto and maximin
voting [Maushagen and Rothe, 2018; Maushagen and Rothe,
2020]; and ranked-pairs voting [Maushagen et al., 2024].

Control in the context of multiwinner elections has been an
area of growing interest in recent years. Multiwinner voting
rules aim to select a fixed-size subset of candidates, referred
to as a winning committee, that optimally reflects the prefer-
ences of the voters. The objectives of control in such settings
can vary, including ensuring the winning committee maxi-
mizes the external agent’s utility [Meir et al., 2008], guaran-
teeing the inclusion of specific candidates (constructive con-
trol) [Yang, 2023], or preventing any given candidates from
being included (destructive control).

The primary control actions investigated typically involve
four common types: adding or deleting candidates [Meir et
al., 2008; Karh Bet et al., 2024] or voters [Meir et al., 2008].
These investigations span a range of voting systems, includ-
ing approval-based and proportional representation methods,
and typically focus on common control actions such as adding
or removing either voters or candidates.

3 Control in Fair Allocation
Dividing resources (or, goods) among agents in a fair and ef-
ficient way is a practical problem that has been around since
biblical times. The possible settings are widely varied, based
on the type of resources, the fairness and efficiency criteria,
and the possible additional constraints on the desired alloca-
tion. The resources to be allocated can be either divisible or
indivisible, and they are usually nonhomogeneous, i.e., differ-
ent agents may value a given (part of a) resource differently.
In cake cutting, each agent has a utility function over a divisi-
ble resource called the cake, while in fair division, each agent

has utilities over a set of indivisible items, expressed either as
a cardinal utility function or a linear preference order.
Example 2. Suppose that Anna (a), Belle (b), Chris (c), and
David (d) receive a gift bag from their aunt for Christmas,
which contains a kite (K), a toy lion (L), a pair of mit-
tens (M ), a jar of nut spread (N ), and an oboe (O). (Old
aunt forgot how many nephews and nieces she actually has.)

To distribute the gifts in a fair way, their father asks the
children to evaluate them, eliciting the values in Table 2.

K L M N O

a ∶ 6 2 1 10 1
b ∶ 0 3 3 10 4
c ∶ 5 3 0 10 2
d ∶ 3 2 0 10 5

πdad πmum

a ∶ K K
b ∶ M L,M
c ∶ L P
d ∶ O O

Table 2: Children’s values (left) and parents’ allocations (right)

The children’s father, anticipating a calamity, quickly con-
fiscates the jar of nut spread. He assigns the gifts according
to the allocation πdad shown above. Pointing out that each
child has received a superproportional share, i.e., a gift that
is worth more than a fourth of the total value of all remaining
gifts (i.e., more than 10

4
), he walks away with the nut spread.

Immediately, a skirmish breaks out, because Belle envies
David for his oboe, and Chris envies Anna for her kite. The
children’s mother comes to the rescue brandishing a set of
paints (P ), valued to 5 by each child, and redistributes the
gifts according to allocation πmum above. Peace returns. ⌟

In Example 2, the control action performed by the father
was item removal, with the aim of achieving an allocation that
is (at least) proportional, i.e., that allocates to each agent p
a bundle (i.e., a subset of the item set I) having value at
least up(I)/∣A∣, where A is the set of agents and up ∶ I → N
denotes p’s valuation function which naturally extends to 2I

by assuming additive valuations. The second control action,
performed by the mother, was item addition, to facilitate even
an envy-free allocation, i.e., an allocation π ∶ A → 2I where
up(π(p)) ≥ up(π(q)) holds for each two agents p and q.

The study of control in fair allocation was initiated by Aziz
et al. [2016]. Besides item removal and addition, they also
define agent removal and addition, as well as item/agent re-
placement and item/agent partitioning for achieving fairness.
Instead of defining these control actions formally, we focus
on the control action considered most often (in fact, almost
exclusively) in the literature: item removal. The popularity
of this notion is probably due to the fact that donating goods
is a natural and practically feasible option in most scenarios.

Caragiannis et al. [2019] consider cardinal and additive
preferences, and propose an algorithm for finding an alloca-
tion that is envy-free up to any item (EFX), meaning that no
agent envies any other agents for their bundle after the worst
item is discarded from it, and is guaranteed to have at least
half of the Nash welfare (i.e., of the geometric mean of the
agents’ utilities) achievable by any allocation. Chaudhury et
al. [2021] give a method for finding an allocation that is EFX



by donating a bundle of at most ∣A∣ items such that no agents
prefer the donated bundle to their own.

In a setting with ordinal preferences, Brams et al. [2014]
have devised an efficient algorithm for two agents that pro-
duces an envy-free1 partial allocation with the minimal num-
ber of unallocated (or, from a different perspective, donated)
items. Aziz et al. [2016] show that, unless P = NP, a similar
algorithm is not possible for three agents, since even deter-
mining whether a complete envy-free allocation exists is NP-
hard. Under ordinal preferences, deciding the existence of a
proportional2 allocation is easy, but deciding whether remov-
ing at most a given number of items leaves an instance ad-
mitting a proportional allocation is NP-hard already for three
agents [Dorn et al., 2021]. Besides obtaining an FPT algo-
rithm for three agents, parameterized by the number of item
removals, Dorn et al. [2021] also consider a setting where
some fixed allocation is given in advance, and the task is to
make this allocation proportional by removing items.

Applying control to make an a priori fixed allocation fair
has been studied by Boehmer et al. [2024] for the setting with
additive cardinal utilities over indivisible items, and by Segal-
Halevi [2022] for cake cutting with geometric constraints.

Finally, to achieve fairness, Hosseini et al. [2020] and
Bliznets et al. [2024] have also considered hiding informa-
tion, which may also be considered a form of control.

4 Control in Cooperative Game Theory
Coalitional games with a characteristic function are defined
as pairs (N,v) with player set N and characteristic func-
tion v ∶ 2N → R, where v(∅) = 0. Each subset of N
is called a coalition. A coalitional game is monotonic if
v(C) ≤ v(C ′) for all C,C ′ with C ⊆ C ′ ⊆ N , and if ad-
ditionally v(C) ∈ {0,1} for all C ⊆ N , it is said to be simple:
If v(C) = 1, we call C a winning coalition, and if v(C) = 0,
we call it a losing coalition. We call a player i pivotal for a
coalition C ⊆ N ∖ {i} if v(C ∪ {i}) − v(C) = 1.

The analysis of simple games includes answering the ques-
tion of how important a player is in forming winning coali-
tions, which is measured by power indices such as the
Shapley–Shubik index [Shapley and Shubik, 1954] and the
probabilistic Penrose–Banzhaf index [Dubey and Shapley,
1979]. The power indices count—each in a different way—
the coalitions for which the player is pivotal in the considered
game.

A weighted voting game (WVG) G = (w1, . . . ,wn; q) is a
compactly representable simple coalitional game with player
set N = {1, . . . , n}, a quota q ∈ N, and nonnegative inte-
ger weights, where wi is the weight of player i ∈ N . Let
wC = ∑i∈C wi for C ⊆ N . The characteristic function v of G
is defined by v(C) = 1 if wC ≥ q, and v(C) = 0 otherwise.
For a given player in a given WVG, it is #P-complete to com-
pute the Shapley–Shubik index or the probabilistic Penrose–

1An allocation π is envy-free under ordinal preferences if for
each two agents p and q, there is an injection f from π(q) to π(p)
such that for each item x ∈ π(q), agent p prefers f(x) to x.

2An allocation π ∶ A → 2I is proportional under ordinal prefer-
ences if for any i ≤ ∣I ∣, all agents get at least i/∣A∣ items among the
first i items of their preference lists.

Banzhaf index, where #P is the class of functions that give
the number of solutions of NP problems.

Inspired by the idea of control in voting (Section 2), Rey
and Rothe [2018] introduced control by either adding players
to or deleting them from WVGs. In both cases, the goal of
the control action is to increase, nondecrease, decrease, non-
increase, or maintain a given player’s power. To analyze the
corresponding problems in terms of their computational com-
plexity, they define them as follows: For control by deleting
players, given a WVG, a distinguished player, and a speci-
fied limit, the question is whether it is possible to change or
maintain—according to the chosen goal—the distinguished
player’s power index by deleting no more than the specified
number of players. For control by adding players, new play-
ers are additionally given (by their weights), and the question
is whether the specified goal can be achieved by adding no
more than the specified number of new players.

These problems have been studied for the probabilis-
tic Penrose–Banzhaf and the Shapley–Shubik indices first
by Rey and Rothe [2018] and later on by Kaczmarek and
Rothe [2024b; 2024a], who established NPPP-completeness
for all problems related to control by adding players, where
NPPP is the class of problems solvable by an NP oracle ma-
chine accessing an oracle set from PP—“probabilistic poly-
nomial time.” For the problems of control by deleting play-
ers, the question of completeness is still open, i.e., there are
still huge complexity gaps between the currently known up-
per bound of NPPP and the lower bounds that—depending
on the specific goal of the problem—range from hardness for
the complexity classes NP, coNP, DP, to Θp

2, where DP is
the class of differences of NP sets and Θp

2 is the class of prob-
lems solvable by a P oracle machine accessing an NP oracle
set at most logarithmically often.

Kaczmarek and Rothe [2024b] have also introduced the
model of weighted voting games where a game’s quota is not
fixed when the player setN changes but is defined to be r ⋅wN

for some specified factor r ∈ [0,1]. This model takes into ac-
count the change of total weight when players are added or
deleted. Kaczmarek and Rothe [2024b] again establish an
upper bound of NPPP for all related control problems, and
they show hardness for the classes NP, coNP, DP, and PP.

WVGs have also been studied with an additional restric-
tion by an undirected simple graph whose vertices correspond
to the players. In these games, a coalition C wins if and
only if there exists C ′ ⊆ C such that wC′ ≥ q, for a given
quota q, and C ′ induces a connected subgraph of the restrict-
ing graph. Despite the restriction, computing the two power
indices remains #P-complete. With the restricting graph, ad-
ditional control possibilities arise: Given a graph-restricted
WVG, a distinguished player, and a specified limit, the ques-
tion is whether adding or removing up to the specified num-
ber of edges can change or maintain the distinguished player’s
power. Kaczmarek et al. [2025] show that most of these prob-
lems are at least NP-hard or coNP-hard (and some even PP-
hard), and upper-bounded by NPPP.

Challenge 2. For the goal of either changing or maintaining
a player’s power, show completeness (for NPPP?) of (1) con-
trol by deleting players from a WVG; (2) control by adding



players to or deleting them from a WVG with changing quota;
and (3) control by adding edges to or deleting them from the
graph underlying a graph-restricted WVG. Further, analyze
these control types for other power indices.

5 Control in Matching Under Preferences
Most work on control related to matching under preferences
concentrates on the classical stable marriage (SM) problem
and its generalization, the college admission (CA) problem
[Gale and Shapley, 1962]. In an instance of SM, we are given
a set of agents on a two-sided market, traditionally called men
and women, and a preference list for each agent, which is a
strict linear order over a subset of agents from the opposite
side of the market. The task is to find a matching between
men and women that is stable, i.e., contains no man–woman
pair such that both of them prefer each other to their partner
in the matching (called a blocking pair).

Example 3. Suppose that Anna (a), Belle (b), Chris (c),
and David (d) are attending a dance class, and need to form
opposite-sex couples. Their
preferences are as follows:

a ∶ c d, b ∶ c d,
c ∶ a b, d ∶ b a.

The only stable matching in this instance is {(a, c), (b, d)}.
However, Belle’s friend, evil Eve, is among the teachers of
the class, and her goal is to match Belle with her top-choice
partner, Chris. She considers three options to achieve her
goal: (1) declaring that Chris is too short for Anna and hence
cannot dance with her, (2) stepping on Anna’s toes with her
high heels, thereby sending her off to ER, or (3) inviting her
attractive friend, Frodo (f ), whom Anna prefers to Chris.
She decides on option
(3), and obtains:

a ∶ f c d, b ∶ c d f,
c ∶ a b, d ∶ b a, f ∶ b a.

Yet, Eve is not entirely satisfied, as now there are two stable
matchings, M1 = {(a, f), (b, c)} and M2 = {(a, c), (b, f)}.
Hence, she declares that Frodo is too tall for Belle, thus en-
suring that M1 becomes the only stable matching. ⌟

Example 3 highlights some of the settings examined by
Boehmer et al. [2021] who initiated the study of control prob-
lems in relation to stable matchings. Boehmer et al. [2021]
define five manipulative actions and three different goals, thus
obtaining 15 different computational problems. Among these
actions are the control actions showcased in Example 3:

• ADDAG: adding agents (e.g., inviting Frodo),
• DELAG: deleting agents (e.g., removing Anna), and
• DELACC: deleting acceptability (e.g., declaring con-

straints on who can dance with whom);
others involve changing the preference lists of the agents and
thus fall into the category of manipulation or bribery.

Example 3 depicts also some of the possible goals that an
external controller may want to ensure. These may either fo-
cus on a distinguished agent or pair of agents, or aim to obtain
a stable matching with some desirable property, e.g., a perfect
matching where every agent is matched. In the generalization
of SM where the underlying graph is not necessarily bipartite,
called the stable roommates (SR) model, a stable matching
may not exist, so ensuring the existence of a stable matching
becomes a meaningful aim. Below, we summarize known re-
sults for problems where the controller’s goal is to
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Table 3: Complexity results for the CSM-A-G and CSR-A-G prob-
lems. Background coloring is used to group each problem CSR-
A-G and its bipartite variant (where the CSM-A-∃SM column is
omitted, as a stable matching always exists in the bipartite case).

• match a given agent in a stable matching (MA),
• make a given pair contained in a stable matching (MP),
• make a given matching stable (MS),
• make a given matching the only stable matching (USM),
• ensure that a stable matching exists (∃SM), or
• ensure that a perfect and stable matching exists (∃PSM).
For each control action A ∈ {ADDAG,DELAG,DELACC}

and each goal G ∈ {MA,MP,MS,USM,∃SM,∃PSM} dis-
cussed above, in CONTROL-IN-STABLE-MARRIAGE-A-G
(or, CSM-A-G), we ask whether at most a given number of
control actions achieves the given goal in a given SM in-
stance; we call the nonbipartite variants of these problems
CONTROL-IN-STABLE-ROOMMATES-A-G (or, CSR-A-G).3

In Table 3, results by Boehmer et al. [2021] and easy con-
sequences thereof are marked with ∗ and with ∗, respectively.
Results by Chen and Schlotter [2025] are marked with ▽,
by Tan [1990; 1991] with †, by Mnich and Schlotter [2020]
with ♡, by Abraham et al. [2005] with ♢, and by Biró et
al. [2010] with ♠. Note that some of the problems CSR-
DELACC-G have been studied in the context of almost stable
matchings, i.e., matchings with only a few blocking pairs: For
example, an instance of SR admits a matching with at most
k blocking pairs if and only if we can ensure the existence of
a stable matching by k deletions of acceptability. Similarly,
the minimum number of blocking pairs in any matching that
matches a given agent or contains a given pair is exactly the
minimum number of DELACC actions that ensures achieving
the corresponding goal G ∈ {MA,MP}.

Further intractability and parameterized results are pro-
vided by Chen et al. [2018] for CSR-DELACC-MP, by Gupta
and Jain [2025] for weighted and destructive variants of many
of the problems in Table 3, and by Bérczi et al. [2024] re-
garding agent deletion problems with additional constraints.
Kamiyama [2025] looks at the problem where preferences
can contain ties, and when aiming for a super-stable matching
by deleting as few agents as possible.

Challenge 3. What is the complexity of the problem CSR-
DELACC-USM, which is open in Table 3?

A prominent line of research has also emerged in con-

3For the precise definition of control goals MS and USM for
control by changing the agent set, see [Boehmer et al., 2021].



nection to the CA problem, the many-to-one variant of SM
where the two sides of the market represent students and col-
leges, and each college comes with a capacity. The task is
then to find a matching of students to colleges that respects
capacities and is stable, i.e., there exists no student–college
pair (s, c) such that s prefers to be matched to c, while either c
is unsaturated, or there is a student matched to c to whom c
prefers s. The control actions focused on by most researchers
in this setting are capacity increase, capacity decrease, or ca-
pacity modification (when both increasing and decreasing ca-
pacities is allowed). The controller’s goal is most often to
ensure the existence of a stable matching that fulfills some
desirable property such as being perfect or Pareto-optimal,
by using as few control actions as possible.

Bobbio et al. [2022] have studied the problem of mini-
mizing capacity increase (or decrease) for obtaining a stable
matching that minimizes the average college rank to which
students are matched, and proved both problems to be NP-
complete and hard to approximate; a further study devel-
oped mixed integer programs for these problems. Chen and
Csáji [2023] initiated the study of determining the existence
of a stable matching that is simultaneously perfect or Pareto-
optimal through capacity increases, while bounding the sum
or the maximum of these modifications. Among these four
problems, only one turned out to be polynomial-time solvable
(when we bound the maximum capacity increases and aim for
a perfect and stable matching), while the other three are NP-
hard. They further investigate the parameterized complexity.

Afacan et al. [2024] also consider obtaining a Pareto-
optimal and stable matching, but they work with a model
that includes a lower quota for each college and has an up-
per bound only on the sum of college capacities. Gokhale et
al. [2024] give a polynomial-time algorithm for stabilizing a
given matching (MS) via capacity increase or decrease, and
they prove that the problem of ensuring that some student–
college pair is contained in a stable matching (MP) is NP-
hard for these two control actions. Nguyen and Vohra [2018]
consider a setting where students can form couples and sub-
mit joint preference lists. They show that there is a capacity
modification yielding a stable matching where each college’s
capacity is modified by at most two, and the total capacity
modification is at most four.

6 Control in Group Identification
Broadly speaking, group identification deals with finding a
socially qualified group among individuals. To this end, each
individual either qualifies or disqualifies all other individu-
als (and themselves) for inclusion in the group. More for-
mally, given a set A of agents (or, individuals) and a profile
ϕ ∶ A×A→ {0,1}, a group identification rule F determines a
socially qualified group F (ϕ,A) ⊆ A. We say an individual
a ∈ A (socially) qualifies an individual b ∈ A if ϕ(a, b) = 1,
and a (socially) disqualifies b if ϕ(a, b) = 0. In the setting
of control, three group identification rules have been stud-
ied: the consent rule [Samet and Schmeidler, 2003] and two
procedural rules [Dimitrov et al., 2007], namely the liberal-
start-respecting-rule and the consensus-start-respecting-rule.

In the consent rule, F (s,t), a social qualification is deter-

mined by the agents’ individual assessments and two thresh-
olds, s and t. If individuals qualify themselves, they are qual-
ified if and only if at least s − 1 other individuals qualify
them. Vice versa, if individuals do not qualify themselves,
they are disqualified if and only if at least t − 1 other individ-
uals also disqualify them. The second type of group identifi-
cation rules are the procedural rules. These rules recursively
add individuals who are qualified by the current members to
the group until no member qualifies any individual outside
the group (i.e., no new member is added during a recursion
call). The two rules differ in how they select the initial group.
The liberal-start-respecting-rule, F lib, starts with the set of
individuals who qualify themselves, while in the consensus-
start-respecting-rule, F con, the initial set is given by individ-
uals who are qualified by everyone (including themselves).

Example 4. After noticing the rigged election from Exam-
ple 1, AAAI proposes a new format for finding their leader-
ship. They ask each of the four candidates—Anna (a), Belle
(b), Chris (c), and David (d)—whom they deem qualified to
lead the association in the coming years. Of course, everyone
qualifies themselves. In addition, Anna qualifies everyone
else; Belle qualifies Chris and David; Chris qualifies no one
else; and David qualifies Chris. These qualifications are de-
picted in the left graph of Figure 4 that contains a directed
edge from v to v′ if and only if ϕ(v, v′) = 1 for v, v′ ∈ A.

a b

c d

a b

c d

a b

c d

g

Figure 4: Two control actions for Example 4

Using F con, the association determines Chris as the sole
member of the qualified group. Evil Eve, again unhappy with
the result, removes Chris from the competition, thus mak-
ing David the sole qualified individual (middle graph of Fig-
ure 4). This, again, enrages fraudulent Frodo who takes ac-
tion and adds Grace (g) to the pool of individuals (right graph
of Figure 4). Grace qualifies only herself and is deemed quali-
fied by everyone. As a result, the new socially qualified group
consists solely of Grace, and Frodo is happy. ⌟

Evil Eve and fraudulent Frodo both changed the qualified
group by modifying the set of participating individuals. The
study of control complexity in group identification was ini-
tiated by Yang and Dimitrov [2018], who first studied con-
structive group control by adding individuals (CGCAI), con-
structive group control by deleting individuals (CGCDI), and
constructive group control by partitioning sets of individu-
als (CGCPI). In the setting of group identification, the con-
troller’s goal is to help a subset A+ ⊆ A of individuals to
become socially qualified (constructive control) [Yang and
Dimitrov, 2018], or to prevent a subset A− ⊆ A of individuals
from being included in the socially qualified group (destruc-
tive control) [Erdélyi et al., 2020]. Table 4 gives an overview
of results for control in group identification for F lib and F con.
Results marked by ♢ are due to Yang and Dimitrov [2018],
and by ♠ are due to Erdélyi et al. [2020].
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F lib R♢ I♠ I♢ V♠ I♢ V♠
F con R♢ R♠ V♢ V♠ ? ?

Table 4: Control complexity results for group identification

Recently, more attention has been given to restricting to
the domain of consecutive qualifications by Yang and Dim-
itrov [2023] who study control in this domain for the consent
rule and both procedural rules, and they do so through the
lens of parameterized complexity.

Challenge 4. Solve the open cases in Table 4 for F con: What
is the complexity of CGCPI and DGCPI?

7 Outlook: Control in Other COMSOC Areas
As demonstrated in the previous sections, the study of control
has spread exhaustively through the world of COMSOC. A
keen ready may, however, have noticed that some areas of
COMSOC remain unmentioned, to which we will turn now.

We start with participatory budgeting (PB) where agents
collectively decide on project funding under a budget con-
straint. Notably, approval-based PB is related to multiwinner
voting, i.e., if each project is assigned a cost of 1 and the bud-
get is precisely k, the PB process can be modeled as a size-k
committee election. To this day, the study of control in par-
ticipatory budgeting has been relatively sparse. Baumeister et
al. [2021] introduce a very general control framework, called
manipulative interference, for both the constructive and de-
structive settings, in which they study two control strate-
gies: changing the budget and changing an item’s cost. Most
recently, candidate control in PB has been studied by Fal-
iszewski et al. [2025].

Next, the task in judgment aggregation (JA) is to aggregate
individual judgments over logically interconnected proposi-
tions by using a JA rule. Focusing on the important class
of so-called “uniform premise-based quota rules,” Baumeis-
ter et al. [2020] introduced control by adding, deleting, re-
placing, and bundling judges and studied the related prob-
lems in terms of their complexity. For the Kemeny JA rule
(which, roughly speaking, minimizes the cumulative Ham-
ming distance to the individual judgment sets), the complex-
ity of control by adding or deleting issues has been studied by
de Haan [2017].

Last but not least, we turn to opinion diffusion and social
networks. Both areas focus on a network of connected agents,
each of whom holds an opinion, which can be expressed in
many forms—to name just a few: Opinions can be repre-
sented in binary, as a ranking over some alternatives, a bit
vector, or a state (e.g., activated). Using a certain update rule,
the state of the network (i.e., the agents’ opinions) can then
be updated in an iterative process. Turning to control in opin-
ion diffusion and social networks, we mention two models,
which most closely relate to electoral control: influencing
the network itself (see, e.g., [Bredereck and Elkind, 2017])

and influencing a social network with the goal of changing an
election outcome (see, e.g., [Castiglioni et al., 2021]).

8 Discussion and Conclusions
We have surveyed the central notion of control in a variety of
COMSOC subareas, starting from voting where Bartholdi et
al. [1992] were the first to introduce it and to define the stan-
dard types of electoral control—including adding or deleting
either candidates or voters. Their early work was among the
key seminal papers that launched COMSOC as a stand-alone
area which due to its many applications in real-world scenar-
ios is now indispensible for any of the large AI conferences.

Since then, an extraordinarily large body of work has ex-
plored control in many settings. Novel standard types of con-
trol have been introduced and studied, such as destructive
control due to Hemaspaandra et al. [2007] where the goal is to
prevent some candidate from winning an election. However,
in addition to voting scenarios, control has also been intro-
duced to many other subareas of COMSOC. We have focused
on presenting the models of control and (mainly complexity)
results about the related problems in fair allocation, coop-
erative game theory, matching under preferences, and group
identification. Further, we have briefly presented some initial
control results in participatory budgeting, judgment aggrega-
tion, and opinion diffusion—the latter being closely related to
social networks where control scenarios (even though often
dubbed differently) have been studied for a long time already.

The tasks of a controller in subareas other than voting can
be distinct from simply adding or deleting agents; for ex-
ample, items can be added or deleted in fair allocation or
edges of an underlying communication graph can be added
or deleted in graph-restricted WVGs. This may call for
new techniques to tackle these problems and classify them
in terms of their computational or parameterized complexity.

It is also noteworthy that electoral control—which in fact is
what one commonly means when speaking of a “rigged elec-
tion”—is much worse in moral or ethical terms than strategic
voting (which, in technical terms, is dubbed “manipulation”)
or bribery in elections. Indeed, voters are justifiably allowed
to cast strategic ballots that best serve their own goals and
bribery can synonymously be seen as “campaign manage-
ment”—what does it cost to make voters cast certain ballots
and what can be achieved within a given campaign budget?

Control, manipulation, and bribery—three key topics at the
heart of COMSOC—have been studied in much depth for vot-
ing. Much less is known in the other COMSOC subareas we
have covered, and we encourage the reader to contribute to
exploring especially control in them. In addition, our last and
perhaps most demanding challenge goes one step further:

Challenge 5. If your favorite COMSOC area is not among
those covered in this survey, introduce to it a suitable model
of control and study the complexity of the related problems.

Notwithstanding the obvious importance of worst-case
complexity results such as NP-hardness for control, it will
also be crucial to advance our knowledge of hardness for typ-
ical instances occurring in practice or even on average. Even
if that is beyond our control so far, we will never give up hope.
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