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Abstract

We present two new algorithms, ASYNCADA and HEDGEHOG, for asynchronous
sparse online and stochastic optimization. ASYNCADA is, to our knowledge,
the first asynchronous stochastic optimization algorithm with finite-time data-
dependent convergence guarantees for generic convex constraints. In addition,
ASYNCADA: (a) allows for proximal (i.e., composite-objective) updates and
adaptive step-sizes; (b) enjoys any-time convergence guarantees without requiring
an exact global clock; and (c) when the data is sufficiently sparse, its convergence
rate for (non-)smooth, (non-)strongly-convex, and even a limited class of non-
convex objectives matches the corresponding serial rate, implying a theoretical
“linear speed-up”. The second algorithm, HEDGEHOG, is an asynchronous parallel
version of the Exponentiated Gradient (EG) algorithm for optimization over the
probability simplex (a.k.a. Hedge in online learning), and, to our knowledge, the
first asynchronous algorithm enjoying linear speed-ups under sparsity with non-
SGD-style updates. Unlike previous work, ASYNCADA and HEDGEHOG and
their convergence and speed-up analyses are not limited to individual coordinate-
wise (i.e., “box-shaped”) constraints or smooth and strongly-convex objectives.
Underlying both results is a generic analysis framework that is of independent
interest, and further applicable to distributed and delayed feedback optimization.

1 Introduction

Many modern machine learning methods are based on iteratively optimizing a regularized objective.
Given a convex, non-empty set of feasible model parameters X ⊂ Rd, a differentiable loss function
f : Rd → R, and a convex (possibly non-differentiable) regularizer function φ : Rd → R, these
methods seek the parameter vector x∗ ∈ X that minimizes f + φ (assuming a minimizer exists):

x∗ = arg min
x∈X

f(x) + φ(x) . (1)

In particular, empirical risk minimization (ERM) methods such as (regularized) least-squares, logistic
regression, LASSO, and support vector machines solve optimization problems of the form (1). In
these cases, f(x) = 1

m

∑m
i=1 F (x, ξi) is the average of the loss F (x, ξi) of the model parameter x

on the given training data ξ1, ξ2, . . . , ξm and φ(x) is a norm (or a combination of norms) on Rd (e.g.,
F (x, ξ) = log(1 + exp(x>ξ)) and φ(x) = 1

2‖x‖
2
2 in linear logistic regression [13]).

To bring the power of modern parallel computing architectures to such optimization problems, several
papers in the past decade have studied parallel variants of the stochastic optimization algorithms
applied to these problems. Here one of the main questions is to quantify the cost of parallelization,
that is, how much extra work is needed by a parallel algorithm to achieve the same accuracy as its
serial variant. Ideally, a parallel algorithm is required to do no more work than the serial version, but
∗Work partially done when the author was at the University of Alberta, Edmonton, AB, Canada.

33rd Conference on Neural Information Processing Systems (NeurIPS 2019), Vancouver, Canada.



this is very hard to achieve in our case. Instead, a somewhat weaker goal is to ensure that the price
of parallelism is at most a constant factor: that is, the parallel variant needs at most constant-times
more updates (or work). In other words, using τ parallel process requires a wall-clock running time
that is only O(1/τ)-times that of the serial variant. In this case we say that the parallel algorithm
achieves a linear speed-up. Of particular interest are asynchronous lock-free algorithms, where
Recht et al. [30] demostrated first that linear speed-ups are possible: They showed that if τ processes
run stochastic gradient descent (SGD) and apply their updates to the same shared iterate without
locking, then the overall algorithm (called Hogwild!) converges after the same amount of work as
serial SGD, up to a multiplicative factor that increases with the number of concurrent processes and
decreases with the sparsity of the problem. Thus, if the problem is sparse enough, this penalty can
be considered a constant, and the algorithm achieves linear speed-up. Several follow-up work (see
e.g., [20, 18, 17, 27, 24, 10, 29, 7, 11, 4, 2, 3, 19, 31, 33, 32, 35, 36, 12, 6, 28] and the references
therein) have demonstrated linear speed-ups for methods based on (block-)coordinate descent (BCD),
as well as other variants of SGD such as SVRG [15], SAGA [8], ADAGRAD [22, 9], and SGD with a
time-decaying step-size. Despite the great advances, however, several problems remain open.2

First, the existing convergence guarantees concern SGD when the constraint set X is box-shaped,
that is, a Cartesian product of (block-)coordinatewise constraints X = ×di=1Xi. This leaves it unclear
whether existing techniques apply to stochastic optimization algorithms that operate on non-box-
shaped constraints (e.g., on the `2 ball), or algorithms that use a non-Euclidean regularizer, such as
the exponentiated gradient (EG) algorithm used on the probability simplex (see, e.g., [34, 14]).

Second, with the exception of the works of Duchi et al. [10] and Pan et al. [26] (which still require
box-shaped constraints), and De Sa et al. [7] (which only bounds the probability of “failure”, i.e., of
producing no iterates in the ε-ball around x∗), the existing analyses demonstrating linear speed-ups
are limited to strongly-convex (or Polyak-Łojasiewicz) objectives. Thus, so far it has remained
unclear whether a similar speed-up analysis is possible if the objective is simply convex or smooth
[20], or if we are in the closely-related online-learning setting with the objective changing over time.

Third, with the exception of the work of Pedregosa et al. [27] (which still requires box-shaped
constraints, block-separable φ and strongly-convex f ), the existing analyses do not take advantage of
the structure of problem (1). In particular, when φ is “simple to optimize” over X (formally defined
as having access to a proximal operator oracle, as we make precise in what follows), serial algorithms
such as Proximal-SGD take advantage of this property to achieve considerably faster convergence
rates. Asynchronous variants of the Proximal-SGD algorithm with such faster rates have so far been
unavailable for non-strongly-convex objectives and non-box constraints.

1.1 Contributions

In this paper we address the aforementioned problems and present algorithms that are applicable
to general convex constraint sets, not just box-shaped X , but still achieve linear speed-ups (under
sparsity) for non-smooth and non-strongly-convex (as well as smooth or strongly convex) objectives,
and even for a specific class of non-convex problems. This is achieved through our new asynchronous
optimization algorithm, ASYNCADA, which generalizes the ASYNC-ADAGRAD (and ASYNC-DA)
algorithm of Duchi et al. [10] to proximal updates and its data-dependent bound to arbitrary constraint
sets. Instantiations of ASYNCADA under different settings are given in Table 1. Indeed, the results
are obtained by a more general analysis framework, built on the work of Duchi et al. [10], that yields
data-dependent convergence guarantees for a generic class of adaptive, composite-objective online
optimization algorithms undergoing perturbations to their “state”. We further use this framework to
derive the first asynchronous online and stochastic optimization algorithm with non-box constraints
that uses non-Euclidean regularizers. In particular, we present and analyze HEDGEHOG, the parallel
asynchronous variant of the EG algorithm, also known as Hedge in online linear optimization [34, 14],

2 In this paper, we do not further consider BCD-based methods, for two main reasons: a) in general, a
BCD update may unnecessarily slow down the convergence of the algorithm by focusing only on a single
coordinate of the gradient information, especially in the sparse-data problems we consider in this paper (see,
e.g., Pedregosa et al. [27, Appendix F]); and b) BCD algorithms typically apply only to box-shaped constraints,
which is what our algorithms are designed to be able to avoid. We would like to note, however, that our
stochastic gradient oracle set-up (Section 2) does allow for building an unbiased gradient estimate using only
one randomly-selected (block-)coordinate, as done in BCD methods. Nevertheless, the literature on parallel
asynchronous BCD algorithms is vast, including especially algorithms for proximal, non-strongly-convex, and
non-convex optimization; see, e.g., [29, 11, 4, 2, 3, 19, 31, 33, 32, 35, 36, 12, 6, 28] and the references therein.
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Algorithm X Nonsmooth Smooth f Strongly-convex Smooth f + Strongly-convex

SGD (DA) Rd [10, 26]X [26] X [26] X [30, 7, 20, 17, 24, 26]X

SGD (MD) � [10, 26] [26] [26] [30, 7, 20, 17, 24, 26]

DA © X X X X

AG / DA � [10, 26]X [26] X [26] X [26]X

AG / DA © X X X X

Prox-MD � - - - [27]

Prox-DA © X X X X

Prox-AG © X X X X

Hedge/EG 4 X X X X

Table 1: (Star-)convex optimization settings under which sufficient sparsity results in linear speed-up.
Previous work are cited under the settings they address. AX indicates a setting covered by the results
in this paper. The symbols �,4, and© indicate, respectively, the case when the constraint set is
box-shaped, the probability simplex, or any convex constraint set with a projection oracle. AG, DA,
and MD stand, respectively, for ADAGRAD, Dual-Averaging, and Mirror Descent, while Prox-AG,
Prox-DA, and Prox-MD denote their proximal variants (using the proximal operator of φ).

and show that it enjoys similar parallel speed-up regimes as ASYNCADA. The results are derived for
the more general setting of noisy online optimization, and the generic framework is of independent
interest, in particular in the related settings of distributed and delayed-feedback learning.

The rest of the paper is organized as follows: The optimization problem and its solution with serial
algorithms are described in Section 2 and Section 3, respectively. The generic perturbed-iterate
framework is given in Section 4. Our main algorithms, ASYNCADA and HEDGEHOG are presented
and analyzed in Section 5 and Section 6, respectively. Conclusions are drawn and some open problems
are discussed in Section 7, while omitted technical details are given in the appendices.

1.2 Notation and definitions

We use [n] to denote the set {1, 2, . . . , n}, I{E} for the indicator of an event E , and σ(H) to denote
the sigma-field generated by a set H of random variables. The j-th coordinate of a vector a ∈ Rd
is denoted a(j). For α ∈ Rd with positive entries, ‖ · ‖α denotes the α-weighted Euclidean norm,
given by ‖x‖2α = 1

2

∑d
j=1 α

(j)
(
x(j)

)2
, and ‖ · ‖α,∗ its dual. We use (at)

j
t=i to denote a sequence

ai, ai+1, . . . , aj and define ai:j :=
∑j
t=i at, with ai:j := 0 if i > j. Given a differentiable function

h : Rd → R, the Bregman divergence of y ∈ Rd from x ∈ Rd with respect to (w.r.t.) h is given by
Bh(y, x) := h(y)− h(x)− 〈∇h(x), y − x〉. It can be shown that a differentiable function is convex
if and only if Bh(x, y) ≥ 0 for all x, y ∈ Rd. The function h : Rd → R is µ-strongly convex w.r.t. a
norm ‖ · ‖ on Rd if and only if for all x, y ∈ Rd Bh(x, y) ≥ µ

2 ‖x−y‖
2, and smooth w.r.t. a norm ‖ · ‖

if and only if for all x, y ∈ Rd, |Bh(x, y)| ≤ 1
2‖x− y‖

2. A differentiable function f is star-convex if
and only if there exists a global minimizer x∗ of f such that for all x ∈ Rd, Bf (x∗, x) ≥ 0.

2 Problem setting: noisy online optimization

We consider a generic iterative optimization setting that enables us to study both online learning
and stochastic composite optimization. The problem is defined by a (known) constraint set X
and a (known) convex (possibly non-differentiable) function φ, as well as differentiable functions
f1, f2, . . . about which an algorithm learns iteratively. At each iteration t = 1, 2, . . . , the algorithm
picks an iterate xt ∈ X , and observes an unbiased estimate gt ∈ Rd of the gradient ∇ft(xt) , that
is, E{gt|xt} = ∇ft(xt). The goal is to minimize the composite-objective online regret after T
iterations, given by

R
(f+φ)
T =

T∑
t=1

(ft(xt) + φ(xt)− ft(x∗T )− φ(x∗T )) ,
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where x∗T = arg minx∈X

{∑T
t=1(ft(x) + φ(x))

}
. In the absence of noise (i.e., when gt =

∇ft(xt)), this reduces to the (composite-objective) online (convex) optimization setting [34, 14].

Stochastic optimization, online regret, and iterate averaging. If ft = f for all t = 1, 2, . . . , we
recover the stochastic optimization setting, with the algorithm aiming to minimize the composite
objective f + φ over X while receiving noisy estimates of ∇f at points (xt)

T
t=1. The algorithm’s

online regret can then be used to control the optimization risk: Since ft ≡ f , we have x∗T = x∗ =
arg minx∈X {f(x) + φ(x)}, and by Jensen’s inequality, if f is convex and x̄T = 1

T x1:T is the
average iterate,

f(x̄T ) + φ(x̄T )− f(x∗)− φ(x∗) ≤ 1

T
R

(f+φ)
T .

In addition, if f is non-convex but x̄T is selected uniformly at random from x1, . . . , xT , then the
above bound holds in expectation. As such, in the rest of the paper we study the optimization risk
through the lens of online regret.

Stochastic first-order oracle. Throughout the paper, we assume that at time t, the noisy gradient
estimate gt is given by a randomized first-order oracle3 gt : Rd × Ξ→ Rd, where Ξ is some space
of random variables, and there exists a sequence (ξt)

T
t=1 of independent elements from Ξ, with

distribution PΞ, such that
∫

Ξ
gt(x, ξ)dPΞ(ξ) = ∇ft(x) for all x ∈ X .

For example, in the finite-sum stochastic optimization case when f =
∑N
i fi, selecting one fi

uniformly at random to estimate the gradient corresponds to PΞ being the uniform distribution on Ξ =
{1, 2, . . . , N} and gt(x, ξt) = ∇fξt(x), whereas selecting a mini-batch of fi’s corresponds to Ξ being
the set of subsets (of a fixed or varying size) of {1, 2, . . . , N} and gt(x, ξt) = 1

|ξt|
∑
i∈ξt ∇fi(x).

This also covers variance-reduced gradient estimates as formed, e.g., by SAGA and SVRG, in which
case gt is built using information from the previous rounds.4

3 Preliminaries: analysis in the serial setting

First, we recall the analysis of a generic serial dual-averaging algorithm, known as Adaptive Follow-
the-Regularized-Leader (ADA-FTRL) [21, 25, 16], that generalizes regularized dual-averaging [37]
and captures the dual-averaging variants of SGD, Ada-Grad, Proximal-SGD and EG as special case.

Serial ADA-FTRL. The serial ADA-FTRL algorithm uses a sequence of regularizer functions
r0, r1, r2, . . . . At time t = 1, 2, . . . , given the previous feedback gs ∈ Rd, s ∈ [t− 1], ADA-FTRL
selects the next point xt such that

xt ∈ arg min
x∈X

〈zt−1, x〉+ tφ(x) + r0:t−1(x) , (2)

where zt−1 = g1:t−1 is the sum of the past feedback. We refer to (zt, t, r0:t) as the state of the
algorithm at time t, noting that apart from tie-breaking in (2), this state determines xt.

It is straightforward to verify that with φ = 0,X = Rd, and r0:t−1 = η
2‖ · ‖

2 for some η > 0, we get
the SGD update xt = − 1

η g1:t−1. In addition, using r0:t−1 = 1
2‖ · ‖

2
ηt where η(i)

t , i ∈ [d] are positive
step-sizes (possibly adaptively tuned [22, 9]), ADA-FTRL reduces to xt = prox(tφ,−zt−1, ηt),
where prox is the generalized proximal operator oracle5 over X that, given a function ψ and vectors
z and η, returns6

prox(ψ, z, η) := arg min
x∈X

ψ(x) +
1

2

∥∥x− η−1 � z
∥∥2

η
. (3)

3With a slight abuse of notation, gt(x, ξ) (with arguments x, ξ) is from now on used to denote the oracle at
time t evaluated at x, ξ, where as gt (without arguments) denotes the observed noisy gradient gt(xt, ξt).

4Note that in this case ξt remains an independent sequence, even though gt changes with the history.
5 Serial proximal DA [37] and ADA-FTRL call prox with ψ ← tφ, whereas the conventional Proximal-SGD

algorithm (based on Mirror-Descent) invokes the proximal operator with ψ ← φ irrespective of the iteration; see
the paper of Xiao [37, Sections 5 and 6] for a detailed discussion of this phenomenon.

6Here η−1 denotes the elementwise inverse of η and � denotes elementwise multiplication.
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When η is the same for all coordinates (in which case we simply treat it as a scalar), this reduces
to prox(ψ, z, η) = arg minx∈X ψ(x) + η

2‖x − z/η‖
2, which is the standard proximal operator;

the generalized version (3) makes it possible to use coordinatewise step-sizes as in ADAGRAD
[22, 9]. Finally, when φ = 0 and X is the probability simplex, ADA-FTRL with the negen-
tropy regularizer r0:t−1(x) = r0(x) = η

∑d
i=1 xi log(xi) for some η > 0, recovers the update

x
(i)
t = Ct exp(−z(i)

t−1/η) of the EG algorithm, where Ct = 1/
∑
j=1 exp(−z(j)

t−1/η) is the constant
normalizing xt to lie in X . Other choices of rt recover algorithms such as the p-norm update; we refer
to Shalev-Shwartz [34], Hazan [14], McMahan [21], and Orabona et al. [25] for further examples.

Analysis of ADA-FTRL ADA-FTRL and its special cases have been extensively studied in the
literature [5, 34, 14, 21, 25, 16]. In particular, it has been shown that under specific conditions on rt
and φ, which we discuss in detail in Appendix F, ADA-FTRL enjoys the following bound on the
linearized regret [25, 16]:

Theorem 1 (Regret of ADA-FTRL). For any x∗ ∈ X and any sequence of vectors (gt)
T
t=1 in Rd,

using any sequence of regularizers r0, r1, . . . , rT that are admissible w.r.t. a sequence of norms
‖ · ‖(t) (see Definition 2 in Appendix F), the iterates (xt)

T
t=1 generated by ADA-FTRL satisfy

T∑
t=1

(〈gt, xt − x∗〉+ φ(xt)− φ(x∗)) ≤ r0:T (x∗)−
T∑
t=0

rt(xt+1) +
T∑
t=1

1

2
‖gt‖2(t,∗) . (4)

Importantly, this bound holds for any feedback sequence gt irrespective of the way it is generated,
and serves as a solid basis to derive bounds under different assumptions on f , φ, and rt [25, 16].

4 Relaxing the serial analysis: algorithms with perturbed state

In this section, we show that Theorem 1 can be used to analyze ADA-FTRL when its state undergoes
specific perturbations. This relaxation of the generic serial analysis framework underlies our analysis
of parallel asynchronous algorithms, since parallel algorithms like ASYNCADA and HEDGEHOG
can be viewed as serial ADA-FTRL algorithms with perturbed states, as we show in Sections 5 and 6.

Perturbed ADA-FTRL. Next, we show that Theorem 1 also provides the basis to analyze ADA-
FTRL with perturbed states. Specifically, suppose that instead of (2), the iterate xt is given by

xt ∈ arg min
x∈X

〈ẑt−1, x〉+ t̂tφ(x) + r̂0:t−1(x), t = 1, 2, . . . , (5)

where ẑt−1 denotes a perturbed version of the dual vector zt−1, t̂t denotes a perturbed version of
ADA-FTRL’s iteration counter t, and r̂0:t−1 denotes a perturbed version of the regularizer r0:t−1.
Then, we can analyze the regret of the Perturbed-ADA-FTRL update (5) by comparing xt to the
“ideal” iterate x̃t, given by

x̃t := arg min
x∈X

〈zt−1, x〉+ tφ(x) + r0:t−1(x), t = 1, 2, . . . . (6)

Since (x̃t)
T
t=1 is given by a non-perturbed ADA-FTRL update, it enjoys the bound of Theorem 1. The

crucial observation of Duchi et al. [10] (who studied the special case of (5) with φ = 0, box-shaped
X , and r̂t = rt) was that the regret of Perturbed-ADA-FTRL is related to the linearized regret of x̃t.
When φ may be non-zero, we capture this relation by the next lemma, proved in Appendix A:

Lemma 1 (Perturbation penalty of ADA-FTRL). Consider any sequences (xt)
T
t=1 and (x̃t)

T
t=1 in

X , and any sequence (gt)
T
t=1 in Rd. Then, the regret R(f+φ)

T of the sequence (xt)
T
t=1 satisfies

R
(f+φ)
T =

T∑
t=1

(〈gt, x̃t − x∗〉+ φ(x̃t)− φ(x∗)) + ε̃1:T + δ1:T −B1:T , (7)

where ε̃t = 〈gt, xt − x̃t〉+ φ(xt)− φ(x̃t), δt = 〈∇ft(xt)− gt, xt − x∗〉 and Bt = Bft(x∗, xt).

Since gt is an unbiased estimate of ∇ft(xt) (conditionally given xt), δ1:T is zero in expectation
0, and for x̃t given by (6), the first summation is bounded by Theorem 1. Also note that when
the ft are (star-)convex, −B1:T ≤ 0. Thus, to bound the regret of Perturbed-ADA-FTRL, it only
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remains to control the “perturbation penalty” terms ε̃t capturing the difference in the composite linear
loss 〈gt, ·〉+ φ between xt and x̃t. In Appendix A, we use the stability of ADA-FTRL algorithms
(Lemma 3) to control ε̃1:T , under a specific perturbation structure (coming from delayed updates to ẑt)
that captures the evolution of the state of asynchronous dual-averaging algorithms like ASYNCADA
and HEDGEHOG. Unlike Duchi et al. [10], our derivation applies to any convex constraint set X and,
crucially, to ADA-FTRL updates incorporating non-zero φ and a perturbed counter t̂t. The following
(informal) theorem, whose formal version is given in Appendix A, captures the result.

Theorem 4 (informal). Under appropriate independence, regularity, and structural assumptions on
the regularizers and the perturbations, the Perturbed-ADA-FTRL update (5) satisfies

E
{
R

(f+φ)
T

}
≤ E

{
r0:T (x∗) +

T∑
t=1

(
1 + p∗νt +

∑
s:t∈Os

τs
νs

2
‖gt‖2(t,∗) +

∆t

νt

)
−B1:T

}
,

where p∗, νt, τt and ∆t measure, respectively, the sparsity of the gradient estimates gt, the difference
t̂t−t, and the amount of perturbations in ẑt−1, and r̂0:t−1, while Os is the set of time steps whose
attributed perturbations affect iteration s (i.e., their updates are delayed beyond s).
As we show next, we can control the effect of p∗,τt and ∆t in the bound by appropriately tuning t̂t,
resulting in linear speed-ups for ASYNCADA and HEDGEHOG.

5 ASYNCADA: Asynchronous Composite Adaptive Dual Averaging

In this section, we introduce and analyze ASYNCADA for asynchronous noisy online optimization.
ASYNCADA consists of τ processes running in parallel (e.g., threads on the same physical machine
or computing nodes distributed over a network accessing a shared data store). The processes can
access a shared memory, consisting of a dual vector z ∈ Rd to store the sum of observed gradient
estimates gt, a step-size vector η ∈ Rd, and an integer t, referred to as the clock, to track the number
of iterations completed at each point in time. The processes run copies of Algorithm 1 concurrently.

Algorithm 1: ASYNCADA: Asynchronous Composite Adaptive Dual Averaging
1 repeat
2 η̂ ← a full (lock-free) read of the shared step-sizes η
3 ẑ ← a full (lock-free) read of the shared dual vector z
4 t← t+ 1 // atomic read-increment
5 t̂← t+ γ // denote ẑt−1 = ẑ, η̂t = η̂, t̂t = t̂
6 Receive ξt
7 Compute the next iterate: xt ← prox(t̂tφ,−ẑt−1, η̂t) // prox defined in (3)
8 Obtain the noisy gradient estimate: gt ← gt(xt, ξt)

9 for j such that g(j)
t 6= 0 do z(j) ← z(j) + g

(j)
t // atomic update

10 Update the shared step-size vector η
11 until terminated

Inconsistent reads. The processes access the shared memory without necessarily acquiring a lock:
as in previous Hogwild!-style algorithms [30, 20, 18, 17, 27], we only assume that operations on
single coordinates of z and η, as well as on t′, are atomic. This in particular means that the values of
ẑ or η̂ read by a process may not correspond to an actual state of z or η at any given point in time, as
different processes can modify the coordinates in parallel while the read is taking place. A process π
is in write-conflict with another process π′ (equivalently, π′ is in read-conflict with π) if π′ reads parts
of the memory which should have been updated by π before. To limit the effects of asynchrony, we
assume that a process can be in write- and read conflicts with at most τc−1 processes, respectively.

The role of γ. ASYNCADA uses an over-estimate t̂t of the current global clock t by an additional γ.
This over-estimation enables us to better handle the effect of asynchrony when composite objectives
are involved, in particular ensuring the appropriate tuning of νt in Theorem 4; see Appendix C.
ASYNCADA can nevertheless be run without γ (i.e., with γ = 0).7

7 In Theorems 2, 5 and 6, we set γ based on τ∗ := max{τc, τ}. The analysis is still possible, and
straightforward, with γ = 0, but results in a worst constant factor in the rate, as well as an extra additive term of
order O(τ2

∗Φ) where Φ = supx,y∈X {φ(x)− φ(y)} is the diameter of X w.r.t. φ. This term does not diminish
with p∗ and may be unnecessarily large, affecting convergence in early stages of the optimization process.
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Exact vs estimated clock. ASYNCADA as given in Algorithm 1 maintains the exact global clock t.
However, this option may not be desirable (or available) in certain asynchronous computing scenarios.
For example, if the processes are distributed over a network, then maintaining an exact global clock
amounts to changing the pattern of asynchrony and delaying the computations by repeated calls over
a network. To mitigate this requirement, in Appendix B we provide ASYNCADA(ρ), a version of
ASYNCADA in which the processes update the global clock only every ρ iterations. ASYNCADA as
presented in Algorithm 1 is equivalent to ASYNCADA(ρ) with ρ = 1, and both algorithms enjoy the
same rate of convergence and linear speed-up. Obviously, when φ ≡ 0 and t is not used for setting
the step-sizes η either, there is no need to maintain t physically, and Line 4 can be omitted.

Updating the step-sizes η: In Line 10 of Algorithm 1, the step-size η has to be updated based on
the information received. The exact way this is done depends on the specific step-size sched-
ule. In particular, we consider two situations: First, when the step-size is either constant or
a simple function of t (or t̂t in case of ASYNCADA(ρ)), and second, when diagonal ADA-
GRAD step-sizes are used. In the first case, the vector η need not be kept in the shared mem-
ory explicitly, and Lines 2 and 10 can be omitted. In the second case, following [10], we
store the sum of squared gradients in the shared η, i.e., Line 10 is implemented as follows:

10* for j such that g(j)
t 6= 0 do

(
η(j)
)2 ← (

η(j)
)2

+ α2
(
g

(j)
t

)2

// atomic update

for a fixed hyper-parameter α > 0. In this case, we are storing the square of η in the shared memory,
so a square root operation needs to be applied after reading the shared memory in Line 2 to retrieve η.

Forming the output x̄T for stochastic optimization: For stochastic optimization, the algorithm
needs to output the average (or randomized) iterate x̄T at the end. However, this needs no further
coordination between the processes. To form the average iterate, it suffices for each process to keep a
local running sum of the iterates it produces and the number of updates it makes. At the end, x̄T is
built from these sums and the total number of updates. Alternatively, we can return a random iterate
as x̄T by terminating the algorithm, with probability 1/T , after calculating x in Line 7.

5.1 Analysis of ASYNCADA

The analysis of ASYNCADA is based on treating it as a special case of Perturbed-ADA-FTRL. In
order to be able to use Theorem 4, we start with the following independence assumption on ξt:
Assumption 1 (Independence of ξt). For all t = 1, 2, . . . , T , the t-th sample ξt is independent of the
history Ĥt :=

{
(ξs, ẑs, η̂s+1)

t−1
s=1

}
.

This, in turn, implies that ξt is independent of xt as well as xs and ξs for all s < t.

For general (non-box-shaped) X , Assumption 1 is plausible, as ASYNCADA needs to read z (and η)
completely and independently of ξt. If X is box-shaped and φ is coordinate-separable, however, the
values of x(j)

t for different coordinates j can be calculated independently. In this, case, the algorithm
may first sample ξt, and then only read the relevant coordinates j from z (and η) for which gt may
be non-zero, as calculating other values of x(j)

t is unnecessary for calculating gt. As mentioned by
Mania et al. [20], this violates Assumption 1. This is because multiple other processes are updating z
and η, and the updates that are included the value read for ẑt−1 (and η̂t) would then depend on ξt.
Previous papers either assume that this independence holds in their analysis, e.g., by enforcing a full
read of z and η, [20, 18, 17, 27], or rely on the smoothness of the objective to bound the effect of
the possible change in the read values [20, Appendix A]. It seems possible to adapt the argument of
Mania et al. [20, Appendix A] to ASYNCADA for box-shaped X , by comparing xt to the iterate
that would have been created based on the content of the shared memory right before the start of the
execution of the t-th iteration. This makes the analysis more complicated, and is not necessary when
X is not box-shaped; hence, we do not further pursue this construction in this paper.

Sparsity of the gradient estimates. For t ∈ [T ] and j ∈ [d], let pt,j to denote the probability that
the j-th coordinate of gt is non-zero given the history Ĥt, that is, pt,j = P

{
g

(j)
t 6= 0

∣∣Ĥt}. Let p∗
denote an upper-bound on maxt∈[T ],j∈[d] pt,j . We use p∗ as a measure of the sparsity of the problem.8

8 In stochastic optimization with a finite-sum objective f =
∑m
i=1 fi, where gt = ∇fξt(xt) and ξt ∈ [m]

is an index at time t sampled uniformly at random and independently of the history, one could measure the
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Non-adaptive and time-decaying step-sizes. We first study the case when ηt is either a constant,
or varies only as a function of the estimated iteration count t̂t. Recall that each concurrent iteration of
the algorithms can be in read- and write-conflict with at most τc − 1 other iterations, respectively,
and that the algorithm uses τ parallel processes. Define τ∗ = max{τc, τ}. The next theorem gives
bounds on the regret of ASYNCADA under various scenarios. It is proved in Appendix C, where a
similar result is also given for ASYNCADA(ρ) (Theorem 5).
Theorem 2. Suppose that either all ft, t ∈ [T ] are convex, or φ ≡ 0 and ft ≡ f for some star-convex
function f . Consider ASYNCADA running under Assumption 1 for T > τ2

∗ updates, using γ = 2τ2
∗ .

Let η0 > 0. Then:

(i) If E
{
‖gt‖22

}
≤ G2

∗ for all t ∈ [T ], then using a fixed ηt = η0

√
T or a time-varying ηt = η0

√
t̂t,

1

T
E
{
R

(f+φ)
T

}
≤ 1√

T

(
η0‖x∗‖22 +

2(1 + p∗τ
2
∗ )

η0
G2
∗

)
. (8)

(ii) If ft = f = Eξ∼PΞ {F (x, ξ)}, σ2
∗ := E

{
‖∇F (x∗, ·)‖22

}
, and for all ξ ∈ Ξ, F (·, ξ) is convex

and 1-smooth w.r.t. the norm ‖ · ‖l for some l ∈ Rd with positive entries, then given a constant
c0 > 8(1 + p∗τ

2
∗ ) and using a fixed ηt,i = c0li + η0

√
T or a time-varying ηt,i = c0li + η0

√
t̂t,

1

T
E
{
R

(f+φ)
T

}
≤ c0‖x∗‖2l

T
+

2√
T

(
η0‖x∗‖22 +

4(1 + p∗τ
2
∗ )

η0
σ2
∗

)
. (9)

(iii) If φ is µ-strongly-convex and E
{
‖gt‖22

}
≤ G2

∗ for all t ∈ [T ], then using ηt ≡ 0 or, equivalently,
prox(t̂tφ,−z, 0) := arg minx∈X t̂tφ(x) + 〈z, x〉 = ∇φ∗(−z/t̂t),

1

T
E
{
R

(f+φ)
T

}
≤ (1 + p∗τ

2
∗ )G2

∗(1 + log(T ))

µT
. (10)

Remark 1. If c = p∗τ
2
∗ is constant, the bounds match the corresponding serial bounds [16] up to

constant factors, implying a linear speed-up. This also extends the analysis of ASYNC-DA [10] to
non-box-shaped X , non-zero φ, time-varying step sizes, and smooth and strongly-convex objectives.9

Remark 2. Note that (10) holds for all time steps, and converges to zero as T grows, without
the knowledge of T or epoch-based updates. In case of ASYNCADA(ρ), the algorithm does not
maintain an exact clock either. To our knowledge, this makes ASYNCADA(ρ) the first Hogwild!-style
algorithm with an any-time guarantee without maintaining a global clock.
Remark 3. Since strongly convex functions have unbounded gradients on unbounded domains, it
is not possible to impose a uniform bound on the gradient of f + φ in part (iii) for unconstrained
optimization (i.e., when X = Rd). However, we only require the gradients of f , the non-strongly-
convex part of the objective, to be bounded, which is a feasible assumption. Similarly, Nguyen
et al. [24] analyzed strongly-convex optimization with unconstrained Hogwild! while avoiding the
aforementioned uniform boundedness assumption,s using a global clock. ASYNCADA(ρ) achieves
the same result, but applies to arbitrary convex X and φ, without requiring a global clock.

Adaptive step-sizes. Due to space constraints, we relegate the analysis of ASYNCADA(ρ) with
AdaGrad step-sizes given by Line 10* to Appendix D.

6 HEDGEHOG: Hogwild-Style Hedge

Next, we present HEDGEHOG, which is, to our knowledge the first asynchronous version of the EG
algorithm. The parallelization scheme is very similar to ASYNCADA, the difference being that EG
uses multiplicative updates rather than additive SGD-style updates. We focus only on the case of
φ ≡ 0. Each processe runs Lines 3–10 of Algorithm 2 concurrently with the other processes, sharing
the dual vector z.
sparsity of the problem through a “conflict graph” [30, 20, 17, 27], which is a bi-partite graph with fi, i ∈ [m]

on the left and coordinates j ∈ [d] on the right, and an edge between fi and coordinate j if∇fi(x)(j) can be
non-zero for some x ∈ X . In this graph, let δj denote the degree of the node corresponding to coordinate j and
∆r be the largest δj , j ∈ [d]. Then, it is straightforward to see that pt,j ≤ δj/m. Thus, p∗ = ∆r/m is a valid
upper-bound, and gives the sparsity measure used, e.g., by Leblond et al. [17] and Pedregosa et al. [27].

9Note that under the conditions considered in [10], which include that X is box-shaped and φ = 0, ASYNC-
DA requires a less restrictive sparsity regime of p∗τ∗ ≤ c for linear speed-up.
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Algorithm 2: HEDGEHOG!: Asynchronous Stochastic Exponentiated Gradient.
Input: Step size η

1 Initialization
2 Let z ← 0 be the shared sum of observed gradient estimates
3 repeat in parallel by each process
4 ẑ ← a full lock-free read of the shared dual vector z // t← t+ 1, denote ẑt−1 = ẑ
5 Receive ξt
6 Compute the next iterate: w(i)

t ← exp
(
−ẑ(i)

t−1/η
)
, i = 1, 2, . . . , d

7 Normalize: xt ← wt/‖wt‖1
8 Obtain the noisy gradient estimate: gt ← gt(xt, ξt)

9 for j such that g(j)
t 6= 0 do z(j) ← z(j) + g

(j)
t // atomic update

10 until terminated

As in ASYNCADA(ρ), we index the iterations by the time they finish the reading of z in Line 4
of HEDGEHOG (“after-read” labeling [18]). Similarly, we use Ĥt =

{
(ξs, ẑs)

t−1
s=1

}
to denote the

history of HEDGEHOG at time t, and use Ĥt to define the sparsity measure p∗ as in Section 5.1. Then,
we have the following regret bound for HEDGEHOG.

Theorem 3. Let X be the probability simplex X = {x|x(j) > 0, ‖x‖1 = 1}, and suppose that either
ft are all convex, or ft ≡ f for a star-convex f . Assume that for all t ∈ [T ], the sampling of ξt in
Line 5 of HEDGEHOG is independent of the history Ĥt. Then, after T updates, HEDGEHOG satisfies

E
{
R

(f)
T

}
≤ η log(d) +

T∑
t=1

E
{

1 +
√
p∗τ∗

2η
‖gt‖2∞

}
.

Remark 4. As in the case of ASYNCADA, as long as
√
p∗τ∗ is a constant, the rate above matches

the worst-case rate of serial EG up to constant factors, implying a linear speed-up. In particular,
given an upper-bound G∗ on E{‖gt‖∞} and setting η = G∗/

√
T log(d), we recover the well-known

O(G∗
√
T log(d)) rate for EG [14], but in the paralell asynchronous setting.

7 Conclusion, limitations, and future work

We presented and analyzed ASYNCADA, a parallel asynchronous online optimization algorithm
with composite, adaptive updates, and global convergence rates under generic convex constraints and
convex composite objectives which can be smooth, non-smooth, or non-strongly-convex. We also
showed a similar global convergence for the so-called “star-convex” class of non-convex functions.
Under all of the aforementioned settings, we showed that ASYNCADA enjoys linear speed-ups when
the data is sparse. We also derived and analyzed HEDGEHOG, to our knowledge the first Hogwild-
style asynchronous variant of the Exponentiated Gradient algorithm working on the probability
simplex, and showed that HEDGEHOG enjoyed similar linear speed-ups.

To derive and analyze ASYNCADA and HEDGEHOG, we showed that the idea of perturbed iterates,
used previously in the analysis of asynchronous SGD algorithms, naturally extends to generic dual-
averaging algorithms, in the form of a perturbation in the “state” of the algorithm. Then, building on
the work of Duchi et al. [10], we studied a unified framework for analyzing generic adaptive dual-
averaging algorithms for composite-objective noisy online optimization (including ASYNCADA
and HEDGEHOG as special cases). Possible directions for future research include applying the
analysis to other problem settings, such as multi-armed bandits. In addition, it remains an open
problem whether such an analysis is obtainable for constrained adaptive Mirror Descent without
further restrictions on the regularizers (e.g., smoothness of the regularizer seems to help). Finally, the
derivation of such data-dependent bounds for the final (rather than the average) iterate in stochastic
optimization, without the usual strong-convexity and smoothness assumptions, remains an interesting
open problem.
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A Proofs for the generic framework

Proof of Lemma 1. The proof follows in the same way as in the serial setting [16]. For t ∈ [T ],

ft(xt)− ft(x∗) = 〈∇ft(xt), xt − x∗〉 − Bft(x∗, xt)
= 〈gt, xt − x∗〉+ 〈∇ft(xt)− gt, xt − x∗〉 − Bft(x∗, xt)
= 〈gt, x̃t − x∗〉+ 〈gt, xt − x̃t〉+ δt −Bt
= 〈gt, x̃t − x∗〉+ φ(x̃t)− φ(xt) + ε̃t + δt −Bt

Adding φ(xt)− φ(x∗) to both sides and summing over t completes the proof.

Perturbation structure. We assume that the difference of ẑt−1 and zt−1 is that zero or more
coordinates g(j)

s from the past feedback vectors gs, s ∈ [t− 1], can be missing from (i.e., not added
in) the perturbed dual vector ẑt−1. Formally, for all t ∈ [T ] and j ∈ [d],

ẑ
(j)
t−1 = g

(j)
1:t−1 −

∑
s∈Ot,j

g(j)
s , (11)

where Ot,j is the subset of the past indices [t− 1] corresponding to the missing updates at the j-th
coordinate. Written in a more compact form,

ẑt−1 = g1:t−1 −
∑
s∈Ot

It,sgs , (12)

where Ot = ∪jOt,j is the set of all time steps with missing information at time t (that is, the set of
iterations with which iteration t is in read-conflict), and It,s, s ∈ [t− 1], are diagonal d× d matrices
with I(j,j)

t,s = 1 if g(j)
s is missing from ẑt−1 and 0 otherwise. We define τt,j = |Ot,j | and τt = |Ot|

to denote, respectively, the total number of missing updates to the j-th coordinate of ẑt−1, and to
the whole vector ẑt−1. Similarly, we assume that the time-counter t̂t may not be equal to t, and the
cumulative regularizers r0:t and r̂0:t, can be different, with the latter using only some of the past
updates made to r0:t. However, the exact perturbation in t̂t and r̂0:t depends on the specifics of the
algorithm. Our analysis isolates these perturbations in individual terms, which we can subsequently
study on a case-by-case basis. We make the following assumption on t̂t and the sequence of actual
regularizers (r̂t)

T
t=0 and ideal regularizers (rt)

T
t=0.

Assumption 2. The regularizers rt, r̂t, t = 0, 1, . . . , T, are admissible ADA-FTRL regularizers
(Definition 2) with the same sequence of norms ‖ · ‖(t), and the sequence of norms is non-decreasing:
‖ · ‖(t) ≥ ‖ · ‖(t−1) for all t = 1, 2, . . . , T . Finally, rt ≥ 0, t = 0, 1, 2, . . . , T , and t̂t > t, t =
1, 2, . . . , T .

Intuitively, Assumption 2 states that the regularizers r̂t are not fundamentally different from the regu-
larizers rt as far as the basic properties of ADA-FTRL are concerned. In particular, the assumption
is satisfied if (rt)

T
t=0 is admissible with a non-decreasing sequence of norms and the perturbation

increases the curvature, that is, r̂0:t−1 − r0:t−1 is convex. Finally, the assumption t̂t > t helps us in
providing bounds for composite-objective learning, as will become clear later.

Independence assumption. Similarly to the standard serial setting, we will assume that the out-
come ξt at time t is independent of the history that determines xt. In the case of perturbed ADA-FTRL,
we define the history to depend on the actual states the perturbed ADA-FTRL algorithm has gone
through:
Definition 1 (History of the perturbed game). For t = 1, 2, . . . , T , the history of the perturbed game
up to time t is defined as

Ĥt =
{(
ξs, ẑs, t̂s, r̂0:s

)t−1

s=1

}
,

where ẑs, r̂0:s, t̂s are the dual vector, regularizer and time-counter used by the (s+ 1)-th perturbed
ADA-FTRL update.

We assume that the stochastic outcomes are independent of the history:
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Assumption 3 (Independence of ξt). For all t = 1, 2, . . . , T , the t-th sample ξt is independent of the
history Ĥt.

This in turn means that ξt is independent of xt as well as xs and ξs for all s < t.

We call a norm ‖ · ‖ a weighted q-norm if there exists q > 0 and aj , j ∈ [d] such that for all x ∈ Rd,

‖x‖ =

 d∑
j=1

aj

∣∣∣x(j)
∣∣∣q
1/q

. (13)

The next theorem describes a generic data-dependent bound on the regret of perturbed ADA-FTRL.

Theorem 4. Suppose that Perturbed-ADA-FTRL is run under Assumption 3, and Assumption 2
holds such that for each t ∈ [T ], ‖ · ‖(t) is a weighted q-norm with q = 1 or q = 2. For all t ∈ [T ],
define ∆t = r0:t−1(xt)− r0:t−1(x̃t) + r̂0:t−1(x̃t)− r̂0:t−1(xt), and νt = t̂t − t with the t̂t used in
the Perturbed-ADA-FTRL update (5). Then, the regret of Perturbed-ADA-FTRL satisfies

E
{
R

(f+φ)
T

}
≤ E

{
r0:T (x∗) +

T∑
t=1

(
1 + p∗νt +

∑
s:t∈Os

τs
νs

2
‖gt‖2(t,∗) +

∆t

νt

)
−B1:T

}
,

where p∗ is a global upper-bound on P
{
g

(j)
t 6= 0|Ĥt

}
.

A.1 Proof of Theorem 4

First, we upper-bound ε̃t in terms of the difference between x̃t and xt.

Lemma 2. Consider Perturbed-ADA-FTRL under the conditions of Theorem 4. Let βt ∈ Rd be
given by β(j)

t = I
{
g

(j)
t 6= 0

}
, and use � to denote elementwise vector multiplication. Then,

• For any positive real number ct and any norm ‖ · ‖, we have

ε̃t + φ(x̃t)− φ(xt) ≤
ct
2
‖gt‖2∗ +

1

2ct
‖βt � (xt − x̃t)‖2 ,

• In the stochastic setting under Assumption 3, for any ct > 0 and any norm ‖ · ‖,

E{ε̃t + φ(x̃t)− φ(xt)} ≤ E
{
ct
2
‖∇ft(xt)‖2∗ +

1

2ct
‖xt − x̃t‖2

}
.

• Under Assumption 3, for any q ≥ 1, any weighted q-norm ‖ · ‖ determined by the history
Ĥt, and any positive scalar ct ∈ σ(Ĥt),

E{ε̃t + φ(x̃t)− φ(xt)} ≤ E
{ct

2
‖gt‖2∗

}
+ p

(1/q)
∗ E

{
1

2ct
‖(xt − x̃t)‖2

}
,

where p∗ is a global upper-bound on P
{
g

(j)
t 6= 0|Ĥt

}
. In case of q = 2, the bound still

holds if p1/2
∗ is replaced with p∗.

Proof of Lemma 2. To get the first inequality, note that gt = βt � gt by definition. The bound then
follows by the Fenchel-Young inequality.

To get the second bound, note that xt, x̃t ∈ σ(Ĥt) by construction, so by Assumption 3,

E{〈gt −∇ft(xt), xt − x̃t〉} = E
{
〈E
{
gt −∇ft(xt)|Ĥt

}
, xt − x̃t〉

}
= 0 .

Thus, E{ε̃t + φ(x̃t)− φ(xt)} = E{〈∇ft(xt), xt − x̃t〉}, and the result follows by the Fenchel-
Young inequality.
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To get the third bound, we first start with the simpler case of q = 2, using a ∈ σ(Ĥt) to denote
the associated weighting vector, then apply the first inequality and take expectation of the terms
‖βt � (xt − x̃t)‖2. Note that by construction, xt, x̃t ∈ σ(Ĥt). Furthermore, by assumption,
ct, a ∈ σ(Ĥt). Hence,

E
{

1

2ct
‖βt � (xt − x̃t)‖2

}
= E

{
E
{

1

2ct
‖βt � (xt − x̃t)‖2

∣∣Ĥt}}

= E


d∑
j=1

E
{

1

2ct
a(j)β

(j)
t (x

(j)
t − x̃

(j)
t )2|Ĥt

}
= E


d∑
j=1

E
{
I
{
g

(j)
t 6= 0

}
|Ĥt
} 1

2ct
a(j)(x

(j)
t − x̃

(j)
t )2


= E


d∑
j=1

pt,j
1

2ct
a(j)(x

(j)
t − x̃

(j)
t )2


≤
(

max
j∈[d]

pt,j

)
E

 1

2ct

d∑
j=1

a(j)(x
(j)
t − x̃

(j)
t )2

 ,

completing the proof.

To get the bound for any q ≥ 1, first note that when q ∈ [1,∞), the function h : [0,∞) → R
given by h(x) := x1/q (with h(0) := 0) is concave for all x > 0. Thus, by Jensen’s inequality,
E{h(X)} ≤ h(E{X}) for any non-negative random variable X . Next, we let the q-norm in question
be given by (13), with a ∈ σ(Ĥt) denoting the associated weighting vector, and continue as in the
case of q = 2 above:

E
{

1

2ct
‖βt � (xt − x̃t)‖2

}
= E

{
E
{

1

2ct
‖βt � (xt − x̃t)‖2

∣∣Ĥt}}

= E

 1

2ct
E


 d∑
j=1

a(j)β
(j)
t

∣∣∣x(j)
t − x̃

(j)
t

∣∣∣q
2/q ∣∣∣∣∣Ĥt




≤ E


1

2ct

E


 d∑
j=1

a(j)β
(j)
t

∣∣∣x(j)
t − x̃

(j)
t

∣∣∣q
2 ∣∣∣∣∣Ĥt




1/q
 ,

where the last inequality follows since E
{
h(X)|Ĥt

}
≤ h

(
E
{
X|Ĥt

})
by the concavity of h as

argued above, where X =
(∑d

j=1 a
(j)β

(j)
t

∣∣∣x(j)
t − x̃

(j)
t

∣∣∣q)2

. On the other hand, since h is also

increasing, we can bound h
(
E
{
X|Ĥt

})
by first upper-bounding E

{
X|Ĥt

}
. In particular,

E
{
X|Ĥt

}
= E


 d∑
j=1

a(j)β
(j)
t

∣∣∣x(j)
t − x̃

(j)
t

∣∣∣q
2 ∣∣∣∣∣Ĥt


= E


d∑
j=1

a(j)β
(j)
t

∣∣∣x(j)
t − x̃

(j)
t

∣∣∣q ( d∑
i=1

a(i)β
(i)
t

∣∣∣x(i)
t − x̃

(i)
t

∣∣∣q)∣∣∣∣∣Ĥt


≤ E


d∑
j=1

a(j)β
(j)
t

∣∣∣x(j)
t − x̃

(j)
t

∣∣∣q ( d∑
i=1

a(i)
∣∣∣x(i)
t − x̃

(i)
t

∣∣∣q)∣∣∣∣∣Ĥt
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=

d∑
j=1

a(j)E
{
β

(j)
t |Ĥt

} ∣∣∣x(j)
t − x̃

(j)
t

∣∣∣q ( d∑
i=1

a(i)
∣∣∣x(i)
t − x̃

(i)
t

∣∣∣q)

≤ p∗
d∑
j=1

a(j)
∣∣∣x(j)
t − x̃

(j)
t

∣∣∣q ( d∑
i=1

a(i)
∣∣∣x(i)
t − x̃

(i)
t

∣∣∣q)
= p∗‖xt − x̃t‖2q .

Thus, h
(
E
{
X|Ĥt

})
≤ h

(
p∗‖xt − x̃t‖2q

)
= p

1/q
∗ ‖xt − x̃t‖2. Thus,

E
{

1

2ct
‖βt � (xt − x̃t)‖2

}
≤ E

{
1

2ct
h
(
E
{
X|Ĥt

})}
≤ E

{
1

2ct
p

1/q
∗ ‖xt − x̃t‖2

}
,

completing the proof of the third bound.

Thus, controlling the regret in perturbed optimization reduces to picking a suitable norm ‖ · ‖ and
applying Lemma 2 at each time step t, and then controlling the differences xt − x̃t. To that end, we
use the stability of ADA-FTRL updates, that is, that the difference of two ADA-FTRL iterates is
controlled by the difference in the two states of the algorithm resulting in the iterates. The following
lemma provides this stability bound.

Lemma 3. Let (xt)
T
t=1 and (x̃t)

T
t=1 be given by updates (5) and (6), respectively, and suppose

that Assumption 2 holds. Define ∆t = r0:t−1(xt) − r0:t−1(x̃t) + r̂0:t−1(x̃t) − r̂0:t−1(xt) for
t = 1, 2, . . . , T . Then, for all t = 1, 2, . . . , T + 1,

1

2
‖xt − x̃t‖2(t) ≤

1

2

∥∥∥∥∥∑
s∈Ot

It,sgs

∥∥∥∥∥
2

(t,∗)

+ (t− t̂t) (φ(xt)− φ(x̃t)) + ∆t . (14)

Proof of Lemma 3. Since both (rt)
T
t=1 and (r̂t)

T
t=1 are admissible, the ADA-FTRL margin lemma

[16, Lemma 24 (Appendix F)] applied to the update (5) implies that for all t = 1, 2, . . . , T ,

〈ẑt−1, x̃t − xt〉+ t̂t (φ(x̃t)− φ(xt)) + r̂0:t−1(x̃t)− r̂0:t−1(xt) ≥ Bt̂tφ+r̂0:t−1
(x̃t, xt) ,

while for update (6) we have

〈zt−1, xt − x̃t〉+ t (φ(xt)− φ(x̃t)) + r0:t−1(xt)− r0:t−1(x̃t) ≥ Btφ+r0:t−1
(xt, x̃t) .

By the strong convexity of tφ+ r0:t−1 and tφ+ r̂0:t−1 w.r.t. ‖ · ‖(t), convexity of φ, and the fact that
t̂t > t > 0 (so that t̂tφ+ r0:t−1 is also strongly-convex w.r.t. ‖ · ‖(t)), we have Bt̂tφ+r̂0:t−1

(x̃t, xt) ≥
1
2‖xt − x̃t‖

2
(t) and Btφ+r0:t−1

(xt, x̃t) ≥ 1
2‖xt − x̃t‖

2
(t). Adding the above,

1

2
‖xt − x̃t‖2(t) ≤ −

1

2
‖xt − x̃t‖2(t) + 〈zt−1 − ẑt−1, xt − x̃t〉+ (t− t̂t) (φ(xt)− φ(x̃t))

+ (r0:t−1(xt)− r̂0:t−1(xt))− (r0:t−1(x̃t)− r̂0:t−1(x̃t))

= −1

2
‖xt − x̃t‖2(t) + 〈

∑
s∈Ot

It,sgs, xt − x̃t〉+ (t− t̂t) (φ(xt)− φ(x̃t)) + ∆t

≤ 1

2

∥∥∥∥∥∑
s∈Ot

It,sgs

∥∥∥∥∥
2

(t,∗)

+ (t− t̂t) (φ(xt)− φ(x̃t)) + ∆t , (15)

where in the last step we have used the Fenchel-Young inequality, completing the proof.

We can now prove the theorem.
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Proof of Theorem 4. For t = 1, 2, . . . , T , recall that the imaginary iterate x̃t is defined by (6)

x̃t = arg min
x∈X

〈g1:t−1, x〉+ tφ(x) + r0:t−1(x) ,

and note that in addition to the difference between r0:t−1 and r̂0:t−1, the actual iterate xt and the
imaginary iterate x̃t have a difference of νtφ(x) in their regularization.

Starting from the regret decomposition, and using the linear regret of the imaginary iterate x̃t, as well
as the fact that rt are non-negative by Assumption 2, we have

R
(f+φ)
T (x∗) ≤

T∑
t=1

〈gt, x̃t − x∗〉+ ε̃1:T + δ1:T −B1:T +

T∑
t=1

(φ(x̃t)− φ(x∗))

≤ r0:T (x∗)−
T∑
t=0

rt(x̃t+1) +

T∑
t=1

1

2
‖gt‖2(t,∗) + ε̃1:T + δ1:T −B1:T

≤ r0:T (x∗) +

T∑
t=1

1

2
‖gt‖2(t,∗) + ε̃1:T + δ1:T −B1:T . (16)

In the above, the first inequality follows by Lemma 1. The second inequality follows by bounding the
linear regret

∑T
t=1〈gt, x̃t − x∗〉 using Theorem 1, and the third by dropping the non-negative terms

rt(x̃t+1).

Next, we bound the penalty terms ε̃1:T . For each t = 1, 2, . . . , T , using the fact that νt > 0 by
Assumption 2 and νt ∈ σ(Ĥt) by definition, we have

E{ε̃t + φ(x̃t)− φ(xt)} ≤ E
{
p∗νt

2
‖gt‖2(t,∗) +

1

2νt
‖(xt − x̃t)‖2(t)

}
≤ E

{p∗νt
2
‖gt‖2(t,∗)

}
+ E

 1

2νt

∥∥∥∥∥∑
s∈Ot

It,sgs

∥∥∥∥∥
2

(t,∗)

+ 2(νtφ(x̃t)− νtφ(xt) + ∆t)


≤ E

{
p∗νt

2
‖gt‖2(t,∗) +

∑
s∈Ot

τt
2νt
‖It,sgs‖2(t,∗) +

∆t

νt
+ φ(x̃t)− φ(xt)

}

≤ E

{
p∗νt

2
‖gt‖2(t,∗) +

∑
s∈Ot

τt
2νt
‖gs‖2(t,∗) +

∆t

νt
+ φ(x̃t)− φ(xt)

}

≤ E

{
p∗νt

2
‖gt‖2(t,∗) +

∑
s∈Ot

τt
2νt
‖gs‖2(s,∗) +

∆t

νt
+ φ(x̃t)− φ(xt)

}
.

(17)

The first inequality above uses Lemma 2 with ct = p∗νt (using the assumption of ‖ · ‖(t) being a
weighted q-norm with q = 1 or q = 2), the second follows by Lemma 3, the third uses the convexity
of the norms ‖ · ‖2(t,∗) and Jensen’s inequality, the forth follows because It,s is a {0, 1}-valued
diagonal matrix and ‖ · ‖(t) is a weighted q-norm, and hence ‖It,sgs‖(t,∗) ≤ ‖gs‖(t,∗), and the
last line follows because s ∈ Ot implies s ≤ t by construction, and for s ≤ t, the dual norms
satisfy ‖ · ‖(t,∗) ≤ ‖ · ‖(s,∗) by Assumption 2. Summing the second term on the r.h.s. of (17), for
t = 1, 2, . . . , T , we get

T∑
t=1

∑
s∈Ot

τt
2νt
‖gs‖2(s,∗) =

T∑
s=1

( ∑
t:s∈Ot

τt
2νt

)
‖gs‖2(s,∗) , (18)

Thus, summing (17) over t, combining with (18), and noting that the terms φ(xt) − φ(x̃t) cancel
from the sides of the asyncrony penalty bounds (17), we get

E
{
R

(f+φ)
T (x∗)

}
≤ E

{
r0:T (x∗) +

T∑
t=1

1 + p∗νt +
∑
s:t∈Os

τs
νs

2
‖gt‖2(t,∗) +

∆t

νt
+ δ1:T

}
.
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Finally, noting that xt ∈ σ(Ht) by definition, by Assumption 3 it follows that E{δt|Ht} = 0 in the
stochastic setting. This completes the proof.

B ASYNCADA(ρ): ASYNCADA with inexact clock

In this section, we present ASYNCADA(ρ), a more general version of ASYNCADA that maintains
the global clock sparsely. In the context of ASYNCADA(ρ), we use t′ to denote the clock variable in
the shared memory, and use t to denote the virtual iteration index as we specify below. The processes
run copies of Algorithm 3 concurrently. Each process is also equipped with an internal counter t′′
and a function MaintainClock to control the updating of the global clock t′.

Similar notes as in ASYNCADA apply regarding the maintenance of the step-size η and the formation
of the average iterate. Note, however, that unlike ASYNCADA, step-sizes changing with time need
to use t̂t rather than t, since the latter is not available anymore. As Theorem 5 in Appendix C shows,
this has a negligible effect on the convergence guarantees.

Algorithm 3: ASYNCADA(ρ): ASYNCADA with inexact clock
Input: clock update frequency ρ

1 Initialize internal local counter t′′ ← 0
2 repeat
3 η̂ ← a full (lock-free) read of the shared step-sizes η
4 ẑ ← a full (lock-free) read of the shared dual vector z
5 t̂← MaintainClock() // t← t+ 1, denote ẑt−1 = ẑ, η̂t = η̂, t̂t = t̂
6 Receive ξt
7 Compute the next iterate: xt ← prox(t̂tφ,−ẑt−1, η̂t) // prox defined in (3)
8 Obtain the noisy gradient estimate: gt ← gt(xt, ξt)

9 for j such that g(j)
t 6= 0 do z(j) ← z(j) + g

(j)
t // atomic update

10 Update the shared step-size vector η
11 until terminated

Algorithm 4: Maintaining the local and global iteration counters
1 Function MaintainClock()
2 Let γ > t′′τ∗
3 t′′ ← t′′ + 1 // count number of iterations by this process
4 if t′′ ≥ ρ then // Update global clock every ρ local iterations
5 t′′ ← 0
6 t′ ← t′ + ρ // atomic read-increment
7 end if
8 return t′ + γ // Use the value of t′ read in Line 6 if executed; otherwise read t′

9 end

Indexing the iterates Unlike ASYNCADA, in ASYNCADA(ρ) the iterates are not physically
indexed by the global clock t. As such, at each point in time we define a virtual count of the number
of iterations undertaken so far, and then come up with an actual estimate of this virtual global clock.
To that end, we use the “after-read” iteration indexing proposed by Leblond et al. [17]: we define
the t-th iteration to be the one corresponding to the t-th completion of reading the shared memory
(which happens by reading t′ in Line 6 or 8 of MaintainClock), before the execution of Line 6.
This ensures that ẑt−1 contains only updates made by processes s < t, which proves useful in the
analysis.

Estimating the clock. In ASYNCADA(ρ), the processes share share an integer t′ to estimate the
(virtual) iteration count t, which is updated by each process every ρ iterations. In particular, in each
iteration a process makes one call to the function MaintainClock (Algorithm 4), which increments
its local counter t′′ of the number of updates made by that process since it last updated the global
clock; then, after every ρ local updates, MaintainClock increments the shared global clock estimate
t′ by ρ (and resets t′′ for that process). Note that in this way, t′ is always an under-estimate of t, and
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ASYNCADA (Algorithm 1) is recovered when ρ = 1. Again, when φ ≡ 0 and t is not used for setting
the step-sizes η either, there is no need to maintain t′ physically, and the call to MaintainClock can
be ommitted in Algorithm 3.

C Proofs for ASYNCADA and ASYNCADA(ρ)

We start the analysis by a lemma on the time estimates formed by ASYNCADA(ρ).

Lemma 4 (Time estimate of ASYNCADA(ρ)). Suppose ASYNCADA(ρ) is run for T iterations
with any ρ ≥ 1, using γ ≥ ρτ∗ + τ2

∗ . Then, the estimated clock t̂t is non-decreasing with t, i.e., for
all s, t ∈ [T ] with s < t, we have t̂s ≤ t̂t. In addition, for all t ∈ [T ], we have t̂t > t+ τ2

∗ .

Proof. Fix s < t ∈ [T ], and note that the value of t′ read in MaintainClock in the s-th iteration
cannot be greater than the value of t′ read in the the t-th iteration. Specifically, t′ can only increase
over (physical) time, and the iterations are indexed by the time they make their last reading of the
shared memory before the update in Line 7 of ASYNCADA(ρ), which is the reading (and possibly
incrementing) of t′ in Line 8 (respectively, Line 6) of MaintainClock. Thus, the reading of t′ in
iteration s < t necessarily has happened before that of t, leading to a smaller value of t′. As all the
processes are adding the same fixed value of γ to t′ to obtain t̂, this implies t̂s ≤ t̂t.

To see that t̂t > t, fix t and let t′ be the value of the global clock estimate at the end of the call to
MaintainClock in the t-th iteration. Since there have been at most ρ− 1 updates in each of the τ
processors since the last update of t′ by each processor, t′ > t − ρτ ≥ t − ρτ∗, where the second
inequality holds by the definition of τ∗. As such, t̂t = t′ + γ ≥ t′ + ρτ∗ + τ2

∗ > t+ τ2
∗ .

Proof of Theorem 2. The theorem follows immediately from the convergence bound of ASYN-
CADA(ρ) with ρ = 1, given by Theorem 5 below.

To analyze ASYNCADA(ρ), we need to make a slightly modified version of Assumption 1, since t̂t
is now a non-deterministic part of the state of the algorithm:

Assumption 4 (Independence of ξt). For all t = 1, 2, . . . , T , the t-th sample ξt is independent of the
history Ĥt =

{(
ξs, ẑs, t̂s, η̂s+1

)t−1

s=1

}
.

Theorem 5. Suppose that either all ft, t ∈ [T ] are convex, or φ ≡ 0 and ft ≡ f for some star-
convex function f . Consider ASYNCADA(ρ) running under Assumption 4 for T > τ2

∗ updates,
using γ = 2τ2

∗ and any ρ ≤ τ∗ in MaintainClock. Let η0 > 0. Then:

(i) If E
{
‖gt‖22

}
≤ G2

∗ for all t ∈ [T ], then using a fixed ηt = η0

√
T or a time-varying ηt = η0

√
t̂t,

1

T
E
{
R

(f+φ)
T

}
≤ 1√

T

(
η0‖x∗‖22 +

2(1 + p∗τ
2
∗ )

η0
G2
∗

)
. (19)

(ii) If for all ξ ∈ Ξ, F (·, ξ) is convex and 1-smooth w.r.t. a norm ‖ · ‖l, then given a constant
c0 > 8(1 + p∗τ

2
∗ ) and using a fixed ηt,i = c0li + η0

√
T or a time-varying ηt,i = c0li + η0

√
t̂t,

1

T
E
{
R

(f+φ)
T

}
≤ c0‖x∗‖2l

T
+

2√
T

(
η0‖x∗‖22 +

4(1 + p∗τ
2
∗ )

η0
σ2
∗

)
, (20)

where σ2
∗ = E

{
‖g(x∗, ·)‖22

}
.

(iii) If φ is µ-strongly-convex and E
{
‖gt‖22

}
≤ G2

∗ for all t ∈ [T ], then using ηt ≡ 0 or, equivalently,
prox(t̂tφ,−z, 0) := arg minx∈X t̂tφ(x) + 〈z, x〉 = ∇φ∗(−z/t̂t),

1

T
E
{
R

(f+φ)
T

}
≤ (1 + p∗τ

2
∗ )G2

∗(1 + log(T ))

µT
, (21)

Proof. We cast ASYNCADA(ρ) in the Perturbed-ADA-FTRL framework of Section 4:
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(i) Thanks to the after-read time-indexing discussed above, ẑt in ASYNCADA(ρ) cannot include
any coordinate updates from gs for s > t since by construction, the reading of z in t has finished
before calculating of gs is started. As such, ẑt−1 and zt−1 are related to each other by (11) for
all j ∈ [d] and t ∈ [T ].

(ii) In addition, letting r0:t−1 = r̂0:t−1 = 1
2‖ · ‖ηt , it is easy to see that the ASYNCADA(ρ) update

xt ← prox(t̂tφ,−ẑt−1, η̂t) is equivalent to the perturbed ADA-FTRL update (5).

(iii) Furthermore, by Lemma 4, t̂t is non-decreasing with, and greater than, t. Thus, ηt is also
non-decreasing with t, and t̂t, r0:t and r̂0:t satisfy Assumption 2 with norms ‖ · ‖t = ‖ · ‖ηt .

(iv) Finally, Assumption 4 ensures that Assumption 3 holds.

Therefore, letting νt = t̂t − t, applying Theorem 4, and noting that ∆t = 0 by construction, we get

E
{
R

(f+φ)
T (x∗)

}
≤ E

{
r0:T (x∗) +

T∑
t=1

1 + p∗νt +
∑
s:t∈Os

τs
νs

2
‖gt‖2(t,∗) −B1:T

}
.

Next, the assumption that either ft is convex, or ft ≡ f for a star-convex f implies Bf (x∗, xt) ≥ 0;
hence, the B1:T terms can be dropped. Also, by construction, t̂t ≤ t+γ, as t′ always under-estimates
t. Together with Lemma 4 and since γ = 2τ2

∗ , this implies τ2
∗ < νt ≤ 2τ2

∗ . Furthermore, τs is the
number of processes iteration s is in read-conflict with, while {s : t ∈ Os} is the set of iterations t is
in write-conflict with; hence τs ≤ τ∗ and |{s : t ∈ Os}| ≤ τ∗, implying that the summation above is
bounded by 1 and

E
{
R

(f+φ)
T (x∗)

}
≤ E

{
r0:T (x∗) +

T∑
t=1

1 + 2p∗τ
2
∗ + 1

2
‖gt‖2(t,∗)

}
. (22)

Using the definition of G∗, the fact that r0:T =

√
t̂T
2 ‖ · ‖

2 ≤
√
T+γ
2 ‖ · ‖2 ≤

√
3T
2 ‖ · ‖

2, the expansion
‖ · ‖2(t,∗) = 1

ηt
‖ · ‖2, and the well-known bound

∑T
t=1(
√
t)−1 ≤ 2

√
T [21], we get (19).

To get (20), we continue from (22) but instead upper-bound ‖gt‖ as follows:

1

2
‖gt‖2(t,∗) ≤ ‖∇F (xt, ξt)−∇F (x∗, ξt)‖2(t,∗) + ‖∇F (x∗, ξt)‖2(t,∗)

≤ 1

c0
‖∇F (xt, ξt)−∇F (x∗, ξt)‖2l,∗ +

1

η0

√
t
‖∇F (x∗, ξt)‖2 ,

where the last step follows by the definition of ηt,i, which in particular implies ‖ · ‖2(t) ≥ c0‖ · ‖
2
l and

‖ · ‖2(t) ≥ η0

√
t̂t‖ · ‖2 ≥ η0

√
t‖ · ‖2 (similarly, in case of a fixed step size, ‖ · ‖2(t) ≥ η0

√
T‖ · ‖2 ≥

η0

√
t‖ · ‖2). Putting back into (22), we obtain

E
{
R

(f+φ)
T (x∗)

}
≤ E

{
c0
2
‖x∗‖l +

η0

√
3T

2
‖x∗‖2 +

T∑
t=1

2 + 2p∗τ
2
∗

η0

√
t
‖∇F (x∗, ξt)‖2

}

+ E

{
T∑
t=1

2 + 2p∗τ
2
∗

c0
‖∇F (xt, ξt)−∇F (x∗, ξt)‖2`,∗

}

≤ E

{
c0
2
‖x∗‖l +

η0

√
3T

2
‖x∗‖2 +

T∑
t=1

2 + 2p∗τ
2
∗

η0

√
t

σ2
∗

}

+ E

{
T∑
t=1

1

4
‖∇F (xt, ξt)−∇F (x∗, ξt)‖2l,∗

}

≤ E

{
c0
2
‖x∗‖l +

η0

√
3T

2
‖x∗‖2 +

2(2 + 2p∗τ
2
∗ )

η0
σ2
∗
√
T

}
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+ E

{
T∑
t=1

1

2
(F (xt, ξt)− F (x∗, ξt)− 〈∇F (x∗, ξt), xt − x∗〉)

}

= E

{
c0
2
‖x∗‖l +

η0

√
3T

2
‖x∗‖2 +

4(1 + p∗τ
2
∗ )

η0
σ2
∗
√
T

}

+ E

{
T∑
t=1

1

2
(f(xt)− f(x∗)− 〈∇f(x∗), xt − x∗〉)

}

= E

{
c0
2
‖x∗‖l +

η0

√
3T

2
‖x∗‖2 +

4(1 + p∗τ
2
∗ )

η0
σ2
∗
√
T

}

+ E

{
T∑
t=1

1

2
(f(xt)− f(x∗)− 〈φ′(x∗), x∗ − xt〉)

}

= E

{
c0
2
‖x∗‖l +

η0

√
3T

2
‖x∗‖2 +

4(1 + p∗τ
2
∗ )

η0
σ2
∗
√
T

}

+ E

{
T∑
t=1

1

2
(f(xt)− f(x∗) + φ(xt)− φ(x∗))

}
.

Here, the first inequality follows by the definition of ‖ · ‖(t,∗) and the fact that ηT = η0

√
t̂T ≤

η0

√
T + γ ≤ η0

√
3T , the second inequality follows by the definition of c0 and σ, the third follows

by smoothness of F [23] and the bound
∑T
t=1(
√
t)−1 ≤ 2

√
T [21], the fourth by the independence

of ξt from the history, the fifth by the optimality of x∗ (where φ′(x∗) denotes the sub-gradient of φ
for which φ′(x∗) +∇f(x∗) = 0), and the last line follows by convexity of φ. Moving the last term
to the l.h.s. and multiplying the sides by 2 completes the proof of (20).

To prove (21), note that tφ is tµ-strongly-convex by assumption, and thus the sequence of regularizers
rt = r̂t = 0 still satisfy Assumption 2 with the norms ‖ · ‖2(t,∗) = µt‖ · ‖2. Thus, (22) implies

E
{
R

(f+φ)
T (x∗)

}
≤ E

{
T∑
t=1

2(1 + p∗τ
2
∗ )

2µt
‖gt‖2

}

≤ 2(1 + p∗τ
2
∗ )

2µ
G2
∗(1 + log(T )) ,

where in the last step we have used the bound
∑T
t=1(1/t) ≤ 1 + log(T ), completing the proof.

D Analysis of ASYNCADA(ρ) with ADAGRAD Step-Sizes

In this section, we provide the details of the analysis of ASYNCADA(ρ) with the step-size vector η̂
tuned adaptively in parallel (e.g., similar to ASYNC-ADAGRAD of Duchi et al. [10]), but with the full
generality of ASYNCADA(ρ), including with the use of composite objectives φ and an estimated
global clock.

First, recall from Section 5 that in this case, Line 10 is replaced with Line 10*: similarly to z, a
vector is maintained in the shared memory, storing the sum of squares of the observed gradient values
for each coordinate individually. Also, this vector is read and updated in the same way as z (with a
square-root applied to each coordinate to recover the vector η̂ before passing it to the prox operator
in Line 7). Finally, note that similarly to ẑt−1, η(j)

t will lack some of the updates from the iterations
happening concurrently with the t-th iteration. The after-read time-indexing defined in Appendix B
ensures that these concurrent updates have indices less than t, that is, there exists a set Dt,j ⊂ [t− 1]

such that for s ∈ Dt,j , α2
(
g

(j)
s

)2

has not yet been added to the shared memory when η̂(j)
t is read.
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Formally, for all j ∈ [d] and all t ∈ [T ], we have

η̂
(j)
t = α

√√√√λj +

t−1∑
s=1

(
g

(j)
s

)2

−
∑
s∈Dt,j

(
g

(j)
s

)2

, (23)

for some hyper-parameter λj > 0 that, as usual in the dual-averaging formulations of ADAGRAD (cf.
McMahan [21]), ensures the initial η̂1 is well-defined. Then, we have the following theorem:
Theorem 6. Suppose that either all ft, t ∈ [T ] are convex, or φ ≡ 0 and ft ≡ f for some star-
convex function f . Consider ASYNCADA(ρ) running under Assumption 4 for T ≥ 1 updates, using
γ = 2τ2

∗ and any ρ ≤ τ∗ in MaintainClock. For all j ∈ [d], assume that
∣∣∣g(j)
t

∣∣∣ ≤ Gj , t ∈ [T ], and

|x(j)| ≤ R for all x ∈ X . Then, using ADAGRAD step-sizes given by (23) with λj = (τ∗ + 1)G2
j

and any α > 0, we have

E
{
R

(f+φ)
T

}
≤ αR2

√
τ∗ + 1

2

d∑
j=1

Gj +

(
αR2 +

2 + 2p∗τ
2
∗

α

)√
T

d∑
j=1

Gj
√
pj . (24)

Remark 5. For a fixed τ∗, the first term in (24) is of lower order. Thus, if p∗τ2
∗ ≤ c for a constant c

and we tune α based on R, Theorem 6 implies that the average iterate x̄T of ASYNCADA(ρ) with
ADAGRAD step-sizes satisfies

E{f(x̄T )− f(x∗)} = O

R d∑
j=1

Gj

√
pj/T

 ,

which, up to a constant factor, is the same worst-case convergence rate as that of serial composite-
objective ADAGRAD under sparsity (see, e.g., Duchi et al. [9, Corollary 1]). In addition, when
φ = 0, this is the best rate attainable by any serial algorithm under sparsity [10, Proposition 1].10

Thus, Theorem 6 generalizes the linear speed-up result of ASYNC-ADAGRAD to non-box-shaped X ,
star-convex objectives, and proximal updates using a convex φ with an inexact global clock. It should
be noted, however, that the speed-up regime of ASYNC-ADAGRAD with box-shaped constraints is
less restrictive than that of Theorem 6, i.e., the condition required by Duchi et al. [10, Eq. (8)] is
p∗τ∗ ≤ c rather than p∗τ2

∗ ≤ c.

Proof. The proof follows as in the case of Theorem 5, in particular noting the implications of the
after-read indexing, the fact that Assumption 4 implies Assumption 3, and the equivalence of the
prox operator to the Perturbed-ADA-FTRL update (5) given a Euclidean regularizer. However, here
we use different r0:t and r̂0:t, and hence ∆t does not necessarily vanish anymore. In particular, we
let η̃t to be given by

η̃
(j)
t = α

√√√√λj +

t−1∑
s=1

(
g

(j)
s

)2

and let the idealized r0:t−1 be given by

r0:t−1(x) =
1

2
‖x‖2η̃t =

d∑
j=1

α

2

√√√√λj +

t−1∑
s=1

(
g

(j)
s

)2 (
x(j)

)2

,

whereas the actual regularizer used by ASYNCADA(ρ) is given by (23), i.e.,

r̂0:t−1(x) =
1

2
‖x‖2η̂t =

d∑
j=1

α

2

√√√√λj +

t−1∑
s=1

(
g

(j)
s

)2

−
∑
s∈Dt,j

(
g

(j)
s

)2 (
x(j)

)2

.

10Proposition 1 of Duchi et al. [10] establishes, for φ = 0, a lower-bound of 1
8
R
∑d
j=1 Gj min

{
pj ,

√
pj/T

}
.

By Theorem 6, ASYNCADA(ρ) with ADAGRAD step-sizes matches this rate (when φ = 0), since in addition to
(24), by the sparsity of the gradients and star-convexity of f , we have for any x ∈ X and ξ sampled from PΞ that

f(x)− f(x∗) ≤ 〈∇f(x), x− x∗〉 = E{〈∇F (x, ξ), x− x∗〉} ≤
∑
j∈[d]

GjpjR .
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Note that for all t ∈ [T ], this ensures that η̃(j)
t ≥ η̂

(j)
t ≥ η

(j)
t := α

√∑t
s=1

(
g

(j)
s

)2

for all j ∈ [d],

since by assumption, λj = (τ∗ + 1)G2
j ≥

∑
s∈Dt,j∪{t}

(
g

(j)
t

)2

≥
∑t
s=t−τ∗

(
g

(j)
t

)2

. Hence, both

r0:t−1 and r̂0:t−1 are strongly-convex w.r.t. the norm 1
2‖ · ‖ηt , and these norms are non-decreasing

(since ηt is non-decreasing by definition). Combined with Lemma 4 and the fact that rt ≥ 0 as
defined above, this implies that Assumption 2is satisfied. Hence, we can apply Theorem 4 with
νt = t̂t − t, recalling that by assumption of (star-)convexity of ft, we have B1:T ≥ 0, and obtain

E
{
R

(f+φ)
T

}
≤ E

{
1

2
‖x∗‖2η̃T +

T∑
t=1

(
1 + p∗νt +

∑
s:t∈Os

τs
νs

2
‖gt‖2(t,∗) +

∆t

νt

)}

≤ E

{
1

2
‖x∗‖2η̃T +

T∑
t=1

(
2 + 2p∗τ

2
∗

2
‖gt‖2(t,∗) +

∆t

νt

)}

≤ E


d∑
j=1

αR2

2

√√√√λj +

T∑
t=1

(
g

(j)
t

)2

+

T∑
t=1

∆t

νt


+ E

(2 + 2p∗τ
2
∗ )

T∑
t=1

d∑
j=1

1

2α

√∑t
s=1

(
g

(j)
t

)2

(
g

(j)
t

)2


≤ E


d∑
j=1

αR2

2

√√√√λj +

T∑
t=1

(
g

(j)
t

)2

+

T∑
t=1

∆t

νt


+ E

2 + 2p∗τ
2
∗

α

d∑
j=1

√√√√ T∑
t=1

(
g

(j)
t

)2


≤ αR2

2

d∑
j=1

√
λj +

d∑
j=1

αR2

2

√√√√ T∑
t=1

E
{(

g
(j)
t

)2
}

+

T∑
t=1

E
{

∆t

νt

}

+
2 + 2p∗τ

2
∗

α

d∑
j=1

√√√√ T∑
t=1

E
{(

g
(j)
t

)2
}
, (25)

where the second line follows as (22) in the proof of Theorem 5, the third line uses the definition of
η̃T and ηt and the upper-bound R, the fourth line uses the ADAGRAD lemma (McMahan [21, Lemma
4]), and the last line uses concavity of square-root and Jensen’s inequality.

Next, we bound the terms ∆t. Recall that by definition, η̃(j)
t ≥ η̂

(j)
t . Hence, r0:t−1 ≥ r̂0:t−1, and

∆t = r0:t−1(xt)− r0:t−1(x̃t) + r̂0:t−1(x̃t)− r̂0:t−1(xt) ≤ r0:t−1(xt)− r̂0:t−1(xt)

=

d∑
j=1

η̃
(j)
t − η̂

(j)
t

2

(
x

(j)
t

)2

≤ αR2

2

d∑
j=1


√√√√λj +

t−1∑
s=1

(
g

(j)
s

)2

−

√√√√λj +

t−1∑
s=1

(
g

(j)
s

)2

−
∑
s∈Dt,j

(
g

(j)
s

)2


≤

d∑
j=1

αR2
∑
s∈Dt,j

(
g

(j)
s

)2

4

√
λj +

∑t−1
s=1

(
g

(j)
s

)2

−
∑
s∈Dt,j

(
g

(j)
s

)2
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≤
d∑
j=1

αR2
∑
s∈Dt,j

(
g

(j)
s

)2

4

√∑t
s=1

(
g

(j)
s

)2
,

where the third line uses the upper-bound R on
∣∣x(j)
t

∣∣, the fourth line uses the inequality
√
a+ b−

√
a ≤ b

2
√
a

which holds for all a, b > 0, and the last line uses η(j)
t ≤ η̂

(j)
t . Noting that by construction,

either τ∗ ≥ 1 (and thus, τ∗ ≤ τ2
∗ < νt) or ∆t = 0, we have

T∑
t=1

∆t

νt
≤ αR2

4

d∑
j=1

T∑
t=1

∑
s∈Dt,j

(
g

(j)
s

)2

τ∗

√∑t
k=1

(
g

(j)
k

)2

≤ αR2

4

d∑
j=1

T∑
t=1

∑
s∈Dt,j

(
g

(j)
s

)2

τ∗

√∑s
k=1

(
g

(j)
k

)2

≤ αR2

4

d∑
j=1

T∑
s=1

∑
t:s∈Dt,j

(
g

(j)
s

)2

τ∗

√∑s
k=1

(
g

(j)
k

)2

≤ αR2

2

d∑
j=1

T∑
s=1

(
g

(j)
s

)2

2

√∑s
k=1

(
g

(j)
k

)2

≤ αR2

2

d∑
j=1

√√√√ T∑
t=1

(
g

(j)
t

)2

,

where the second line uses the fact that s < t, the third line swaps the summations on t and s, the
fourth line uses the fact that |{t : s ∈ Dt,j}| ≤ τ∗, and the fifth line uses the ADAGRAD lemma
(McMahan [21, Lemma 4]). Putting back into (25) and using the concavity of square-root with
Jensen’s inequality again, we obtain

E
{
R

(f+φ)
T

}
≤ αR2

2

d∑
j=1

√
λj +

d∑
j=1

αR2

√√√√ T∑
t=1

E
{(

g
(j)
t

)2
}

+
2 + 2p∗τ

2
∗

α

d∑
j=1

√√√√ T∑
t=1

E
{(

g
(j)
t

)2
}
.

Using the fact that E
{(

g
(j)
t

)2
}
≤ pt,jG2

j , the definition of λj , and simplifying, we obtain

E
{
R

(f+φ)
T

}
≤ αR2

√
τ∗ + 1

2

d∑
j=1

Gj +

(
αR2 +

2 + 2p∗τ
2
∗

α

)√
T

d∑
j=1

Gj
√
pj ,

This completes the proof.

E Proofs for HEDGEHOG

Proof of Theorem 3. As in the case of ASYNCADA(ρ), the proof follows by casting HEDGEHOG as
Perturbed-ADA-FTRL. In particular, the same relation between ẑt−1 and zt−1 holds, and it is easy to
see that with the after-read time-indexing the HEDGEHOG update corresponds to Perturbed-ADA-
FTRL with the regularizer r0:t(x) = r(x) + η ln(d) where r(x) = η

∑d
i=1 x

(i) log
(
x(i)
)
, which
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is 1-strongly-convex w.r.t. the `1 norm [34]. Note also that we can assume any value for t̂t > t,
including t̂t = t + νt for any νt > 0, as we don’t use t̂t in the update and hence don’t need to be
able to compute it. Then, Assumption 2 is satisfied with ‖ · ‖t =

∑d
i=1 |x(i)| being the `1 norm, with

‖ · ‖(t,∗) = ‖ · ‖∞. Then, applying Theorem 4 and noting φ = 0,∆t = 0, B1:T ≥ 0, we have

E
{
R

(f)
T (x∗)

}
≤ r(x∗) + η log(d) +

T∑
t=1

E

{
1 + p∗νt +

∑
s:t∈Os

τs
νs

2
‖gt‖2(t,∗)

}
,

for any νt determined by Ĥt. In particular, letting νt = τ∗/
√
p∗, recalling that τs and |{s : t ∈ Os}|

cannot be larger than τ∗, and noting that r(x∗) ≤ 0 for any x∗ ∈ X completes the proof.

F Extra details for the analysis of serial ADA-FTRL

A typical proxy for bounding the regret of serial optimization algorithms is linearizing the loss, and
studying the linearized regret [5, 34, 14]. In particular, we define the linearized forward regret

R+
T (x∗) =

T∑
t=1

〈gt, xt+1 − x∗〉 ,

and carry out the analysis in two steps: a decomposition of the regret in terms of the forward regret
R+
T , followed by a bound on R+

T . To that end, we need the following assumption.

Definition 2 (Admissible regularizers.). A sequence of regularizer functions (rt)
T
t=0 is “admissible”

for ADA-FTRL if and only if all rt are defined on a common convex domain S ⊂ Rd, the intersection
X∩S is non-empty, and there exists a sequence of norms

(
‖ · ‖(t)

)T
t=1

such that for all t = 1, 2, . . . , T ,
the cumulative regularizer tφ + r0:t−1 : S → R is lower-semi-continuous and 1-strongly-convex
w.r.t. ‖ · ‖(t).

As shown by Lemma 5, admissible regularizers guarantee that the ADA-FTRL updates (2) are
well-defined, that is, there exists some xt+1 ∈ X that satisfies (2), and the associated optimal value is
finite.
Lemma 5 (Well-posed ADA-FTRL). For all t = 0, 1, . . . , T , the argmin sets that define xt+1 in the
ADA-FTRL updates (2) are non-empty, and their optimal values are finite.

Proof. Fix t ∈ [T ], and consider the extended-value function ht = 〈zt−1, ·〉 + r0:t−1 + Ix∈S∩X ,
which is proper, l.s.c. and convex by construction. In addition, since r0:t−1 is strongly-convex over
S, then ht is l.s.c. and 1-strong-convex on Rd. The result then follows by Proposition 17.26 of [1],
noting that xt will be the corresponding minimizer by definition.

Then, we have the following bound on the regret of ADA-FTRL.
Theorem 7 (Forward regret of ADA-FTRL, [16].). For any x∗ ∈ X and for any sequence of linear
losses 〈gt, ·〉, t = 1, 2, . . . , T , and using any sequence of admissible regularizers r0, r1, . . . , rT , the
forward regret of ADA-FTRL satisfies

R+
T (x∗) ≤ r0:T (x∗)−

T∑
t=0

rt(xt+1) +

T∑
t=1

(φ(x∗)− φ(xt))−
T∑
t=1

Br0:t−1
(xt+1, xt) . (26)

Theorem 1 follows as a direct consequence of the above theorem by using the strong convexity of
r0:t−1 and the Fenchel-Young inequality; see [16] for further details.
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