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Abstract—Industry-standard lossless compression algorithms (such as
LZW) are usually implemented so that they work on bytes as symbols.
Experiments indicate that data for which bytes are not the natural choice
of symbols compress poorly using these implementations, while algorithms
working on a bit level perform reasonably on byte-based data in addition
to having computational advantages resulting from operating on a small
alphabet. In this correspondence, we offer an information-theoretic expla-
nation to these experimental results by assessing the redundancy (which
is approximated by the divergence rate of two source distributions) of a
bit-based model when applied to a byte-based source. More specifically,
we study the problem of approximating a block Markov source (our model
for byte-based data) with higher order Markov sources (which model
bit-based Markov encoders), and show that the divergence rate between
a block Markov source and the best matching higher order Markov
model for that source converges to zero exponentially fast as the memory
of the model increases. This result is applied to obtain bounds on the
redundancy of certain symbol-based universal codes when they are used
for byte-aligned sources.

Index Terms—Binary codes, block Markov sources, byte-aligned sources,
higher order Markov modeling, lossless coding.

I. MOTIVATION

The goal of lossless data compression is to represent digital data
using as few binary symbols (bits) as possible with a subsequent error-
free reconstruction. In many cases, very little prior information is avail-
able about the data to be compressed and one is compelled to use uni-
versal (adaptive) data compression algorithms. For historical reasons,
most digital data are represented as sequences of bytes (8-bit blocks),
but there is a substantial amount of data for which this byte-aligned
representation is not natural (e.g., genetic code, where proteins are en-
coded by sequences of three bases, which in turn can be of four kinds,
thus one protein is described by 6 bits). Yet, the majority of compres-
sion algorithm implementations have the assumption of byte-alignment
hard-coded into them, making them surprisingly inefficient for data not
aligned to byte boundaries.

Implementing data-compression algorithms on the bit level has
several advantages from a computational point of view. Moreover,
experimental data suggests that the penalty for not taking byte-align-
ment into account for many byte-aligned sources seems acceptably
low [1]. Specifically, in our experiments a clearly suboptimal bit-level
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Burrows–Wheeler transform (BWT)-based [2] compressor has sig-
nificantly outperformed industry standard compressors (gzip and
bzip2) on data that were not aligned to byte boundaries, while
being only slightly inferior in compressing byte-aligned sources. For
example, when applied to data in the Calgary Corpus [3], our com-
pressor consistently produced compressed files that were only around
15% larger than those for bzip2, a similar compression algorithm
implemented on bytes.

Motivated by these practical observations, in this correspondence
we evaluate this penalty in an information-theoretic setting. Specifi-
cally, under Markovian assumptions we investigate the excess of the
encoding rate resulting when a lossless code that is optimized for a
source with atomic symbols (e.g., bits) is applied to a source with sym-
bols that are blocks of these atomic symbols (e.g., bytes).

The minimum achievable rate for lossless coding is the entropy rate
of the source [4]. The excess of code rate over the entropy rate is called
the redundancy of the code. This is the quantity that needs to be min-
imized when designing a lossless code. If the code is optimal for the
model distribution, the relative entropy rate [5] between the model dis-
tribution and that of the source approximates the rate redundancy of the
code with respect to the source. In this correspondence, we use a block
Markov source to model data whose “natural” symbols are blocks of
a given length (e.g., bytes) from a source alphabet of elementary sym-
bols (e.g., bits). An encoder that operates on elementary symbols (or
more precisely, the associated model distribution) is identified with the
distribution of a higher order Markov source.

In Section III, we analyze the divergence rate between a block
Markov source and the best fitting higher order Markov model. The
main result here gives an explicit formula for this divergence rate
which implies that higher order Markov models can efficiently model
block Markov sources. In Section IV, we show that the convergence
to zero of the divergence rate is in fact exponential in the order of the
memory of the Markov model. Finally, in Section V, we upper-bound
the redundancy on block Markov sources of a large class of codes
that are universal for higher order Markov sources. This bound makes
it possible to choose the order of the Markov model in a way that
optimizes a complexity–redundancy tradeoff.

II. PRELIMINARIES

For any sequence of random variables

fXng
1
n=0 = X0; X1; . . . ; Xn; . . .

and for any i � j, the segment (Xi; Xi+1; . . . ; Xj) will be denoted by
X

j
i . We allow j to be infinite; for example, we write X1

0 for the en-
tire sequence fXng

1
n=0. A similar convention applies to deterministic

sequences which are usually denoted using lower case letters.
For any pair of discrete random variables Z and V taking values in

the finite sets Z and V , respectively, let PZ(z) = Pr(Z = z) and
PZjV (zjv) = Pr(Z = zjV = v) for all z 2 Z and v 2 V . If Z = V ,
the relative entropy (Kullback–Leibler divergence) between Z and V

is defined as

�D(ZkV ) = D(PZkPV ) =
z2Z

PZ(z) log
PZ(z)

PV (z)

where log denotes base 2 logarithm. D(PZkPV ) is nonnegative and
equals zero if and only if PZ = PV [5]. For sequences of random
variables Z10 and V10 , the divergence rate is defined as

D (Z10 kV10 ) = lim
n!1

1

n
D Z

n�1
0 kV n�1

0

provided the limit exists.
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The sequence of random variables X1
0 taking values in the finite

alphabetA is called a block-N Markov source if for every nonnegative
integer i and block of symbols x(i+1)N�10 2 A(i+1)N

P
X jX

x
(i+1)N�1
iN jxiN�10

= P
X jX

x
(i+1)N�1
iN jxiN�1(i�1)N

= P
X jX

x
(i+1)N�1
iN jxiN�1(i�1)N :

The sequence of random variables Y10 taking values in A is called
an mth-order Markov source if for every nonnegative integer i and
xm+i
0 2 Ai+m+1

P
Y jY

xi+mjx
i+m�1
0 = P

Y jY
xi+mjx

i+m�1
i :

A binary block code of length n for the source alphabet A is given
by a function fn : An ! f0; 1g�, which maps any source vector
x 2 An to the binary string fn(x). The length function `n : An !
associated with fn gives for each x the length of the corresponding
binary string, that is, `n(x) = jfn(x)j. We require fn to be uniquely
decodable, that is, for x1; . . . ; xj ; y1; . . . ; yk 2 An

fn(x1)fn(x2) . . . fn(xj) = fn(y1)fn(y2) . . . fn(yk)

if and only if j = k and xi = yi; i = 1; . . . ; j, where for two binary
strings s1 and s2; s1s2 denotes their concatenation. It is well known
[5] that if fn is uniquely decodable than its length function ` satisfies
the Kraft inequality

x2A

2�` (x) � 1:

Moreover, for any such code there exists a prefix code with the same
length function, and also there exists another prefix code f 0n with length
function `0n such that `0n(x) � `n(x) for all x 2 An, and the equality
holds for `0n in the Kraft inequality, that is,

x2A 2�` (x) = 1.
Therefore, without loss of generality, in the remainder of the correspon-
dence, we consider only codes for which the Kraft inequality holds with
equality. Therefore, the coding distribution of fn, defined as

Pf (x) = 2�` (x)

for each x 2 An, is a proper probability distribution.
The redundancy of the code fn with length function `n for the

random vector Xn�1
0 is defined as

Rn = E`n X
n�1
0 �H X

n�1
0

= E `n X
n�1
0 � logP

X
X
n�1
0

the difference of the expected code length E`n(Xn
1 ) and the entropy

H X
n�1
0 = �

x2A

P
X

(x) logP
X

(x):

Note that Rn � 0, and if Y n�1
0 is distributed according to Pf , then

Rn = D X
n�1
0 kY n�1

0 :

Similarly, for any distribution Pn over An, one can construct a prefix
code with length function `0n(x) = �dlog Pn(x)e. The redundancy of
this code can be bounded as

R
0
n = E`

0
n X

n�1
0 �H X

n�1
0 � D X

n�1
0 kŶ n�1

0 + 1

where Ŷ n�1
0 is distributed according to Pn.

A binary source code for an infinite source X1
0 taking values in the

alphabet A is given by a sequence of block-n codes fn. Without loss
of generality, we assume that for each fn equality holds in the Kraft
inequality. If the coding distributions Pf are compatible in the sense
that there is anA-valued random process Y10 such that the distribution
of Y n�1

0 is Pf for all n, then the redundancy rate of the code is given
as

lim
n!1

1

n
Rn = lim

n!1

1

n
D X

n�1
0 kY n�1

0 = �D (X1
0 kY10 )

provided the limit exists [5], [6]. If X1
0 is a block-N stationary

block-N Markov source and Y10 is a stationary mth-order Markov
source, then both sources are block stationary block-mN Markov
sources; for such sources the limit always exists [7].

In the sequel, depending on the context, a code will either mean a
block-n code fn, or a sequence of such codes ffng1n=1.

III. APPROXIMATION OF BLOCK MARKOV SOURCES

In this section, we want to find the best mth-order Markovian ap-
proximation of a block-N stationary block-N Markov source X1

0 in
the sense that we look for an mth-order Markov source Y10 achieving
the minimum

�Dm min �D (X1
0 kY10 ) : Y10 is mth-order Markov :

Clearly, without loss of generality we may assume that Y10 is sta-
tionary.

Let fXng
1
n=�1 be the two-sided block-N stationary extension of

fXng
1
n=0, and let fYng1n=�1 be the two-sided stationary extension

of fYng1n=0. The minimizing fYng and the minimum divergence rate
will be expressed in terms of the random variables

Uj = Xj�m+� ; j = 0; 1; 2; . . .

where � is a random variable that is uniformly distributed on
f0; 1; . . . ; N � 1g and is independent of fXng. Notice that fUjg can
be seen as a stationary version of the (only) block-N stationary source
fXng. With this in mind, it is intuitively clear that the best mth-order
Markovian approximation of fUng, which has the same mth-order
conditional distributions as fUng, will also be the best approximation
for fXng. This statement is formalized in the next theorem.

Theorem 1: Given a block-N Markov source X1
0 , the relative en-

tropy rate �D(X1
0 kY10 ) is minimized over all stationary mth-order
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Markov sources Y10 if and only if P
Y jY

= P
U jU

. The
minimum relative entropy rate is given for all m � 2N by

�Dm = I(� ;UmjU
m�1
0 )

the conditional mutual information between � and Um given Um�1
0

.
Moreover, there is a stationary version Ŷ10 of Y10 such that
PŶ = PU .

Expressing conditional mutual information in terms of conditional
entropies as

I � ;UmjU
m�1
0 = H � jUm�1

0 �H (� jUm
0 )

we obtain

1

m=2N

I � ;UmjU
m�1
0

=

1

m=2N

H � jX��1
��m �H (� jX�

��m)

� H � jX��1
��2N � lim inf

m!1
H (� jX�

��m) � logN

where the first inequality follows since we clearly have

H(� jX��1
��m�1) = H(� jX�

��m):

Thus, we obtain the following corollary which states that the block
Markov source can be arbitrarily closely approximated by higher order
Markov models by increasing the model order.

Corollary 1: The minimum relative entropy rate �Dm satisfies

1

m=2N

�Dm � logN:

In particular

lim
m!1

�Dm = 0:

Remark 1: The fact that �Dm converges to zero as m ! 1 is not
very surprising in view of the fact that the divergence rate between a
stationary process and its bestmth-oder Markov approximation asymp-
totically vanishes as m!1 (see, e.g., [7]). Note, however, that X1

0

is nonstationary, and that the theorem gives an explicit expression for
the optimum approximating process and a characterization of the re-
sulting minimum divergence rate �Dm. In the next section, we will use
this result to determine the rate at which �Dm converges to zero.

Proof of Theorem 1: First note that min �D(X1
0 kY10 ) is finite

(for example, if the Yn are independent and identically distributed ac-
cording to the one-dimensional marginal distribution of X1

0 ). There-
fore, to find the minimum, it is enough to consider fYng sequences
such that D(Xn

0 kY
n
0 ) = D(PX kPY ) is finite for all n.

For all n > m, we have from the chain rule for the relative en-
tropy [5]

D PX kPY

=

n

i=m

D P
X jX

kP
Y jY

+D P
X

kP
Y

where

D P
X jX

kP
Y jY

=

a 2A

PX x
i
0 log

P
X jX

aija
i�1
0

P
Y jY

aija
i�1
0

:

Observe that if m � 2N , then for any i � m

P
X jX

�jxi�10 = P
X jX

�jxi�1i�m

and

P
Y jY

�jyi�10 = P
Y jY

�jym�10 :

Therefore

D P
X jX

kP
Y jY

=

a2A

P
X

(a)D P
X jX

(�ja)kP
Y jY

(�ja)

=
b2A

P
X

(b)D P
X jX

(�jb)kP
Y jY

(�jb)

=
b2A

P
X

(b)D P
X jX

(�jb)kP
Y jY

(�jb)

where t = imodN . Denoting the last sum by St, we obtain

lim
n!1

1

n+ 1
D PX kPY

= lim
n!1

1

n+ 1

n

i=m

D P
X jX

kP
Y jY

=
1

N

N�1

t=0

St:

Let � denote a uniform random variable over f0; 1; . . .N�1g that is
independent of the pair (fXng;fYng), and define the random vectors
Um
0 = X�

��m and V m
0 = Y �

��m. Then we can rewrite the relative
entropy rate as

�D (X1
0 kY10 )

=

N�1

t=0

P� (t)
b2A

P
U j�

(bjt)

�D P
U jU ;�

(�jb; t) k P
V jV ;�

(�jb; t)

=

N�1

t=0

P� (t)
b2A

P
U j�

(bjt)

�
x2A

P
U jU ;�

(xjb; t) log
P
U jU ;�

(xjb; t)

P
Y jY

(xjb)

=

N�1

t=0 b2A x2A

PU ;� (b; x; t)

� log
P� jU (tjb; x)P

U jU
(xjb)

P
Y jY

(xjb)P
� jU

(tjb)

=

N�1

t=0 b2A x2A

PU ;� (b; x; t) log
P� jU (tjb; x)

P
� jU

(tjb)

+

N�1

t=0 b2A x2A

PU ;�(b; x; t) log
P
U jU

(xjb)

P
Y jY

(xjb)
:
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Observe that only the second term of the preceding expression
depends on the choice of fYng. Since this term is equal to
D(P

U jU
kP

Y jY
) (so it is nonnegative), it is uniquely

minimized by the choice P
Y jY

= P
U jU

. With this op-
timum choice the second term vanishes, so

�Dm =

N�1

t=0 b2A x2A

PU ;� (b; x; t) log
P� jU (tjb; x)

P
� jU

(tjb)

=

N�1

t=0 b2A x2A

PU ;� (b; x; t) logP� jU (tjb; x)

�

N�1

t=0 b2A

P
U ;�

(b; t) logP
� jU

(tjb)

= H � jUm�1
0 �H (� jUm

0 ) = I � ;UmjU
m�1
0

which was to be shown.
Finally, as P

Y jY
= P

U jU
and U10 is stationary, starting

the mth-order Markov chain Y10 from the distribution P
U

results
in a stationary version of Y10 . This proves the last statement of the
theorem.

From a coding point of view, Theorem 1 states that if a sequence of
block codes is optimal for Y10 (in the sense that the length function
of the nth code is matched to the nth-order marginal distribution of
Y10 ), then it can asymptotically compressX10 with rate not exceeding
the source entropy rate �H(X10 ) = limn!1H(Xn�1

0 ) by more than
�Dm. However, in practical situations such codes are not available, as
the distribution of Y10 is usually not known. Moreover, as the triangle
inequality does not hold for divergences, a code which is only almost
optimal for Y10 in the expected codeword length sense need not be
good at all for X10 . Still, it is reasonable to expect that codes that are
universal for the class of mth-order Markov sources (that is, perform
asymptotically optimally for all sources in the class, including Y10 )
will perform well on X10 . This will be shown (together with conver-
gence rates) in Section V.

IV. RATE OF CONVERGENCE

In this section, we examine the rate at which the minimum relative
entropy rate �Dm converges to zero in Corollary 1. In fact, we will show
that �Dm vanishes exponentially fast, that is, a block Markov source can
be very well approximated by higher order Markov sources.

From Theorem 1 we can see that in order to establish that rate
of convergence, it is sufficient to estimate the conditional entropy
H(� jUm

0 ). Using Fano’s inequality (see, e.g., [5]) we will trace back
our problem to the problem of classification of Markov sources. In
this latter problem, given finitely many Markov sources, one has
to decide which one of them has generated an observed sequence.
In previous works it was shown that, under various conditions, this
problem can be solved with exponentially decaying error probability
as the length of the observed sequence increases, see, e.g., [8]–[10].
However, the conditions imposed in these works are not immediately
applicable to our setup. We will use an approach based on Bayesian
hypothesis testing following the lines of the derivation of the Chernoff
bound (see, e.g., [5]) to obtain an upper bound on the classification
error under more general conditions. Another approach, which gives
somewhat less explicit results, is to combine results from Csiszár et al.
[11] on large deviations for Markov chains with the method used by
Natarayan [8] (this approach was used in earlier versions of this work
[12] and [13]).

Assume that the sample X1; X2; . . . ; Xn is generated by one of
K stationary Markov sources over a finite alphabet A with transition
matrices W1; . . . ;WK . The problem is to determine which source
has generated the sample. The next lemma provides a classification
method for irreducible Markov chains with exponentially decaying
error probability as the sample size grows. (A Markov chain with
transition matrix W is called irreducible if for every pair (u; v) 2 A2

there is a positive integer n such that the entry in the (u; v) position
of Wn is positive.)

Lemma 1: Let fXi;ng
1
n=0; i = 1; . . . ; K;K � 2 be independent

Markov sources with irreducible transition matricesWi such thatWi 6=
Wj for i 6= j Assume that t is distributed over f1; . . . ; Kg such that
Pr(t = i) > 0 for all i = 1; . . . ; K , and t is independent of the
fXi;ng’s. Finally, assume that we observe the tth Markov source, that
is, let Xn = Xt;n for n = 0; 1; . . . Define

R
(n)
i = x

n
0 2 A

n+1 :

n

k=1

Wi(xkjxk�1)

>

n

k=1

Wj(xkjxk�1) for all j 6= i

and let t̂n = i if Xn
0 2 R

(n)
i for some i 2 f1; . . . ; Kg and let t̂n be

arbitrary otherwise.
Then for any u 2 A

lim sup
n!1

1

n
log Pr(t 6= t̂njX0 = u)

� max
1�i6=j�K

min
0���1

log �(Wi;j;�) < 0 (1)

where the entry in the (u; v) position of the matrix Wi;j;� is given by

Wi;j;�(vju) = Wi(vju)
�
Wj(vju)

1��

for any u; v 2 A; �(W ) = maxfj�j : � is an eigenvalue of Wg is the
spectral radius of a square matrix W , and log 0 = �1 by definition.

Remark: Note that for any 1 � i 6= j � K , the minimum over �
in (1) can be computed numerically.

Proof of Lemma 1: First we show, by adapting the proof of the
Chernoff bound in [5], that

lim sup
n!1

1

n
log Pr(t 6= t̂njX0 = u) � max

1�i6=j�K
min

0���1
log �(Wi;j;�):

Then, to conclude the proof, we prove that min0���1 �(Wi;j;�) < 1
for all i 6= j. (Note that the minimum exists as �(Wi;j;�) is a contin-
uous function of �.)

Extend the regions R(n)
i to their boundaries by defining, for all 1 �

i � K

�R
(n)
i = x

n
0 2 A

n+1 :

n

k=1

Wi(xkjxk�1)

�

n

k=1

Wj(xkjxk�1) for all j 6= i :
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Then, for any 0 � � � 1,

Pr(t 6= t̂njX0 = u)

=

K

i=1

Pr(t = i)Pr(t̂n 6= ijX0 = u; t = i)

�

K

i=1

Pr(t = i)

x 62R ;x =u

n

k=1

Wi(xkjxk�1)

�

K

i=1

Pr(t = i)
j 6=i x 2�R ;x =u

n

k=1

Wi(xkjxk�1)

=

K

i=1

Pr(t = i)
j 6=i x 2�R ;x =u

min

n

k=1

Wi(xkjxk�1);

n

k=1

Wj(xkjxk�1)

�

K

i=1

Pr(t = i)
j 6=i x 2�R ;x =u

n

k=1

Wi(xkjxk�1)

� n

k=1

Wj(xkjxk�1)

1��

(2)

=

K

i=1

Pr(t = i)
j 6=i x 2�R ;x =u

n

k=1

Wi(xkjxk�1)
�

�Wj(xkjxk�1)
1��

�

K

i=1

Pr(t = i)
j 6=i x 2A ;x =u

n

k=1

Wi(xkjxk�1)
�

�Wj(xkjxk�1)
1��

=

K

i=1

Pr(t = i)
j 6=i

e
T
uW

n
i;j;�e (3)

where eTu = (0; . . . ; 0; 1; 0; . . . ; 0) is a unit row vector indexed with
the elements of A with a 1 at position u and zero elsewhere, and e is
a column vector whose entries are all 1’s. The inequality in (2) holds
since for any p; q � 0 and 0 � � � 1; minfp; qg � p�q1��.

Let kWk1 denote the l1 norm (sum of the absolute values of all
entries) of a square matrix W . It is known [14, Corollary 5.6.14] that
limn!1(kWnk1)

1=n = �(W ). Since Wn
i;j;� is a nonnegative matrix,

we have that

e
T
uW

n
i;j;�e � e

T
W

n
i;j;�e = kWn

i;j;�k1

so that

lim sup
n!1

1

n
log eTuW

n
i;j;�e � log �(Wi;j;�): (4)

This and (3) imply the first inequality in (1).
To show that min0���1 �(Wi;j;�) < 1 for all i 6= j, we use the

fact that the spectral radius of a nonnegative matrix is bounded by the

maximum row sum of the matrix [14, Theorem 8.1.22]. Thus, for any
0 � � � 1

�(Wi;j;�) � max
u2A

v2A

Wi;j;�(vju) (5)

= max
u2A

v2A

Wi(vju)
�
Wj(vju)

1��

� max
u2A

v2A

�Wi(vju) + (1� �)Wj(vju) (6)

= 1 (7)

where (7) holds since Wi and Wj are transition matrices with unit
row sums, and (6) follows from the well-known inequality p�q1�� �
�p + (1 � �)q for p; q � 0; 0 � � � 1, where equality holds if and
only if (iff) p = q or � 2 f0; 1g. We show that equality is not possible
in (5) and (6) simultaneously if � 2 (0; 1).

Let � 2 (0; 1) and assume (5) and (6) are both equalities so that
�(Wi;j;�) = 1. If Wi;j;� is irreducible, then equality holds in the
upper bound (5) iff all rows of Wi;j;� sum to �(Wi;j;�) [15, p. 287,
Exercise 4]. In general, Wi;j;� may not be irreducible, but using the ir-
reducible normal form of Wi;j;�, we have that equality holds in (5)
iff there is a set Â � A such that the submatrix Ŵ composed of
the entries of Wi;j;� indexed by Â2 is irreducible, and its row sums
are equal to �(Wi;j;�). Then, repeating the derivation (5)–(7) with Ŵ
in place of Wi;j;�, if equality holds throughout the derivation, then
Wi(vju) = Wj(vju) = Ŵ (vju) for all u; v 2 Â, and so Ŵ is a tran-
sition probability matrix. Therefore, since Wi and Wj are also transi-
tion matrices, and all three matrices are irreducible, we obtain Â = A,
and hence Wi = Wj = Ŵ , which contradicts the assumption of the
lemma. Thus, we must have �(Wi;j;�) < 1, which proves the second
inequality in (1). .

Remark: Note that the end of the proof heavily depends on the fact
that the Markov chains are irreducible. Indeed, it is easy to construct re-
ducible Markov chains such that it is impossible to distinguish between
them with vanishing error probability no matter how large the sample
size is. For example, consider the following two transition matrices:

W1 =

0:5 0:5 0 0

0:5 0:5 0 0

0 0 0:5 0:5

0 0 0:5 0:5

and

W2 =

0:5 0:5 0 0

0:5 0:5 0 0

0 0 0:1 0:9

0 0 0:1 0:9

:

If the two chains start from state 3 or 4, then it is possible to distin-
guish between them. If, however, they start from state 1 or 2, then the
resulting distributions are the same.

Now we are ready to show that �Dm decays exponentially.

Theorem 2: For every block-stationary block Markov source X10
there is a constant cr > 0 depending on the transition matrix of the
source such that

lim sup
m!1

1

m
log �Dm � �cr:
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Remark: The exact form of the constant cr is given in (17) in the
proof of the theorem. In principle, cr can be explicitly evaluated from
the N -block transition probabilities of the process fX(j+1)N�1

jN g1j=0,
although for larger source alphabetsA and block sizesN the numerical
computation may prove prohibitively complex.

Proof of Theorem 2: First notice that U10 = fU
2(k+1)N�1
2kN g1k=0

is a block-2N stationary block-2N Markov source for each value of � ,
asU2(k+1)N�1

2kN always contains a full character of the block-N Markov
source fX(j+1)N�1

jN g1j=0. This fact will enable us to use Lemma 1 to
estimate � based on the sequence Um�1

0 , which then can be used to
estimate �Dm = I(� ;UmjU

m�1
0 ).

For � = t; t 2 f0; . . . ; N�1g andU2N�1
0 = w 2 A2N; let It;w �

A2N denote the set of states reachable from w by the Markov chain.
Moreover, for any state w of the chain, let Qt;w = fqt(vju)g; u; v 2
It;w denote the transition matrix corresponding to the states in It;w .
That is,

qt(ujv) = P
U jU ;�

(ujv; t)

= P
X jX

(vju):

To simplify further notation, we extend the above definition to any in-
teger t. Note that Qt;w is a submatrix of the transition probability ma-
trix fqt(vju)g; u; v 2 A2N describing the behavior of the Markov
chain for all states. As Qt;w is defined by the corresponding index set
It;w and the values qt(u; v); u; v 2 It;w , we say that Qt;w = Qt ;w

if equality holds for both the index sets and the matrix entries, that
is It;w = It ;w and qt(vju) = qt (vju) for all u; v 2 It;w . Since
X1
�1 is block-N stationary, QkN+t;w = Qt;w for any integer k; t 2

f0; . . . ; N � 1g and w 2 A2N .
In the proof we will try to estimate which Qt;w is the generator ma-

trix of an observed sequence Um
0 . Note that the block stationarity of

U10 implies that the starting state of the chain is almost surely non-
transient (as the stationary probability of any transient state is 0),1 that
is, if the transition matrix is Qt;w and U2N�1

0 = w, then, with prob-
ability 1, w is a nontransient state of the Markov chain. Clearly, the
definition of It;w implies that if w is a nontransient state, then It;w is
an irreducible set of states and Qt;w is irreducible. Therefore, in what
follows we only consider those Qt;w matrices that are irreducible.

Obviously, if theQt;w are not all different, it is not possible to deter-
mine the parameters w and t of the real transition matrix exactly (we
cannot distinguish between two Markov chains with the same transi-
tion matrix). Therefore, for any t let gw(t) denote the smallest number
in f0; . . . ; N � 1g such that Qt;w = Qg (t);w , and let N�

w be the
number of different irreducible transition matrices Qt;w . (Clearly, N�

w

is almost surely at least one, and it is bounded from above by the
number N̂w of different—not necessarily irreducible—transition ma-
trices Qt;w , and it is easy to show that N̂w = max0�t<N gw(t) + 1,
and Q0;w; . . . ; QN̂ �1;w are different.)

It is easy to see that, givenU2N�1
0 = w and gw(�); � is independent

of Um
0 for every m. Therefore,

H � jUm
2N ; U

2N�1
0 = w = H �; gw(�)jU

m
2N ; U

2N�1
0 = w

= H gw(�)jU
m
2N ; U

2N�1
0 = w

+H � jgw(� ); U
m
2N ; U

2N�1
0 = w

= H gw(�)jU
m
2N ; U

2N�1
0 = w

+H(� jgw(� )):

1A state of a Markov chain is called nontransient if the chain, started from
that given state, returns to that state infinitely many times with probability one,
and transient otherwise.

By Theorem 1, this implies for all m � 2N

�Dm = I � ;UmjU
m�1
0 = H � jUm�1

0 �H (� jUm
0 )

=
w

P
U

(w) H(gw(�)jU
m�1
2N ; U

2N�1
0 = w

�H gw(�)jU
m
2N ; U

2N�1
0 = w

�
w

P
U

(w)H gw(�)jU
m�1
2N ; U

2N�1
0 = w

� max
w:P (w)>0

H gw(�)jU
m�1
2N ; U

2N�1
0 = w :

Therefore,

lim sup
m!1

1

m
log �Dm �

max
w:P (w)>0

lim sup
m!1

1

m
logH gw(�)jU

m�1
2N ; U

2N�1
0 =w : (8)

Next we bound the conditional entropies

H(gw(�)jU
m�1
2N ; U

2N�1
0 = w):

Let �m;w = �m;w(U
m�1
0 ) be an optimal estimate of gw(�) based on

Um�1
0 , given U2N�1

0 = w, in the sense that

Pr(gw(�) = �m;wjU
2N�1
0 = w)

� Pr(gw(�) = f(Um�1
0 )jU2N�1

0 = w)

for any function f : Am ! f0; . . . ; N̂w � 1g, and let

pm;w = Pr gw(�) 6= �m;wjU
2N�1
0 = w :

Note that such an optimal estimate always exists, and Q� ;w is al-
most surely an irreducible matrix. Moreover, the latter implies that if
N�
w = 1, then � = �m;w for all m with probability 1.
Since �m;w is a function of Um

0

H gw(�)jU
m�1
2N ; U

2N�1
0 = w � H gw(�)j�m;w; U

2N�1
0 = w

(9)

(for properties of the entropy function see, e.g., [5]). Therefore, if
N�
w = 1, then H(gw(�)j�m;w; U

2N�1
0 = w) = 0, and so

lim
m!1

1

m
logH(gw(�)jU

m�1
2N ; U

2N�1
0 = w) � �cw (10)

with cw = 1.
Otherwise, if N�

w > 1, we bound the right-hand side of (9) using
Fano’s inequality as

H(gw(�)j�m;w; U
2N�1
0 = w) � pm;w log(N�

w � 1) + hb(pm;w)
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where hb(p) = �p log p � (1 � p) log(1� p) for 0 � p � 1. From
here, obviously

lim sup
m!1

1

m
logH(gw(� )j�m;w; U

2N�1
0 = w)

� lim sup
m!1

1

m
log(2maxfpm;w log(N�

w � 1); hb(pm;w)g)

� max lim sup
m!1

1

m
log pm;w; lim sup

m!1

1

m
log hb(pm;w) : (11)

Next we use Lemma 1 to bound (11). In order to be able to apply the
lemma, we need to determine the state space of the observed process,
and then we only need to find the generating Markov chain (given by
Qt;w) among those that live on that state space. As we have mentioned
before, if Qt;w is not irreducible, then w is a transient state of the
Markov chain, and so its stationary probability is 0. If Qt;w is irre-
ducible, the probability that the corresponding Markov chain does not
reach a given state within k steps converges to 0 exponentially fast in k.
To determine the exponent, consider the matrices Qt;w;�v; v 2 It;w ,
obtained from Qt;w by setting its vth column to zero. Since this mod-
ification results in throwing away the probability that the chain would
reach state v in each step, it is easy to see that the probability of not
reaching state v within k steps is given by

p̂
(k)
Q ;w;v = eTwQ

k
t;w;�ve

where ew = (0; . . . ; 0; 1; 0 . . . ; 0) is a unit vector with a 1 at position
w, and e is a column vector whose entries are all 1’s. Now the irre-
ducibility of Qt;w implies that the probability that the chain, started
from any state w0 2 It;w , reaches v converges to one as the number
of steps k increases. Thus, eTw Qk

t;w;�ve ! 0 as k ! 1 for all
w0 2 It;w , which shows that Qk

t;w;�v converges to the zero matrix
as k increases. This implies that the spectral radius �(Qt;w;�v) < 1
[14, Theorem 5.6.12]. Then, similarly to (4), we have

lim sup
k!1

1

k
log p̂

(k)
Q ;w;v � log �(Qt;w;�v) < 0:

Therefore, if Qt;w is irreducible, then for the set of values

Îk = fU2N�1
0 ; U4N�1

2N ; . . . ; U2kN�1
2(k�1)Ng

we have

lim sup
k!1

1

k
log Pr Îk 6= It;wj� = t; U2N�1

0 = w

� max
v2I nfwg

log �(Qt;w;�v) < 0

by the union bound, since reaching all states requires reaching each
state v 2 It;w n fwg individually. This implies that for any w such
that Pr(U2N�1

0 = w) > 0

lim sup
m!1

1

m
log Pr Îb c 6= Ig (�);wjU

2N�1
0 = w � �cw;1

(12)

where

cw;1 = �
1

2N
max

t:Q is irreducible
max

v2I nfwg
log �(Qt;w;�v) > 0:

(13)

For any I � A2N , let

Qw(I)=fgw(i): 0� i<N; Qi;w is irreducible and is defined on Ig

denote the set of indices of the irreducible Markov chains with state
space I (from among Markov chains with the same transition matrix,
we pick the one with the smallest index). Now gw(�) can be estimated
by first estimating Ig (�);w by Îk; k = bm=2Nc, based on Um�1

0 ,
and then estimating gw(�) by an optimal classifier for the problem of
deciding which Qi;w; i 2 Qw(Îk), has generated the sequence

U2N�1
0 = w;U4N�1

2N ; . . . ; U2kN�1
2(k�1)N :

Let p0m;w denote the conditional error probability of the latter optimal
classifier given U2N�1

0 =w. Then for any w with Pr(U2N�1
0 =w)>0

pm;w � Pr Îk 6= Ig (�);wjU
2N�1
0 = w + p0m;w: (14)

Here the first term on the right-hand side is asymptotically bounded by
(12). To bound the second term, define

cw;2 = � max
i;j2Q (I );i6=j

min
0���1

log �(Qi;j;w;�) (15)

where the matrices Qi;j;w;�, whose entries are also indexed by
I2
g (�);w , are given for any i; j 2 Qw(Ig (�);w) and 0 � � � 1 by

Qi;j;w;�(vju) = Qi;w(vju)
�Qj;w(vju)

1��; u; v 2 Ig (�);w:

Then, as the matrices Qi;w; i 2 Qw(Ig (�);w) are different and irre-
ducible, from Lemma 1 we have cw;2 > 0 and

lim sup
m!1

1

m
log p0m;w � �cw;2:

Combining this inequality with (12) and (14) we obtain

lim sup
m!1

1

m
log pm;w � �cw (16)

for the positive number cw = minfcw;1; cw;2g. In particular,
limm!1 pm;w = 0. Therefore, as L’Hospital’s rule implies

lim
p!0

p log(1=p)=hb(p) = 1

we have

lim sup
m!1

1

m
log hb(pm;w) = lim sup

m!1

1

m
log pm;w log

1

pm;w

= lim sup
m!1

1

m
log pm;w
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where the second equality holds because limx!0
log log(1=x)

log x
= 0.

Thus, the two terms in the argument of the maximum in (11) are equal
and converge to zero exponentially fast by (16). Combining this fact
with inequalities (8)–(10) proves the theorem with constant

cr = min
w:P (w)>0

cw > 0 (17)

where cw = 1 if N�w = 1, and cw = minfcw;1; cw;2g if N�w > 1,
where cw;1 and cw;2 are defined in (13) and (15), respectively.

V. UNIVERSAL SYMBOL-BASED CODING OF

BLOCK MARKOV SOURCES

Now we are ready to establish an upper bound for the real coding
redundancy for a large class of universal symbol-based codes. Let
`
(m)
n : An ! f0; 1g� denote the code lengths of a universal code
ffng for mth-order Markov sources satisfying

1

n
sup

P
sup

z 2A

`(m)
n zn�1

0 + logP
Y

zn�1
0 � c(m)

n

(18)

for some c(m)
n ! 0 as n!1, where the first supremum is taken over

all n-fold marginal distributions ofmth-order Markov sources overA.
In other words, we require that the “pointwise redundancy” converges
to zero uniformly for each source sequence and for each mth-order
Markov source. For example, there exist universal arithmetic codes
for mth-order Markov sources with c(m)

n = O(jAjm+1 logn=n) (see,
e.g., [6]).

For fixed m and n, the per-symbol coding redundancy is defined as

Rn;m =
1

n
E`(m)

n Xn�1
0 �H Xn�1

0 :

The next result establishes an upper bound on this quantity under the
above general conditions.

Theorem 3: If the code length function `(m)
n satisfies (18) then for

n � m � 2N the coding redundancy Rn;m for the block stationary
block Markov source X10 can be bounded as

Rn;m �
1

n
logN + 2�mc +o(m) + c(m)

n (19)

where cr is defined in Theorem 2.

Remarks:
i) For any fixed m and very large coding block length n, the redun-

dancy is exponentially small in m, that is,

lim sup
n!1

1

n
E `(m)

n Xn�1
0 � �H (X10 ) � 2�mc +o(m):

ii) It is easy to see that to minimize the bound (19), m should be
chosen O(logn). As mentioned before, there are arithmetic codes
with c

(m)
n = O(jAjm+1 logn=n) [6]. For these codes, the optimal

choice is m = (logn � log logn � log jAj), yielding a redun-
dancy bound of order (n=(A log n))

� . Obviously, cr is
not known in advance. Moreover, this rate is slower than applying
the universal code to the first-order block Markov source, which
results in O(N jAj2N log(n=N)=n) redundancy. The reason for this

Fig. 1. Compression performance of bzip2 on “book1” for different source
and encoder block sizes.

is that while the number of parameters of the original source is finite
(namely, O(jAj2N )), the number of parameters of the approximating
mth-order Markov chain (which is O(jAjm)) grows without bound as
m increases. On the other hand, if the dependence of c(m)

n on m is less
than exponential, then the dominant term in (19) is usually the last one.

iii) The result may be interesting for the practical case of universal
compression, when the block size of the input is not known. Choosing
an incorrect block length may result in deteriorated performance, as
illustrated by the following experiment. We used two representations
of the English-language text “book1” from the Calgary Corpus [3],
one using Ns = 7 bits per character, the other using Ns = 8 bits
per character. The resulting files were compressed with the bzip2
algorithm operating on (possibly different) fixed-length blocks of Ne

symbols (Ne is chosen to be 1; 7; and 8).2 Obviously, the plots when
Ns = Ne are the same. The per-block entropy rate of the source does
not depend on Ns, equaling approximately 2 bits per block. The graph
in Fig. 1 shows the average number of bits in the encodings per one
source block, as the length of the source sequence (measured in source
blocks) increases. It can be seen that the performance for the the binary
alphabet size (Ne = 1) is robust and superior to the case where the
source and encoder alphabet sizes are mismatched (i.e., either Ns = 7
and Ne = 8, or Ns = 8 and Ne = 7).

The experiment is repeated with a truly first-order Markov source
which was generated from “book1” using the text’s empirical first-
order Markov transition probabilities. Fig. 2 shows the results which
are consistent with that of the first experiment. Here we know that
choosing the smallest encoding block length Ne = 1 results in guar-
anteed performance by Theorem 3, with the computational advantage
of operating on a small alphabet. Thus, coding on the elementary
symbol level is a practically good suboptimal scheme for encoding
block Markov sources with unknown block size.

Proof of Theorem 3: From (18) it follows that for any mth-order
Markov source Y10 and xn�1

0

log
P
Y

xn�1
0

P
`

xn�1
0

� nc(m)
n (20)

where P
`

denotes the coding distribution for n-long sequences.

2Of course, strictly speaking bzip2 is not a universal compression method,
but it serves well for illustrative purposes.
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Fig. 2. Compression performance of bzip2 on the first-order Markov source
generated from “book1” for different source and encoder block sizes.

Let Ŷ10 denote the stationary mth-order Markov approximation of
X1
0 , defined in Theorem 1, achieving the minimum in the definition

of �Dm (recall that P
Ŷ

= P
U

). Then

D P
X

kP
`

= D P
X

kP
Ŷ

+

z 2A

P
X

zn�10 log
P
Ŷ

zn�10

P
`

zn�10

� D P
X

kP
Ŷ

+ nc(m)
n

where the inequality holds by (20). Now, the first term can be easily
bounded following the proof of Theorem 1 as

D P
X

kP
Ŷ

= D P
X

kP
Ŷ

+

n

i=m

D P
X jX

kP
Y jY

� D P
X

kP
Ŷ

+

m�1+Nd e

i=m

D P
X jX

kP
Y jY

= D P
X

kP
Ŷ

+
n�m+ 1

N

N�1

t=0

St

� D P
X

kP
Ŷ

+ n �Dm

where St is defined as in the proof of Theorem 1 with Y10 = Ŷ10 .
Furthermore

D P
X

kP
Ŷ

= D P
X

kP
U

� logN

since for any xm�10 2 Am; P
U

(xm�10 ) � P
X

(xm�10 )=N by
definition. Thus, by Theorem 2

Rn;m �
1

n
logN + 2�mc +o(m) + c(m)

n :

VI. CONCLUSION

We have demonstrated that block Markov sources can be encoded
with exponentially fast vanishing redundancy using codes that are op-
timized for higher order symbol-level Markov models. This partially
explains the findings of our experiments that a bit-level implementa-
tion of a universal compression algorithm performs reasonably well
on byte-aligned data when compared with byte-level implementations,
inviting further studies of bit-level implementations of compression al-
gorithms, as on the bit level, one can take advantage of the computa-
tional benefits of operating on the smallest possible alphabet.
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