Symbol-Based Modeling and Coding of Block Markov Sources

Dániel A. Nagy, András György, Member, IEEE, and Tamás Linder, Senior Member, IEEE

Abstract

Industry-standard lossless compression algorithms (such as LZW) are usually implemented so that they work on bytes as symbols. Experiments indicate that data for which bytes are not the natural choice of symbols compress poorly using these implementations, while algorithms working on a bit level perform reasonably on byte-based data in addition to having computational advantages resulting from operating on a small alphabet. In this correspondence, we offer an information-theoretic explanation to these experimental results by assessing the redundancy (which is approximated by the divergence rate of two source distributions) of a bit-based model when applied to a byte-based source. More specifically, we study the problem of approximating a block Markov source (our model for byte-based data) with higher order Markov sources (which model bit-based Markov encoders), and show that the divergence rate between a block Markov source and the best matching higher order Markov model for that source converges to zero exponentially fast as the memory of the model increases. This result is applied to obtain bounds on the redundancy of certain symbol-based universal codes when they are used for byte-aligned sources.

Index Terms-Binary codes, block Markov sources, byte-aligned sources, higher order Markov modeling, lossless coding.

I. Motivation

The goal of lossless data compression is to represent digital data using as few binary symbols (bits) as possible with a subsequent errorfree reconstruction. In many cases, very little prior information is available about the data to be compressed and one is compelled to use universal (adaptive) data compression algorithms. For historical reasons, most digital data are represented as sequences of bytes (8-bit blocks), but there is a substantial amount of data for which this byte-aligned representation is not natural (e.g., genetic code, where proteins are encoded by sequences of three bases, which in turn can be of four kinds, thus one protein is described by 6 bits). Yet, the majority of compression algorithm implementations have the assumption of byte-alignment hard-coded into them, making them surprisingly inefficient for data not aligned to byte boundaries.

Implementing data-compression algorithms on the bit level has several advantages from a computational point of view. Moreover, experimental data suggests that the penalty for not taking byte-alignment into account for many byte-aligned sources seems acceptably low [1]. Specifically, in our experiments a clearly suboptimal bit-level

[^0]Burrows-Wheeler transform (BWT)-based [2] compressor has significantly outperformed industry standard compressors (gzip and bzip2) on data that were not aligned to byte boundaries, while being only slightly inferior in compressing byte-aligned sources. For example, when applied to data in the Calgary Corpus [3], our compressor consistently produced compressed files that were only around 15% larger than those for bzip2, a similar compression algorithm implemented on bytes.

Motivated by these practical observations, in this correspondence we evaluate this penalty in an information-theoretic setting. Specifically, under Markovian assumptions we investigate the excess of the encoding rate resulting when a lossless code that is optimized for a source with atomic symbols (e.g., bits) is applied to a source with symbols that are blocks of these atomic symbols (e.g., bytes).

The minimum achievable rate for lossless coding is the entropy rate of the source [4]. The excess of code rate over the entropy rate is called the redundancy of the code. This is the quantity that needs to be minimized when designing a lossless code. If the code is optimal for the model distribution, the relative entropy rate [5] between the model distribution and that of the source approximates the rate redundancy of the code with respect to the source. In this correspondence, we use a block Markov source to model data whose "natural" symbols are blocks of a given length (e.g., bytes) from a source alphabet of elementary symbols (e.g., bits). An encoder that operates on elementary symbols (or more precisely, the associated model distribution) is identified with the distribution of a higher order Markov source.

In Section III, we analyze the divergence rate between a block Markov source and the best fitting higher order Markov model. The main result here gives an explicit formula for this divergence rate which implies that higher order Markov models can efficiently model block Markov sources. In Section IV, we show that the convergence to zero of the divergence rate is in fact exponential in the order of the memory of the Markov model. Finally, in Section V, we upper-bound the redundancy on block Markov sources of a large class of codes that are universal for higher order Markov sources. This bound makes it possible to choose the order of the Markov model in a way that optimizes a complexity-redundancy tradeoff.

II. Preliminaries

For any sequence of random variables

$$
\left\{X_{n}\right\}_{n=0}^{\infty}=X_{0}, X_{1}, \ldots, X_{n}, \ldots
$$

and for any $i \leq j$, the segment $\left(X_{i}, X_{i+1}, \ldots, X_{j}\right)$ will be denoted by X_{i}^{j}. We allow j to be infinite; for example, we write X_{0}^{∞} for the entire sequence $\left\{X_{n}\right\}_{n=0}^{\infty}$. A similar convention applies to deterministic sequences which are usually denoted using lower case letters.

For any pair of discrete random variables Z and V taking values in the finite sets \mathcal{Z} and \mathcal{V}, respectively, let $P_{Z}(z)=\operatorname{Pr}(Z=z)$ and $P_{Z \mid V}(z \mid v)=\operatorname{Pr}(Z=z \mid V=v)$ for all $z \in \mathcal{Z}$ and $v \in \mathcal{V}$. If $\mathcal{Z}=\mathcal{V}$, the relative entropy (Kullback-Leibler divergence) between Z and V is defined as

$$
\bar{D}(Z \| V)=D\left(P_{Z} \| P_{V}\right)=\sum_{z \in \mathcal{Z}} P_{Z}(z) \log \frac{P_{Z}(z)}{P_{V}(z)}
$$

where \log denotes base 2 logarithm. $D\left(P_{Z} \| P_{V}\right)$ is nonnegative and equals zero if and only if $P_{Z}=P_{V}$ [5]. For sequences of random variables Z_{0}^{∞} and V_{0}^{∞}, the divergence rate is defined as

$$
D\left(Z_{0}^{\infty} \| V_{0}^{\infty}\right)=\lim _{n \rightarrow \infty} \frac{1}{n} D\left(Z_{0}^{n-1} \| V_{0}^{n-1}\right)
$$

provided the limit exists.

The sequence of random variables X_{0}^{∞} taking values in the finite alphabet \mathcal{A} is called a block- N Markov source if for every nonnegative integer i and block of symbols $x_{0}^{(i+1) N-1} \in \mathcal{A}^{(i+1) N}$

$$
\begin{aligned}
& P_{X_{i N}^{(i+1) N-1} \mid X_{0}^{i N-1}}\left(x_{i N}^{(i+1) N-1} \mid x_{0}^{i N-1}\right) \\
& \quad=P_{X_{i N}^{(i+1) N-1} \mid X_{(i-1) N}^{i N-1}}\left(x_{i N}^{(i+1) N-1} \mid x_{(i-1) N}^{i N-1}\right) \\
& \quad=P_{X_{N}^{2 N-1} \mid X_{0}^{N-1}}\left(x_{i N}^{(i+1) N-1} \mid x_{(i-1) N}^{i N-1}\right) .
\end{aligned}
$$

The sequence of random variables Y_{0}^{∞} taking values in \mathcal{A} is called an m th-order Markov source if for every nonnegative integer i and $x_{0}^{m+i} \in \mathcal{A}^{i+m+1}$

$$
P_{Y_{i+m} \mid Y_{0}^{i+m-1}}\left(x_{i+m} \mid x_{0}^{i+m-1}\right)=P_{Y_{m} \mid Y_{0}^{m-1}}\left(x_{i+m} \mid x_{i}^{i+m-1}\right) .
$$

A binary block code of length n for the source alphabet \mathcal{A} is given by a function $f_{n}: \mathcal{A}^{n} \rightarrow\{0,1\}^{*}$, which maps any source vector $x \in \mathcal{A}^{n}$ to the binary string $f_{n}(x)$. The length function $\ell_{n}: \mathcal{A}^{n} \rightarrow \mathbb{N}$ associated with f_{n} gives for each x the length of the corresponding binary string, that is, $\ell_{n}(x)=\left|f_{n}(x)\right|$. We require f_{n} to be uniquely decodable, that is, for $x_{1}, \ldots, x_{j}, y_{1}, \ldots, y_{k} \in \mathcal{A}^{n}$

$$
f_{n}\left(x_{1}\right) f_{n}\left(x_{2}\right) \ldots f_{n}\left(x_{j}\right)=f_{n}\left(y_{1}\right) f_{n}\left(y_{2}\right) \ldots f_{n}\left(y_{k}\right)
$$

if and only if $j=k$ and $x_{i}=y_{i}, i=1, \ldots, j$, where for two binary strings s_{1} and $s_{2}, s_{1} s_{2}$ denotes their concatenation. It is well known [5] that if f_{n} is uniquely decodable than its length function ℓ satisfies the Kraft inequality

$$
\sum_{x \in \mathcal{A}^{n}} 2^{-\ell_{n}(x)} \leq 1 .
$$

Moreover, for any such code there exists a prefix code with the same length function, and also there exists another prefix code f_{n}^{\prime} with length function ℓ_{n}^{\prime} such that $\ell_{n}^{\prime}(x) \leq \ell_{n}(x)$ for all $x \in \mathcal{A}^{n}$, and the equality holds for ℓ_{n}^{\prime} in the Kraft inequality, that is, $\sum_{x \in \mathcal{A}^{n}} 2^{-\ell_{n}^{\prime}(x)}=1$. Therefore, without loss of generality, in the remainder of the correspondence, we consider only codes for which the Kraft inequality holds with equality. Therefore, the coding distribution of f_{n}, defined as

$$
P_{f_{n}}(x)=2^{-\ell_{n}(x)}
$$

for each $x \in \mathcal{A}^{n}$, is a proper probability distribution.
The redundancy of the code f_{n} with length function ℓ_{n} for the random vector X_{0}^{n-1} is defined as

$$
\begin{aligned}
R_{n} & =E \ell_{n}\left(X_{0}^{n-1}\right)-H\left(X_{0}^{n-1}\right) \\
& =E\left(\ell_{n}\left(X_{0}^{n-1}\right)-\log P_{X_{0}^{n-1}}\left(X_{0}^{n-1}\right)\right)
\end{aligned}
$$

the difference of the expected code length $E \ell_{n}\left(X_{1}^{n}\right)$ and the entropy

$$
H\left(X_{0}^{n-1}\right)=-\sum_{x \in \mathcal{A}^{n}} P_{X_{0}^{n-1}}(x) \log P_{X_{0}^{n-1}}(x) .
$$

Note that $R_{n} \geq 0$, and if Y_{0}^{n-1} is distributed according to $P_{f_{n}}$, then

$$
R_{n}=D\left(X_{0}^{n-1} \| Y_{0}^{n-1}\right)
$$

Similarly, for any distribution P_{n} over \mathcal{A}^{n}, one can construct a prefix code with length function $\ell_{n}^{\prime}(x)=-\left\lceil\log P_{n}(x)\right\rceil$. The redundancy of this code can be bounded as

$$
R_{n}^{\prime}=E \ell_{n}^{\prime}\left(X_{0}^{n-1}\right)-H\left(X_{0}^{n-1}\right) \leq D\left(X_{0}^{n-1} \| \hat{Y}_{0}^{n-1}\right)+1
$$

where \hat{Y}_{0}^{n-1} is distributed according to P_{n}.
A binary source code for an infinite source X_{0}^{∞} taking values in the alphabet \mathcal{A} is given by a sequence of block- n codes f_{n}. Without loss of generality, we assume that for each f_{n} equality holds in the Kraft inequality. If the coding distributions $P_{f_{n}}$ are compatible in the sense that there is an \mathcal{A}-valued random process Y_{0}^{∞} such that the distribution of Y_{0}^{n-1} is $P_{f_{n}}$ for all n, then the redundancy rate of the code is given as

$$
\lim _{n \rightarrow \infty} \frac{1}{n} R_{n}=\lim _{n \rightarrow \infty} \frac{1}{n} D\left(X_{0}^{n-1} \| Y_{0}^{n-1}\right)=\bar{D}\left(X_{0}^{\infty} \| Y_{0}^{\infty}\right)
$$

provided the limit exists [5], [6]. If X_{0}^{∞} is a block $-N$ stationary block- N Markov source and Y_{0}^{∞} is a stationary m th-order Markov source, then both sources are block stationary block- $m N$ Markov sources; for such sources the limit always exists [7].

In the sequel, depending on the context, a code will either mean a block- n code f_{n}, or a sequence of such codes $\left\{f_{n}\right\}_{n=1}^{\infty}$.

III. Approximation of Block Markov Sources

In this section, we want to find the best m th-order Markovian approximation of a block- N stationary block- N Markov source X_{0}^{∞} in the sense that we look for an m th-order Markov source Y_{0}^{∞} achieving the minimum

$$
\bar{D}_{m} \triangleq \min \left\{\bar{D}\left(X_{0}^{\infty} \| Y_{0}^{\infty}\right): Y_{0}^{\infty} \text { is } m \text { th-order Markov }\right\}
$$

Clearly, without loss of generality we may assume that Y_{0}^{∞} is stationary.

Let $\left\{X_{n}\right\}_{n=-\infty}^{\infty}$ be the two-sided block- N stationary extension of $\left\{X_{n}\right\}_{n=0}^{\infty}$, and let $\left\{Y_{n}\right\}_{n=-\infty}^{\infty}$ be the two-sided stationary extension of $\left\{Y_{n}\right\}_{n=0}^{\infty}$. The minimizing $\left\{Y_{n}\right\}$ and the minimum divergence rate will be expressed in terms of the random variables

$$
U_{j}=X_{j-m+\tau}, \quad j=0,1,2, \ldots
$$

where τ is a random variable that is uniformly distributed on $\{0,1, \ldots, N-1\}$ and is independent of $\left\{X_{n}\right\}$. Notice that $\left\{U_{j}\right\}$ can be seen as a stationary version of the (only) block- N stationary source $\left\{X_{n}\right\}$. With this in mind, it is intuitively clear that the best m th-order Markovian approximation of $\left\{U_{n}\right\}$, which has the same m th-order conditional distributions as $\left\{U_{n}\right\}$, will also be the best approximation for $\left\{X_{n}\right\}$. This statement is formalized in the next theorem.

Theorem 1: Given a block- N Markov source X_{0}^{∞}, the relative entropy rate $\bar{D}\left(X_{0}^{\infty} \| Y_{0}^{\infty}\right)$ is minimized over all stationary m th-order

Markov sources Y_{0}^{∞} if and only if $P_{Y_{m} \mid Y_{0}^{m-1}}=P_{U_{m} \mid U_{0}^{m-1}}$. The minimum relative entropy rate is given for all $m \geq 2 N$ by

$$
\bar{D}_{m}=I\left(\tau ; U_{m} \mid U_{0}^{m-1}\right)
$$

the conditional mutual information between τ and U_{m} given U_{0}^{m-1}. Moreover, there is a stationary version \hat{Y}_{0}^{∞} of Y_{0}^{∞} such that $P_{\hat{Y}_{0}^{m}}=P_{U_{0}^{m}}$.

Expressing conditional mutual information in terms of conditional entropies as

$$
I\left(\tau ; U_{m} \mid U_{0}^{m-1}\right)=H\left(\tau \mid U_{0}^{m-1}\right)-H\left(\tau \mid U_{0}^{m}\right)
$$

we obtain

$$
\begin{aligned}
& \sum_{m=2 N}^{\infty} I\left(\tau ; U_{m} \mid U_{0}^{m-1}\right) \\
& \quad=\sum_{m=2 N}^{\infty}\left(H\left(\tau \mid X_{\tau-m}^{\tau-1}\right)-H\left(\tau \mid X_{\tau-m}^{\tau}\right)\right) \\
& \quad \leq H\left(\tau \mid X_{\tau-2 N}^{\tau-1}\right)-\liminf _{m \rightarrow \infty} H\left(\tau \mid X_{\tau-m}^{\tau}\right) \leq \log N
\end{aligned}
$$

where the first inequality follows since we clearly have

$$
H\left(\tau \mid X_{\tau-m-1}^{\tau-1}\right)=H\left(\tau \mid X_{\tau-m}^{\tau}\right)
$$

Thus, we obtain the following corollary which states that the block Markov source can be arbitrarily closely approximated by higher order Markov models by increasing the model order.

Corollary 1: The minimum relative entropy rate \bar{D}_{m} satisfies

$$
\sum_{m=2 N}^{\infty} \bar{D}_{m} \leq \log N .
$$

In particular

$$
\lim _{m \rightarrow \infty} \bar{D}_{m}=0
$$

Remark 1: The fact that \bar{D}_{m} converges to zero as $m \rightarrow \infty$ is not very surprising in view of the fact that the divergence rate between a stationary process and its best m th-oder Markov approximation asymptotically vanishes as $m \rightarrow \infty$ (see, e.g., [7]). Note, however, that X_{0}^{∞} is nonstationary, and that the theorem gives an explicit expression for the optimum approximating process and a characterization of the resulting minimum divergence rate \bar{D}_{m}. In the next section, we will use this result to determine the rate at which \bar{D}_{m} converges to zero.

Proof of Theorem 1: First note that $\min \bar{D}\left(X_{0}^{\infty} \| Y_{0}^{\infty}\right)$ is finite (for example, if the Y_{n} are independent and identically distributed according to the one-dimensional marginal distribution of X_{0}^{∞}). Therefore, to find the minimum, it is enough to consider $\left\{Y_{n}\right\}$ sequences such that $D\left(X_{0}^{n} \| Y_{0}^{n}\right)=D\left(P_{X_{0}^{n}} \| P_{Y_{0}^{n}}\right)$ is finite for all n.

For all $n>m$, we have from the chain rule for the relative entropy [5]

$$
\begin{aligned}
& D\left(P_{X_{0}^{n}} \| P_{Y_{0}^{n}}\right) \\
& \quad=\sum_{i=m}^{n} D\left(P_{X_{i} \mid X_{0}^{i-1}} \| P_{Y_{i} \mid Y_{0}^{i-1}}\right)+D\left(P_{X_{0}^{m-1}} \| P_{Y_{0}^{m-1}}\right)
\end{aligned}
$$

where

$$
\begin{aligned}
& D\left(P_{X_{i} \mid X_{0}^{i-1}} \| P_{Y_{i} \mid Y_{0}^{i-1}}\right) \\
& \\
& =\sum_{a_{0}^{i} \in \mathcal{A}^{i+1}} P_{X_{0}^{i}}\left(x_{0}^{i}\right) \log \frac{P_{X_{i} \mid X_{0}^{i-1}}\left(a_{i} \mid a_{0}^{i-1}\right)}{P_{Y_{i} \mid Y_{0}^{i-1}}\left(a_{i} \mid a_{0}^{i-1}\right)} .
\end{aligned}
$$

Observe that if $m \geq 2 N$, then for any $i \geq m$

$$
P_{X_{i} \mid X_{0}^{i-1}}\left(\cdot \mid x_{0}^{i-1}\right)=P_{X_{i} \mid X_{i-m}^{i-1}}\left(\cdot \mid x_{i-m}^{i-1}\right)
$$

and

$$
P_{Y_{i} \mid Y_{0}^{i-1}}\left(\cdot \mid y_{0}^{i-1}\right)=P_{Y_{m} \mid Y_{0}^{m-1}}\left(\cdot \mid y_{0}^{m-1}\right)
$$

Therefore

$$
\begin{aligned}
D & \left(P_{X_{i} \mid X_{0}^{i-1} \|} \| P_{Y_{i} \mid Y_{0}^{i-1}}\right) \\
& =\sum_{a \in \mathcal{A}^{i}} P_{X_{0}^{i-1}}(a) D\left(P_{X_{i} \mid X_{0}^{i-1}(\cdot \mid a) \|} P_{Y_{i} \mid Y_{0}^{i-1}}(\cdot \mid a)\right) \\
& =\sum_{b \in \mathcal{A}^{m}} P_{X_{i-m}^{i-1}}(b) D\left(P_{X_{i} \mid X_{i-m}^{i-1}}(\cdot \mid b) \| P_{Y_{m} \mid Y_{0}^{m-1}}(\cdot \mid b)\right) \\
& =\sum_{b \in \mathcal{A}^{m}} P_{X_{t-m}^{t-1}}(b) D\left(P_{X_{t} \mid X_{t-m}^{t-1}}(\cdot \mid b) \| P_{Y_{m} \mid Y_{0}^{m-1}}(\cdot \mid b)\right)
\end{aligned}
$$

where $t=i \bmod N$. Denoting the last sum by S_{t}, we obtain

$$
\begin{aligned}
\lim _{n \rightarrow \infty} & \frac{1}{n+1} D\left(P_{X_{0}^{n}} \| P_{Y_{0}^{n}}\right) \\
& =\lim _{n \rightarrow \infty} \frac{1}{n+1} \sum_{i=m}^{n} D\left(P_{X_{i} \mid X_{0}^{i-1}} \| P_{Y_{i} \mid Y_{0}^{i-1}}\right) \\
& =\frac{1}{N} \sum_{t=0}^{N-1} S_{t} .
\end{aligned}
$$

Let τ denote a uniform random variable over $\{0,1, \ldots N-1\}$ that is independent of the pair $\left(\left\{X_{n}\right\},\left\{Y_{n}\right\}\right)$, and define the random vectors $U_{0}^{m}=X_{\tau-m}^{\tau}$ and $V_{0}^{m}=Y_{\tau-m}^{\tau}$. Then we can rewrite the relative entropy rate as

$$
\begin{aligned}
\bar{D}(& \left.X_{0}^{\infty} \| Y_{0}^{\infty}\right) \\
= & \sum_{t=0}^{N-1} P_{\tau}(t) \sum_{b \in \mathcal{A}^{m}} P_{U_{0}^{m-1} \mid \tau}(b \mid t) \\
& \cdot D\left(P_{U_{m} \mid U_{0}^{m-1}, \tau}(\cdot \mid b, t) \| P_{V_{m} \mid V_{0}^{m-1}, \tau}(\cdot \mid b, t)\right) \\
= & \sum_{t=0}^{N-1} P_{\tau}(t) \sum_{b \in \mathcal{A}^{m}} P_{U_{0}^{m-1} \mid \tau}(b \mid t) \\
& \cdot \sum_{x \in \mathcal{A}} P_{U_{m} \mid U_{0}^{m-1}, \tau}(x \mid b, t) \log \frac{P_{U_{m} \mid U_{0}^{m-1}, \tau}(x \mid b, t)}{P_{Y_{m} \mid Y_{0}^{m-1}}(x \mid b)} \\
= & \sum_{t=0}^{N-1} \sum_{b \in \mathcal{A}^{m}} \sum_{x \in \mathcal{A}} P_{U_{0}^{m}, \tau}(b, x, t) \\
& \cdot \log \frac{P_{\tau \mid U_{0}^{m}}^{m}(t \mid b, x) P_{U_{m} \mid U_{0}^{m-1}}(x \mid b)}{P_{Y_{m} \mid Y_{0}^{m-1}}(x \mid b) P_{\tau \mid U_{0}^{m-1}}(t \mid b)} \\
= & \sum_{t=0}^{N-1} \sum_{b \in \mathcal{A} m} \sum_{x \in \mathcal{A}} P_{U_{0}^{m}, \tau}(b, x, t) \log \frac{P_{\tau \mid U_{0}^{m}}(t \mid b, x)}{P_{\tau \mid U_{0}^{m-1}(t \mid b)}} \\
& +\sum_{t=0}^{N-1} \sum_{b \in \mathcal{A}^{m}} \sum_{x \in \mathcal{A}} P_{U_{0}^{m}, \tau}(b, x, t) \log \frac{P_{U_{m} \mid U_{0}^{m-1}}(x \mid b)}{P_{Y_{m} \mid Y_{0}^{m-1}}(x \mid b)} .
\end{aligned}
$$

Observe that only the second term of the preceding expression depends on the choice of $\left\{Y_{n}\right\}$. Since this term is equal to $D\left(P_{U_{m} \mid U^{m-1}} \| P_{Y_{m} \mid Y_{0}^{m-1}}\right)$ (so it is nonnegative), it is uniquely minimized by the choice $P_{Y_{m} \mid Y_{0}^{m-1}}=P_{U_{m} \mid U_{0}^{m-1}}$. With this optimum choice the second term vanishes, so

$$
\begin{aligned}
\bar{D}_{m}= & \sum_{t=0}^{N-1} \sum_{b \in \mathcal{A}^{m}} \sum_{x \in \mathcal{A}} P_{U_{0}^{m}, \tau}(b, x, t) \log \frac{P_{\tau \mid U_{0}^{m}}(t \mid b, x)}{P_{\tau \mid U_{0}^{m-1}}(t \mid b)} \\
= & \sum_{t=0}^{N-1} \sum_{b \in \mathcal{A}^{m}} \sum_{x \in \mathcal{A}} P_{U_{0}^{m}, \tau}(b, x, t) \log P_{\tau \mid U_{0}^{m}}(t \mid b, x) \\
& -\sum_{t=0}^{N-1} \sum_{b \in \mathcal{A}^{m}} P_{U_{0}^{m-1}, \tau}(b, t) \log P_{\tau \mid U_{0}^{m-1}}(t \mid b) \\
= & H\left(\tau \mid U_{0}^{m-1}\right)-H\left(\tau \mid U_{0}^{m}\right)=I\left(\tau ; U_{m} \mid U_{0}^{m-1}\right)
\end{aligned}
$$

which was to be shown.
Finally, as $P_{Y_{m} \mid Y_{0}^{m-1}}=P_{U_{m} \mid U_{0}^{m-1}}$ and U_{0}^{∞} is stationary, starting the m th-order Markov chain Y_{0}^{∞} from the distribution $P_{U_{0}^{m-1}}$ results in a stationary version of Y_{0}^{∞}. This proves the last statement of the theorem.
From a coding point of view, Theorem 1 states that if a sequence of block codes is optimal for Y_{0}^{∞} (in the sense that the length function of the nth code is matched to the n th-order marginal distribution of Y_{0}^{∞}), then it can asymptotically compress X_{0}^{∞} with rate not exceeding the source entropy rate $\bar{H}\left(X_{0}^{\infty}\right)=\lim _{n \rightarrow \infty} H\left(X_{0}^{n-1}\right)$ by more than \bar{D}_{m}. However, in practical situations such codes are not available, as the distribution of Y_{0}^{∞} is usually not known. Moreover, as the triangle inequality does not hold for divergences, a code which is only almost optimal for Y_{0}^{∞} in the expected codeword length sense need not be good at all for X_{0}^{∞}. Still, it is reasonable to expect that codes that are universal for the class of m th-order Markov sources (that is, perform asymptotically optimally for all sources in the class, including Y_{0}^{∞}) will perform well on X_{0}^{∞}. This will be shown (together with convergence rates) in Section V.

IV. Rate of Convergence

In this section, we examine the rate at which the minimum relative entropy rate \bar{D}_{m} converges to zero in Corollary 1 . In fact, we will show that \bar{D}_{m} vanishes exponentially fast, that is, a block Markov source can be very well approximated by higher order Markov sources.
From Theorem 1 we can see that in order to establish that rate of convergence, it is sufficient to estimate the conditional entropy $H\left(\tau \mid U_{0}^{m}\right)$. Using Fano's inequality (see, e.g., [5]) we will trace back our problem to the problem of classification of Markov sources. In this latter problem, given finitely many Markov sources, one has to decide which one of them has generated an observed sequence. In previous works it was shown that, under various conditions, this problem can be solved with exponentially decaying error probability as the length of the observed sequence increases, see, e.g., [8]-[10]. However, the conditions imposed in these works are not immediately applicable to our setup. We will use an approach based on Bayesian hypothesis testing following the lines of the derivation of the Chernoff bound (see, e.g., [5]) to obtain an upper bound on the classification error under more general conditions. Another approach, which gives somewhat less explicit results, is to combine results from Csiszár et al. [11] on large deviations for Markov chains with the method used by Natarayan [8] (this approach was used in earlier versions of this work [12] and [13]).

Assume that the sample $X_{1}, X_{2}, \ldots, X_{n}$ is generated by one of K stationary Markov sources over a finite alphabet \mathcal{A} with transition matrices W_{1}, \ldots, W_{K}. The problem is to determine which source has generated the sample. The next lemma provides a classification method for irreducible Markov chains with exponentially decaying error probability as the sample size grows. (A Markov chain with transition matrix W is called irreducible if for every pair $(u, v) \in \mathcal{A}^{2}$ there is a positive integer n such that the entry in the (u, v) position of W^{n} is positive.)

Lemma 1: Let $\left\{X_{i, n}\right\}_{n=0}^{\infty}, i=1, \ldots, K, K \geq 2$ be independent Markov sources with irreducible transition matrices W_{i} such that $W_{i} \neq$ W_{j} for $i \neq j$ Assume that t is distributed over $\{1, \ldots, K\}$ such that $\operatorname{Pr}(t=i)>0$ for all $i=1, \ldots, K$, and t is independent of the $\left\{X_{i, n}\right\}$'s. Finally, assume that we observe the t th Markov source, that is, let $X_{n}=X_{t, n}$ for $n=0,1, \ldots$ Define

$$
\begin{aligned}
& R_{i}^{(n)}=\left\{x_{0}^{n} \in \mathcal{A}^{n+1}: \prod_{k=1}^{n} W_{i}\left(x_{k} \mid x_{k-1}\right)\right. \\
&\left.>\prod_{k=1}^{n} W_{j}\left(x_{k} \mid x_{k-1}\right) \text { for all } j \neq i\right\}
\end{aligned}
$$

and let $\hat{t}_{n}=i$ if $X_{0}^{n} \in R_{i}^{(n)}$ for some $i \in\{1, \ldots, K\}$ and let \hat{t}_{n} be arbitrary otherwise.

Then for any $u \in \mathcal{A}$

$$
\begin{align*}
\limsup _{n \rightarrow \infty} \frac{1}{n} \log \operatorname{Pr}\left(t \neq \hat{t}_{n} \mid\right. & \left.X_{0}=u\right) \\
& \leq \max _{1 \leq i \neq j \leq K} \min _{0 \leq \lambda \leq 1} \log \rho\left(W_{i, j, \lambda}\right)<0 \tag{1}
\end{align*}
$$

where the entry in the (u, v) position of the matrix $W_{i, j, \lambda}$ is given by

$$
W_{i, j, \lambda}(v \mid u)=W_{i}(v \mid u)^{\lambda} W_{j}(v \mid u)^{1-\lambda}
$$

for any $u, v \in \mathcal{A}, \rho(W)=\max \{|\alpha|: \alpha$ is an eigenvalue of $W\}$ is the spectral radius of a square matrix W, and $\log 0=-\infty$ by definition.

Remark: Note that for any $1 \leq i \neq j \leq K$, the minimum over λ in (1) can be computed numerically.

Proof of Lemma 1: First we show, by adapting the proof of the Chernoff bound in [5], that
$\limsup _{n \rightarrow \infty} \frac{1}{n} \log \operatorname{Pr}\left(t \neq \hat{t}_{n} \mid X_{0}=u\right) \leq \max _{1 \leq i \neq j \leq K} \min _{0 \leq \lambda \leq 1} \log \rho\left(W_{i, j, \lambda}\right)$.

Then, to conclude the proof, we prove that $\min _{0 \leq \lambda \leq 1} \rho\left(W_{i, j, \lambda}\right)<1$ for all $i \neq j$. (Note that the minimum exists as $\rho\left(\bar{W}_{i, j, \lambda}\right)$ is a continuous function of λ.)

Extend the regions $R_{i}^{(n)}$ to their boundaries by defining, for all $1 \leq$ $i \leq K$

$$
\begin{aligned}
& \bar{R}_{i}^{(n)}=\left\{x_{0}^{n} \in \mathcal{A}^{n+1}: \prod_{k=1}^{n} W_{i}\left(x_{k} \mid x_{k-1}\right)\right. \\
&\left.\geq \prod_{k=1}^{n} W_{j}\left(x_{k} \mid x_{k-1}\right) \text { for all } j \neq i\right\}
\end{aligned}
$$

Then, for any $0 \leq \lambda \leq 1$,

$$
\begin{align*}
& \operatorname{Pr}\left(t \neq \hat{t}_{n} \mid X_{0}=u\right) \\
& =\sum_{i=1}^{K} \operatorname{Pr}(t=i) \operatorname{Pr}\left(\hat{t}_{n} \neq i \mid X_{0}=u, t=i\right) \\
& \leq \sum_{i=1}^{K} \operatorname{Pr}(t=i) \sum_{x_{0}^{n} \notin R_{i}^{(n)}, x_{0}=u} \prod_{k=1}^{n} W_{i}\left(x_{k} \mid x_{k-1}\right) \\
& \leq \sum_{i=1}^{K} \operatorname{Pr}(t=i) \sum_{j \neq i} \sum_{x_{0}^{n} \in \bar{R}_{j}^{(n)}{ }_{, x_{0}=u}} \prod_{k=1}^{n} W_{i}\left(x_{k} \mid x_{k-1}\right) \\
& =\sum_{i=1}^{K} \operatorname{Pr}(t=i) \sum_{j \neq i} \sum_{x_{0}^{n} \in \bar{R}_{j}^{(n)}, x_{0}=u} \\
& \min \left\{\prod_{k=1}^{n} W_{i}\left(x_{k} \mid x_{k-1}\right), \prod_{k=1}^{n} W_{j}\left(x_{k} \mid x_{k-1}\right)\right\} \\
& \leq \sum_{i=1}^{K} \operatorname{Pr}(t=i) \sum_{j \neq i} \sum_{x_{0}^{n} \in \bar{R}_{j}^{(n)}, x_{0}=u} \\
& \left(\prod_{k=1}^{n} W_{i}\left(x_{k} \mid x_{k-1}\right)\right)^{\lambda}\left(\prod_{k=1}^{n} W_{j}\left(x_{k} \mid x_{k-1}\right)\right)^{1-\lambda} \tag{2}\\
& =\sum_{i=1}^{K} \operatorname{Pr}(t=i) \sum_{j \neq i} \sum_{x_{0}^{n} \in \bar{R}_{j}^{(n)}, x_{0}=u} \prod_{k=1}^{n} W_{i}\left(x_{k} \mid x_{k-1}\right)^{\lambda} \\
& \times W_{j}\left(x_{k} \mid x_{k-1}\right)^{1-\lambda} \\
& \leq \sum_{i=1}^{K} \operatorname{Pr}(t=i) \sum_{j \neq i} \sum_{x_{1}^{n} \in \mathcal{A}^{n}, x_{0}=u} \prod_{k=1}^{n} W_{i}\left(x_{k} \mid x_{k-1}\right)^{\lambda} \\
& \times W_{j}\left(x_{k} \mid x_{k-1}\right)^{1-\lambda} \\
& =\sum_{i=1}^{K} \operatorname{Pr}(t=i) \sum_{j \neq i} e_{u}^{T} W_{i, j, \lambda}^{n} e \tag{3}
\end{align*}
$$

where $e_{u}^{T}=(0, \ldots, 0,1,0, \ldots, 0)$ is a unit row vector indexed with the elements of \mathcal{A} with a 1 at position u and zero elsewhere, and e is a column vector whose entries are all 1's. The inequality in (2) holds since for any $p, q \geq 0$ and $0 \leq \lambda \leq 1, \min \{p, q\} \leq p^{\lambda} q^{1-\lambda}$.

Let $\|W\|_{1}$ denote the l_{1} norm (sum of the absolute values of all entries) of a square matrix W. It is known [14, Corollary 5.6.14] that $\lim _{n \rightarrow \infty}\left(\left\|W^{n}\right\|_{1}\right)^{1 / n}=\rho(W)$. Since $W_{i, j, \lambda}^{n}$ is a nonnegative matrix, we have that

$$
e_{u}^{T} W_{i, j, \lambda}^{n} e \leq e^{T} W_{i, j, \lambda}^{n} e=\left\|W_{i, j, \lambda}^{n}\right\|_{1}
$$

so that

$$
\begin{equation*}
\limsup _{n \rightarrow \infty} \frac{1}{n} \log e_{u}^{T} W_{i, j, \lambda}^{n} e \leq \log \rho\left(W_{i, j, \lambda}\right) \tag{4}
\end{equation*}
$$

This and (3) imply the first inequality in (1).
To show that $\min _{0 \leq \lambda \leq 1} \rho\left(W_{i, j, \lambda}\right)<1$ for all $i \neq j$, we use the fact that the spectral radius of a nonnegative matrix is bounded by the
maximum row sum of the matrix [14, Theorem 8.1.22]. Thus, for any $0 \leq \lambda \leq 1$

$$
\begin{align*}
\rho\left(W_{i, j, \lambda}\right) & \leq \max _{u \in \mathcal{A}} \sum_{v \in \mathcal{A}} W_{i, j, \lambda}(v \mid u) \tag{5}\\
& =\max _{u \in \mathcal{A}} \sum_{v \in \mathcal{A}} W_{i}(v \mid u)^{\lambda} W_{j}(v \mid u)^{1-\lambda} \\
& \leq \max _{u \in \mathcal{A}} \sum_{v \in \mathcal{A}} \lambda W_{i}(v \mid u)+(1-\lambda) W_{j}(v \mid u) \tag{6}\\
& =1 \tag{7}
\end{align*}
$$

where (7) holds since W_{i} and W_{j} are transition matrices with unit row sums, and (6) follows from the well-known inequality $p^{\lambda} q^{1-\lambda} \leq$ $\lambda p+(1-\lambda) q$ for $p, q \geq 0,0 \leq \lambda \leq 1$, where equality holds if and only if (iff) $p=q$ or $\lambda \in\{0,1\}$. We show that equality is not possible in (5) and (6) simultaneously if $\lambda \in(0,1)$.

Let $\lambda \in(0,1)$ and assume (5) and (6) are both equalities so that $\rho\left(W_{i, j, \lambda}\right)=1$. If $W_{i, j, \lambda}$ is irreducible, then equality holds in the upper bound (5) iff all rows of $W_{i, j, \lambda}$ sum to $\rho\left(W_{i, j, \lambda}\right)$ [15, p. 287, Exercise 4]. In general, $W_{i, j, \lambda}$ may not be irreducible, but using the irreducible normal form of $W_{i, j, \lambda}$, we have that equality holds in (5) iff there is a set $\hat{\mathcal{A}} \subset \mathcal{A}$ such that the submatrix \hat{W} composed of the entries of $W_{i, j, \lambda}$ indexed by $\hat{\mathcal{A}}^{2}$ is irreducible, and its row sums are equal to $\rho\left(W_{i, j, \lambda}\right)$. Then, repeating the derivation (5)-(7) with \hat{W} in place of $W_{i, j, \lambda}$, if equality holds throughout the derivation, then $W_{i}(v \mid u)=W_{j}(v \mid u)=\hat{W}(v \mid u)$ for all $u, v \in \hat{\mathcal{A}}$, and so \hat{W} is a transition probability matrix. Therefore, since W_{i} and W_{j} are also transition matrices, and all three matrices are irreducible, we obtain $\hat{\mathcal{A}}=\mathcal{A}$, and hence $W_{i}=W_{j}=\hat{W}$, which contradicts the assumption of the lemma. Thus, we must have $\rho\left(W_{i, j, \lambda}\right)<1$, which proves the second inequality in (1).

Remark: Note that the end of the proof heavily depends on the fact that the Markov chains are irreducible. Indeed, it is easy to construct reducible Markov chains such that it is impossible to distinguish between them with vanishing error probability no matter how large the sample size is. For example, consider the following two transition matrices:

$$
W_{1}=\left(\begin{array}{cccc}
0.5 & 0.5 & 0 & 0 \\
0.5 & 0.5 & 0 & 0 \\
0 & 0 & 0.5 & 0.5 \\
0 & 0 & 0.5 & 0.5
\end{array}\right)
$$

and

$$
W_{2}=\left(\begin{array}{cccc}
0.5 & 0.5 & 0 & 0 \\
0.5 & 0.5 & 0 & 0 \\
0 & 0 & 0.1 & 0.9 \\
0 & 0 & 0.1 & 0.9
\end{array}\right)
$$

If the two chains start from state 3 or 4 , then it is possible to distinguish between them. If, however, they start from state 1 or 2 , then the resulting distributions are the same.

Now we are ready to show that \bar{D}_{m} decays exponentially.
Theorem 2: For every block-stationary block Markov source X_{0}^{∞} there is a constant $c_{r}>0$ depending on the transition matrix of the source such that

$$
\limsup _{m \rightarrow \infty} \frac{1}{m} \log \bar{D}_{m} \leq-c_{r}
$$

Remark: The exact form of the constant c_{r} is given in (17) in the proof of the theorem. In principle, c_{r} can be explicitly evaluated from the N-block transition probabilities of the process $\left\{X_{j N}^{(j+1) N-1}\right\}_{j=0}^{\infty}$, although for larger source alphabets \mathcal{A} and block sizes N the numerical computation may prove prohibitively complex.

Proof of Theorem 2: First notice that $U_{0}^{\infty}=\left\{U_{2 k N}^{2(k+1) N-1}\right\}_{k=0}^{\infty}$ is a block- $2 N$ stationary block- $2 N$ Markov source for each value of τ, as $U_{2 k N}^{2(k+1) N-1}$ always contains a full character of the block- N Markov source $\left\{X_{j N}^{(j+1) N-1}\right\}_{j=0}^{\infty}$. This fact will enable us to use Lemma 1 to estimate τ based on the sequence U_{0}^{m-1}, which then can be used to estimate $\bar{D}_{m}=I\left(\tau ; U_{m} \mid U_{0}^{m-1}\right)$.

For $\tau=t, t \in\{0, \ldots, N-1\}$ and $U_{0}^{2 N-1}=w \in \mathcal{A}^{2 N}$, let $\mathcal{I}_{t, w} \subset$ $\mathcal{A}^{2 N}$ denote the set of states reachable from w by the Markov chain. Moreover, for any state w of the chain, let $Q_{t, w}=\left\{q_{t}(v \mid u)\right\}, u, v \in$ $\mathcal{I}_{t, w}$ denote the transition matrix corresponding to the states in $\mathcal{I}_{t, w}$. That is,

$$
\begin{aligned}
q_{t}(u \mid v) & =P_{U_{2 N}^{4 N-1} \mid U_{0}^{2 N}, \tau}(u \mid v, t) \\
& =P_{X_{2 N+t-m}^{4 N+t-m-1} \mid X_{t-m}^{2 N+t-m-1}}(v \mid u) .
\end{aligned}
$$

To simplify further notation, we extend the above definition to any integer t. Note that $Q_{t, w}$ is a submatrix of the transition probability matrix $\left\{q_{t}(v \mid u)\right\}, u, v \in \mathcal{A}^{2 N}$ describing the behavior of the Markov chain for all states. As $Q_{t, w}$ is defined by the corresponding index set $\mathcal{I}_{t, w}$ and the values $q_{t}(u, v), u, v \in \mathcal{I}_{t, w}$, we say that $Q_{t, w}=Q_{t^{\prime}, w^{\prime}}$ if equality holds for both the index sets and the matrix entries, that is $\mathcal{I}_{t, w}=\mathcal{I}_{t^{\prime}, w^{\prime}}$ and $q_{t}(v \mid u)=q_{t^{\prime}}(v \mid u)$ for all $u, v \in \mathcal{I}_{t, w}$. Since $X_{-\infty}^{\infty}$ is block- N stationary, $Q_{k N+t, w}=Q_{t, w}$ for any integer $k, t \in$ $\{0, \ldots, N-1\}$ and $w \in \mathcal{A}^{2 N}$.

In the proof we will try to estimate which $Q_{t, w}$ is the generator matrix of an observed sequence U_{0}^{m}. Note that the block stationarity of U_{0}^{∞} implies that the starting state of the chain is almost surely nontransient (as the stationary probability of any transient state is 0), ${ }^{1}$ that is, if the transition matrix is $Q_{t, w}$ and $U_{0}^{2 N-1}=w$, then, with probability $1, w$ is a nontransient state of the Markov chain. Clearly, the definition of $\mathcal{I}_{t, w}$ implies that if w is a nontransient state, then $\mathcal{I}_{t, w}$ is an irreducible set of states and $Q_{t, w}$ is irreducible. Therefore, in what follows we only consider those $Q_{t, w}$ matrices that are irreducible.

Obviously, if the $Q_{t, w}$ are not all different, it is not possible to determine the parameters w and t of the real transition matrix exactly (we cannot distinguish between two Markov chains with the same transition matrix). Therefore, for any t let $g_{w}(t)$ denote the smallest number in $\{0, \ldots, N-1\}$ such that $Q_{t, w}=Q_{g_{w}(t), w}$, and let N_{w}^{*} be the number of different irreducible transition matrices $Q_{t, w}$. (Clearly, N_{w}^{*} is almost surely at least one, and it is bounded from above by the number \hat{N}_{w} of different-not necessarily irreducible-transition matrices $Q_{t, w}$, and it is easy to show that $\hat{N}_{w}=\max _{0 \leq t<N} g_{w}(t)+1$, and $Q_{0, w}, \ldots, Q_{\hat{N}_{w}-1, w}$ are different.)
It is easy to see that, given $U_{0}^{2 N-1}=w$ and $g_{w}(\tau), \tau$ is independent of U_{0}^{m} for every m. Therefore,

$$
\begin{aligned}
H\left(\tau \mid U_{2 N}^{m}, U_{0}^{2 N-1}=w\right)= & H\left(\tau, g_{w}(\tau) \mid U_{2 N}^{m}, U_{0}^{2 N-1}=w\right) \\
= & H\left(g_{w}(\tau) \mid U_{2 N}^{m}, U_{0}^{2 N-1}=w\right) \\
& +H\left(\tau \mid g_{w}(\tau), U_{2 N}^{m}, U_{0}^{2 N-1}=w\right) \\
= & H\left(g_{w}(\tau) \mid U_{2 N}^{m}, U_{0}^{2 N-1}=w\right) \\
& +H\left(\tau \mid g_{w}(\tau)\right) .
\end{aligned}
$$

[^1]By Theorem 1, this implies for all $m \geq 2 N$

$$
\begin{aligned}
\bar{D}_{m}= & I\left(\tau ; U_{m} \mid U_{0}^{m-1}\right)=H\left(\tau \mid U_{0}^{m-1}\right)-H\left(\tau \mid U_{0}^{m}\right) \\
= & \sum_{w} P_{U_{0}^{2 N-1}}(w)\left(H\left(g_{w}(\tau) \mid U_{2 N}^{m-1}, U_{0}^{2 N-1}=w\right)\right. \\
& -H\left(g_{w}(\tau) \mid U_{2 N}^{m}, U_{0}^{2 N-1}=w\right) \\
\leq & \sum_{w} P_{U_{0}^{2 N-1}}(w) H\left(g_{w}(\tau) \mid U_{2 N}^{m-1}, U_{0}^{2 N-1}=w\right) \\
\leq & \max _{w: P_{U_{0}^{2 N-1}}(w)>0} H\left(g_{w}(\tau) \mid U_{2 N}^{m-1}, U_{0}^{2 N-1}=w\right) .
\end{aligned}
$$

Therefore,

Next we bound the conditional entropies

$$
H\left(g_{w}(\tau) \mid U_{2 N}^{m-1}, U_{0}^{2 N-1}=w\right)
$$

Let $\tau_{m, w}=\tau_{m, w}\left(U_{0}^{m-1}\right)$ be an optimal estimate of $g_{w}(\tau)$ based on U_{0}^{m-1}, given $U_{0}^{2 N-1}=w$, in the sense that

$$
\begin{aligned}
\operatorname{Pr}\left(g_{w}(\tau)=\tau_{m, w} \mid U_{0}^{2 N-1}\right. & =w) \\
& \geq \operatorname{Pr}\left(g_{w}(\tau)=f\left(U_{0}^{m-1}\right) \mid U_{0}^{2 N-1}=w\right)
\end{aligned}
$$

for any function $f: \mathcal{A}^{m} \rightarrow\left\{0, \ldots, \hat{N}_{w}-1\right\}$, and let

$$
p_{m, w}=\operatorname{Pr}\left(g_{w}(\tau) \neq \tau_{m, w} \mid U_{0}^{2 N-1}=w\right) .
$$

Note that such an optimal estimate always exists, and $Q_{\tau_{m, w}, w}$ is almost surely an irreducible matrix. Moreover, the latter implies that if $N_{w}^{*}=1$, then $\tau=\tau_{m, w}$ for all m with probability 1 .

Since $\tau_{m, w}$ is a function of U_{0}^{m}
$H\left(g_{w}(\tau) \mid U_{2 N}^{m-1}, U_{0}^{2 N-1}=w\right) \leq H\left(g_{w}(\tau) \mid \tau_{m, w}, U_{0}^{2 N-1}=w\right)$
(for properties of the entropy function see, e.g., [5]). Therefore, if $N_{w}^{*}=1$, then $H\left(g_{w}(\tau) \mid \tau_{m, w}, U_{0}^{2 N-1}=w\right)=0$, and so

$$
\begin{equation*}
\lim _{m \rightarrow \infty} \frac{1}{m} \log H\left(g_{w}(\tau) \mid U_{2 N}^{m-1}, U_{0}^{2 N-1}=w\right) \leq-c_{w} \tag{10}
\end{equation*}
$$

with $c_{w}=\infty$.
Otherwise, if $N_{w}^{*}>1$, we bound the right-hand side of (9) using Fano's inequality as

$$
H\left(g_{w}(\tau) \mid \tau_{m, w}, U_{0}^{2 N-1}=w\right) \leq p_{m, w} \log \left(N_{w}^{*}-1\right)+h_{b}\left(p_{m, w}\right)
$$

where $h_{b}(p)=-p \log p-(1-p) \log (1-p)$ for $0 \leq p \leq 1$. From here, obviously

$$
\begin{align*}
& \limsup _{m \rightarrow \infty} \frac{1}{m} \log H\left(g_{w}(\tau) \mid \tau_{m, w}, U_{0}^{2 N-1}=w\right) \\
& \quad \leq \limsup _{m \rightarrow \infty} \frac{1}{m} \log \left(2 \max \left\{p_{m, w} \log \left(N_{w}^{*}-1\right), h_{b}\left(p_{m, w}\right)\right\}\right) \\
& \quad \leq \max \left\{\limsup _{m \rightarrow \infty} \frac{1}{m} \log p_{m, w}, \limsup _{m \rightarrow \infty} \frac{1}{m} \log h_{b}\left(p_{m, w}\right)\right\} \tag{11}
\end{align*}
$$

Next we use Lemma 1 to bound (11). In order to be able to apply the lemma, we need to determine the state space of the observed process, and then we only need to find the generating Markov chain (given by $Q_{t, w}$) among those that live on that state space. As we have mentioned before, if $Q_{t, w}$ is not irreducible, then w is a transient state of the Markov chain, and so its stationary probability is 0 . If $Q_{t, w}$ is irreducible, the probability that the corresponding Markov chain does not reach a given state within k steps converges to 0 exponentially fast in k. To determine the exponent, consider the matrices $Q_{t, w,-v}, v \in \mathcal{I}_{t, w}$, obtained from $Q_{t, w}$ by setting its v th column to zero. Since this modification results in throwing away the probability that the chain would reach state v in each step, it is easy to see that the probability of not reaching state v within k steps is given by

$$
\hat{p}_{Q_{t, w}, w, v}^{(k)}=e_{w}^{T} Q_{t, w,-v}^{k} e
$$

where $e_{w}=(0, \ldots, 0,1,0 \ldots, 0)$ is a unit vector with a 1 at position w, and e is a column vector whose entries are all 1's. Now the irreducibility of $Q_{t, w}$ implies that the probability that the chain, started from any state $w^{\prime} \in \mathcal{I}_{t, w}$, reaches v converges to one as the number of steps k increases. Thus, $e_{w^{\prime}}^{T} Q_{t, w,-v}^{k} e \rightarrow 0$ as $k \rightarrow \infty$ for all $w^{\prime} \in \mathcal{I}_{t, w}$, which shows that $Q_{t, w,-v}^{k}$ converges to the zero matrix as k increases. This implies that the spectral radius $\rho\left(Q_{t, w,-v}\right)<1$ [14, Theorem 5.6.12]. Then, similarly to (4), we have

$$
\limsup _{k \rightarrow \infty} \frac{1}{k} \log \hat{p}_{Q_{t, w}, w, v}^{(k)} \leq \log \rho\left(Q_{t, w,-v}\right)<0
$$

Therefore, if $Q_{t, w}$ is irreducible, then for the set of values

$$
\hat{\mathcal{I}}_{k}=\left\{U_{0}^{2 N-1}, U_{2 N}^{4 N-1}, \ldots, U_{2(k-1) N}^{2 k N-1}\right\}
$$

we have

$$
\begin{aligned}
\limsup _{k \rightarrow \infty} \frac{1}{k} \log \operatorname{Pr}\left(\hat{\mathcal{I}}_{k} \neq \mathcal{I}_{t, w} \mid \tau=\right. & \left.t, U_{0}^{2 N-1}=w\right) \\
& \leq \max _{v \in \mathcal{I}_{t, w} \backslash\{w\}} \log \rho\left(Q_{t, w,-v}\right)<0
\end{aligned}
$$

by the union bound, since reaching all states requires reaching each state $v \in \mathcal{I}_{t, w} \backslash\{w\}$ individually. This implies that for any w such that $\operatorname{Pr}\left(U_{0}^{2 N-1}=w\right)>0$

$$
\begin{equation*}
\limsup _{m \rightarrow \infty} \frac{1}{m} \log \operatorname{Pr}\left(\left.\hat{\mathcal{I}}_{\left\lfloor\frac{m}{2 N}\right\rfloor} \neq \mathcal{I}_{g_{w}(\tau), w} \right\rvert\, U_{0}^{2 N-1}=w\right) \leq-c_{w, 1} \tag{12}
\end{equation*}
$$

where

$$
\begin{equation*}
c_{w, 1}=-\frac{1}{2 N} \max _{t: Q_{t, w}} \max _{\text {is irreducible } v \in \mathcal{I}_{t, w} \backslash\{w\}} \log \rho\left(Q_{t, w,-v}\right)>0 . \tag{13}
\end{equation*}
$$

For any $\mathcal{I} \subset \mathcal{A}^{2 N}$, let
$\mathcal{Q}_{w}(\mathcal{I})=\left\{g_{w}(i): 0 \leq i<N, Q_{i, w}\right.$ is irreducible and is defined on $\left.\mathcal{I}\right\}$
denote the set of indices of the irreducible Markov chains with state space \mathcal{I} (from among Markov chains with the same transition matrix, we pick the one with the smallest index). Now $g_{w}(\tau)$ can be estimated by first estimating $\mathcal{I}_{g_{w}(\tau), w}$ by $\hat{\mathcal{I}}_{k}, k=\lfloor m / 2 N\rfloor$, based on U_{0}^{m-1}, and then estimating $g_{w}(\tau)$ by an optimal classifier for the problem of deciding which $Q_{i, w}, i \in \mathcal{Q}_{w}\left(\hat{\mathcal{I}}_{k}\right)$, has generated the sequence

$$
U_{0}^{2 N-1}=w, U_{2 N}^{4 N-1}, \ldots, U_{2(k-1) N}^{2 k N-1}
$$

Let $p_{m, w}^{\prime}$ denote the conditional error probability of the latter optimal classifier given $U_{0}^{2 N-1}=w$. Then for any w with $\operatorname{Pr}\left(U_{0}^{2 N-1}=w\right)>0$

$$
\begin{equation*}
p_{m, w} \leq \operatorname{Pr}\left(\hat{\mathcal{I}}_{k} \neq \mathcal{I}_{g_{w}(\tau), w} \mid U_{0}^{2 N-1}=w\right)+p_{m, w}^{\prime} \tag{14}
\end{equation*}
$$

Here the first term on the right-hand side is asymptotically bounded by (12). To bound the second term, define

$$
\begin{equation*}
c_{w, 2}=-\max _{i, j \in \mathcal{Q}_{w}\left(\mathcal{I}_{g_{w}(\tau), w}\right), i \neq j} \min _{0 \leq \lambda \leq 1} \log \rho\left(Q_{i, j, w, \lambda}\right) \tag{15}
\end{equation*}
$$

where the matrices $Q_{i, j, w, \lambda}$, whose entries are also indexed by $\mathcal{I}_{g_{w}(\tau), w}^{2}$, are given for any $i, j \in \mathcal{Q}_{w}\left(\mathcal{I}_{g_{w}(\tau), w}\right)$ and $0 \leq \lambda \leq 1$ by

$$
Q_{i, j, w, \lambda}(v \mid u)=Q_{i, w}(v \mid u)^{\lambda} Q_{j, w}(v \mid u)^{1-\lambda}, \quad u, v \in \mathcal{I}_{g_{w}(\tau), w}
$$

Then, as the matrices $Q_{i, w}, i \in \mathcal{Q}_{w}\left(\mathcal{I}_{g_{w}(\tau), w}\right)$ are different and irreducible, from Lemma 1 we have $c_{w, 2}>0$ and

$$
\limsup _{m \rightarrow \infty} \frac{1}{m} \log p_{m, w}^{\prime} \leq-c_{w, 2}
$$

Combining this inequality with (12) and (14) we obtain

$$
\begin{equation*}
\limsup _{m \rightarrow \infty} \frac{1}{m} \log p_{m, w} \leq-c_{w} \tag{16}
\end{equation*}
$$

for the positive number $c_{w}=\min \left\{c_{w, 1}, c_{w, 2}\right\}$. In particular, $\lim _{m \rightarrow \infty} p_{m, w}=0$. Therefore, as L'Hospital's rule implies

$$
\lim _{p \rightarrow 0} p \log (1 / p) / h_{b}(p)=1
$$

we have

$$
\begin{aligned}
\limsup _{m \rightarrow \infty} \frac{1}{m} \log h_{b}\left(p_{m, w}\right) & =\limsup _{m \rightarrow \infty} \frac{1}{m} \log \left(p_{m, w} \log \frac{1}{p_{m, w}}\right) \\
& =\limsup _{m \rightarrow \infty} \frac{1}{m} \log p_{m, w}
\end{aligned}
$$

where the second equality holds because $\lim _{x \rightarrow 0+} \frac{\log \log (1 / x)}{\log x}=0$. Thus, the two terms in the argument of the maximum in (11) are equal and converge to zero exponentially fast by (16). Combining this fact with inequalities (8)-(10) proves the theorem with constant

$$
\begin{equation*}
c_{r}=\min _{w: P_{U_{0}^{2 N-1}}(w)>0} c_{w}>0 \tag{17}
\end{equation*}
$$

where $c_{w}=\infty$ if $N_{w}^{*}=1$, and $c_{w}=\min \left\{c_{w, 1}, c_{w, 2}\right\}$ if $N_{w}^{*}>1$, where $c_{w, 1}$ and $c_{w, 2}$ are defined in (13) and (15), respectively.

V. Universal Symbol-Based Coding of Block Markov Sources

Now we are ready to establish an upper bound for the real coding redundancy for a large class of universal symbol-based codes. Let $\ell_{n}^{(m)}: \mathcal{A}^{n} \rightarrow\{0,1\}^{*}$ denote the code lengths of a universal code $\left\{f_{n}\right\}$ for m th-order Markov sources satisfying

$$
\begin{equation*}
\frac{1}{n} \sup _{Y_{0}^{n-1}} \sup _{z_{0}^{n-1} \in \mathcal{A}^{n}}\left[\ell_{n}^{(m)}\left(z_{0}^{n-1}\right)+\log P_{Y_{0}^{n-1}}\left(z_{0}^{n-1}\right)\right] \leq c_{n}^{(m)} \tag{18}
\end{equation*}
$$

for some $c_{n}^{(m)} \rightarrow 0$ as $n \rightarrow \infty$, where the first supremum is taken over all n-fold marginal distributions of m th-order Markov sources over \mathcal{A}. In other words, we require that the "pointwise redundancy" converges to zero uniformly for each source sequence and for each m th-order Markov source. For example, there exist universal arithmetic codes for m th-order Markov sources with $c_{n}^{(m)}=O\left(|\mathcal{A}|^{m+1} \log n / n\right)$ (see, e.g., [6]).

For fixed m and n, the per-symbol coding redundancy is defined as

$$
R_{n, m}=\frac{1}{n}\left(E \ell_{n}^{(m)}\left(X_{0}^{n-1}\right)-H\left(X_{0}^{n-1}\right)\right)
$$

The next result establishes an upper bound on this quantity under the above general conditions.

Theorem 3: If the code length function $\ell_{n}^{(m)}$ satisfies (18) then for $n \geq m \geq 2 N$ the coding redundancy $R_{n, m}$ for the block stationary block Markov source X_{0}^{∞} can be bounded as

$$
\begin{equation*}
R_{n, m} \leq \frac{1}{n} \log N+2^{-m c_{r}+o(m)}+c_{n}^{(m)} \tag{19}
\end{equation*}
$$

where c_{r} is defined in Theorem 2.

Remarks:

i) For any fixed m and very large coding block length n, the redundancy is exponentially small in m, that is,

$$
\limsup _{n \rightarrow \infty} \frac{1}{n} E\left[\ell_{n}^{(m)}\left(X_{0}^{n-1}\right)\right]-\bar{H}\left(X_{0}^{\infty}\right) \leq 2^{-m c_{r}+o(m)}
$$

ii) It is easy to see that to minimize the bound (19), m should be chosen $O(\log n)$. As mentioned before, there are arithmetic codes with $c_{n}^{(m)}=O\left(|\mathcal{A}|^{m+1} \log n / n\right)$ [6]. For these codes, the optimal choice is $m=(\log n-\log \log n-\log |\mathcal{A}|)$, yielding a redundancy bound of order $(n /(A \log n))^{-\frac{c_{r}}{c_{r}+\log |\mathcal{A}|}}$. Obviously, c_{r} is not known in advance. Moreover, this rate is slower than applying the universal code to the first-order block Markov source, which results in $O\left(N|\mathcal{A}|^{2 N} \log (n / N) / n\right)$ redundancy. The reason for this

Fig. 1. Compression performance of bzip2 on "book1" for different source and encoder block sizes.
is that while the number of parameters of the original source is finite (namely, $O\left(|\mathcal{A}|^{2 N}\right)$), the number of parameters of the approximating m th-order Markov chain (which is $O\left(|\mathcal{A}|^{m}\right)$) grows without bound as m increases. On the other hand, if the dependence of $c_{n}^{(m)}$ on m is less than exponential, then the dominant term in (19) is usually the last one.
iii) The result may be interesting for the practical case of universal compression, when the block size of the input is not known. Choosing an incorrect block length may result in deteriorated performance, as illustrated by the following experiment. We used two representations of the English-language text "book1" from the Calgary Corpus [3], one using $N_{s}=7$ bits per character, the other using $N_{s}=8$ bits per character. The resulting files were compressed with the bzip2 algorithm operating on (possibly different) fixed-length blocks of N_{e} symbols $\left(N_{e}\right.$ is chosen to be 1,7 , and 8$) .{ }^{2}$ Obviously, the plots when $N_{s}=N_{e}$ are the same. The per-block entropy rate of the source does not depend on N_{s}, equaling approximately 2 bits per block. The graph in Fig. 1 shows the average number of bits in the encodings per one source block, as the length of the source sequence (measured in source blocks) increases. It can be seen that the performance for the the binary alphabet size $\left(N_{e}=1\right)$ is robust and superior to the case where the source and encoder alphabet sizes are mismatched (i.e., either $N_{s}=7$ and $N_{e}=8$, or $N_{s}=8$ and $N_{e}=7$).

The experiment is repeated with a truly first-order Markov source which was generated from "book1" using the text's empirical firstorder Markov transition probabilities. Fig. 2 shows the results which are consistent with that of the first experiment. Here we know that choosing the smallest encoding block length $N_{e}=1$ results in guaranteed performance by Theorem 3, with the computational advantage of operating on a small alphabet. Thus, coding on the elementary symbol level is a practically good suboptimal scheme for encoding block Markov sources with unknown block size.

Proof of Theorem 3: From (18) it follows that for any m th-order Markov source Y_{0}^{∞} and x_{0}^{n-1}

$$
\begin{equation*}
\log \frac{P_{Y_{0}^{n-1}}\left(x_{0}^{n-1}\right)}{P_{\ell_{n}^{(m)}}\left(x_{0}^{n-1}\right)} \leq n c_{n}^{(m)} \tag{20}
\end{equation*}
$$

where $P_{\ell_{n}^{(m)}}$ denotes the coding distribution for n-long sequences.

[^2]

Fig. 2. Compression performance of bzip2 on the first-order Markov source generated from "book1" for different source and encoder block sizes.

Let \hat{Y}_{0}^{∞} denote the stationary m th-order Markov approximation of X_{0}^{∞}, defined in Theorem 1, achieving the minimum in the definition of \bar{D}_{m} (recall that $P_{\hat{Y}_{0}^{m-1}}=P_{U_{0}^{m-1}}$). Then

$$
\begin{aligned}
D & \left(P_{\left.X_{0}^{n-1} \| P_{\ell_{n}^{(m)}}\right)}\right. \\
& =D\left(P_{X_{0}^{n-1}} \| P_{\hat{Y}_{0}^{n-1}}\right) \\
& +\sum_{z_{0}^{n-1} \in \mathcal{A}^{n}} P_{X_{0}^{n-1}}\left(z_{0}^{n-1}\right) \log \frac{P_{\hat{Y}_{0}^{n-1}}\left(z_{0}^{n-1}\right)}{P_{\ell_{n}^{(m)}}\left(z_{0}^{n-1}\right)} \\
& \leq D\left(P_{\left.X_{0}^{n-1} \| P_{\hat{Y}_{0}^{n-1}}\right)+n c_{n}^{(m)}}\right.
\end{aligned}
$$

where the inequality holds by (20). Now, the first term can be easily bounded following the proof of Theorem 1 as

$$
\begin{aligned}
D & \left(P_{X_{0}^{n-1}} \| P_{\hat{Y}_{0}^{n-1}}\right) \\
& =D\left(P_{X_{0}^{m-1}} \| P_{\hat{Y}_{0}^{m-1}}\right)+\sum_{i=m}^{n} D\left(P_{X_{i} \mid X_{0}^{i-1}} \| P_{Y_{i} \mid Y_{0}^{i-1}}\right) \\
& \leq D\left(P_{X_{0}^{m-1}} \| P_{\hat{Y}_{0}^{m-1}}\right) \\
& +\sum_{i=m}^{m-1+N\left\lceil\frac{n-m+1}{N}\right\rceil} D\left(P_{X_{i} \mid X_{0}^{i-1}} \| P_{Y_{i} \mid Y_{0}^{i-1}}\right) \\
& =D\left(P_{X_{0}^{m-1} \|} \| P_{\hat{Y}_{0}^{m-1}}\right)+\left\lceil\frac{n-m+1}{N}\right\rceil \sum_{t=0}^{N-1} S_{t} \\
& \leq D\left(P_{X_{0}^{m-1} \|} \| P_{\hat{Y}_{0}^{m-1}}\right)+n \bar{D}_{m}
\end{aligned}
$$

where S_{t} is defined as in the proof of Theorem 1 with $Y_{0}^{\infty}=\hat{Y}_{0}^{\infty}$. Furthermore

$$
D\left(P_{X_{0}^{m-1}} \| P_{\hat{Y}_{0}^{m-1}}\right)=D\left(P_{X_{0}^{m-1}} \| P_{U_{0}^{m-1}}\right) \leq \log N
$$

since for any $x_{0}^{m-1} \in \mathcal{A}^{m}, P_{U_{0}^{m-1}}\left(x_{0}^{m-1}\right) \geq P_{X_{0}^{m-1}}\left(x_{0}^{m-1}\right) / N$ by definition. Thus, by Theorem 2^{0}

$$
R_{n, m} \leq \frac{1}{n} \log N+2^{-m c_{r}+o(m)}+c_{n}^{(m)}
$$

VI. Conclusion

We have demonstrated that block Markov sources can be encoded with exponentially fast vanishing redundancy using codes that are optimized for higher order symbol-level Markov models. This partially explains the findings of our experiments that a bit-level implementation of a universal compression algorithm performs reasonably well on byte-aligned data when compared with byte-level implementations, inviting further studies of bit-level implementations of compression algorithms, as on the bit level, one can take advantage of the computational benefits of operating on the smallest possible alphabet.

REFERENCES

[1] D. A. Nagy and T. Linder, "Experimental study of a binary block sorting compression scheme," in Proc. Data Compression Conf., Snowbird, UT, Apr. 2003, p. 439.
[2] M. Burrows and D. J. Wheeler, A block-sorting lossless data compression algorithm. DSRC Res. Rep. 124, Palo Alto, CA, May 1994.
[3] I. Witten and T. Bell, The Calgary Text Compression Corpus [Online]. Available: ftp.cpcs.ucalgary.ca/pub/projects/text.compression.corpus
[4] C. E. Shannon, "A mathematical theory of communication," Bell Syst. Tech. J., vol. 27, pp. 379-423, 1948.
[5] T. Cover and J. A. Thomas, Elements of Information Theory. New York: Wiley, 1991.
[6] I. Csiszár and P. C. Shields, "Information theory and statistics: A tutorial," Foundations and Trends in Communications and Information Theory, vol. 1, no. 4, Dec. 2004.
[7] R. M. Gray, Entropy and Information Theory. New York: SpringerVerlag, 1990.
[8] S. Natarajan, "Large deviations, hypothesis testing, and source coding for finite Markov chains," IEEE Trans. Inf. Theory, vol. IT-31, no. 3, pp. 360-365, May 1985.
[9] V. Anantharam, "A large deviations approach to error exponents in source coding and hypothesis testing," IEEE Trans. Inf. Theory, vol. 36, no. 4, pp. 938-943, Jul. 1990.
[10] N. Merhav and J. Ziv, "A Bayesian approach for classification of Markov sources," IEEE Trans. Inf. Theory, vol. 37, no. 4, pp. 1067-1071, Jul. 1991.
[11] I. Csiszár, T. M. Cover, and B.-S. Choi, "Conditional limit theorems under Markov conditioning," IEEE Trans. Inf. Theory, vol. IT-33, no. 6, pp. 788-801, Nov. 1987.
[12] A. György, D. A. Nagy, and T. Linder, "Convergence rates in higherorder Markov modeling of block-Markov sources," in Proc. Canadian Workshop on Information Theory, Montreal, QC, Canada, Jun. 2005, pp. 111-114.
[13] D. A. Nagy, "Lossless compression and alphabet size," Ph.D. dissertation, Queen's Univ., Kingston, ON, Canada, 2006.
[14] R. A. Horn and C. R. Johnson, Matrix Analysis. Cambridge, U.K.: Cambridge Univ. Press, 1985.
[15] P. Lancaster, Theory of Matrices. New York: Academic, 1969.

[^0]: Manuscript received September 2, 2005; revised August 24, 2006. This work was supported in part by the Natural Sciences and Engineering Research Council (NSERC) of Canada, the Hungarian Scientific Research Fund (OTKA F60787), and the János Bolyai Research Scholarship of the Hungarian Academy of Sciences. The material in this correspondence was presented in part at the 2005 Canadian Workshop on Information Theory, Montreal, QC, Canada, June 2005.
 D. A. Nagy was with the Department of Mathematics and Statistics, Queen's University, Kingston, ON K7L 3N6, Canada. He is now with the Department of Computer Science, Eötvös Lóránd University, 1117 Budapest, Hungary (e-mail: nagydani@cs.elte.hu).
 A. György is with the Machine Learning Research Group, Computer and Automation Research Institute of the Hungarian Academy of Sciences, $1111 \mathrm{Bu}-$ dapest, Hungary (e-mail: gya@ szit.bme.hu).
 T. Linder is with the Department of Mathematics and Statistics, Queen's University, Kingston, ON K7L 3N6, Canada (e-mail: linder@mast.queensu.ca).

 Communicated by W. Szpankowski, Associate Editor for Source Coding.
 Digital Object Identifier 10.1109/TIT.2006.885539

[^1]: ${ }^{1}$ A state of a Markov chain is called nontransient if the chain, started from that given state, returns to that state infinitely many times with probability one, and transient otherwise.

[^2]: ${ }^{2}$ Of course, strictly speaking bzip2 is not a universal compression method, but it serves well for illustrative purposes.

