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Abstract

We consider a sequential learning problem with Gaussian payoffs and side in-
formation: after selecting an action i, the learner receives information about the
payoff of every action j in the form of Gaussian observations whose mean is the
same as the mean payoff, but the variance depends on the pair (i, j) (and may be
infinite). The setup allows a more refined information transfer from one action to
another than previous partial monitoring setups, including the recently introduced
graph-structured feedback case. For the first time in the literature, we provide
non-asymptotic problem-dependent lower bounds on the regret of any algorithm,
which recover existing asymptotic problem-dependent lower bounds and finite-
time minimax lower bounds available in the literature. We also provide algorithms
that achieve the problem-dependent lower bound (up to some universal constant
factor) or the minimax lower bounds (up to logarithmic factors).

1 Introduction

Online learning in stochastic environments is a sequential decision problem where in each time step
a learner chooses an action from a given finite set, observes some random feedback and receives
a random payoff. Several feedback models have been considered in the literature: The simplest is
the full information case where the learner observes the payoff of all possible actions at the end
of every round. A popular setup is the case of bandit feedback, where the learner only observes
its own payoff and receives no information about the payoff of other actions [1]. Recently, several
papers considered a more refined setup, called graph-structured feedback, that interpolates between
the full-information and the bandit case: here the feedback structure is described by a (directed)
graph, and choosing an action reveals the payoff of all actions that are connected to the selected one,
including the chosen action itself. This problem, motivated for example by social networks, has been
studied extensively in both the adversarial [2, 3, 4, 5] and the stochastic cases [6, 7]. However, most
algorithms presented heavily depend on the self-observability assumption (that is, that the payoff
of the selected action can be observed). Removing this self-loop assumption leads to the so-called
partial monitoring case [5]. In the absolutely general partial monitoring setup the learner receives
some general feedback that depends on its choice (and the environment), with some arbitrary (but
known) dependence [8, 9]. While the partial monitoring setup covers all other problems, its analysis
has concentrated on the finite case where both the set of actions and the set of feedback signals
are finite [8, 9], which is in contrast to the standard full information and bandit settings where the
feedback is typically assumed to be real-valued. The only exception to this case is the work of [5],
which considers graph-structured feedback without the self-loop assumption.

In this paper we consider a generalization of the graph-structured feedback model that can also be
viewed as a general partial monitoring model with real-valued feedback. We assume that selecting
an action i the learner can observe a random variable Xij for each action j whose mean is the same
as the payoff of j, but its variance σ2

ij depends on the pair (i, j). For simplicity, throughout the paper
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we assume that all the payoffs and the Xij are Gaussian. While in the graph-structured feedback
case one either has observation on an action or not, but the observation always gives the same amount
of information, our model is more refined: Depending on the value of σij , the information can be
of different quality. For example, if σ2

ij = ∞, trying action i gives no information about action j.
In general, for any σ2

ij < ∞, the value of the information depends on the time horizon T of the
problem: when σ2

ij is large relative to 1/
√
T (and the payoff differences of the actions) essentially

no information is received, while a small variance results in useful observations.

After defining the problem formally in Section 2, we provide non-asymptotic problem-dependent
lower bounds in Section 3, which depend on the distribution of the observations through their mean
payoffs and variances. To our knowledge, these are the first such bounds presented for any stochas-
tic partial monitoring problem beyond the full-information setting: previous work either presented
asymptotic problem-dependent lower bounds (e.g., [10, 7]), or finite-time minimax bounds (e.g.,
[9, 3, 5]). Our bounds can recover all previous bounds up to some universal constant factors not de-
pending on the problem. In Section 4, we present two algorithms with finite-time performance
guarantees for the case of graph-structured feedback without the self-observability assumption.
While due to their complicated forms it is hard to compare our finite-time upper and lower bounds,
we show that our first algorithm achieves the asymptotic problem-dependent lower bound up to
problem-independent multiplicative factors. Regarding the minimax regret, the hardness (Θ̃(T 1/2)

or Θ̃(T 2/3) regret) of partial monitoring problems is characterized by their global/local observability
property [9] or, in case of the graph-structured feedback model, by their strong/weak observability
property [5]. In the same section we present another algorithm that achieves the minimax regret
(up to logarithmic factors) under both strong and weak observability, and achieves an O(log3/2 T )
problem-dependent regret. Earlier results for the stochastic graph-structured feedback problems
[6, 7] provided only asymptotic problem-dependent lower bounds and performance bounds that did
not match the asymptotic lower bounds or the minimax rate up to constant factors. Finally, we draw
conclusions and consider some interesting future directions in Section 5. Due to space constraints,
all proofs are deferred to the appendix.

2 Problem Formulation

Formally, we consider an online learning problem with Gaussian payoffs and side observations:
Suppose a learner has to choose from K actions in every round. When choosing action, the learner
receives a random payoff and also some side observation corresponding to other actions. More
precisely, each action i ∈ [K] = {1, . . . ,K} is associated with some parameter θi, and the payoff
Yt,i to action i in round t is normally distributed random variable with mean θi and variance σ2

ii,
while the learner observes a K-dimensional Gaussian random vector Xt,i whose jth coordinate is a
normal random variable with mean θj and variance σ2

ij (we assume σij ≥ 0) and the coordinates of
Xt,i are independent of each other. We assume the following: (i) the random variables (Xt, Yt)t are
independent for all t; (ii) the parameter vector θ is unknown to the learner but it knows the variance
matrix Σ = (σ2

ij)i,j∈[K] in advance; (iii) θ ∈ [0, D] for some D > 0 ; (iv) mini∈[K] σij ≤ σ < ∞,
that is, the expected payoff of each action can be observed.

The goal of the learner is to maximize its payoff or, in other words, minimize the expected regret

RT = T max
i∈[K]

θi −
T∑
t=1

E [Yt,it ]

where it is the action selected by the learner in round t.

Note that the problem encompasses several common feedback models considered in online learning
(modulo the Gaussian assumption), and makes it possible to examine more delicate observation
structures:

Full information: σij = σj <∞ for all i, j ∈ [K].
Bandit: σii <∞ and σij =∞ for all i 6= j ∈ [K].
Partial monitoring with feedback graphs [5]: Each action i ∈ [K] is associated with an observa-

tion set Si ⊂ [K] such that σij = σj if j ∈ Si and σij =∞ otherwise.
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We will call the uniform variance version of these problems when all the finite σij are equal to some
σ ≥ 0. Some interesting features of the problem can be seen when considering the asymptotically
full information case , when all entries of Σ are finite. In this case, the greedy algorithm, which
estimates the payoff of each action by the average of the corresponding observed samples and selects
the one with the highest average, achieves at most a constant regret for any time horizon T .1 On the
other hand, the constant can be quite large: in particular, when the variance of some observations
are large relative to the gaps di = maxi θi− θi, the situation is rather similar to a partial monitoring
setup for a smaller, finite time horizon. In this paper we are going to analyze this problem and
present algorithms and lower bounds that are able to “interpolate” between these cases and capture
the characteristics of the different regimes.

2.1 Notation

LetCN
T = {c ∈ NK : ci ≥ 0 ,

∑
i∈[K] ci = T} andN(T ) ∈ CT denote the number of plays over all

actions taken by some algorithm in T rounds. Also let CR
T = {c ∈ RK : ci ≥ 0 ,

∑
i∈[K] ci = T}.

We will consider environments with different expected payoff vectors θ ∈ Θ, but the variance matrix
Σ will be fixed. Therefore, an environment can be specified by θ; oftentimes, we will explicitly de-
note the dependence of different quantities on θ: The probability and expectation functionals under
environment θ will be denoted by Pr (·; θ) and E [·; θ], respectively. Furthermore, let ij(θ) be the jth
best action (ties are broken arbitrarily, i.e., θi1 ≥ θi2 ≥ · · · ≥ θIK ) and define di(θ) = θi1(θ)−θi for
any i ∈ [K]. Then the expected regret under environment θ is RT (θ) =

∑
i∈[K] E [Ni(T ); θ] di(θ).

For any action i ∈ [K], let Si = {j ∈ [K] : σij <∞} denote the set of actions whose parameter
θj is observable by choosing action i. Throughout the paper, log denotes the natural logarithm and
∆n denotes the n-dimensional simplex for any positive integer n.

3 Lower Bounds

The aim of this section is to derive generic, problem-dependent lower bounds to the regret, which
are also able to provide minimax lower bounds. The hardness in deriving such bounds is that for
any fixed θ and Σ, the dumb algorithm that always selects i1(θ) achieves zero regret (the regret of
this algorithm is linear for any θ′ with i1(θ) 6= i1(θ′)), so in general it is not possible to give a
lower bound for a single instance. When deriving asymptotic lower bounds, this is circumvented by
only considering consistent algorithms whose regret is sub-polynomial for any problem [10]. How-
ever, this asymptotic notion of consistency is not applicable to finite-horizon problems. Therefore,
following [11], for any problem we create a family of related problems (by perturbing the mean
payoffs) such that if the regret of an algorithm is “too small” in one of the problems than it will be
“large” in another one.

As a warm-up, and to show the reader what form of a lower bound can be expected, first we present
an asymptotic lower bound for the uniform-variance version of the problem of partial monitoring
with feedback graphs. The result presented below is an easy consequence of [10], hence its proof
is omitted. An algorithm is said to be consistent if supθ∈ΘRT (θ) = o(T γ) for every γ > 0. Now
assume for simplicity that there is a unique optimal action in environment θ, that is, θi1(θ) > θi for
all i 6= i1 and let

Cθ =

c ∈ [0,∞)K :
∑
i:j∈Si

ci ≥
2σ2

d2
j (θ)

∀j 6= i1(θ) ,
∑

i:i1(θ)∈Si

ci ≥
2σ2

d2
i2(θ)(θ)

 .

Then, for any consistent algorithm and for any θ with θi1(θ) > θi2(θ),

lim inf
T→∞

RT (θ)

log T
≥ inf
c∈Cθ

〈c, d(θ)〉 . (1)

Note that the right hand side of (1) is 0 for any generalized full information problem (recall that
the expected regret is bounded by a constant for such problems), but it is a finite positive number

1To see this, notice that the error of identifying the optimal action decays exponentially with the number of
rounds.
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for other problems. Similar bounds have been provided in [6, 7] for graph-structured feedback with
self-observability (under non-Gaussian assumptions on the payoffs). In the following we derive
finite time lower bounds that are also able to replicate this result.

3.1 A General Finite Time Lower Bound

First we derive a general lower bound. For any θ, θ′ ∈ Θ and q ∈ ∆|C
N
T |, define f(θ, q, θ′) as

f(θ, q, θ′) = inf
q′∈∆|C

N
T
|

∑
a∈CN

T

q′(a) 〈a, d(θ′)〉

s.t.
∑
a∈CN

T

q(a) log
q(a)

q′(a)
≤
∑
i∈[K]

Ii(θ, θ′) ∑
a∈CN

T

q(a)ai

 ,

where Ii(θ, θ
′) is the KL-divergence between Xt,i(θ) and Xt,i(θ

′), given by Ii(θ, θ
′) =

KL(Xt,i(θ);Xt,i(θ
′)) =

∑K
j=1(θj − θ′j)2/2σ2

ij . Clearly, f(θ, q, θ′) is a lower bound on RT (θ′)

for any algorithm for which the distribution of N(T ) is q. The intuition behind the allowed values
of q′ is that we want q′ to be as similar to q as the environments θ and θ′ look like for the algorithm
(through the feedback (Xt,it)t). Now define

g(θ, c) = inf
q∈∆|C

N
T
|

sup
θ′∈Θ

f(θ, q, θ′), such that
∑
a∈CN

T

q(a)a = c.

g(θ, c) is a lower bound of the worst-case regret of any algorithm with E [N(T ); θ] = c. Finally, for
any x > 0, define

b(θ, x) = inf
c∈Cθ,x

〈c, d(θ)〉 where Cθ,x = {c ∈ CR
T ; g(θ, c) ≤ x}.

Here Cθ,B contains all the value of E [N(T ); θ] that can be achieved by some algorithm whose
lower bound g on the worst-case regret is smaller than x. These definitions give rise to the following
theorem:

Theorem 1. Given any B > 0, for any algorithm such that supθ′∈ΘRT (θ) ≤ B, we have, for any
environment θ ∈ Θ, RT (θ) ≥ b(θ,B).

Remark 2. If B is picked as the minimax value of the problem given the observation structure Σ,
the theorem states that for any minimax optimal algorithm the expected regret for a certain θ is lower
bounded by b(θ,B).

3.2 A Relaxed Lower Bound

Now we introduce a relaxed but more interpretable version of the finite-time lower bound of Theo-
rem 1, which can be shown to match the asymptotic lower bound (1). The idea of deriving the lower
bounds is the following: instead of ensuring that the algorithm performs well in the most adversarial
environment θ′, we consider a set of “bad” environments and make sure that the algorithm performs
well on them, where each “bad” environment θ′ is the most adversarial one by only perturbing one
coordinate θi of θ.

However, in order to get meaningful finite-time lower bounds, we need to perturb θ more carefully
than in the case of asymptotic lower bounds. The reason for this is that for any sub-optimal action i,
if θi is very close to θi1(θ), then E [Ni(T ); θ] is not necessarily small for a good algorithm for θ. If it
is small, one can increase θi to obtain an environment θ′ where i is the best action and the algorithm
performs bad; otherwise, when E [Ni(T ); θ] is large, we need to decrease θi to make the algorithm
perform badly in θ′. Moreover, when perturbing θi to be better than θi1(θ), we cannot make θ′i−θi1(θ)

arbitrarily small as in asymptotic lower-bound arguments, because when θ′i − θi1(θ) is small, large
E
[
Ni1(θ); θ

′] and not necessarily large E [Ni(T ); θ′] may lead to low finite-time regret in θ′. In the
following we make this argument precise to obtain an interpretable lower bound.
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3.2.1 Formulation

We start with defining a subset of CR
T that contains the set of “reasonable” values for E [N(T ); θ].

For any θ ∈ Θ and B > 0, let

C ′θ,B =

c ∈ CR
T :

K∑
j=1

cj
σ2
ji

≥ mi(θ,B) ,∀i ∈ [K]


where the mi are defined as follows: For i 6= i1, if θi1 = D, then mi(θ,B) = 0. Otherwise let

m+
i (θ,B) = max

ε∈(di(θ),D−θi]

1

ε2
log

T (ε− di(θ))
8B

,

m−i (θ,B) = max
ε∈(0,θi]

1

ε2
log

T (ε+ di(θ))

8B
,

and let εi,+ and εi,− denote the value of ε achieving the maximum in mi,+ and mi,−, respectively.
Then, define

mi(θ,B) =

{
mi,+(θ,B) if di(θ) ≥ 4B/T ;

min {mi,+(θ,B),mi,−(θ,B)} if di(θ) < 4B/T .

For i = i1, then mi1(θ,B) = 0 if θi2(θ) = 0, else the definitions for i 6= i1 change by replacing
di(θ) with di2(θ)(θ) (and switching the + and − indices): let

mi1(θ),−(θ,B) = max
ε∈(di2(θ)(θ),θi1(θ)]

1

ε2
log

T (ε− di2(θ)(θ))

8B
,

mi1(θ),−(θ,B) = max
ε∈(0,D−θi1(θ)]

1

ε2
log

T (ε+ di2(θ)(θ))

8B

where εi1(θ),− and εi1(θ),+ are the maximizers for ε in the above expressions. Then, define

mi1(θ)(θ,B) =

{
mi1(θ),−(θ,B) if di2(θ)(θ) ≥ 4B/T ;

min
{
mi1(θ),+(θ,B),mi1(θ),−(θ,B)

}
if di2(θ)(θ) < 4B/T .

Note that εi,+ and εi,− can be expressed in closed form using the Lambert WR → R function
satisfying W (x)eW (x) = x: by Lemma 12 and Lemma 13 in Appendix A.2, for any i 6= i1(θ),

εi,+ = min

{
D − θi ,

8
√
eB

T
e
W

(
di(θ)T

16
√
eB

)
+ di(θ)

}
, (2)

εi,− = min

{
θi ,

8
√
eB

T
e
W

(
− di(θ)T

16
√
eB

)
− di(θ)

}
,

and similar results hold for i = i1, as well.

Now we can give the main result of this section, a simplified version of Theorem 1:
Corollary 3. Given B > 0, for any algorithm such that supλ∈ΘRT (λ) ≤ B, we have, for any
environment θ ∈ Θ, RT (θ) ≥ b′(θ,B) = minc∈C′θ,B 〈c, d(θ)〉.

Next we compare this bound to existing lower bounds.

3.2.2 Comparison to the Asymptotic Lower Bound of (1)

Next we will show that our finite lower bound in Corollary 3 matches the asymptotic lower bound
in (1) up to some constants.

Pick B = αT β for some α > 0 and 0 < β < 1. For simplicity, we only consider θ which is “away
from” the boundary of Θ (so that the minimum in (2) is not achieved on the boundary) and has a
unique optimal action. Then, for i 6= i1(θ), it is easy to show that εi,+ = di(θ)

2W (di(θ)T 1−β/(16α
√
e))

+

di(θ) by (2) and mi(θ,B) = 1
ε2i,+

log
T (εi,+−di(θ))

8B for large enough T . Then, using the fact that

log x − log log x ≤ W (x) ≤ log x for x ≥ e, it follows that limT→∞mi(θ,B)/ log T = (1 −
β)/d2

i (θ), and similarly we can show that limT→∞mi1(θ)(θ,B)/ log T = (1−β)/d2
i2(θ)(θ). Thus,

C ′θ,B →
2 log T
1−β Cθ, under the assumptions of (1), as T →∞. This implies that Corollary 3 matches

the asymptotic lower bound of (1) up to a factor of (1− β)/2.
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3.2.3 Comparison to Minimax Bounds

Now we will show that our θ-dependent finite-time lower bound reproduces the minimax regret
bounds of [2] and [5], except for the generalized full information case.

The minimax bounds depend on the following notion of observability: An action i is strongly ob-
servable if either i ∈ Si or [K] \ {i} ⊂ {j : i ∈ Sj}. i is weakly observable if it is not strongly
observable but there exists j such that i ∈ Sj (note that we already assumed the latter condition for
all i). LetW(Σ) be the set of all weakly observable actions. Σ is said to be strongly observable if
W(Σ) = ∅. Σ is weakly observable ifW(Σ) 6= ∅.
Next we will define two key qualities introduced by [2] and [5] that characterize the hardness of a
problem instance with feedback structure Σ: A set A ⊂ [K] is called an independent set if for any
i ∈ A, Si ∩ A ⊂ {i}. The independence number κ(Σ) is defined as the cardinality of the largest
independent set. For any pair of subsetsA,A′ ⊂ [K],A is said to be dominatingA′ if for any j ∈ A′
there exists i ∈ A such that j ∈ Si. The weak domination number ρ(Σ) is defined as the cardinality
of the smallest set that dominatesW(Σ).

Corollary 4. Assume that σij = ∞ for some i, j ∈ [K], that is, we are not in the generalized full
information case. Then,

(i) if Σ is strongly observable, with B = ασ
√
κ(Σ)T for some α > 0, we have

supθ∈Θ b
′(θ,B) ≥ σ

√
κ(Σ)T

64eα for T ≥ 64e2α2σ2κ(Σ)3/D2.

(ii) If Σ is weakly observable, with B = α(ρ(Σ)D)1/3(σT )2/3 log−2/3K for some α > 0, we

have supθ∈Θ b
′(θ,B) ≥ (ρ(Σ)D)1/3(σT )2/3 log−2/3K

51200e2α2 .

Remark 5. In Corollary 4, picking α = 1
8
√
e

for strongly observable Σ and α = 1
73 for weakly

observable Σ gives formal worst case lower bounds: (i) If Σ is strongly observable, for any algorithm

we have supθ∈ΘRT (θ) ≥ σ
√
κ(Σ)T

8
√
e

for T ≥ eσ2κ(Σ)3/D2. (ii) If Σ is weakly observable, for any

algorithm we have supθ∈ΘRT (θ) ≥ (ρ(Σ)D)1/3(σT )2/3

73 log2/3K
.

4 Algorithms

In this section we present two algorithms and their finite-time analysis for the uniform variance
version of our problem (where σij is either σ or∞). The upper bound for the first algorithm matches
the asymptotic lower bound in (1) up to constants. The second algorithm achieves the minimax lower
bounds of Corollary 4 up to logarithmic factors, as well as O(log3/2 T ) problem-dependent regret.
In the problem-dependent upper bounds of both algorithms, we assume that the optimal action is
unique, that is, di2(θ)(θ) > 0.

4.1 An Asymptotically Optimal Algorithm

Let c(θ) = argminc∈C(θ) 〈c, d(θ)〉; note that increasing ci1(θ)(θ) does not change the value of
〈c, d(θ)〉 (since di1(θ)(θ) = 0), so we take the minimum value of ci1(θ)(θ) in this definition. Let
ni(t) =

∑t−1
s=1 I {i ∈ Sis} be the number of observations for action i before round t and θi,t be the

empirical estimate of θi based on the first ni(t) observations. Let Ni(t) =
∑t−1
s=1 I {is = i} be the

number of plays for action i before round t. Note that this definition of Ni(t) is different from that
in the previous sections since it excludes the round t.

Our first algorithm is presented in Algorithm 1. The main idea, coming from [12], is that by forcing
exploration over all actions the solution c(θ) of the linear program can be well approximated while
paying a constant price. This solves the main difficulty that, without getting enough observations
on each action, we may not have good enough estimates for d(θ) and c(θ). One advantage of our
algorithm compared to that of [12] is that we use a sublinear exploration schedule β(n) instead
of a constant rate β(n) = βn. This resolves the problem that, to achieve asymptotically optimal
performance, some parameter of the algorithm needs to be chosen according to dmin(θ) as in [12].
The expected regret of Algorithm 1 is upper bounded as follows:
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Algorithm 1
1: Inputs: Σ, β(n), α.
2: For t = 1, ...,K, observe each action i at least once by playing it such that t ∈ Sit .
3: Set exploration count ne(K + 1) = 0.
4: for t = K + 1,K + 2, ... do
5: if N(t)

4α log t ∈ C(θ̂t) then
6: Play it = i1(θ̂t).
7: Set ne(t+ 1) = ne(t).
8: else
9: if mini∈[K] ni(t) < β(ne(t))/K then

10: Play it such that argmini∈[K] ni(t) ∈ Sit .
11: else
12: Play it such that Ni(t) < ci(θ̂t)4α log t.
13: end if
14: Set ne(t+ 1) = ne(t) + 1.
15: end if
16: end for

Theorem 6. For any θ ∈ Θ, ε > 0, α > 2 and any non-decreasing β(n) that satisfies 0 ≤ β(n) ≤
n/2 and β(m+ n) ≤ β(m) + β(n) for m,n ∈ N,

RT (θ) ≤
(

2K + 2 +
4K

α− 2

)
dmax(θ) + 4Kdmax(θ)

T∑
s=0

exp

(
−β(s)ε2

2Kσ2

)

+ 2dmax(θ)β

4α log T
∑
i∈[K]

ci(θ, ε) +K

+ 4α log T
∑
i∈[K]

ci(θ, ε)di(θ) .

where ci(θ, ε) = sup{ci(θ′) : |θ′i − θi| ≤ ε ∀i ∈ [K]}.

Further specifying β(n) and using the continuity of c(θ) around θ, it immediately follows that Al-
gorithm 1 achieves asymptotically optimal performance:
Corollary 7. Suppose the conditions of Theorem 6 hold. Assume, furthermore, that β(n) satisfies

β(n) = o(n) and
∑∞
s=0 exp

(
−β(s)ε2

2Kσ2

)
<∞ for any ε > 0, then for any θ such that c(θ) is unique,

lim sup
T→∞

RT (θ)/ log T ≤ 4α inf
c∈C(θ)

〈c, d(θ)〉 .

Note that any β(n) = anb with a ∈ (0, 1
2 ], b ∈ (0, 1) satisfies the requirements in Theorem 6 and

Corollary 7. Also note that the algorithms presented in [6, 7] do not achieve this asymptotic bound.

4.2 A Minimax Optimal Algorithm

For any A,A′ ⊂ [K], define c(A,A′) = argmaxc∈∆|A| mini∈A′
∑
j:i∈Sj cj (ties are broken ar-

bitrarily) and m(A,A′) = mini∈A′
∑
j:i∈Sj cj(A,A

′). For any A ⊂ [K] and |A| ≥ 2, define

AS = {i ∈ A : ∃j ∈ A, i ∈ Sj} and AW = A−AS . Furthermore, let gi,r(δ) = σ
√

2 log(8K2r3/δ)
ni(r)

where ni(r) =
∑r−1
s=1 ir,i and θ̂i,r be the empirical estimate of θi based on first ni(r) observations

(i.e., the average of the samples).

Our second algorithm, presented in Algorithm 2, follows a successive elimination process: it ex-
plores all possibly optimal actions (called “good actions” later) based on some confidence intervals
until only one action remains. While doing exploration, it first tries to explore the good actions by
only using good ones. However, due to weak observability, some good actions might have to be
explored by the actions that are eliminated. To control this exploration-exploitation trade off, we
use a sublinear function γ to control the exploration of weakly observable actions. In the following
we present high-probability bounds on the performance of the algorithm, so, with a slight abuse of
notation, RT (θ) will denote the regret without expectation in the rest of this section.
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Algorithm 2
1: Inputs: Σ, δ.
2: Set t1 = 0, A1 = [K].
3: for r = 1, 2, ... do
4: Let αr = min1≤s≤r,AWs 6=∅m([K] , AWs ) and γ(r) = (σαrtr/D)2/3. ( Define αr = 1 if

AWs = ∅ for all 1 ≤ s ≤ r.)
5: if AWr 6= ∅ and mini∈AWr ni(r) < mini∈ASr ni(r) and mini∈AWr ni(r) < γ(r) then
6: Set cr = c([K] , AWr ).
7: else
8: Set cr = c(Ar, A

S
r ).

9: end if
10: Play ir = dcr · ‖cr‖0e.
11: tr+1 ← tr + ‖ir‖1.
12: Ar+1 ← {i ∈ Ar : θ̂i,r+1 + gi,r+1(δ) ≥ maxj∈Ar θ̂j,r+1 − gj,r+1(δ)}.
13: if |Ar+1| = 1 then
14: Play the only action in the remaining rounds.
15: end if
16: end for

Theorem 8. For any δ ∈ (0, 1) and any θ ∈ Θ,

RT (θ) ≤ (ρ(Σ)D)1/3(σT )2/3 · 7
√

6 log(2KT/δ) + 125σ2K3/D + 13K3D

with probability at least 1− δ if Σ is weakly observable, while

RT (θ) ≤ 2KD + 80σ

√
κ(Σ)T · 6 logK log

2KT

δ
with probability at least 1− δ if Σ is strongly observable.
Theorem 9 (Problem-dependent upper bound). For any δ ∈ (0, 1) and any θ ∈ Θ such that the
optimal action is unique, with probability at least 1− δ,

RT (θ) ≤ 1603ρ(Σ)Dσ2

d2
min(θ)

(
log

2KT

δ

)3/2

+ 14K3D +
125σ2K3

D

+ 15
(
ρ(Σ)Dσ2

)1/3(125σ2

D2
+ 10

)
K2

(
log

2KT

δ

)1/2

.

Remark 10. Picking δ = 1/T gives an O
(

log3/2 T
)

upper bound on the expected regret.

Remark 11. Note that Algortihm 2 is similar to the UCB-LP algorithm of [7], which admits a bet-
ter problem-dependent upper bound (although does not achieve it with optimal problem-dependent
constants), but it does not achieve the minimax bound even under strong observability.

5 Conclusions and Open Problems

We considered a novel partial-monitoring setup with Gaussian side observations, which generalizes
the recently introduced setting of graph-structured feedback, allowing finer quantification of the
observed information from one action to another. We provided non-asymptotic problem-dependent
lower bounds that imply existing asymptotic problem-dependent and non-asymptotic minimax lower
bounds (up to some constant factors) beyond the full information case. We also provided an algo-
rithm that achieves the asymptotic problem-dependent lower bound (up to some universal constants)
and another algorithm that achieves the minimax bounds under both weak and strong observability.

However, we think this is just the beginning. For example, we currently have no algorithm that
achieves both the problem dependent and the minimax lower bounds at the same time. Also, our
upper bounds only correspond to the graph-structured feedback case. It is of great interest to go
beyond the weak/strong observability in characterizing the harness of the problem, and provide
algorithms that can adapt to any correspondence between the mean payoffs an the variances (the
hardness is that one needs to identify suboptimal actions with good information/cost trade-off).

8



Acknowledgments

This work was supported by the Alberta Innovates Technology Futures through the Alberta Ingenuity
Centre for Machine Learning (AICML) and NSERC. During this work, A. György was with the
Department of Computing Science, University of Alberta.

References
[1] S. Bubeck and N. Cesa-Bianchi. Regret analysis of stochastic and nonstochastic multi-armed

bandit problems. Foundations and Trends in Machine Learning, 5(1):1–122, 2012.
[2] S. Mannor and O. Shamir. From bandits to experts: On the value of side-observations. In

Advances in Neural Information Processing Systems 24 (NIPS-2011), 2011.
[3] Noga Alon, Nicolo Cesa-Bianchi, Claudio Gentile, and Yishay Mansour. From bandits to ex-

perts: A tale of domination and independence. In Advances in Neural Information Processing
Systems 26 (NIPS-2013), pages 1610–1618, 2013.

[4] Tomáš Kocák, Gergely Neu, Michal Valko, and Rémi Munos. Efficient learning by implicit
exploration in bandit problems with side observations. In Advances in Neural Information
Processing Systems (NIPS), pages 613–621, 2014.
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A Proofs for Section 3

A.1 Proof of Theorem 1

Let φθ,σ denote the density function of aK-dimensional Gaussian random variable with mean vector
θ and independent components wehere the variance of the ith coordinate is σ2

i , and define LT =∑T
t=1 log

φθ,σit
(Xt,it )

φθ′,σit
(Xt,it )

where it is the choice of the algorithm in round t. Let q, q′ ∈ ∆|C
N
T | denote

the joint distribution over the number of plays for each action under environment θ and θ′ ∈ Θ,
respectively, that is, q(a) = Pr (N(T ) = a; θ) and q′(a) = Pr (N(T ) = a; θ′) for each a ∈ CN

T .

For any a ∈ CN
T , applying a standard change of measure equality (see, e.g., [13, Lemma 15]), we

obtain

q′(a) = Pr (N(T ) = a; θ′) = E [I {N(T ) = a} exp(−LT ); θ]

= E [I {N(T ) = a}E [exp(−LT )|N(T ) = a; θ] ; θ]

≥ E [I {N(T ) = a} exp (E [−LT |N(T ) = a; θ]) ; θ]

= Pr (N(T ) = a; θ) exp (E [−LT |N(T ) = a; θ])

= q(a) exp (E [−LT |N(T ) = a; θ]) .

Thus E [LT |N(T ) = a; θ] ≥ log q(a)
q′(a) and so∑

i∈[K]

E [Ni(T ); θ] Ii(θ, θ
′) = E [LT ; θ]

=
∑
a∈CN

T

Pr (N(T ) = a; θ)E [LT |N(T ) = a; θ] ≥
∑
a∈CN

T

q(a) log
q(a)

q′(a)
,

where E [Ni(T ); θ] =
∑
a∈CN

T
q(a)ai. Therefore, according to the definition of f(θ, q, θ′), we

have f(θ, q, θ′) ≤
∑
a∈CN

T
q′(a) 〈a, d(θ′)〉 = RT (θ′) for any θ′ ∈ Θ. Then supθ′∈Θ f(θ, q, θ′) ≤

supθ′∈ΘRT (θ′) ≤ B must hold. Since E [N(T ); θ] =
∑
a∈CN

T
q(a)a we have g(θ,E [N(T ); θ]) ≤

supθ′∈Θ f(θ, q, θ′) ≤ B. Thus E [N(T ); θ] ∈ Cθ,B and so RT (θ) ≥ b(θ,B), which concludes the
proof of Theorem 1.

A.2 Proof of Corollary 3

We start the proof with two technical lemmas on the Lambert W function.
Lemma 12. Let a, b > 0 with ab < 1 and f(x) = 1

x2 log ((x+ a)b) for x > 0. Then f(x) ≤ f(x∗)
for all x > 0 where

x∗ =

√
e

b
e
W

(
− ab

2
√
e

)
− a .

Lemma 13. Let a, b > 0 and f(x) = 1
x2 log ((x− a)b) for x > a. Then f(x) ≤ f(x∗) for all

x > a where

x∗ =

√
e

b
e
W

(
ab

2
√
e

)
+ a .

Proof of Lemma 13.

f ′(x) =
x−3

x− a
(x− 2(x− a) log ((x− a)b)) .

Let g(y) = y + a− 2y log by defined on y > 0.

g′(y) = −2 log yb− 1

So g(y) is increasing when 0 < y < 1
b
√
e

and decreasing when y > 1
b
√
e
.
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Since limy→0 g(y) = a > 0 and limy→+∞ g(y) = −∞ we know that there exists a unique y∗ > 0
such that g(y∗) = 0, g(y) > 0 for 0 < y < y∗ and g(y) < 0 for y > y∗. It can be verified that

y∗ = x∗ − a =
√
e
b e

W
(
ab

2
√
e

)
satisfies g(y∗) = 0. Therefore f ′(x) > 0 when a < x < x∗ and

f ′(x) < 0 when x > x∗. Since f(x) is continuous when x > a we have proved that f(x) ≤ f(x∗)
for all x > a.

Proof of Corollary 3. To prove the corollary, it suffices to show b′(θ,B) ≤ b(θ,B).

Define C ′θ,B =
{
c ∈ CR

T :
∑K
j=1

cj
σ2
ji
≥ mi(θ,B) ,∀i ∈ [K]

}
. We will prove Cθ,B ⊂ C ′θ,B by

showing that if c ∈ CR
T satisfies g(θ, c) ≤ B then c ∈ C ′θ,B .

For c ∈ CR
T , if g(θ, c) ≤ B, then there exists q ∈ ∆|C

N
T | such that supθ′∈Θ f(θ, q, θ′) ≤ B and∑

a∈CN
T
q(a)a = c. We will next derive K constraints on c to show that c ∈ C ′θ,B by picking

different θ′s. Before proceeding with the proof, we introduce the following technical lemma:

Lemma 14. For any A ⊂ CN
T and q, q′ ∈ ∆|C

N
T |, if q(A) ≥ 1/2 then∑

a∈CN
T

q(a) log
q(a)

q′(a)
≥ 1

2
log

1

4q′(A)
,

where q′(A) =
∑
a∈A q

′(a).

Proof. Let Ac = CN
T −A. By the log-sum inequality we have∑

a∈CN
T

q(a) log
q(a)

q′(a)
≥ KL(q(A), q′(A)) , (3)

where for x, y ∈ [0, 1], KL(x, y) = x log(x/y) + (1− x) log((1− x)/(1− y)) denotes the binary
KL-divergence. Now for such x, y, since x log x + (1 − x) log(1 − x) is minimized for x = 1/2,
we have

KL(x, y) ≥ log
1

2
+ x log

1

y
+ (1− x) log(

1

1− y
) ≥ log

1

2
+

1

2
log

1

y
=

1

2
log

1

4y
.

Combining with (3) proves the lemma.

Now we continue the proof of Corollary 3. First consider i 6= i1(θ).

If
∑
a:ai≤T/2 q(a) ≥ 1/2, construct θ(i,+) by replacing θi with θi + εi,+. Then f(θ, q, θ(i,+)) ≤

B holds, so there exists q′ ∈ ∆|C
N
T | such that

∑
a∈CN

T
q′(a)

〈
a, d(θ(i,+))

〉
≤ B and∑

a∈CN
T
q(a) log q(a)

q′(a) ≤
∑
j∈[K] cjIj(θ, θ

(i,+)). Applying Lemma 14 with A = {a : ai ≤ T/2}
gives ∑

j∈[K]

cjIj(θ, θ
(i,+)) ≥ 1

2
log

1

4q′(A)
,

where

q′(A) =
∑
a∈CN

T

I

∑
j 6=i

aj ≥ T/2

 q′(a) ≤ 2

T

∑
a∈CN

T

q′(a)
∑
j 6=i

aj

=
2

T (εi,+ − di(θ))
∑
a∈CN

T

q′(a)
∑
j 6=i

aj(εi,+ − di(θ))

≤ 2

T (εi,+ − di(θ))
∑
a∈CN

T

q′(a)
〈
a, d(θ(i,+))

〉
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≤ 2B

T (εi,+ − di(θ))
.

Since Ij(θ, θ(i,+)) = ε2i,+/2σ
2
ji, we get∑
j∈[K]

cj
σ2
ji

≥ 1

ε2i,+
log

T (εi,+ − di(θ))
8B

. (4)

If
∑
a:ai≤T/2 q(a) < 1/2 and di(θ) ≥ 4B/T , then

f(θ, q, θ) =
∑
a∈CN

T

q(a) 〈a, d(θ)〉 ≥
∑
a∈CN

T

q(a)aidi(θ)

≥ di(θ)
∑
a∈CN

T

I {ai ≥ T/2} q(a)ai

≥ 4B

T

T

2

∑
a∈CN

T

I {ai ≥ T/2} q(a) > B ,

which contradicts the fact that supθ′∈Θ f(θ, q, θ′) ≤ B.

If
∑
a:ai≤T/2 q(a) < 1/2 and di(θ) < 4B/T , construct θ(i,−) by replacing θi with θi − εi,−. Then

there exists q′ ∈ ∆|C
N
T | such that

∑
a∈CN

T
q′(a)

〈
a, d(θ(i,−))

〉
≤ B and

∑
a∈CN

T
q(a) log q(a)

q′(a) ≤∑
j∈[K] cjIj(θ, θ

(i,−)). Applying Lemma 14 with A = {a : ai > T/2} gives∑
j∈[K]

cjIj(θ, θ
(i,−)) ≥ 1

2
log

1

4q′(A)
,

where

q′(A) =
∑
a∈CN

T

I {ai > T/2} q′(a) ≤ 2

T

∑
a∈CN

T

aiq
′(a) ≤ 2

T (εi,− + di(θ))

∑
a∈CN

T

q′(a)ai(εi,− + di(θ))

≤ 2

T (εi,− + di(θ))

∑
a∈CN

T

q′(a)
〈
a, d(θ(i,−))

〉
≤ 2B

T (εi,− + di(θ))
.

Using Ij(θ, θ(i,−)) = ε2i,−/2σ
2
ji gives∑
j∈[K]

cj
σ2
ji

≥ 1

ε2i,−
log

T (εi,− + di(θ))

8B
. (5)

Now consider i = i1(θ).

If
∑
a:ai≥T/2 q(a) ≥ 1/2, construct θ(i1,−) by replacing θi with θi − εi,−. Then there ex-

ists q′ ∈ ∆|C
N
T | such that

∑
a∈CN

T
q′(a)

〈
a, d(θ(i,−))

〉
≤ B and

∑
a∈CN

T
q(a) log q(a)

q′(a) ≤∑
j∈[K] cjIj(θ, θ

(i,−)). Applying Lemma 14 with A = {a : ai ≥ T/2} and

q′(A) =
∑
a∈CN

T

I {ai ≥ T/2} q′(a) ≤ 2

T (εi,− − di2(θ)(θ))

∑
a∈CN

T

q′(a)ai(εi,− − di2(θ)(θ)) ≤
2B

T (εi,− − di2(θ)(θ))

gives ∑
j∈[K]

cj
σ2
ji

≥ 1

ε2i,−
log

T (εi,− − di2(θ)(θ))

8B
. (6)
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If
∑
a:ai≥T/2 q(a) < 1/2 and di2(θ)(θ) ≥ 4B/T , then

f(θ, q, θ) =
∑
a∈CN

T

q(a) 〈a, d(θ)〉 ≥
∑
a∈CN

T

q(a)di2(θ)

∑
j 6=i

aj ≥ di2(θ)

∑
a∈CN

T

I

∑
j 6=i

aj > T/2

 q(a)
∑
j 6=i

aj

>
4B

T

T

2

∑
a∈CN

T

I

∑
j 6=i

aj > T/2

 q(a) ≥ B ,

which contradicts the fact that supθ′∈Θ f(θ, q, θ′) ≤ B.

If
∑
a:ai≥T/2 q(a) < 1/2 and di2(θ)(θ) < 4B/T , construct θ(i,+) by replacing θi with

θi + εi,+. Then there exists q′ ∈ ∆|C
N
T | such that

∑
a∈CN

T
q′(a)

〈
a, d(θ(i,+))

〉
≤ B and∑

a∈CN
T
q(a) log q(a)

q′(a) ≤
∑
j∈[K] cjIj(θ, θ

(i,+)). Applying Lemma 14 with A = {a : ai < T/2}
and

q′(A) =
∑
a∈CN

T

I

∑
j 6=i

aj > T/2

 q′(a) ≤ 2

T

∑
a∈CN

T

q′(a)
∑
j 6=i

aj

=
2

T (εi,+ + di2(θ)(θ))

∑
a∈CN

T

q′(a)
∑
j 6=i

aj(εi,+ + di2(θ)) ≤
2B

T (εi,+ + di2(θ))

gives ∑
j∈[K]

cj
σ2
ji

≥ 1

ε2i,+
log

T (εi,+ + di2(θ))

8B
. (7)

Combining (4) (5) (6) (7) gives c ∈ C ′θ,B , which concludes the proof.

A.3 Proof of Corollary 4

Proof of Corollary 4. Define ε = 8eB
T . First consider the case that Σ is strongly observable.

If the maximum independence number κ(Σ) ≥ 2, there exists an independent set Aκ ⊂ [K] such
that |Aκ| = κ(Σ). We construct θ as follows: Let θi1 = D/2 for some i1 ∈ Aκ and θi = D/2 − ε
for i ∈ Aκ \ {i1}. For the remaining i /∈ Aκ, let θi = 0. Note that each i in Aκ must be self
observable since otherwise it is a weakly observable action. Also in Aκ i can be observed only by
itself according to the definition of independent sets.

Then we will lower bound b′(θ,B). According to our choice of ε, we have

8
√
eB

T
e
W

(
εT

16
√
eB

)
+ ε = 2ε .

Therefore, for i = i1 we have εi,− = 2ε and εi,+ = 2ε for i ∈ Aκ \ {i1}. Thus for any i ∈ Aκ,

mi(θ,B) =
1

4ε2
log

Tε

8B
=

1

4ε2
.

Recall that we defined C ′θ,B =
{
c ∈ CR

T :
∑
j:i∈Sj cj ≥ σ

2mi(θ,B) ,∀i ∈ [K]
}

and b′(θ,B) =

infc∈C′θ,B 〈c, d(θ)〉. For any c ∈ C ′θ,B , let a =
∑
i/∈Aκ ci. Then we have for any i ∈ Aκ,∑

j:i∈Sj cj ≤ a+ ci and thus ci ≥ σ2mi(θ,B)−a = σ2

4ε2 −a. Since di(θ) = ε for all i ∈ Aκ \{i1}
and di(θ) = D/2 for all i /∈ Aκ, we get

〈c, d(θ)〉 =
∑

i∈Aκ\{i1}

ciε+
aD

2
≥ (κ(Σ)− 1)

(
σ2

4ε2
− a
)
ε+

aD

2
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≥ κ(Σ)

2

(
σ2

4ε2
− a
)
ε+

aD

2
=
κ(Σ)σ2

8ε
+
D − κ(Σ)ε

2
a

≥ κ(Σ)σ2

8ε
(8)

if κ(Σ)ε < D. Applying our particular choice of ε and B, we get the conclusion that for T ≥
64e2α2σ2κ(Σ)3

D2 , b′(θ,B) ≥ σ
√
κ(Σ)T

64eα .

If κ(Σ) = 1, since we exclude the full information case, there always exists a pair of actions i1 and
i2 such that i2 /∈ Si1 (here i1 6= i2 is not necessary). We construct θ by setting θi1 = D/2 and
θi = D/2 − ε for all i 6= i1. Then mi(θ,B) = 1

4ε2 holds for all i ∈ [K]. For any c ∈ C ′θ,B , let

a =
∑
i6=i1 ci, then

∑
j:i2∈Sj cj ≤ a. Hence a ≥ σ2mi2(θ,B) = σ2

4ε2 and

〈c, d(θ)〉 = aε ≥ σ2

4ε
>
κ(Σ)σ2

8ε
. (9)

Combining (8) and (9) gives the first part of Corollary 4.

Now we turn to the case that Σ is weakly observable. The idea of constructing the worst θ comes
from the proof of Theorem 7 in [5] which based on the following graph-theoretic lemma:

Lemma 15 (Restated from Lemma 8 in [5]). Let G = (V,E) be a directed graph with K vertices
and let W ⊂ V be a subset of vertices with domination number ρ. Then there exists an independent
set U ⊂ W with the property that |U | ≥ ρ

50 logK and any vertex of G dominates at most logK

vertices of U .

Let W(Σ) ⊂ [K] be the set of all weakly observable actions. By Lemma 15 we know that there
exists an independent set Aρ ⊂ W(Σ) such that |Aρ| ≥ ρ(Σ)

50 logK and for any i ∈ [K], |Si ∩ U | ≤
logK.

If ρ(Σ) ≥ 100 logK such that |Aρ| ≥ 2, we can construct θ as follows: Let θi1 = D/2 for some
i1 ∈ Aρ and θi = D/2− ε for i ∈ Aρ \{i1}. For the remaining i /∈ Aρ, let θi = 0. Note that actions
in Aρ cannot be observed by any action inside Aρ. For any c ∈ C ′θ,B , let a =

∑
i/∈Aρ ci. Since for

any i, |Si ∩ U | ≤ logK, we have
∑
i∈Aρ

∑
j:i∈Sj cj ≤ a logK and

a logK ≥ |Aρ| min
i∈Aρ

∑
j:i∈Sj

cj ≥ |Aρ| min
i∈Aρ

σ2mi(θ,B) ≥ ρ(Σ)σ2

200 logKε2
.

Therefore,

〈c, d(θ)〉 ≥ aD

2
≥ ρ(Σ)σ2D

200ε2 log2K
=

(ρ(Σ)D)1/3(σT )2/3 log−2/3K

12800e2α2
. (10)

If ρ(Σ) < 100 logK, then we pick a weakly observable action as i2. There must be another action i1
such that i2 /∈ Si1 due to the definition of weakly observable actions. Then we set θ as θi1 = D/2,
θi2 = D/2 − ε and θi = 0 for the remaining actions. So for any c ∈ C ′θ,B , let a =

∑
i 6=i1,i2 ci ≥

σ2mi2(θ,B). Then

〈c, d(θ)〉 ≥ aD

2
≥ σ2mi2(θ,B)D

2
=
Dσ2

8ε2
=
D1/3(σT )2/3

512e2α2
· log4/3K

ρ(Σ)2/3

≥ (ρ(Σ)D)1/3(σT )2/3 log−2/3K

51200e2α2
. (11)

In the last step we used the fact that K ≥ 3 for any weakly observable Σ.

Combining (10) and (11) gives the second part of Corollary 4.
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B Proofs for Section 4.1

B.1 Proof of Theorem 6

Proof of Theorem 6. Define events

Ut =

{
∀i ∈ [K] , |θ̂i,t − θi| ≤

√
2ασ2 log t

ni(t)

}
,

Vt =
{
∀i ∈ [K] , |θ̂i,t − θi| ≤ ε

}
,

Wt =

{
N(t)

4α log t
∈ C(θ̂t)

}
,

Yt =

{
min
i∈[K]

ni(t) < β(ne(t))/K

}
and U ct , V ct , W c

t , Y ct be their complements.

RT (θ) =

T∑
t=1

E [dit(θ)] ≤ Kdmax(θ) +

n∑
t=K+1

E [dit(θ)]

= Kdmax(θ) +

T∑
t=K+1

E [dit(θ) (I {U ct }+ I {Ut,Wt}+ I {Ut,W c
t , Yt}

+I {Ut,W c
t , Y

c
t , V

c
t }+ I {Ut,W c

t , Y
c
t , Vt})] . (12)

Then we will upper bound each quantity in (12) separately.

By Hoeffding’s inequality, we have

Pr

(
|θ̂i,t − θi| >

√
2ασ2 log t

ni(t)

)
≤ 2t1−α ,

where we use a union bound over all possible ni(t).

Then
∑n
t=K+1 E [dit(θ)I {U ct }] can be bounded by

T∑
t=K+1

E [dit(θ)I {U ct }] ≤ dmax(θ)

T∑
t=K+1

Pr(U ct ) ≤ dmax(θ)

T∑
t=K+1

2Kt1−α ≤ 2Kdmax(θ)

α− 2
.

(13)

Next consider
∑T
t=K+1 E [dit(θ)I {Ut,Wt}]. If Ut and Wt hold, first we have

ni1(θ̂t)
≥ 8ασ2 log t

d2
i1(θ̂t)

(θ̂t)
,

and

θ̂i1(θ̂t),t
− θi1(θ̂t)

≤
√

2ασ2 log t

ni1(θ̂t)
(t)
≤
di1(θ̂t)

(θ̂t)

2
≤ di(θ̂t)

2
(14)

for any i 6= i1(θ̂t). Similarly, for i 6= i1(θ̂t) we have

θi − θ̂i,t ≤

√
2ασ2 log t

ni(t)
≤ di(θ̂t)

2
. (15)

15



Combining (14) and (15) gives θi ≤ θi1(θ̂t)
for any i 6= i1(θ̂t), which means i1(θ̂t) = i1(θ), hence

T∑
t=K+1

E [dit(θ)I {Ut,Wt}] = 0 . (16)

Consider the next term in (12),

T∑
t=K+1

E [dit(θ)I {Ut,W c
t , Yt}] ≤ dmax(θ)E

[
T∑

t=K+1

I {Ut,W c
t , Yt}

]
. (17)

To upper bound (17), we will first prove:

Proposition 16.
T∑

t=K+1

I {W c
t , Yt} ≤ 1 + β

(
T∑

t=K+1

I {W c
t }

)
. (18)

Proof of (18). According to the algorithm we have ne(t) =
∑t−1
s=K+1 I {W c

s } for t > K, we then
proceed by the following proposition:

Proposition 17. For K < t1 < t2, if
∑t2−1
s=t1

I {W c
s , Ys} ≥ K, then mini∈[K] ni(t2) ≥

mini∈[K] ni(t1) + 1.

Proof of Proposition 17. If for such t1 and t2, mini∈[K] ni(t2) = mini∈[K] ni(t1), then there must
exist j such that nj(t1) = nj(t2) and nj(s) = mini∈[K] ni(s) for all t1 ≤ s ≤ t2. Since∑t2−1
s=t1

I {W c
s , Ys} ≥ K, there exist K instants t1 ≤ s1 < s2 < ... < sK ≤ t2 − 1 such that{

W c
sk
, Ysk

}
happens for 1 ≤ k ≤ K. According to the algorithm, for each sk, there exists j′ 6= j

such that j′ ∈ Sisk and nj′(sk) = nj(sk) = mini∈[K] ni(sk). Note that each action appears at most
once as such j′ for 1 ≤ k ≤ K since nj′(sk + 1) = nj′(sk) + 1, but there are only K − 1 actions
other than j, which means such j cannot exist. Hence mini∈[K] ni(t2) ≥ mini∈[K] ni(t1) + 1 is
proved.

Now we define

t′ = max {K + 1 ≤ t ≤ T : W c
t , Yt} .

If such t′ does not exist, then (18) must hold. If such t′ exists, by Proposition 17,

min
i∈[K]

ni(t
′) ≥ min

i∈[K]
ni(K + 1) +

 1

K

t′−1∑
t=K+1

I {W c
t , Yt}

 ≥ 1

K

t′−1∑
t=K+1

I {W c
t , Yt} .

Therefore,

T∑
t=K+1

I {W c
t , Yt} = 1 +

t′−1∑
t=K+1

I {W c
t , Yt} ≤ 1 +K min

i∈[K]
ni(t

′) < 1 + β(ne(t
′))

≤ 1 + β(ne(T )) ≤ 1 + β

(
T∑

t=K+1

I {W c
t }

)
gives (18).

Now continue with (17)

T∑
t=K+1

I {Ut,W c
t , Yt} ≤

T∑
t=K+1

I {W c
t , Yt} ≤ 1 + β

(
T∑

t=K+1

I {W c
t }

)

16



≤ 1 + β

(
T∑

t=K+1

I {U ct }+ I {Ut,W c
t , Yt}+ I {Ut,W c

t , Y
c
t , V

c
t }+ I {Ut,W c

t , Y
c
t , Vt}

)

≤ 1 +
1

2

T∑
t=K+1

(I {U ct }+ I {Ut,W c
t , Yt}+ I {Ut,W c

t , Y
c
t , V

c
t }) + β (I {Ut,W c

t , Y
c
t , Vt}) .

Thus we have
T∑

t=K+1

I {Ut,W c
t , Yt}

≤ 2 +

T∑
t=K+1

I {U ct }+

T∑
t=K+1

I {Ut,W c
t , Y

c
t , V

c
t }+ 2β

(
n∑

t=K+1

I {Ut,W c
t , Y

c
t , Vt}

)
,

and
T∑

t=K+1

E [dit(θ)I {Ut,W c
t , Yt}] ≤ dmax(θ)E

[
T∑

t=K+1

I {Ut,W c
t , Yt}

]

≤ 2dmax(θ) +
2Kdmax(θ)

α− 2
+ dmax(θ)

T∑
t=K+1

E [I {Ut,W c
t , Y

c
t , V

c
t }]

+ 2dmax(θ)E

[
β

(
n∑

t=K+1

I {Ut,W c
t , Y

c
t , Vt}

)]
(19)

by applying (13).

To bound
∑T
t=K+1 E [I {Ut,W c

t , Y
c
t , V

c
t }], we first introduce two lemmas from [14] (Lemma 2.1

and 2.2):

Lemma 18. Let {Zt}t∈N+ be a sequence of independent random variables from N (0, σ2). Define
Ft the σ-algebra generated by {Zs}s≤t and the filtration F = (Ft)t∈N+ . Consider r, n0 ∈ N+ and
T ≥ n0. Define Yt =

∑t−1
s=n0

BsZs where Bt ∈ {0, 1} is an Ft−1-measurable random variable.
Further define n(t) =

∑t−1
s=n0

Bs and φ an F-stopping time which satisfies either n(φ) ≥ r or
φ = T + 1.

Then we have

Pr (|Yφ| > n(φ)ε, φ ≤ T ) ≤ 2 exp

(
− rε

2

2σ2

)
.

Lemma 19. Define Ft the σ-algebra generated by {Xi,s}s∈[t],i∈[K]. Let Λ ⊂ [1, T ] ∩ N be a set
of (random) time instants. Assume there exists a sequence of (random) sets {Λs}0≤s≤T such that
(i) Λ ⊂ ∪0≤s≤TΛs, (ii) for all 0 ≤ s ≤ T , |Λs| ≤ 1, (iii) for all 0 ≤ s ≤ T , if t ∈ Λs then
ni(t) ≥ β(s)/K, and (iv) the event {t ∈ Λs} is Ft measurable. Then for any ε > 0 and i ∈ [K]:

E

[
T∑
t=1

I
{
t ∈ Λ, |θ̂i,t − θi| > ε

}]
≤

T∑
s=0

2 exp

(
−β(s)ε2

2Kσ2

)
.

Proof of Lemma 19. We adapt the proof of Lemma 2.2 from [14]. For 0 ≤ s ≤ T , define φs = t if
Λs = {t} or φs = T + 1 if Λs = ∅. Then

E

[
T∑
t=1

I
{
t ∈ Λ, |θ̂i,t − θi| > ε

}]
≤ E

[
T∑
s=0

I
{
φs ≤ T, |θ̂i,φs − θi| > ε

}]

=

T∑
s=0

Pr
(
φs ≤ T, |θ̂i,φs − θi| > ε

)
. (20)
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Since φs can be viewed as an F-stopping time and satisfies either ni(φs) ≥ dβ(s)/Ke or φs =
T + 1, if dβ(s)/Ke ≥ 1 then applying Lemma 18 gives

Pr
(
φs ≤ T, |θ̂i,φs − θi| > ε

)
≤ 2 exp

(
−dβ(s)/Keε2

2σ2

)
≤ 2 exp

(
−β(s)ε2

2Kσ2

)
.

If dβ(s)/Ke = 0 then Pr
(
φs ≤ T, |θ̂i,φs − θi| > ε

)
< 2 = 2 exp

(
−β(s)ε2

2Kσ2

)
still holds. Now

proceeding from (20) we can get the result of Lemma 19.

Now we define Λ = {t : K + 1 ≤ t ≤ T,Ut,W
c
t , Y

c
t }, and Λs = {t : K + 1 ≤ t ≤

T,Ut,W
c
t , ne(t) = s,mini∈[K] ni(t) ≥ β(s)/K}. It can be verified that Λs satisfies the condi-

tions in Lemma 19: (i) If t ∈ Λ then there must be some 0 ≤ s ≤ T such that ne(t) = s and thus
t ∈ Λs. (ii) If t ∈ Λs then for t′ > t, ne(t′) ≥ ne(t+1) = ne(t)+ 1 = s+1, so t′ /∈ Λs. Condition
(iii) and (iv) are also satisfied from the definition of Λs.

Then
T∑

t=K+1

E [I {Ut,W c
t , Y

c
t , V

c
t }] =

T∑
t=K+1

E [I {t ∈ Λ, V ct }]

≤
K∑
i=1

T∑
t=K+1

E
[
I
{
t ∈ Λ, |θ̂i,t − θi| > ε

}]
≤ 2K

T∑
s=0

exp

(
−β(s)ε2

2Kσ2

)
. (21)

Finally we will upper bound
∑n
t=K+1 dit(θ)I {Ut,W c

t , Y
c
t , Vt}.

Recall that in the algorithm, if W c
t and Y ct happens, some it satisfying Ni(t) < ci(θ̂t)4α log t is

played. Such it must exist because otherwise Ni(t)
4α log t ≥ ci(θ̂t)4α log t holds for any i ∈ [K] and

thus Wt =
{

N(t)
4α log t ∈ C(θ̂t)

}
happens, which causes contradiction.

Define

Θ(θ, ε) = {λ ∈ Θ : ∀i ∈ [K] , |λi − θi| ≤ ε} ,

and

ci(θ, ε) = sup
λ∈Θ(θ,ε)

ci(λ) .

Let Ti be the maximum t ≤ T such that it = i and I {Ut,W c
t , Y

c
t , Vt} = 1. Then

Ni(Ti) =

Ti−1∑
s=1

I {is = i} ≤ ci(θ̂Ti)4α log Ti ≤ ci(θ, ε)4α log T .

Thus
T∑

t=K+1

I {it = i, Ut,W
c
t , Y

c
t , Vt} ≤ ci(θ, ε)4α log T + 1 .

So we have
T∑

t=K+1

dit(θ)I {Ut,W c
t , Y

c
t , Vt} ≤ 4α log T

∑
i∈[K]

ci(θ, ε)di(θ) +
∑
i∈[K]

di(θ) , (22)

and
T∑

t=K+1

I {Ut,W c
t , Y

c
t , Vt} ≤ 4α log T

∑
i∈[K]

ci(θ, ε) +K . (23)

18



Now plugging (23) (21) into (19) and plugging (13) (16) (19) (21) (22) into (12) we get

RT (θ) ≤
(

2K + 2 +
4K

α− 2

)
dmax(θ) + 4Kdmax(θ)

T∑
s=0

exp

(
−β(s)ε2

2Kσ2

)

+ 2dmax(θ)β

4α log T
∑
i∈[K]

ci(θ, ε) +K

+ 4α log T
∑
i∈[K]

ci(θ, ε)di(θ) .

C Proofs for Section 4.2

C.1 Proof of Theorem 8

Proof of Theorem 8. For every r > 0, define the events

Ur =
{
∀i ∈ [K] , |θ̂i,r − θi| ≤ gi,r(δ)

}
.

Then, by Hoeffding’s inequality and union bound, we have

Pr(∀r ≥ 2, Ur) ≥ 1− δ .

Next we will upper bound the regret based on the fact that Ur holds for all r ≥ 2. Define rT =
max{r : tt < T, |Ar| ≥ 2}, the event

Vr =

{
AWr 6= ∅, min

i∈AWr
ni(r) < min{min

i∈ASr
ni(r), γ(r)}

}
and its complement V cr . Then consider the regret:

RT (θ) ≤
rT∑
r=1

I {Vr} 〈ir, d(θ)〉+

rT∑
r=1

I {V cr } 〈ir, d(θ)〉

≤
rT∑
r=1

I {Vr} ‖ir‖1D +

rT∑
r=1

I {V cr } ‖ir‖1 max
i∈Ar

di(θ) . (24)

We upper bound the two terms in (24) separately. Before proceeding, we introduce the following
proposition which lower bounds ni(r) for i ∈ AWr .

Proposition 20. For any i, r such that i ∈ AWr ,

ni(r) ≥
αr−1

2

r−1∑
s=1

I {Vs} ‖is‖1 − (βr − 1)K , (25)

where βr =
∣∣∣⋃1≤s≤r A

W
s

∣∣∣.
Proof of Proposition 20. The proof is done by induction. Let Wr denote the event that for any
1 ≤ s ≤ r and any i ∈ AWs , (25) holds. W1 holds because AW1 = ∅. Now we assume Wr holds and
consider Wr+1.

If AWr+1 = ∅, then Wr+1 holds. If AWr+1 6= ∅, for i ∈ AWr+1, consider ni(r + 1) in different cases:

If i ∈ AWr , then ni(r) ≥ αr−1

2

∑r−1
s=1 I {Vs} ‖is‖1 − (βr − 1)K. Recall that αr =

min1≤s≤r,AWs 6=∅m([K] , AWs ). So we have

ni(r + 1) ≥ ni(r) + I {Vr} ‖cr‖0 αr ≥
αr
2

r∑
s=1

I {Vs} ‖is‖1 − (βr+1 − 1)K ,

19



where we use the fact that αr is non-increasing, βr is non-decreasing as well as

‖ir‖1 = ‖dcr · ‖cr‖0e‖1 ≤ ‖cr‖0 + ‖cr‖0 · ‖cr‖1 = 2 ‖cr‖0 . (26)

If i /∈ AWr , then i ∈ ASs for all 1 ≤ s ≤ r and thus βr+1 ≥ βr + 1. Let r′ = max{s ≤ r : Vs}. If
such r′ does not exist, then

ni(r + 1) ≥ 0 ≥ αr
2

r∑
s=1

I {Vs} ‖is‖1 − (βr+1 − 1)K .

If such r′ exists

ni(r + 1) ≥ ni(r′) > min
j∈AW

r′

nj(r
′) ≥ αr′−1

2

r′−1∑
s=1

I {Vs} ‖is‖1 − (βr′ − 1)K

≥ αr
2

r∑
s=1

I {Vs} ‖is‖1 −
αr
2
‖ir′‖1 − (βr′ − 1)K ≥ αr

2

r∑
s=1

I {Vs} ‖is‖1 − βr′K

≥ αr
2

r∑
s=1

I {Vs} ‖is‖1 − (βr+1 − 1)K ,

where the facts αr ≤ 1, ‖ir′‖1 ≤ 2K and βr′ ≤ βr+1 − 1 are used.

Now we have proved that Wr+1 holds based on the assumption of Wr, hence Wr holds for any r,
which gives the result of Proposition 20.

Based on Proposition 20,
∑r
s=1 I {Vs} ‖is‖1 can be upper bounded by the following fact:

Proposition 21. For any r ≥ 1,
∑r
s=1 I {Vs} ‖is‖1 ≤

2γ(r)+2Kβr
αr

.

Proof of Proposition 21. Let r′ = max{s ≤ r : Vs}. Then

γ(r′) > min
i∈AW

r′

ni(r
′) ≥ αr′−1

2

r′−1∑
s=1

I {Vs} ‖is‖1 − (βr′ − 1)K .

Hence
r∑
s=1

I {Vs} ‖is‖1 ≤
r′−1∑
s=1

I {Vs} ‖is‖1 + ‖ir′‖1 ≤
2γ(r′) + 2K(βr′ − 1)

αr′
+ 2K

≤ 2γ(r′) + 2Kβr′

αr′
.

Since αr is non-increasing, βr is non-decreasing and γ(r)/αr = α
−1/3
r (σtr/D)2/3 is non-

decreasing, we have
∑r
s=1 I {Vs} ‖is‖1 ≤

2γ(r)+2Kβr
αr

.

Now we are ready to upper bound the first term in (24):
rT∑
r=1

I {Vr} ‖ir‖1D ≤
2γ(rT ) + 2KβrT

αrT
D = 2α−1/3

rT D1/3(σT )2/3 + 2KD
βrT
αrT

. (27)

Next consider the second term in (24):
∑rT
r=1 I {V cr } ‖ir‖1 maxi∈Ar di(θ). Given Ur holds for all

r we know that i1(θ) is never eliminated. Then for any i ∈ Ar, we have |θ̂i,r − θi| ≤ gi,r(δ) and
θ̂i,r + gi,r(δ) ≥ θ̂i1(θ) − gi1(θ),r(δ). Therefore,

di(θ) ≤ min
{
D, 2gi,r(δ) + 2gi1(θ),r(δ)

}
≤ min

{
D, 4σ

√
6 log

2KT

δ

(
min
i∈Ar

ni(r)

)−1/2
}
.
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So
rT∑
r=1

I {V cr } ‖ir‖1 max
i∈Ar

di(θ) ≤
rT∑
r=1

I {V cr } ‖ir‖1 min

{
D,C(min

i∈Ar
ni(r))

−1/2

}
, (28)

where C = 4σ
√

6 log 2KT
δ .

The next step is to lower bound mini∈Ar ni(r) when V cr happens. Define ηmin =
minA∈[K],|A|≥2m(A,AS). For i ∈ ASr ,

ni(r) ≥
r−1∑
s=1

I {V cs } ‖cs‖0m(As, A
S
s ) ≥ ηmin

2

r−1∑
s=1

I {V cs } ‖is‖1 . (29)

For i ∈ AWr , since V cr happens and AWr 6= ∅, we have

ni(r) ≥ min{min
i∈ASr

ni(r), γ(r)} ≥ min

{
ηmin

2

r−1∑
s=1

I {V cs } ‖is‖1 , γ(r)

}
.

By Proposition 21,

ηmin

2

r−1∑
s=1

I {V cs } ‖is‖1 ≥
1

2K

(
tr −

r∑
s=1

I {Vs} ‖is‖1

)
≥ 1

2K

(
tr −

2γ(r) + 2Kβr
αr

)

=
1

2K

(
tr − 2α−1/3

r

(
σtr
D

)2/3

− 2Kβr/αr

)

≥ 1

2K
tr −

(
σtr
D

)2/3

−K2 ,

where we used αr, ηmin ≥ 1/K and βr ≤ K.

For tr ≥ 125σ2

D2 K3 + 10K3, we have 4
5 tr ≥ 4K

(
σtr
D

)2/3
and 1

5 tr ≥ 2K3, so

ηmin

2

r−1∑
s=1

I {V cs } ‖is‖1 ≥
1

2K
tr −

(
σtr
D

)2/3

−K2

≥ 2

(
σtr
D

)2/3

+K2 −
(
σtr
D

)2/3

−K2

=

(
σtr
D

)2/3

≥
(
σαrtr
D

)2/3

= γ(r) .

So we have proved that for any r ≤ rT such that tr ≥ T0 = 125σ2

D2 K3 + 10K3 and V cr happens,
mini∈Ar ni(r) ≥ γ(r) ≥ (σαrT tr/D)2/3. Therefore, following (28) gives

rT∑
r=1

I {V cr } ‖ir‖1 max
i∈Ar

di(θ)

≤
rT∑
r=1

I {V cr } ‖ir‖1 min

{
D,C(min

i∈Ar
ni(r))

−1/2

}
≤

∑
r≥1:tr<T0

‖ir‖1D +
∑

r≤rT :tr≥T0

‖ir‖1 C
(σαrT

D

)−1/3

t−1/3
r

≤ (T0 + 2K)D + C
(σαrT

D

)−1/3 ∑
r≤rT :tr≥T0

(tr+1 − tr)(tr+1 − 2K)−1/3

≤ (T0 + 2K)D + C
(σαrT

D

)−1/3
∫ trT+1

T0

(x− 2K)−1/3dx
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≤ (T0 + 2K)D + C
(σαrT

D

)−1/3
∫ trT

T0−2K

x−1/3dx

≤ (T0 + 2K)D +
3

2
C
(σαrT

D

)−1/3

T 2/3

=
125σ2K3

D
+ (10K3 + 2K)D + α−1/3

rT D1/3(σT )2/3 · 6
√

6 log
2KT

δ
. (30)

Now plugging (27) and (30) into (24) gives

RT (θ) ≤ α−1/3
rT D1/3(σT )2/3 · 7

√
6 log

2KT

δ
+

125σ2K3

D
+ 13K3D .

If Σ is strongly observable, then AWr is always empty and V cr always happens. According to (24)
(28) and (29) we have

RT (θ) ≤
rT∑
r=1

‖ir‖1 max
i∈Ar

di(θ)

≤
rT∑
r=1

(tr+1 − tr) min

{
D,C

(ηmin

2

)−1/2

t−1/2
r

}
≤ 2KD + C

(ηmin

2

)−1/2
∫ trT

0

x−1/2dx

≤ 2KD + 8σ

√
T

ηmin
· 12 log

2KT

δ
.

To finish the proof, it suffices to show that 1
αrT
≤ ρ(Σ) and 1

ηmin
≤ κ(Σ)50 logK, which is based

on the following fact:

Proposition 22. For any A,A′ ⊂ [K] Let ρLP(A,A′) denote the minimum fractional cover number
from A to A′, that is

ρLP(A,A′) = min
b∈[0,∞)A

∑
i∈A

bi

s.t.
∑
i:j∈Si

bi ≥ 1 ∀j ∈ A′ .

Then m(A,A′) = 1
ρLP(A,A′) .

Proof of Proposition 22. Recall that

m(A,A′) = max
c∈∆A

min
i∈A′

∑
j:i∈Sj

cj

= max
c∈∆A,a

a s.t.
∑
i:j∈Si

ci ≥ a ∀j ∈ A′ .

Let b = c/a, then

m(A,A′) = max
b∈[0,∞)A,a

a s.t.
∑
i:j∈Si

bi ≥ 1 ∀j ∈ A′ and
∑
i∈A

bi =
1

a

= max
b∈[0,∞)A

1∑
i∈A bi

s.t.
∑
i:j∈Si

bi ≥ 1 ∀j ∈ A′

=
1

ρLP(A,A′)
.
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To lower bound αrT , let ρ(A,A′) be the integer version of ρLP(A,A′) by restricting b ∈ NA. Then
we have ρ(Σ) = ρ([K] ,W(Σ)) and

αrT ≥ m([K] ,W(Σ)) =
1

ρLP([K] ,W(Σ))
≥ 1

ρ(Σ)
,

where we used the fact that AWr ⊂ W(Σ) for any r ≤ rT .

To lower bound ηmin, we use

ηmin = min
A∈[K],|A|≥2

m(A,AS) = min
A∈[K],|A|≥2

m(A,A) =
1

maxA∈[K],|A|≥2 ρLP(A,A)

(AS = A for strongly observable Σ), thus

max
A∈[K],|A|≥2

ρ(A,A) ≥ 1

ηmin
.

For any A ∈ [K] , |A| ≥ 2, let ΣA be the subgraph of Σ on A. We apply Lemma 15 on ΣA with
the subset W = A. Then the lemma states that A contains an independent set U of size at least
ρ(A,A)

50 log |A| . Since an independent set of ΣA is also an independent set of Σ, for each subset A there

exists an independent set of Σ with size at least ρ(A,A)
50 log |A| . So the independence number

κ(Σ) ≥ max
A∈[K],|A|≥2

ρ(A,A)

50 log |A|
≥ 1

50 logK
max

A∈[K],|A|≥2
ρ(A,A) ≥ 1

ηmin50 logK
,

which indicates 1
ηmin
≤ κ(Σ)50 logK.

C.2 Proof of Theorem 9

Proof of Theorem 9. Similarly to the proof of Theorem 9, we define high probability events

Ur =
{
∀i ∈ [K] , |θ̂i,r − θi| ≤ gi,r(δ)

}
.

and upper bound the regret based on the fact that for all r ≥ 2, Ur holds. The rest of the proof will
be based on upper bounding the number of round before all sub-optimal actions are eliminated.

Define rT = max{r : tt < T, |Ar| ≥ 2}, event

Vr =

{
AWr 6= ∅, min

i∈AWr
ni(r) < min{min

i∈ASr
ni(r), γ(r)}

}
and V cr be its complement.

For any r ≤ rT and any i ∈ Ar, i 6= i1(θ), we have 2gi,r(δ) + 2gi1(θ),r(δ) ≥ di(θ) ≥ dmin(θ),

where dmin(θ) denotes di2(θ)(θ). From gi,r(δ) = σ
√

2 log(8K2r3/δ)
ni(r)

we get

dmin(θ) ≤ 2σ
√

2 log(8K2r3/δ)

(
1√
ni(r)

+
1√

ni1(θ)(r)

)
≤ Cr

(
min
i∈Ar

ni(r)

)−1/2

,

where Cr = 4σ
√

6 log 2Kr
δ , and thus

min
i∈Ar

ni(r) ≤
C2
r

d2
min(θ)

. (31)

Then consider the regret:

RT (θ) ≤
rT∑
r=1

I {Vr} 〈ir, d(θ)〉+

rT∑
r=1

I {V cr } 〈ir, d(θ)〉
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≤
rV∑
r=1

I {Vr} ‖ir‖1 dmax(θ) +

rW∑
r=1

I {V cr } ‖ir‖1 max
i∈Ar

di(θ) . (32)

where rV = max{r ≤ rT : Vr} and rW = max{r ≤ rT : V cr }.
Since mini∈AWrV

ni(rV ) < mini∈ASrV
ni(rV ) we have

min
i∈ArV

ni(rV ) = min
i∈AWrV

ni(rV ) ≥ 1

2ρ(Σ)

rV −1∑
s=1

I {Vs} ‖is‖1 −K
2

by applying Proposition 20. Then we can upper bound the first term in (32) by
rV∑
r=1

I {Vr} ‖ir‖1 ≤
2ρ(Σ)C2

rV

d2
min(θ)

+ 2ρ(Σ)K2 + 2K . (33)

Regarding the second term in (32), recall that for any r ≤ rT such that tr ≥ T0 = 125σ2

D2 K3 +10K3

and V cr happens, mini∈Ar ni(r) ≥ γ(r) ≥ (σαrT tr/D)2/3 ≥
(

σtr
ρ(Σ)D

)2/3

. Using the fact that

maxi∈Ar di(θ) ≤ min
{
dmax(θ), Cr (mini∈Ar ni(r))

−1/2
}

gives

rW∑
r=1

I {V cr } ‖ir‖1 max
i∈Ar

di(θ)

≤
rW∑
r=1

I {V cr } ‖ir‖1 min

{
dmax(θ), Cr(min

i∈Ar
ni(r))

−1/2

}

≤
∑

r≥1:tr<T0

‖ir‖1 dmax(θ) +
∑

r≤rW :tr≥T0

‖ir‖1 CrW
(

σ

ρ(Σ)D

)−1/3

t−1/3
r

≤ (T0 + 2K)dmax(θ) + CrW

(
σ

ρ(Σ)D

)−1/3 ∑
r≤rW :tr≥T0

(tr+1 − tr)(tr+1 − 2K)−1/3

≤ (T0 + 2K)dmax(θ) + CrW

(
σ

ρ(Σ)D

)−1/3 ∫ trW+1

T0

(x− 2K)−1/3dx

≤ (T0 + 2K)dmax(θ) + CrW

(
σ

ρ(Σ)D

)−1/3 ∫ trW

T0−2K

x−1/3dx

≤ (T0 + 2K)dmax(θ) +
3

2
CrW

(
σ

ρ(Σ)D

)−1/3

t2/3rW . (34)

Now we upper bound trW . If trW ≥ T0 then
C2
rW

d2min(θ)
≥ mini∈ArW ni(rW ) ≥

(
σtrW
ρ(Σ)D

)2/3

. Hence

t2/3rW ≤
(

σ

ρ(Σ)D

)−2/3 C2
rW

d2
min(θ)

+ T
2/3
0 . (35)

Combining (32) (33) (34) and (35) with CrW ≤ CrT gives

RT (θ) ≤ 1603ρ(Σ)Dσ2

d2
min(θ)

(
log

2KrT
δ

)3/2

+ 14K3D +
125σ2K3

D

+ 15
(
ρ(Σ)Dσ2

)1/3(125σ2

D2
+ 10

)
K2

(
log

2KrT
δ

)1/2

. (36)

Applying rT ≤ T gives the result of Theorem 9.

Note that using rT ≤ T here is only for simplicity, actually rT can be upper bounded by some con-
stant by more careful analysis. This is because, according to Proposition 21,

∑rT
s=1 I {Vs} ‖is‖1 =
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O
(
t
2/3
rT

)
, and trW = O

(
(log trT )3/2

)
, we have

trT ≤ trW +

rT∑
s=1

I {Vs} ‖is‖1 = O
(
t2/3rT

)
+O

(
(log trT )3/2

)
,

which mean trT must be upper bounded by some constant independent with T .
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