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Béla Hullár, Sándor Laki, András György

Abstract—To manage and monitor their networks in a proper
way, network operators are often interested in automatic methods
that enable them to identify applications generating the traffic
traveling through their networks as fast (i.e., from the first
few packets) as possible. State-of-the-art packet-based traffic
classification methods are either based on costly inspection of
the payload of several packets in each flow or on basic flow
statistics without taking into account the packet content. In
this paper, we consider an intermediate approach of analyzing
only the first few bytes of the first (or first few) packet(s)
of each flow and propose automatic, machine-learning-based
methods with very low computational complexity and memory
footprint. The performance of these techniques are thoroughly
analyzed, showing that outstanding early classification accuracy
can be achieved on traffic traces generated by a diverse set of
applications (including P2P TV and file sharing) in a laboratory
environment as well as on a real-world data set collected in the
network of a large European ISP.

Index Terms—Traffic classification, payload statistics, machine
learning

I. INTRODUCTION

THE assurance of quality of service in IP-based networks,

especially in the Internet, is one of the most important

challenges in today’s network development and management.

To ensure quality of service, network operators have to analyze

the traffic traveling through their networks. This analysis can

lead to more efficient resource allocation as well as can help

planning the expansion and development of the network. This

is the reason why traffic classification is in the forefront of

research on next generation networks.

A decade ago, traffic classification was a very simple

task since applications used their well defined port numbers

assigned by IANA and the network operators just looked at the

Manuscript received December 15, 2013; revised May 12, 2014. This
work was supported in part by the grant EITKIC-12-1-2012-0001 of the
National Development Agency, and the EU FP7 OpenLab project (Grant
No.287581), the National Development Agency of Hungary from the Research
and Technological Innovation Fund (KTIA-OTKA CNK 77782), the Alberta
Innovates Technology Futures and NSERC. S. Laki also thanks the partial
support of MAKOG foundation.

This work was presented in part at the IEEE International Conference
on Communications (ICC 2011) Next Generation Networking and Internet
Symposium, Kyoto, Japan, June 2011.

B. Hullár was with the Department of Physics of Complex Systems, Eötvös
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transport layer port number for identification. Since then the

Internet has became the largest existing entertainment medium

in the world. Many new applications have appeared from

voice over IP (VoIP) and IP TV to peer-to-peer (P2P) file

sharing systems that have a revolutionary effect on people’s

everyday life. Nowadays these applications are responsible

for the majority of network traffic. To by-pass firewalls and

routers, or to hide their presence, they use dynamic port

numbers or well-known trusted ports (such as HTTP or SMTP

ports), limiting the achievable performance of port-number-

based classification.

Current state-of-the-art methods for traffic classification are

based on the analysis of (i) packet payloads generated by

the application; (ii) some network layer or transport layer

features; (iii) host-behavior, or some mixtures of the above.

Approach (i), called deep packet inspection (DPI) aims at iden-

tifying typical protocol patterns in the messages of different

applications. These methods work reasonably well in practice,

but their disadvantages are well-known: The performed pattern

matching is resource-intensive, requiring both computational

time for scanning packet payloads and memory for storing

large databases of application (or protocol) specific signatures.

Moreover, keeping the signature databases up-to-date is a

cumbersome task usually requiring human expertise, since

new network-based applications are born day-by-day and the

current ones evolve constantly. To eliminate these drawbacks,

statistical payload inspection methods have been proposed

recently [1], [2] that learn relevant protocol patterns auto-

matically from traffic traces (labeled with the corresponding

applications).

In some situations packet content may not be available due

to resource limitations or encryption. Then the less resource in-

tensive approaches (ii) and (iii) may be applied. In the former,

machine learning methods (such as decision trees, Bayesian

classifiers, SVM, k-NN, etc.) are used to train classifiers to

estimate the traffic type based on some features extracted from

some network or transport layer data, such as the number of

packets in the flow, the average packet size, the count of Push

flags, inter-arrival time statistics, etc. In the last few years,

numerous feature sets and machine learning algorithms were

examined in the literature, see, for example, the thorough

review [3] or the systematic comparison of existing methods in

[4]. However, the efficiency of different feature sets highly de-

pends on the generating applications as well as on the location

where the flow data was captured, limiting the applicability

of the results in a universal traffic classification tool [5].

Finally, approach (iii) is based on the analysis of host behavior

instead of individual network connections. The basic idea



behind this solution is that different applications or application

groups have different communication habits, for example, a

client application has few outgoing connections, a server has

numerous incoming connections, while P2P applications have

many connections in both directions, giving rise to methods

analyzing the connection patterns of host interactions [6], [7]

or utilizing the assumption that similar hosts tend to be related

to one another [8].

An important observation is that classification algorithms

analyzing packet content outperform others in case of unen-

crypted traffic, while the rest are much less resource intensive

and, hence, much cheaper. Furthermore, identifying the appli-

cation type as early as possible is very important from several

aspects (from security to improved quality of service) allowing

the operator much faster reactions. To this end, the first few

bytes of each flow are used for making decisions in [2], while

[9] performs classification from some simple descriptors of

the first four packets of each flow.

In this paper we tackle the above problems, and, by extend-

ing and improving the work of [2], demonstrate that automated

traffic classification based on the first few bytes of the first

(or first few) packet(s) of a connection is possible with high

accuracy. In addition, some of our approaches require far

less computational and memory resources than usual DPIs

with reasonably good performance, and no human expertise

is needed in the development (training) of the methods. It is

worth noting that [10] and [4] have also found that analyzing

only the first 16 bytes of a P2P connection is usually sufficient

for a well designed DPI to identify P2P traffic (except for

Gnutella).

The performance of our traffic classification algorithms is

measured on a diverse set of data recorded in our lab over

LAN, WiFi and 3G links, and in the network of a large

European ISP. In our laboratory experiments, similarly to,

for example, [11], we recorded individual traffic traces of

several applications (mostly concentrated on P2P protocols)

over different network architectures. Although one might think

that such an setup may result in artificial user behavior and,

hence, traffic patterns, the content of the first few packets does

not seem to be really effected. This shows another advantage of

our early classification approach: the ease of obtaining training

data for previously unseen applications and traffic classes, and

network architectures. Besides our laboratory measurements,

we have also verified our methodology on real traffic traces

collected in the network of an ISP, considering a large number

of different protocols.

The rest of the paper is organized as follows. In Section II

we briefly overview the most relevant statistical payload-based

traffic classification methods. Our proposed early classification

algorithms are introduced in Section II-A, including a brief

comparison of their computational and storage complexities.

Section III describes our data collection methodology. A

comprehensive performance analysis of our algorithms in

laboratory environment is presented in Section IV, while in

Section V we show how our approaches perform on real world

traffic traces. The advantages and limitations of our approach

are discussed in Section VI. Finally, conclusions are drawn

and future work is outlined in Section VII.

II. PAYLOAD-BASED EARLY CLASSIFICATION USING

STATISTICAL METHODS

Since the majority of network traffic is still unencrypted and

the protocol-format-based identification works well in practice,

it is worth exploiting the potential of the payload analysis

with advanced techniques. A very promising method in the

literature is the KISS algorithm [1] that uses χ2-statistics

as features computed from the first few bytes of the first

several packets of each flow. The efficiency of this solution

was demonstrated on different applications, such as P2PTV

clients, where, by combining the payload-based classification

with other techniques, based on, for example, host similarities,

they managed to achieve 99% accuracy in flow classification.

The main disadvantage of this approach is the large number

of packets (approximately 80) required for the feature com-

putation to achieve the above results (and, accordingly, the

measurements are restricted to flows that generate more than

80 packets), and this is why this method is not applicable for

early classification.

In [2] simple statistical methods are considered for traffic

classification from only the first 64 bytes of the network

flows. This work proposes three different solutions based on

a stationary memoryless model, a first-order Markov model

over the bytes and a graph based common substring method,

respectively, to analyze the beginning of the payload data.

These methods show promising results on the limited test set

containing only a few basic protocols, such as HTTP, DNS or

NTP.

In this paper we extend the latter approach in several ways:

we apply more involved models, such as context trees or

random forests, our algorithms focus on only the first few

bytes of a few packets per flow, and are validated on more

recent applications, such as P2PTV and file sharing systems

as well. Furthermore, our algorithms are also verified on real

traffic traces captured in the network of a large ISP.

A. Early classification algorithms

We examine the problem of classifying traffic flows from

very limited information when only the first N bytes of the

payload of the first n packets of each flow are taken into

account, and we show that very good accuracy can be reached

even for small values of N and n, making our approaches more

valuable in practice. By combining the limited data obtained

from the selected packets, each flow can be described by

a feature vector of nN bytes, representing a fingerprint of

the observed flow that is used to determine the generating

application.

Our classification framework can be described as follows:

A sample of flows generated from the traffic classes to

be identified is collected and each flow is labeled with its

true class (i.e., the application generating the flow). Then a

classification method is trained based on the feature-vector–

label pairs corresponding to the generated flows (called the

training data). Finally, the trained classifier is used to estimate

the traffic class from the feature vectors. Most of our methods

(except for the random forrest classifier) build a stochastic

model for each class in the training phase, and a flow is



estimated to belong to the class whose model fits the flow data

the best (in a maximum likelihood sense). This classification

methodology was used in [2]), where a first-order Markov

model is used. In this paper we use more refined models and

estimation strategies, as described below.

In the following we briefly overview the applied classifica-

tion techniques including Markov-model-based classification

methods of different orders as well as random forests: For

Markovian methods, we build a stochastic (Markov) model for

each traffic class i during the training phase that provides an

estimate pi(x) of the conditional probability that we observe

a feature vector x = (x1, . . . , xnN ) if the flow was generated

from class i. Then a maximum likelihood decision is applied

to select the most likely class for the given feature vector

x, that is, the protocol class is estimated as argmaxi pi(x).
To estimate the probability pi(x) we have considered and

analyzed various models of different orders.

KT-ESTIMATOR: Our simplest approach is to fit a zero-

order model to the feature vectors. That is, the bytes in the

feature vectors are assumed to be independent with identical

distributions (given the traffic class), and one needs to estimate

the distribution of the bytes in the feature vectors. In this model

it is natural to use the empirical byte frequencies to estimate

the true distribution; however, this approach is not robust in

assigning probabilities to symbols (bytes) not present in the

training data. To alleviate this problem, we use the Krichevsky-

Trofimov estimator [12]: For class i, let ni denote the total

number of bytes in the feature vectors belonging to the given

class in the training data. Similarly, let ni(x) denote the total

number of occurrences of byte x in the feature vectors of class

i in the training set (it is obvious that
∑

x ni(x) = ni). Then,

the probability of byte x for class i is estimated by

pi(x) = (ni(x) + 1/2)/(ni + 128).

Note that pi(x) is a mixture of the empirical distribution

(ni(x)/ni) and a uniform distribution, assigning non-zero

probabilities even to bytes that are not present in the feature

vectors in training data. This provides a robust performance

should such a byte appear later in a feature vector when

the model is used for classification. Using our independence

assumption in the model, the estimated conditional probability

that the feature vector x occurs given that the flow belongs to

class i is computed as

pi(x) =

nN∏

j=1

pi(xj). (1)

MARKOV: Here we fit a first-order Markov-model to the

features where the distribution of the first byte pi,1(x1) as

well as the transition probabilities pi(xj+1|xj) are estimated

by the corresponding empirical frequencies in the training data

for class i. The conditional probability of a vector x can be

formulated as

pi(x) = pi,1(x1)

nN−1∏

j=1

pi(xj+1|xj). (2)

The same estimator was used in [2].

MARKOVKT: In this method we also fit a first-order

Markov-model, but we apply the Krichevsky-Trofimov esti-

mate in all cases instead of empirical frequencies.

CONTEXT TREE WEIGHTING METHOD (CTW): CTW is a

state-of-the-art lossless data compression algorithm [13] that

fits a variable-order Markov model (more precisely, a mixture

of such models) to the data which can be used to estimate the

conditional probability pi(x) of a feature vector x for each

traffic class i.
A variable-order Markov model can be described by a

complete tree: The edges of the tree are labeled with source

symbols, and the edge labels of a path to a node of the tree

(from the root) determine a context (the context is the empty

string at the root, and is of length d at nodes of depth d).

Each leaf is labeled with its context and is also associated

with a probability distribution that describes the distribution

of the next source symbol immediately following the context

specified by the leaf. That is, given the source data so far, one

finds the leaf whose context is a suffix of the data, and the next

symbol is distributed according to the distribution specified at

the leaf. Using variable-memory Markov models can decrease

complexity as well as improve prediction performance if some

context do not occur sufficiently many times in the training

data. The CTW method averages the predictions of all possible

tree predictors (of a given maximum depth) in such a way that

it guarantees that the performance of the averaged predictor

is almost as good as that of the best tree predictor selected

in hindsight,. The main trick is in the implementation: CTW

achieves this goal by building a single full tree in a clever way,

making the algorithm practically implementable. Nevertheless,

large alphabet sizes (as the case of bytes) and deep trees may

still require significant memory, and the memory footprint is

the typical bottleneck in practical applications of the CTW

method. In our experiments the maximum depth of the tree

was set to 5, allowing at most five-character-long contexts or,

in other words,at most fifth-order models.

RANDOM FOREST (RF) is one of the most widely used

classification method [14] that averages the estimates of sev-

eral decision trees. Each individual decision tree is built on

a bootstrap sample of the original data, separating randomly

selected leafs according to feature values that provide the best

split among a given number of randomly selected features

until each leaf contains only one feature point (in our case the

features are the bytes of the feature vector x). Using several

decision trees at the same time can improve the classification

accuracy significantly and may make the method more robust

against noise. However, we have to note that RF is prone

to overfitting, for example, if the training data set is chosen

inappropriately.

B. Complexity of the Algorithms

Online traffic classification has great importance in practice

from network management to enforcing service terms. Since

the devices running these algorithms generally have very

limited resources (CPU and memory) and the incoming high

speed network traffic must be handled in real time, it is nec-

essary to analyze the storage and computational complexities



of the proposed techniques. According to their complexities,

our methods can be split into three major categories: the KT-

ESTIMATOR is based on a zero-order model, MARKOV and

MARKOVKT are first-order ones, while RANDOM FOREST

and CONTEXT TREE WEIGHTING belong to the class of

higher-order models.

In case of a zero-order model like KT-ESTIMATOR, it is

enough to store the probabilities or empirical counts for all

the bytes occurred in the payloads. For each protocol, the

algorithm needs to store at most 256 probability values only

(one for each byte value). As we can see in the following

sections, this very simple and lightweight solution shows

surprisingly good precision in practice.

First order methods require significantly more, but still very

little memory, as they need to store the distribution of the first

byte of the feature vectors, and the transition probabilities of

that a given byte is followed by another one in the features.

This means that the model can be described using at most

256 + 2562 = 65792 probabilities. However, the byte streams

generated by different network protocols follow specific rules

and structures, resulting in very sparse transition matrices

in practice, which can be utilized to reduce the memory

requirements for storing a model.

Considering the CTW method, in the worst case one needs

to store a full tree with branching factor 256 and depth D,

requiring memory of order
∑D

i=0
256i (we set D = 5 in our

experiments). However, in practice, the size of the context

trees are orders of magnitudes smaller than this theoretical

upper bound, since only a small portion of byte sequences

appear in the protocol specific data. Note that in all the above

cases the (worst-case) memory complexity of our algorithms

is independent of the length of the feature vectors. To reduce

the high memory requirements of CTW, several extensions

were considered including techniques to cut off paths that no

longer split up, customize its operation for ASCII byte sources,

store logarithms of ratios of conditional probabilities instead of

actual block probabilities and use hashing to efficiently access

the context tree data stored in memory.

The space complexity of RANDOM FORESTS is mainly

affected by two parameters, namely, the number of attributes

which is the number of input bytes (nN ) and the number

of trees to be evaluated. In our experiments, 10 trees have

been used with log nN + 1 attributes used to determine the

decision at a node in a tree. The practical implementations of

RF use further techniques to limit the maximal depth of the

individual decision trees, yielding that the memory footprint

of this solution can practically be kept on a constant level

(independent of the length of the features).

The computational complexity of each examined algorithm

is linear in the number of input bytes. This is obvious for our

zero and first order models where Eq. 1 and Eq. 2 have to

only be evaluated. However, for the CTW method, we first

have to find the right probability value by searching in the

context tree. Since the depth of the context tree is limited

to 5, finding the probability takes O(nN) steps only. Finally,

the evaluation of a RF depends on two factors, the number

of trees as well as their depths. Since we set both to some

constant values, evaluating all the trees in a RF takes only

O(nN) time steps. The methods using maximum likelihood

estimation (KT-ESTIMATOR, MARKOV, MARKOVKT, CTW)

need to compute the likelihood for all the C protocol models

before making a decision. In contrast, RF has the advantage

that it requires only one model evaluation; however, the size

of the trees are implicitly effected by the number of protocol

models.

Note that both the computational and memory complexities

of our algorithms are very little relative to the widely used

automaton-based DPI solutions. These methods rely on sig-

nature databases that contain regular expressions describing

protocol specific contents. These expressions are used to build

a finite-state automaton that matches these regular expressions

on the payload bytes. To construct these automata, several

methods have been developed so far, using non-deterministic

or deterministic finite automaton (NFA or DFA) or some

hybrid solutions. For a large number of patterns, the evaluation

of a NFA can be computationally very expensive because a

large number of states has to be evaluated for each byte in

parallel. On the other hand, a NFA can be transformed to a

DFA having linear evaluation time, but, as a side-effect, it often

causes an exponential explosion of the state-space, resulting

in a 2n-state DFA for a NFA with n states. In addition,

there are methods [15] that provide a good trade-off between

the memory used and the required computational time, but

there are no methods that can optimize both at the same

time. In contrast to standard DPI approaches, our techniques

have limited memory requirements and their computational

complexity is proportional to the number of examined traffic

classes only and not to the number of used signatures which

is usually much more.

III. DATA COLLECTION IN A FULLY CONTROLLED

ENVIRONMENT: ACTIVE TRACE GENERATION

Collecting ground truth data is a crucial part of traffic

classification studies. A generally prevailing method in the

literature is to collect (unlabeled) traffic traces from different

sources (network operators, campus networks, testbeds, etc.),

and then to label each flow with the generating protocol or

application based on some DPI tools or other heuristics. The

obvious advantage of this method is that the resulting labeled

traces are real since DPI tools hardly result false positive

outcomes. On the other hand, the result of the labeling phase

may be incomplete due to the shortcomings of DPI engines,

and significant portion of the applications/protocols may be

dropped out from the analysis because of their small incidence

or because the applied labeling method is not able to recognize

them (see, e.g., [16]). The quality of the data set generated in

this way largely depends on the quality of the applied DPI

tool itself, which varies in a wide range from freely available

solutions with low precision to very expensive and accurate

commercial tools.

To alleviate the shortcomings of DPI-based labeling for

ground truth, we used an active data collection technique:

traffic traces were captured in a fully controlled environment

where a modified kernel module logged each flow and the

coresponding appliacation; this methodology results in an



Application Class WIRELESS LAN
Flows Bytes Flows Bytes

PPLive 0 0 MB 5100 2100 MB
PPStream 6900 538 MB 5700 3545 MB
SopCast 1700 608 MB 48000 24855 MB
TVUPlayer 3250 1365 MB 2800 1872 MB
BitLord 1900 2253 MB 26500 23923 MB
Emule 8700 540 MB 59500 6662 MB
LimeWire 2100 2585 MB 2500 1443 MB
others 0 0 MB 30000 42000 MB

TABLE I
THE AMOUNT OF TRAFFIC IN WIRELESS AND LAN.

unquestionable source for the ground truth (similar active data

collection can be found, e.g., in [11], [17]).

In this work we concentrate on P2P protocols, as they

are less studied than traditional protocols (like HTTP, FTP,

etc.), play an increasing role in the Internet, and have become

responsible for a large portion of Internet traffic recently.

We have generated and recorded traffic of different P2P

applications in two main groups: P2PTV clients and P2P

file-sharing clients. The P2PTV group contains four clients

with different proprietary protocols (PPLive, PPStream, Sop-

Cast, TVUPlayer), while the group of file-sharing applications

consists of three client applications with different protocols

(BitLord as a BitTorrent client, Emule as an eDonkey client

and LimeWire as a Gnutella client). To be able to analyze the

performance of our algorithms in the presence of significantly

different traffic types, traces of other applications, such as

HTTP, Skype, gaming, encrypted torrent, etc., have also been

collected; these traces are used to create a general class, called

others, to test how much our algorithms can distinguish the

learnt traffic types from unseen ones.

Two data sets are used during the evaluation: a smaller set,

WIRELESS, consisting of traces with full payload, recorded in

wireless environments (WiFi and 3G), and a larger set, LAN,

recorded over high-speed LAN connection during another

experiment, containing only the first 16 bytes of the payload

of each packet. A detailed description of the recorded traffic,

showing the number of flows and the amount of traffic carried,

is given in Table I.

In the next section we demonstrate the feasibility of our

early traffic classification approach on the combined data set

composed of WIRELESS and LAN (without the others class),

while refinements of our methods, concerning the number of

packets and the amount of payload to be considered will be

tested only on WIRELESS. We also use the combined data set

(including the others class) to test how the algorithms deal

with unknown traffic types and asymmetric routing (when

only one direction of the traffic flow is observable), while

robustness to changing network environments is examined

using the WIRELESS data as training and the LAN data as

test set.

IV. LABORATORY EXPERIMENTS

In this section we present experimental results on the

WIRELESS and LAN datasets. We used two main metrics:

the true positive (TP) and the false positive (FP) ratio. The

TP ratio is the proportion of successfully classified samples to

all samples, while the FP ratio is the proportion of samples

falsely classified to a given class to all samples that do not

belong to that class. Both metrics are usually computed for

both flows and bytes. Each experiment was repeated ten times

on randomly selected training and test data (of a given size).

A. A feasibility test: classification from the first 16 bytes of

the first packet of each flow

To demonstrate the feasibility of our approach and improve-

ments over the memoryless and first-order Markovian methods

of [2], we tested the proposed methods on the large, combined

data set of WIRELESS and LAN, using the first 16 bytes of the

first packet of each flow. The TP and FP ratios (using ten-fold

cross-validation) are shown in Figure 1. One can observe that

higher order models usually perform better. The only exception

is the simple first-order MARKOV model (also used in [2])

whose performance is degraded by the inadequate handling of

patterns not observed in the training data, which is corrected

by using the Krichevsky-Trofimov estimator in MARKOVKT.

The RF method achieved a remarkable 98− 99% average TP

ratio (in bytes), and the CTW and MARKOVKT methods also

achieved very good average TP ratios of about 95 − 96%.

The performance is also attractive if we consider the FP ratio,

as the higher order methods achieved FP ratios far below 5%,

with the exception of CTW in case of PPStream with 6%. The

classification results on LimeWire worth some considerations:

as the UDP version of this application starts with a 16-

byte random string, its identification is clearly impossible

from our data, while the TCP versions use some hand-shake

mechanism, which is identifiable. The error rates in identifying

this application are proportional to the share of UDP traces in

our data.

We also compared our algorithms to different publicly

available DPI methods. Since they are developed to identify

traffic types from full payload, we performed these tests on

the WIRELESS data set. We believe that this comparison also

provides some important insights, although it is not fair from

either side: (i) the DPI algorithms are designed to solve the

harder problem of recognizing more traffic types, and it is

likely that the performance of our algorithms would degrade

if the number of traffic types were increased; (ii) the DPI

algorithms can use more information than ours; (iii) freely

available DPI tools are less accurate than the commercial ones

widely used in practice.

We used two popular DPI tools, OpenDPI [18] and Tstat

[19], as well as the payload-based classifier of [10], called

Coral in this paper, which served as the source of ground truth

in the large-scale experiments of [4]. Coral applies host level

identification if the payload inspection fails; to make a fairer

comparison, we also tested the tool without this component,

solely relying on payload data (Coral*). The results are given

in Figure 2 for both flow and byte accuracy. For simplicity, we

only provide comparison to our best algorithm, RF (based on

the first 16 bytes of the first packet of each flow), whose ten-

fold cross-validation performance is also reported (the results

for CTW and MARKOVKT are similar). Moreover, in case

of the DPI algorithms we only provide results for the traffic



Fig. 1. Comparison of the different machine learning methods on the aggregated data set.

classes they support, and report the class others whenever the

DPIs classify to a traffic class that does not belong to our data

set (this explains the increased false positive values for the

others class).

The results show that the performance of RF is usually at

least as good as those of the DPI methods in TP ratio, while

the DPIs are usually better in FP ratio. The exceptions to this

finding are the results of Coral and Tstat for BitLord. The

errors made by Coral are due to the usage of its host based

early decisions; this approach helps with real traffic traces

but is misled by the artificial patterns in our measurements.

Turning off this feature (i.e., Coral*) yields improved FP

results. However, we have no good explanation of the high

FP ration for BitLord in case of Tstat. As a side effect of our

(admittedly limited) measurements one can see that a careful

test of DPI tools is needed on a given data set if they are to

be used as the source of ground truth for real traffic traces.

B. Bytes and packets: how much data is needed?

In this section we examine how the accuracy of our clas-

sifiers depends on the amount of data used. We test how the

results change with the number of packets and bytes used from

each flow, as well as how fast the algorithms learn, that is, how

many training flows are needed to achieve good performance.

Since in these experiments we often use payload beyond the

first 16 bytes of each packet, we have run the tests on the

WIRELESS data set. Due to space limitations, results are only

provided for our best algorithm, RF (our other methods show

similar characteristics).

Figure 3 shows the performance of the RF classifier (using

ten-fold cross-validation) as a function of the number of

packets n and number of bytes N used from each packet (in

this experiment symmetric routing is considered, that is, the

classifier is able to observe both directions of the flows and

the packets are selected sequentially from both directions).

Experiments have been performed for n = 1, . . . , 6 and

N = 1, . . . , 72, the latter being justified by the assumption

that protocol specific headers are usually contained at the

beginning of each packet. One can see that increasing the

number of bytes N sharply improves the performance at the

beginning, which flattens out around 8 bytes, while increasing

the number of packets may actually worsen the performance

in the latter region, which may be attributed to the increased

feature-dimension of the problem that eventually leads to

overfitting.

One can also see from the above experiment that using the

first packet of each flow is sufficient (this choice also has

the advantage that it seems pretty much independent of the

network architecture as the content of the first packet usually

does not depend on the underlying network infrastructure). To

be able to estimate the necessary amount of data to be collected

from different traffic classes, we tested how many training

flows are needed to achieve good performance (as a function

of the number of bytes used from the first packet). The

classification accuracy of the RF algorithm is given in Figure 4

for different training set sizes: 50, 100, 200, and 400 flows

from each class are used as training data, respectively, and

the remaining flows are used for testing. Each experiment was

repeated ten times, using a random selection of the training

data. The results of the tests with ten-fold cross-validation are

also reported.

One can see that using only a few hundred training flows

results TP rates above 90%. Also, for all training set sizes

the performance improves in a similar manner as observed in

Figure 3, increasing between 1 and 8 bytes and then smoothing

out. We can also notice that the byte-based measures sharply

improve around 3 bytes. The reason for this observation may

be that only a small portion of protocol messages is responsible

for real data transfer (i.e., it is easier to identify flows carrying

large amount of data), or it may just simply be an artifact of

our data set (where certain patterns randomly occur just for a



Fig. 2. The performance of the RANDOM FOREST classifier using the first 16 bytes of the first packet of each flow, compared to some DPI tools.

Fig. 3. The TP ratio of the RANDOM FOREST classifier as a function of the number of packets n and bytes N used (N = 1, . . . , 72, n = 1, . . . , 6).

few elephant flows).

Figure 5 presents the TP and FP ratios (in flow number) for

the different protocol classes in the ten-fold cross-validation

measurement. We can observe that the necessary amount

of information depends on the protocol class, for example,

the Gnutella-client LimeWire requires more data than other

protocols (this is in agreement with earlier findings of [10],

although it seems that using around 30 bytes of the payload

is sufficient in contrast to the 300-400 bytes observed in [10],

but this may also be the result of not having enough LimeWire

flows in our data sets).

C. Robustness

In a real network environment it is expected that the

classifier has to deal with a lot of traffic that need not be

classified, or several protocols and applications unknown to

the classifier. Treating such situations inappropriately leads

to a large increase in the FP rate. To reduce this effect, we

introduced a new class, called others, composed of traces from

diverse applications (Skype, encrypted BitTorrent, HTTP, etc.)

that represents unknown traffic types. Then the problem is

extended to classify a flow to one of the earlier mentioned

P2P protocols, or to others.

The effect of this modification was measured (using ten-

fold cross-validation) on the combined data set composed of

WIRELESS and LAN, including the others traffic class, using

the first 16 bytes of the first packet of each flow. A comparison

of the results, presented in Figure 6, to the case without the

others class (cf. Figure 1) shows that the TP ratio (for the better

algorithms) is only slightly decreased for most of the P2P

protocols, with the exception of Emule that is often confused

with traffic from the others class. This is also reflected in

the FP ratio, where high values can mostly be observed for

Emule (and for PPLive in case of the MARKOV classifier, as

before). The classification results are the worst for the others

class in both TP and FP ratios (worsening substantially the

average TP ratio), but, in fact, here we are most sensitive to

the errors that classify other traffic to a known P2P traffic

(which is reflected in the FP rate of the P2P traffic classes).

The latter type of error seems to be substantial for the RF

algorithm, which has the best performance in the tests without

the others class. The reason for this performance degradation

is that the others class is quite diverse, and it happens that our

classification algorithms see a certain traffic type only in the



Fig. 4. The average TP and FP ratios as functions of the number of bytes used from the first packet for different training set sizes in case of the RANDOM

FOREST classifier.

Fig. 5. The TP and FP ratios for the different protocol classes (for flows) as a function of the number of used bytes in case of RANDOM FOREST.

Fig. 6. Comparison of the different machine learning methods on the aggregated data set extended with the others class.



test set, in which case such traffic may easily get misclassified.

Another important issue in traffic classification, which has

to be taken into account, is the asymmetric nature of routing,

for example, in backbone networks. This phenomenon often

yields that we are able to observe traffic from only one

direction of a flow. To handle this situation, we can apply our

method to the first few payload bytes of the first backward

packet as well (our previous single-packet results always

correspond to the forward direction). Ten-fold cross-validation

performance of the resulting 16-byte RF classifier on the

combined WIRELESS-LAN dataset is shown in Figure 7. The

results indicate that the method is quite applicable for this

scenario and results only a 1−2% performance drop compared

to the classification results based on the forward packets.

Traffic classification algorithms often suffer from the prob-

lem that they behave differently under different network con-

ditions and use features that are specific to the underlying

networks (e.g., connection type). We expect that this is not

the case with our algorithms, as the first 16 bytes of each

flow are unlikely to carry network specific information. To

see how our methods work in changing network environments,

we trained an RF classifier on the WIRELESS data set, and

tested it on LAN. The two data sets were recorded at different

times with different computers and connection types, so our

classifier can only utilize protocol specific similarities. The

tests show very similar performance to the one obtained for the

combined data set, with an approximately 10% drop in the TP

rate for LimeWire (corresponding to the changed proportion of

UDP traffic), while the results for the other classes remained

essentially the same. In case of LimeWire, using some more

bytes may significantly improve the result, as indicated in

Figure 5.

D. The scale and level of noise

In this section we present experimental results concerning

how our algorithms work when the training data is not fully

reliable and is affected by errors. To simulate the presence

of noise, flows with incorrect labels generated by different

applications were added to the training sets. The performance

degradation as a function of noise level using the MARKOVKT

method is shown in Figure 8 (using the first 16 bytes and

ten-fold cross-validation on the WIRELESS dataset); other

classifiers examined in the paper show very similar results.

One can observe that the presence of 10% noise in the

training data slightly decreases the avergage accuracy of

MARKOVKT: for TP ratio the degradation is around 1% while

it is even less for in case of false positives. After a 10% noise

level the performance drops much faster, but our methods

achieve a surprisingly high overall accuracy even if almost

half of the training data is labeled incorrectly: at 40% noise

level the true positive ratio remains still above 84% in flow

numbers and above 88% in byte counts, meanwhile the false

positive values deteriorate even more slowly, being less than

3% and 2% in flow numbers and byte counts, respectively.

The reason behind this phenomenon is that our algorithms are

able to filter out the statistically irrelevant information added

by noises in the training set, and even in the presence of such

Application Class Flows Bytes

BITTORRENT 209764 8447 MB
DC 232 1797 MB
DNS 19819 8 MB
FTP 80 265 MB
GNUTELLA 29776 28 MB
HTTP 89961 4145 MB
IMAP 219 9 MB
POP3 875 29 MB
PPSTREAM 628 139 MB
RTMP 56 44 MB
RTP 139 51 MB
RTSP 90 429 MB
SIP 454 1 MB
SMTP 95 14 MB
Souce engine 2743 0.7 MB
SSH 37 0.1 MB
WAP 865 19 MB
WINDOWS 560 0.1 MB
WOW 17 12 MB
XBOX 12 20 MB
XMPP 66 0.4 MB

Total 356.8 k 15.5 GB
TABLE II

THE AMOUNT OF TRAFFIC IN THE REAL WORLD DATA SET.

an erroneous data the proposed models perform very well. The

main advantage of the techniques based on statistical analysis

of the payload is that they are generally less prone to tiny

inconsistencies and noises in the input data.

V. VERIFICATION ON REAL WORLD TRAFFIC TRACES

After carrying out laboratory experiments, we have also

verified our models on real world traffic traces collected in

the network of a large European ISP. To label the traffic

with real application classes a commercial DPI tool developed

by one of our industrial partners is applied, which is far

more reliable than the publicly available ones. Since this real

data set contains more realistic and diverse network flows

generated by a dozen different applications, it enables a more

complex validation of the proposed techniques. The various

protocols and their proportion in the whole set can be seen

in Table II. One can observe that although the data consists

of hundred thousands of flows carrying approximately 16 GB

data, in contrast to our laboratory traces, it is very unbalanced.

There are protocol classes like SIP and XMPP that are under-

represented while others, such as HTTP and BitTorrent, have

high presence in the overall traffic.

This unbalanced property makes the separation of data

into train and test sets difficult. For overrepresented protocol

classes, a few hundreds flows have been considered as training

data, while in the other cases the limited number of data has

been split into two sets of equal size. The relationship between

the number of bytes used and the true and false positive ratios

for the various methods is shown in Figure 9. Similarly to

the laboratory experiments, one can observe that, in spite

of its simplicity, the very lightweight MARKOVKT method

shows promising classification accuracy, in both true and false

positive ratios. Furthermore, we can also see that using only

the first 32 bytes of the first packet in each flow is enough to

achieve an outstanding performance.

Next, we focus on MARKOVKT and use only the first 32

bytes of the network flows. The confusion matrix for the



Fig. 7. The performance of the RANDOM FOREST classifier using the first 16 bytes of the first backward packet of each flow.

Fig. 8. The performance of the MARKOVKT classifier if the training data is unreliable or noisy.

Fig. 9. True and False Positive ratios for feature vectors with various lengths on real traffic traces.

aggregated results is shown in Figure 10 where the vertical

axis is labeled with the real traffic classes while the horizontal

axis shows the estimates of MARKOVKT. One can observe

that almost all the large values are in the main diagonal,

indicating high classification accuracy. Only a few relevant

outliers belonging to FTP, XBOX and WoW traffic can be

identified. To find out the real reason behind this phenomena,

we have analyzed these classes separately.

For each of these protocols, the number of flows in the

training set is very limited, for example in case of FTP, XBOX

and WoW only 30, 5 and 7 flows are considered, respectively.

Figure 11 shows the true positive ratios together with the

training set sizes. There is a direct correlation between the

number of training flows and the corresponding true positive

ratio. The picture is quite similar for false positive values.

Considering FTP traffic, another issue can be raised, namely,

the majority of the traffic belong to data streams and not

to control ones, for which the payload does not carry any

protocol specific markers, but the user content only. This real

world experiment shows that the proposed very lightweight

approaches could successfully be applied even in presence of

a large number of various protocols.
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TORRENT 0.73 0.00 0.03 0.00 0.02 0.02 0.00 0.06 0.01 0.00 0.06 0.00 0.00 0.01 0.00 0.03 0.00 0.01 0.00

DC 0.00 0.99 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

DNS 0.00 0.00 0.99 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

FTP 0.00 0.00 0.00 0.00 0.00 0.73 0.00 0.23 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.04 0.00 0.00 0.00 0

GNU 0.00 0.00 0.10 0.00 0.73 0.00 0.00 0.17 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.1

HTTP 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.2

IMAP 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.3

POP3 0.00 0.00 0.00 0.00 0.00 0.01 0.02 0.98 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.4

PPST 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.5

RTMP 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.6

RTP 0.00 0.00 0.01 0.00 0.06 0.02 0.00 0.15 0.00 0.02 0.73 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.7

RTSP 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.8

SÍP 0.00 0.00 0.00 0.00 0.00 0.04 0.00 0.00 0.00 0.00 0.00 0.00 0.96 0.00 0.00 0.00 0.00 0.00 0.00 0.9

SMTP 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 1

WAP 0.00 0.00 0.00 0.00 0.00 0.05 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.95 0.00 0.00 0.00 0.00

WIN 0.00 0.00 0.00 0.00 0.00 0.14 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.85 0.00 0.00 0.00

WOW 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.99 0.01 0.00 0.00

XBOX 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.66 0.00 0.00 0.00 0.00 0.00 0.00 0.34 0.00

XMPP 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00

Fig. 10. The confusion matrix showing the proportion of correctly classified
bytes.



Fig. 11. The achieved TP ratios on the real network data compared with the
training set sizes. (Note: training set sizes are displayed on logarithmic scale.)

VI. LIMITATIONS

In this section we discuss the limitations of our early-

classification approach, which need to be addressed via differ-

ent techniques. First of all, since our methods purely depend

on the payload of the network traffic, encrypted network flows

cannot be handled at all. On the other hand, the vast majority

of today’s Internet traffic is still unencrypted. Although the

proportion of encrypted traffic will likely increase in the near

future, it is expected that a significant portion of the total traffic

will remain unencrypted, due to several reasons, for example,

since encryption requires a lot of computational resources

(hence quickly reduces the battery life of mobile devices) and

is not necessary for most of the applications.

Another issue we have to deal with is related to encapsu-

lation when the content of a given application is embedded

into another trusted protocol like HTTP. Several applications

use this technique to go through firewalls. If a protocol is

embedded into simple HTTP, despite the unencrypted data the

proposed techniques would identify the carrying HTTP instead

of the real applications. Our methodology in its current form

is not prepared for such situations when the payload does not

start with the protocol specific content. However, this can be

solved by the segmentation of HTTP/HTML messages. To this

end, the embedded content has to be searched for, extracted,

and than the proposed technique can easily be applied for the

separate segments.

Furthermore, by their nature, our methods are vulnerable to

countermeasures when a malicious user injects some arbitrary

bytes into the beginning of the payloads to mislead the

classifier. Fortunately, it is not the general case, and most of

the users use the network protocols as they are. If, however,

a malicious user modifies the payload, the accuracy of our

methods may substantially degrade. This problem may be

alleviated by looking for the most protocol specific parts of

the payload during the training instead of using the first bytes

of the flows. As we mentioned before, this issue is already

present in case of UDP-based LimeWire traffic, where the

first 16 bytes do not follow a well defined protocol specific

pattern. This phenomena may have various reasons: the first

bytes carry increasing sequence numbers, random identifiers,

filenames, etc.

However, if the training set is large enough and contains

accurate class labels, only a slight effect on the accuracy of

our approaches is expected to have. Finally, we also have to

mention that in commercial products it is not uncommon to

have hundreds of application classes to be handled. Although

the most widely used protocols are considered in the experi-

ments of this paper, the protocol portfolio will certainly change

in the future, and new protocols should also be considered.

We expect that our methods would scale up well to such

problems and achieve similarly good performance in general.

Nevertheless, with the number of traffic classes increasing, our

methods might become more sensitive to the above mentioned

limitations (e.g., if more and more new protocols start with

random strings).

In spite of the revealed limitations, the proposed tech-

niques show sufficiently good performance even in real world

environments. Furthermore, since they have extremely low

computational and storage complexities and can easily be

implemented even in hardware, they could serve as lightweight

pre-classifiers that can efficiently label or even filter out

wanted or unwanted traffic in the very early stage of a byte

flow. If the methods are applied for prescreening, one can

also consider a refined version of the algorithms where the

classifiers also report the uncertainty of their label predictions

(e.g., based on similar measurements as reported in Figure 10),

and further, more resource-intensive methods can be applied

to deal with the hard cases where the uncertainty of our

algorithms is high.

VII. CONCLUSION AND FUTURE WORK

In this paper we showed that effective classification of P2P

traffic can be performed based on the first few bytes of the

first packet of each flow. The proposed classifiers are based

on standard stochastic models and state-of-the-art machine

learning methods (such as random forests, Markov-models or

context trees) and can reach a remarkable accuracy over 95%
using as limited data as the first 16 bytes of the first (or the first

backward) packet of each flow. This result is competitive to

other state-of-the-art algorithms. The advantage of our method

is that, unlike traditional DPIs, no human expertise is needed

to design the appropriate signatures, and only a collection of

sample flows from each class is necessary. The data collection

step is especially easy since the sample flows may be generated

in a completely artificial environment, alleviating the problem

of obtaining the ground truth for traffic measurements made

in real networks.

A thorough performance analysis was made on both labora-

tory and real world traffic traces to examine the accuracy of our

algorithms. The laboratory tests were carried out on actively

collected data: in this case the ground truth is known without

doubt, but the traffic patterns are less realistic than in real

traces. However, we believe that the fact that our algorithms

use only the first 16 bytes of the flows makes our method less

sensitive to such errors (apart from the fact that the TP and FP

rates are highly dependent on the composition of the whole

data set).

While during laboratory experiments only a few P2P pro-

tocols were taken into account, we also showed how the

proposed techniques scale up to handle a large number of



various protocol types that may appear in real world traffic.

To this end, the proposed methods were also validated on a

much more diverse data set collected in the network of a large

European ISP, and achieved surprisingly good accuracy for

the majority of the protocol types on these real traces. We

also considered the problem of handling previously unseen

traffic types, and showed training methods to deal with such

problems.
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