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Near-Optimal Rates for Limited-Delay Universal
Lossy Source Coding

András György, Member, IEEE, and Gergely Neu

Abstract—We consider the problem of limited-delay lossy
coding of individual sequences. Here the goal is to design
(fixed-rate) compression schemes to minimize the normalized
expected distortion redundancy relative to a reference class of
coding schemes, measured as the difference between the average
distortion of the algorithm and that of the best coding scheme in
the reference class. In compressing a sequence of length T , the
best schemes available in the literature achieve an O(T−1/3) nor-
malized distortion redundancy relative to finite reference classes
of limited delay and limited memory, and the same redundancy
is achievable, up to logarithmic factors, when the reference class
is the set of scalar quantizers. It has also been shown that the
distortion redundancy is at least of order 1/

√
T in the latter

case, and the lower bound can easily be extended to sufficiently
powerful (possibly finite) reference coding schemes. In this paper
we narrow the gap between the upper and lower bounds, and give
a compression scheme whose normalized distortion redundancy
is O(

√
ln(T )/T ) relative to any finite class of reference schemes,

only a logarithmic factor larger than the lower bound. The
method is based on the recently introduced Shrinking Dartboard
prediction algorithm, a variant of exponentially weighted average
prediction. The algorithm is also extended to the problem of
joint source-channel coding over a (known) stochastic noisy
channel and to the case when side information is also available
to the decoder (the Wyner-Ziv setting). The same improvements
are obtained for these settings as in the case of a noiseless
channel. Our method is also applied to the problem of zero-delay
scalar quantization, where O(ln(T )/

√
T ) normalized distortion

redundancy is achieved relative to the (infinite) class of scalar
quantizers of a given rate, almost achieving the known lower
bound of order 1/

√
T . The computationally efficient algorithms

known for scalar quantization and the Wyner-Ziv setting carry
over to our (improved) coding schemes presented in this paper.

I. INTRODUCTION

In this paper we consider the problem of fixed-rate se-
quential lossy source coding of individual sequences with
limited delay. Here a source sequence x1, x2, . . . taking values
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from the source alphabet X has to be transformed into a
sequence y1, y2, . . . of channel symbols taking values in the
finite channel alphabet {1, . . . ,M}, and these channel symbols
are then used to produce the reproduction sequence x̂1, x̂2, . . ..
The rate of the scheme is defined as lnM nats (where ln
denotes the natural logarithm), and the scheme is said to have
δ1 encoding and δ2 decoding delay if, for any t = 1, 2, . . ., the
channel symbol yt depends on xt+δ1 = (x1, x2, . . . , xt+δ1)
and x̂t depends on yt+δ2 = (y1, . . . , yt+δ2). The goal of
the coding scheme is to minimize the distortion between
the source sequence and the reproduction sequence. In this
work we aim to find methods that work uniformly well
with respect to a reference coder class on every individual
(deterministic) sequence. Thus, no probabilistic assumption
is made on the source sequence, and the performance of a
scheme is measured by the distortion redundancy defined as
the maximal difference, over all source sequences of a given
length, between the normalized distortion of the given coding
scheme and that of the best reference coding scheme matched
to the underlying source sequence.

The study of limited-delay (in particular, zero-delay) lossy
source coding in the individual sequence setting was initiated
by Linder and Lugosi [1], who showed the existence of
randomized coding schemes that perform, on any bounded
source sequence, essentially as well as the best scalar quantizer
matched to the underlying sequence. More precisely, they
show that the normalized squared error distortion of their
scheme on any source sequence xT of length T is at most
O(T−1/5 lnT ) larger than the normalized distortion of the best
scalar quantizer matched to the source sequence in hindsight.
The method of [1] is based on the exponentially weighted
average (EWA) prediction method [2]–[4]: at each time instant
a coding scheme (a scalar quantizer) is selected based on its
“estimated” performance. A major problem in this approach
is that the prediction, and hence the choice of the quantizer at
each time instant, is performed based on the source sequence
which is not known exactly at the decoder. Therefore, in [1]
information about the source sequence that is used in the
random choice of the quantizers is also transmitted over the
channel, reducing the available capacity for actually encoding
the source symbols.

The coding scheme of [1] was improved and generalized by
Weissman and Merhav [5]. They considered the more general
case when the reference class F is a finite set of limited-
delay and limited-memory coding schemes. To reduce the
communication about the actual decoder to be used at the
receiver, Weissman and Merhav introduced a coding scheme
where the source sequence is split into blocks of equal length,
and in each block a fixed encoder-decoder pair is used, selected
at the source, whose identity is conveyed to the receiver at
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the beginning of each block. Similarly to [1], the code for
each block is chosen using the EWA prediction method. The
resulting scheme achieves an O(T−1/3 ln2/3 |F|) distortion
redundancy, or, in the case of the infinite class of scalar
quantizers, the distortion redundancy becomes O(T−1/3 lnT ).

The results of [5] have been extended in various ways, but
all of these works are based on the block-coding procedure
described above. A disadvantage of this method is that the
EWA prediction algorithm keeps one weight for each code
in the reference class, and so the computational complexity of
the method becomes prohibitive even for relatively simple and
small reference classes. Computationally efficient solutions
to the case of zero-delay scalar quantization were given by
György, Linder and Lugosi using dynamic programming [6]
and EWA prediction in [7] and based on the “follow-the-
perturbed-leader” prediction method (see [8], [9]) in [10]. Over
a channel with alphabet size M , the first method achieves
the O(T−1/3 lnT ) redundancy of Weissman and Merhav with
O(MT 4/3) computational and O(T 2/3) space complexity and
a somewhat worse O(T−1/4

√
lnT ) distortion redundancy

with linear O(MT ) time and O(T 1/2) space complexity,
while the second method achieves O(T−1/4 lnT ) distortion
redundancy with the same O(MT ) linear time complexity and
O(MT 1/4) space complexity.

Matloub and Weissman [11] extended the problem to allow
a discrete stochastic channel between the encoder and the
decoder, while Reani and Merhav [12] extended the model
to the Wyner-Ziv case (i.e., when side information is also
available at the decoder). The performance bound in both cases
are based on [5] while low-complexity solutions for the zero-
delay scalar quantization case are provided based on [10] and
[7], respectively. Finally, the case when the reference class
is a set of time-varying limited-delay limited-memory coding
scheme was analyzed in [13], and efficient solutions were
given for the zero-delay case for both traditional and network
(multiple-description and multi-resolution) scalar quantization.

Since most of the above coding schemes are based on
the block-coding scheme of [5], they cannot achieve better
distortion redundancy than O(T−1/3) up to some logarithmic
factors. On the other hand, the distortion redundancy is known
to be bounded from below by a constant multiple of T−1/2 in
the zero-delay case [7], leaving a gap between the best known
upper and lower bounds. Furthermore, if the identity of the
used coding scheme were communicated as side information
(before the encoded symbol is revealed), that is, no channel
bandwidth were needed to be devoted to communicate the
identity of the decoder, the employed EWA prediction method
would guarantee an O(

√
ln |F|/T ) distortion redundancy for

any finite reference coder class F (of limited delay and limited
memory), in agreement with the lower bound.1

Thus, to improve upon the existing coding schemes, the
communication overhead (describing the actually used coding
schemes) between the encoder and the decoder has to be re-

1This follows from the fact that if the chosen decoding function is known
at the receiver, the problem becomes an instance of the prediction with expert
advice problem. Similarly, the O(

√
ln |F|/T ) bound can be obtained by

analyzing the bounds of the block-coding methods devised based on [5] and
setting the term resulting from the communication overhead to zero.

duced, which is achievable by controlling the number of times
the coding scheme changes in a better way then blockwise
coding. This goal can be achieved by the recent Shrinking
Dartboard (SD) algorithm of Geulen, Voecking, and Winkler
[14], a modified version of the EWA prediction method that
is designed to control the number of expert switches, while
keeping the same marginal distributions for the predictions as
the EWA, and so provides similar performance guarantees.

In this paper we construct a randomized coding strategy,
which uses a slightly modified version of the SD algorithm
as the prediction component, that achieves an O(

√
lnT/T )

average distortion redundancy with respect to a finite reference
class of limited-delay and limited-memory source codes. The
method can also be applied to compete with the (infinite)
reference class of scalar quantizers, where it achieves an
O(lnT/

√
T ) distortion redundancy. These bounds are only

logarithmic factors larger than the corresponding lower bound.
Note that Devroye, Lugosi, and Neu [15] has recently intro-
duced a “follow the perturbed leader”-type prediction method
that also keeps the number of expert switches low. Applying
this algorithm in place of the mSD algorithm in our coding
schemes would yield similar results.

In Section II we revisit the SD algorithm of [14] with slight
improvements relative to its original version. Our randomized
coding strategy, based on the SD prediction method, is in-
troduced and analyzed in Section IV. The strategy is applied
to the problem of adaptive (zero-delay) scalar quantization in
Section V. Extensions to the noisy channel and the Wyner-Ziv
settings are given in Section VI.

II. THE SHRINKING DARTBOARD ALGORITHM REVISITED

In this section we define the problem of sequential de-
cision making (prediction) with expert advice, and present
the Shrinking Dartboard algorithm of [14]. Suppose we want
to perform a sequence of decisions from a finite set F of
size N = |F| without the knowledge of the future. At each
time step t = 1, 2, . . . the decision maker chooses an action
it ∈ F and suffers a loss dt,it . After each time step t the loss
dt,i ∈ [0, 1] for all i ∈ F is also revealed to the decision maker,
whose goal is to minimize, for some T > 0, the average regret

RT = max
i∈F

1

T

(
T∑
t=1

dt,it −DT,i

)
with respect to the constant actions i ∈ F , where DT,i =∑T
t=1 dt,i is the cumulative loss of action i up to time T . It

is assumed that the {dt,i}, the sequence of losses, is fixed in
advance for all i ∈ F and t = 1, 2, . . . , but it is unknown
to the decision maker a priori, who only learns the values
dt,i, i ∈ F after it has been selected. It is also assumed that
the decision maker has access to a sequence U1,U2, . . . of
independent random variables with uniform distribution over
the interval [0, 1], and its decision it at time step t depends
only on Ut = (U1, . . . ,Ut) and dτ,i, τ = 1, . . . , t− 1, i ∈ F .

A well-known solution to this problem (which is optimal
under various conditions) is the EWA prediction method
that, at time step t, chooses action i with probability pro-
portional to e−ηtDt−1,i for some sequence of positive step
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Algorithm 1 The modified Shrinking Dartboard algorithm
1) Set ηt > 0 with ηt+1 ≤ ηt for all t = 1, 2, . . ., η0 = η1,

and D0,i = 0 for all actions i ∈ F .
2) for t = 1, . . . , T do

a) Set wt,i = 1
N e
−ηtDt−1,i for all i ∈ F .

b) Set pt,i =
wt,i∑N
j=1 wt,j

for all i ∈ F .

c) Set ct = e(ηt−ηt−1)(t−2).
d) With probability ct

wt,it−1

wt−1,it−1
, set it = it−1 if

t ≥ 2, that is, do not change expert; otherwise
choose it randomly according to the distribution
{pt,1, . . . , pt,N}.

e) Observe the losses dt,i and set Dt,i = Dt−1,i+dt,i
for all i ∈ F .

end for

size parameters {ηt}Tt=1 [2]–[4].2 It can be shown (using
techniques developed in [17], [18]) that if ηt+1 ≤ ηt for all
t then the average expected regret of this algorithm satisfies
E [RT ] ≤

∑T
t=1 ηt/(8T ) + lnN/(ηTT ), hence setting the

step sizes ηt = 2
√

lnN/t one obtains E [RT ] ≤
√

lnN/T
(here the expectation is taken with respect to the randomizing
sequence UT ).

While the EWA algorithm may choose a different action in
each time step, in certain cases (e.g., in the coding scenario
described in this paper) switching from one action to another
has some extra cost, and so preference should be given to
action sequences with fewer switches. The SD algorithm [14]
addresses this problem and provides the same performance
guarantee as EWA while controlling the number of switches
between different actions, that is, the number of time instants
when it 6= it−1. A modified version of this prediction
method, called the modified SD (mSD) algorithm, is shown
in Algorithm 1. The difference between the SD and the
mSD algorithms is that mSD is horizon independent, which
is achieved by introducing the constant ct in the algorithm
(setting ηt ≡ η the mSD algorithm reduces to SD).

To see that the mSD algorithm is well-defined we have to
show that ct

wt,i
wt−1,i

≤ 1 for all t and i. For t = 1, the statement
follows from the definitions, since c1 = 1. For t ≥ 2 it follows
since

wt,i
wt−1,i

= exp (ηt−1Dt−2,i − ηtDt−1,i)

= exp ((ηt−1 − ηt)Dt−2,i − ηtdt−1,i)
≤ exp ((ηt−1 − ηt) (t− 2)) = 1/ct.

Note that the only difference between the mSD and the
EWA prediction algorithms is the presence of the first random
choice in step 2d of mSD: while the EWA algorithm chooses

2EWA is probably the best-known algorithm for the sequential prediction
problem considered here, also known as the problem of prediction with expert
advice. It is a special case of both generally used approaches to solve such
problems, the follow the regularized leader and the mirror descent algorithms.
In the lossless data compression scenario, when the predictions and experts
define probability distributions for a source sequence, and the loss is measured
as the negative logarithm of the probability of the observed symbol, EWA is
just the Bayesian mixture predictor for the models defined by the experts. For
more details, see, e.g., [16].

a new action in each time step t according to the distribution
{pt,1, . . . , pt,N}, the mSD algorithm sticks with the previously
chosen action with some probability. By precise tuning of this
probability, the method guarantees that actions are changed
over time only at most O(

√
T ) times in T time steps, while

maintaining the same marginal distributions over the actions
as the EWA algorithm. The latter fact guarantees that the ex-
pected regret of the two algorithms are the same; in particular,
the same parameter setting gives the optimal O(

√
lnN/T )

expected regret.
In the following we formalize the above statements concern-

ing the mSD algorithm. We state two results crucial for the
analysis of the coding scheme that we will propose in the next
section. Since the proofs are obtained by minor modifications
of existing results, they are deferred to the appendix.

The first lemma shows that the marginal distributions gen-
erated by the mSD and the EWA algorithms are the same.
The lemma is obtained by a slight modification of the proof
Lemma 1 in [14].

Lemma 1: For all t = 1, 2, . . . and i ∈ F , the mSD
algorithm selects action i at time t with probability pt,i, that
is, P [it = i] = pt,i.

As a consequence of this result, the expected regret of
mSD matches that of EWA, so the performance bound of
EWA, mentioned in the previous section, holds for the mSD
algorithm as well [14, Lemma 2]). That is, the following result
can be obtained by a slight modification of the proof of [17,
Lemma 1] for EWA (the same bound for the specific time-
dependent choice of ηt discussed after the lemma follows
directly as a special case of [18, Theorem 2]).

Lemma 2: For any T ≥ 1, the expected average regret of
the mSD algorithm can be bounded as

E [RT ] ≤
T∑
t=1

ηt
8T

+
lnN

TηT
.

Setting ηt =
√

8 lnN/T optimally (as a function of the
time horizon T ), the bound becomes

√
lnN/(2T ), while

setting ηt = 2
√

lnN/t independent of T , we have E [RT ] ≤√
lnN/T (here we used

∑T
t=1 1/

√
t ≤ 2

√
T and optimized

the constant in setting ηt = const
√

lnN/t).
Let ST = |{t : it 6= it−1, 1 < t ≤ T}| denote the number of

times the mSD algorithm switches between different actions.
The next lemma, which is a slightly improved and generalized
version of Lemma 2 from [14] gives an upper bound on ST .

Lemma 3: The expected number of times the mSD algo-
rithm switches between different actions in T time steps can
be bounded as

E [ST ] ≤ min

{
ηTD

∗
T−1 + lnN +

T−1∑
t=2

(ηt − ηT ),

T∑
t=2

(2ηt − ηT )

}
,

(1)

where D∗T−1 = mini∈F DT−1,i.
The second expression in the above minimum is better by a
lnN term when all the ηt are the same and D∗T−1 is bounded
by T − 1, but the first expression is preferable for the typical
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time-varying ηt. In particular, for ηt =
√

lnN/T , we have
E [ST ] ≤

√
T lnN , while setting ηt = 2

√
lnN/t, we obtain

E [ST ] ≤ 4
√
T lnN+lnN (using again

∑T
t=1 1/

√
t ≤ 2

√
T ).

III. LIMITED-DELAY LIMITED-MEMORY SEQUENTIAL
SOURCE CODES

A fixed-rate delay-δ (randomized) sequential source code
of rate lnM is defined by an encoder-decoder pair connected
via a discrete noiseless channel of capacity lnM . Here δ
is a nonnegative integer and M ≥ 2 is a positive integer.
The input to the encoder is a sequence x1, x2, . . . taking
values in some source alphabet X . At each time instant
t = 1, 2, . . ., the encoder observes xt and a random number
Ut, where the randomizing sequence U1,U2, . . . is assumed
to be independent with its elements uniformly distributed over
the interval [0, 1]. At each time instant t + δ, t = 1, 2, . . .,
based on the source sequence xt+δ = (x1, . . . , xt+δ) and the
randomizing sequence Ut = (U1, . . . ,Ut) received so far,
the encoder produces a channel symbol yt ∈ {1, 2, . . . ,M}
which is then transmitted to the decoder. After receiving yt,
the decoder outputs the reconstruction value x̂t ∈ X̂ based on
the channel symbols yt = (y1, . . . ,yt) received so far, where
X̂ is the reconstruction alphabet.

Formally, a delay-δ (randomized) sequential source code of
rate lnM is given by a sequence of encoder-decoder functions
(f, g) = {ft, gt}∞t=1, where

ft : X t+δ × [0, 1]t → {1, 2, . . . ,M}

and

gt : {1, 2, . . . ,M}t → X̂

so that yt = ft(x
t+δ,Ut) and x̂t = gt(y

t), t = 1, 2, . . .. Note
that the total delay of the encoding and decoding process is
δ.3 To simplify the notation we will omit the randomizing
sequence from ft(·,Ut) and write ft(·) instead.

We will denote by Fδ the collection of all deterministic
delay-δ sequential source codes of rate lnM . Similarly to [5],
we will consider decoders of limited memory. A decoder {gt}
is said to be of memory s ≥ 0 if gt(ŷt) = gt(ỹ

t) for all t and
ŷt, ỹt ∈ {0, . . . ,M}t such that ŷtt−s = ỹtt−s, where ŷtt−s =
(ŷt−s, ŷt−s+1, . . . , ŷt) and ỹtt−s = (ỹt−s, ỹt−s+1, . . . , ỹt). In
what follows, Fδs will denote the class of codes in Fδ whose
decoders are of memory s.

Now let F ⊂ Fδ be a finite set of reference codes with
|F| = N . Note that here we implicitly made the simplifying
assumption that F contains only deterministic coding schemes.
This assumption is only used for notational convenience: all
of our results can easily be extended to randomized reference
coding schemes (which use independent randomization) by
conditioning on the randomization used by the reference codes
and applying our results to the resulting deterministic schemes.

3Although we require the decoder to operate with zero delay, this require-
ment introduces no loss in generality, as any finite-delay coding system with
δ1 encoding and δ2 decoding delay (described in Section I) can be represented
equivalently in this way with δ1 + δ2 encoding and zero decoding delay [5].

The cumulative distortion of a sequential scheme after
reproducing the first T symbols is given by

D̂T (xT+δ) =

T∑
t=1

d(xt, x̂t),

where d : X × X̂ → [0, 1] is some distortion measure,4 while
the minimal cumulative distortion achievable by codes from
F is

D∗F (xT+δ) = min
(f,g)∈F

T∑
t=1

d
(
xt, gt(y

t)
)

where the sequence yT is generated sequentially by (f, g),
that is, yt = ft

(
xt+δ

)
. Of course, in general it is impossible

to come up with a coding scheme that attains this distortion
without knowing the whole input sequence beforehand. Thus,
our goal is to construct a coding scheme that asymptotically
achieves the performance of the above encoder-decoder pair.
Formally this means that we want to obtain a randomized cod-
ing scheme that minimizes the worst-case expected normalized
distortion redundancy

R̂T = max
xT+δ∈XT+δ

1

T

{
E
[
D̂T

(
xT+δ

)]
−D∗F

(
xT+δ

)}
,

where the expectation is taken with respect to the randomizing
sequence UT of our coding scheme.

Weissman and Merhav [5] proved that there exists a ran-
domized coding scheme such that, for any δ ≥ 0 and s ≥ 0
and for any finite class F ⊂ Fδs of reference codes, the
normalized distortion redundancy with respect to F is of
order T−1/3 ln2/3 |F|. This coding scheme splits the source
sequence into blocks of length O(T 1/3). At the beginning of
each block a code is selected from F using EWA prediction
and the identity of the selected reference decoder function
is communicated to the decoder. During these first steps,
the decoder emits arbitrary reproduction symbols, while the
chosen code is used in the rest of the block. The formation of
the blocks ensures that only a limited fraction of the available
channel capacity is used for describing codes, while the limited
memory property ensures that not transmitting real data at the
beginning of each block has only a limited effect on decoding
the rest of the block.

IV. THE ALGORITHM

Next we describe a coding scheme, based on the mSD
prediction algorithm, that adaptively creates blocks of variable
length such that on the average O(

√
T ) blocks are created,

and so the overhead used to transmit code descriptions scales
with

√
T instead of T 2/3 in [5]. Assuming a finite, non-

empty reference class F ⊆ Fδs , our coding scheme, given
in Algorithm 2, works as follows.

At each time instant t the mSD algorithm selects one code
(f (t),g(t)) from the finite reference class F , and the loss
associated with a code (f, g) ∈ F at this time instant is defined
by

dt,(f,g)(x
t+δ) = d

(
xt, gt

(
yt
))

(2)

4All results may be extended trivially for arbitrary bounded distortion
measures.
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where yt is the sequence obtained by using the coding scheme
(f, g) to encode xt, that is, yt = ft(x

t+δ) for all t (note that
dt,(f,g) can be computed at the encoder at time t+δ). The mSD
algorithm splits the time into blocks [1, t1], [t1 + 1, t2], [t2 +
1, t3], . . . in a natural way such that the decoder function of
the reference code chosen by the algorithm is constant over
each block, that is, g(ti+1) = g(ti+2) = · · · = g(ti+1) and
g(ti) 6= g(ti+1) for all i (here we used the convention t0 = 0).
Since the beginning of a new block can only be noticed at the
encoder, this event has to be communicated to the decoder.
In order to do so, we select a new-block signal v of length
A (that is, v ∈ {1, . . . ,M}A), and v is transmitted over the
channel in the first A time steps of each block. In the next
B time steps of the block the identity of the decoder function
chosen by the mSD algorithm is communicated, where

B =

⌈
ln |{g : (f, g) ∈ F}|

lnM

⌉
(3)

is the number of channel symbols required to describe
uniquely all possible decoder functions. In the remainder of
the block the selected encoder is used to compress the source
symbols.

On the other hand, whenever the decoder observes v in
the received channel symbol sequence yt, it starts a new
block. In this block the decoder first receives the index of the
reference decoder to be used in the block, and the received
reference decoder is used in the remainder of the block to
generate the reproduction symbols. One slight problem here
is that the new-block signal may be obtained by encoding
the input sequence; in this case, to synchronize with the
decoder, a new block is started at the encoder. We can keep
the loss introduced by these unnecessary new blocks low by
a careful choice of the new-block signal. Clearly, if v is
selected uniformly at random from {1, 2, . . . ,M}A then for
any fixed string u ∈ {1, 2, . . . ,M}A, P [v = u] = 1/MA.
Thus, setting A = O(lnT ) makes P [v = u] = O(1/T ), and
so the expected number of unnecessary new blocks is at most
a constant in T time steps. However, this does not hold if v is
not selected independently of u, for example, if the beginning
of u is a postfix of v. As an illustration, consider the case
when v is the all-one vector: then, after its transmission, the
probability that the last A symbols equal v is increased for
A − 1 steps. To avoid these situations, we ensure that no
new-block signal is sent too soon after another one has been
transmitted; specifically, we wait B +A− 1 steps, and so the
receiver does not have to check for the new-block signal for
B + A − 1 steps after one is received. We use B steps to
transmit the decoder function index and A− 1 steps to ensure
that when the receiver first checks for a new-block signal, it
is completely independent of the new-block signal (note that
since the starting position of the blocks may depend on v, so
do the symbols transmitted in the decoder function index).

In summary, the algorithm works in blocks of variable
length as follows: At the beginning of the block an algorithm
is selected using the mSD prediction algorithm and a new-
block signal and the identity of the chosen decoder function
is communicated to the receiver. In the next time steps, as
long as the mSD algorithm selects the same decoder function,

the chosen code is used to encode the source symbols at the
sender and used for decoding at the receiver. When the mSD
method selects a different decoder function, or a new-block
signal is transmitted by chance, a new block is started both
at the encoder and the decoder. Note that the encoder and the
decoder use a slightly different blocking: the blocks of the
encoder start with a new-block signal, while the blocks on the
decoder side end with the new-block signal. The method is
shown in Algorithm 2.

The next theorem gives a bound on the performance of our
proposed coding scheme.

Theorem 1: Let T ≥ 1 and ηt = η > 0 for all 1 ≤ t ≤ T .
Then the expected normalized distortion redundancy of Algo-
rithm 2 for any finite, non-empty reference class F ⊂ Fδs can
be bounded as

R̂T ≤
ln |F|
Tη

+ η

(
1

8
+A+B + s

)
+

(A+B + s)(1 + T−A
MA )

T

where B is as defined in (3).
Setting the parameters of the algorithm appropriately, we

immediately see that the normalized distortion redundancy of
the proposed scheme becomes O(

√
ln(T )/T ):

Corollary 1: Let F ⊂ Fδs be a finite, non-empty reference
class of delay-δ memory-s codes, and, for time horizon T ≥ 1,
set A = dlnT/ lnMe and

ηt = η =

√√√√ ln |F|

T
(

17
8 + ln(T |F|)

lnM + s
) (4)

for all 1 ≤ t ≤ T . Then the expected normalized distortion
redundancy of Algorithm 2 can be bounded as

R̂T ≤ 2

√
ln |F|
T

(
17

8
+

ln(T |F|)
lnM

+ s

)
+O

(
ln(T |F|)

T

)
.

Remark (Unknown time horizon): In the above, the param-
eters A =

⌈
lnT
lnM

⌉
and η = O(1/

√
T lnT ) have been set as

a function of the time horizon T . The proposed algorithm
can be modified to be strongly sequential in the sense that it
becomes horizon-independent, that is, its parameters do not
depend on T . The simplest way to achieve this is to use the
so-called doubling trick [16], by running the algorithm from
scratch over time intervals of known, exponentially increasing
(doubling) lengths. A more preferable way to achieve strong
sequentiality is to smoothly modify the algorithm over time
while avoiding resets. This can be done by setting ηt to depend
on t instead of T , and by introducing a new-block signal whose
length increases over time (independently of the unknown time
horizon T ). At time instant t+ δ, the length of the new-block
signal is set to At =

⌈
ln t
lnM

⌉
, and its symbols are transmitted

at fixed time instants t + δ = Mk−1, k = 1, 2, . . .. That is,
at time instant Mk−1, the kth symbol vk of the new-block
signal is selected uniformly at random (independently of any
other randomization used beforehand in the coding process)
and is transmitted to the decoder as yMk−1 = vk. The other
parts of the coding process skip these time instants, that is,
they are not concerned with encoding and decoding source
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Algorithm 2 A near-optimal algorithm for adaptive sequential lossy source coding
Encoder:

1) Input: A finite, non-empty reference class F ⊂ Fδs , positive integer A, and time horizon T .
2) Initialization

a) Draw a new-block signal v uniformly at random from {1, . . . ,M}A, the set of channel symbol sequences of length
A.

b) Initialize the mSD algorithm for F and set B according to (3).
3) For each block do

a) Observe xt+δ .
b) For all time instants (t+ δ) run the mSD algorithm:

i) Feed the mSD algorithm with losses dt,(f,g)(xt+δ) for each code (f, g) ∈ F .
ii) Let (f (t),g(t)) denote the choice of the mSD algorithm.

c) In the first A time steps of the block transmit v.
d) After the first A time steps set (f ,g) = (f (t),g(t)), the output of the mSD algorithm in this time step.
e) In time steps A+ 1, . . . , A+B of the block send the index describing g.
f) If (t+ δ) belongs to steps A+B + 1, A+B + 2, . . . of the block then

i) if g(t) = g then transmit yt = ft(x
t+δ)

ii) else start a new block with the same time index;
g) If (t+ δ) belongs to steps 2A+B, 2A+B + 1, . . . of the block and (yt−A+1, . . . ,yt) = v then start a new block

and declare the current time instant as the Ath step of the new block.
Decoder:

1) Input: A finite, non-empty reference class F ⊂ Fδs , positive integers A, B, time horizon T .
2) For t = 1, . . . , A

a) Observe yt and output an arbitrary symbol x̂t ∈ X̂ .
b) At time t = A set v = yA and declare a new block.

3) For each block do
a) Observe yt.
b) In the first B time steps of the block receive the index of the decoder to be used and output an arbitrary symbol

x̂t ∈ X̂ . At time step B of the block set the decoder g according to the symbols received so far.
c) In time steps B + 1, B + 2, . . . of the block output x̂t = g(yt) = g(ytt−s+1).
d) In time steps A+B,A+B + 1, . . . of the block declare a new block if (yt−A+1, . . . ,yt) = v.

symbols, nor with the transmission or reception of new-block
signals. When encoding xt time instants Mk−1 < t < Mk,
the coding scheme uses the length-At new-block signal vAt =
(v1, . . . ,vAt) (note that At = k for the selected values of t).
Setting ηt = O(1/

√
t ln t), it can be shown that the modified

algorithm has only a constant time larger regret than the
original, horizon-dependent one.

Proof of Theorem 1: Let x̂(f,g),1, . . . , x̂(f,g),T denote
the reproduction sequence generated by the reference code
(f, g) ∈ F when applied to the source sequence xT , and let
x̃t = x̂(f (t),g(t)),t. That is, x̃T is the reproduction sequence our
coding scheme would generate if it did not have to transmit the
identity of the chosen reference decoder, and the correct past
s symbols were also available at the decoder (in the current
setting when the reference decoder changes we have to wait
s channel symbols to have the decoder operating correctly, as
it may require s past symbols due to its memory).

Decomposing the cumulative distortion we get
T∑
t=1

dt(xt, x̂t)

=
∑

t:1≤t≤T,x̂t=x̃t

dt(xt, x̃t) +
∑

t:1≤t≤T,x̂t 6=x̃t

dt(xt, x̂t)

≤
T∑
t=1

dt,(f (t),g(t))(xt+δ) + |{t : x̂t 6= x̃t, 1 ≤ t ≤ T}| .

(5)

The expectation of the first term can be bounded using
Lemma 2 as

E

[
T∑
t=1

dt,(f (t),g(t))(xt+δ)

]

≤ D∗F (xT+δ) +
ln |F|
ηT

+

T∑
t=1

ηt
8

= D∗F (xT+δ) +
ln |F|
η

+
ηT

8
.

(6)

It is easy to see that x̂t 6= x̃t may happen only at the first
A+B + s steps of each block. Indeed, if the mSD algorithm
does not change the code to be used in the first A+B+s steps
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of the block, the receiver becomes completely synchronized
and so it decodes x̂t 6= x̃t from step A + B + s + 1. If
mSD decides to change the code before step A+B + s+ 1,
the length of the block is at most A + B + s. New blocks
are started at the beginning of the communication, and when
either the mSD algorithm decides to start one, or when a new-
block signal is transmitted by chance. It may also happen that
when the encoder starts to transmit a new-block signal, the
receiver encounters an unintentional new-block signal whose
last symbols are the first symbols of the just transmitted new-
block signal; in this case the new block is started as planned,
only this happens with less overhead communication. We
consider this case as an “intentionally” started block. Letting
ST and NT denote the number of new blocks, up to time
T , started “intentionally” by the mSD algorithm (except for
the first block) and, respectively, “unintentionally” by chance
(starting a new block in step 3g of the encoding algorithm),
we have

|{t : 1 ≤ t ≤ T, x̃t 6= x′t}| ≤ (ST +1+NT ) (A+B+s). (7)

ST can be bounded by η(T −1) using Lemma 3. To bound
NT , the number of blocks started unintentionally, consider
the sequence ỹt = ft(x

t+δ), that is, the sequence of channel
symbols generated by the “idealized” coding scheme that does
not need to transmit the new-block signals and the identity of
the decoder function, nor needs to worry about synchronizing
the decoder. Let nt = I{v=(ỹt−A+1,...,ỹt)} denote the indicator
function of the event v = (ỹt−A+1, . . . , ỹt). Then clearly
NT ≤

∑T
t=A nt, since unintentional new blocks may only be

started based on ỹT . Since v is independent of ỹt−1,

P [v = (ỹt−A+1, . . . , ỹt)] = 1/MA

for any A ≤ t ≤ T , and so

E [NT ] ≤ (T −A)/MA. (8)

Now taking expectations in (7), the second expression in
Lemma 3 and (8) yield

E [|{t : 1 ≤ t ≤ T, x̂t 6= x̃t}|]

= (A+B + s)

(
η(T − 1) + 1 +

T −A
MA

)
.

Combining the above with (5) and (6) proves the statement of
the theorem.

V. SEQUENTIAL ZERO-DELAY SCALAR QUANTIZATION

An important and widely studied special case of the source
coding problem considered is the case of on-line scalar quanti-
zation, that is, the problem of zero-delay lossy source coding
with memoryless encoders and decoders) [1], [5], [7], [10].
Here we assume for simplicity X = [0, 1] and d(x, x̂) =
(x− x̂)2. An M -level scalar quantizer Q (defined on [0, 1]) is
a measurable mapping [0, 1]→ C, where the codebook C is a
finite subset of [0, 1] with cardinality |C| = M . The elements
of C are called the code points. The performance of Q is
measured by the squared distortion,5 and the instantaneous

5More general distortion measures could be considered in the same way as
in [13, Section 5].

distortion of Q for input x is defined as (x−Q(x))2. Without
loss of generality we will only consider nearest neighbor
quantizers Q satisfying (x−Q(x))2 = minx̂∈C(x− x̂)2.

Let Q denote the collection of all M -level nearest neighbor
quantizers. In this section our goal is to design a sequential
coding scheme that asymptotically achieves the performance
of the best scalar quantizer (from Q) for all source sequences
xT . Note that the expected normalized distortion redundancy
in this special case is defined as

max
xT∈[0,1]T

1

T
E

[
T∑
t=1

(xt−x̂t)2
]
− min
Q∈Q

1

T

T∑
t=1

(xt −Q(xt))
2.

To be able to apply the results of the previous section,
we approximate the infinite class Q with QK ⊂ Q, the set
of M -level nearest neighbor scalar quantizers whose code
points all belong to the set

{
1

2K ,
3

2K , . . . ,
2K−1
2K

}
for some

positive integer K. Note that the number of quantizers in
QK is |QK | =

(
K
M

)
. It is shown in [7] that the distortion

redundancy of any sequential coding scheme relative to Q
is at least on the order of T−1/2. The next theorem shows
that the slightly larger O(T−1/2 lnT ) normalized distortion
redundancy is achievable.

Theorem 2: Relative to the reference class Q, the expected
normalized distortion redundancy of Algorithm 2 applied to
Qb√Tc with appropriate parameters satisfies, for any T ≥ 2,

R̂T ≤

√
2M lnT

T

(
17

8
+

(M+2) lnT

2 lnM

)
+

1√
T

+O

(
M lnT

T

)
and the algorithm can be implemented with O(MT 2) time
and O(T ) space complexity.

The theorem is obtained as a combination of the EWA-
based efficient quantization scheme of [7] with the mSD-based
coding scheme of the previous section. Similar results could
be obtained by combining the “follow the perturbed leader”-
based low-complexity quantization scheme of [10] with a
seldom changing version of the “follow the perturbed leader”
prediction method recently introduced in [15].

Proof: The proof is based on results developed in [7]. It
is easy to see that for any quantizer Q ∈ Q there exists a
quantizer QK ∈ QK such that

max
x∈[0,1]

|(x−Q(x))2 − (x−QK(x))2| ≤ 1/K.

Thus, in this sense, the class Q is well approximated by QK .
Therefore, for any sequence xT ∈ [0, 1]T ,

min
Q∈QK

1

T

T∑
t=1

(xt −Q(xt))
2

≤ min
Q∈Q

1

T

T∑
t=1

(xt −Q(xt))
2 +

1

K
.

Applying Algorithm 2 to the reference class F = QK we ob-
tain by Corollary 1 that the normalized distortion redundancy
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relative to the class QK can be bounded as

max
xT∈[0,1]T

1

T
E

[
T∑
t=1

(xt−x̂t)2− min
Q∈QK

T∑
t=1

(xt−Q(xt))
2

]

≤ 2

√√√√√ ln
(
K
M

)
T

17

8
+

ln
(
T
(
K
M

))
lnM

+O

 ln
(
T
(
K
M

))
T

 ,

where we used that the size of the reference class QK is
|QK | =

(
K
M

)
and that scalar quantization is memoryless,

that is, s = 0. Combining the above results and substituting
K = b

√
T c gives the performance bound of the theorem,

taking into account that
(b√Tc
M

)
≤ TM/2 and, for all T > 1,

1/K = 1/b
√
T c < 1/(b

√
T c − 1) = 1/

√
T +O(1/T ).

It is shown in [7] that the random choice of a quantizer
according to the EWA prediction algorithm in one time step
can be performed with O(MK2) time and O(K2) space
complexity (in essence, the quantization problem is traced
back to the online shortest path problem, as explained in [13]).
Applying the same method in our algorithm we obtain the
desired complexity results (also note that one quantization step
requires O(lnK) operations).

Remark (Complexity of the algorithm): One may think that
most operations in the implementation of the encoder of
Algorithm 2 for the online quantization problem are spent
on choosing the quantizer, and since here we only need to
choose O(

√
T ) quantizers on expectation, the required time

complexity may be reduced. However, this is not exactly the
case: in each time step of the algorithm, O(K2) operations are
needed to update some weights corresponding to the cumula-
tive distortion of possible cells of the quantizers belonging
to QK (K = b

√
T c), and O(MK2) operations are used to

randomly choose a quantizer according to EWA. The random
choice in mSD whether the previous quantizer Qt−1 should
be kept at time t only requires to determine the distortion of
Qt−1 on the last source symbol, since ctwt,Qt−1

/wt−1,Qt−1
=

e−ηd(xt−1,Qt−1(xt−1)), which can be computed in constant time
since Qt−1(xt−1) is already known at the beginning of time
step t. Thus, since the expected number of blocks is bounded
by η(T −1)+2, and using that η = O(

√
lnM/T ) by (4), the

overall expected computational complexity of the scheme is
O(TK2 + MK2

√
T lnM), which is still O(T 2). However,

we can use another trick from [7] to reduce complexity on the
price of slightly increasing the distortion redundancy. The idea
is that the source sequence xT can be pre-quantized using a
uniform K level quantizer, that is xt = Q̂K(xt) where Q̂K
is a uniform K-level quantizer on [0, 1], and xT is encoded
using Algorithm 2. This introduces only a 2/K ≤ 2/(

√
T−1)

term in the normalized distortion redundancy, since for any
quantizer Q ∈ Q,

max
x∈[0,1]

∣∣(x−Q(x))2 − (x−Q(x))2
∣∣ ≤ 1

K
.

The advantage of working with xT instead of xT is that in
this case the histogram of xt can be updated in constant time
in every time step t, and the cell weights can be computed
from the histogram in O(MK2) time whenever a new block

starts and a new quantizer has to be chosen by EWA. In this
way, since we still need to encode each xt in O(lnK) time,
the expected total computational complexity of the algorithm
becomes O(T lnK +MK2

√
T lnM) = O(T 3/2M

√
lnM).

VI. EXTENSIONS

In the previous sections we assumed that the encoder and
the decoder communicate over a noiseless channel. Following
Matloub and Weissman [11], we can extend the results to the
case of stochastic channels with positive error exponents. We
assume that the communication channel has finite memory
r for some integer r ≥ 0, and its output also depends
on some stationary noise process . . . , Z−1, Z0, Z1, . . . with
known distribution such that if the channel input up to time t is
yt for some t ≥ r, then the output of the channel is a function
of ytt−r+1 and Zt. Moreover, it is assumed that for some rate
R > 0 there exists a constant σ > 0 such that for any block
length b there exists a channel code Cb that can discriminate
bebRc messages with maximum error probability e−σb in b
channel uses. These assumptions are not restrictive and hold
for all channels with positive capacity and error exponent.

Formally, denoting the channel input and output alphabet by
M = {1, . . . ,M} and M̂, a delay-δ sequential joint source-
channel code is given by a sequence of encoder-decoder
functions (f, g) = {ft, gt}∞t=1 with ft : X t+δ × [0, 1]t →M
and gt : Mt → X̂ . Matloub and Weissman [11] used a
channel code Cb (minimizing the maximum error probability)
to communicate the decoder function at the beginning of each
block, as well as replaced the distortion dt,(f,g)(xt+δ) with its
expectation d̄t,(f,g)(x

t+δ) = E
[
dt,(f,g)(x

t+δ)
]
. Note that the

randomness in dt,(f,g)(xt+δ) is only due to its dependence on
Zt; in particular, dt,(f,g)(xt+δ) and Ut are independent. Also
note that d̄t,(f,g)(xt+δ) can be computed at the encoder at time
step t + δ since the distribution of Zt is known. In our case
a further modification is needed, as the new-block signal also
has to be communicated using channel coding.

Thus, we need to do the following modifications in Al-
gorithm 2 to make it suitable for the joint source-channel
coding scenario: First, in step 3(b)i of the encoder in Algo-
rithm 2, dt,(f,g)(xt+δ) has to be replaced with d̄t,(f,g)(xt+δ).
Furthermore, during the whole communication process, the
new-block signal v and the indices of the decoder functions g
are transmitted using channel coding, with codes CA and CB ,
respectively. These codes are used at the decoder to identify
the beginning of a new block and determining the decoder
function. Accordingly, the new-block signal v is selected
uniformly at random from the set {1, 2, . . . , beARc}, and

beBRc ≥ |{g : (f, g) ∈ F}|. (9)

Note that before each use of the channel code CA, the encoder
uses r symbols to reset the memory of the channel, that is,
transmitting the new-block signal actually takes A + r time
steps. For simplicity, assuming r ≤ A, after the receipt of
the new block signal, the last r symbols are both known to
the encoder and the decoder, so the transmission of the index
of the decoder function can be started immediately, using
the channel code CB . Furthermore, unlike to the noiseless
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channel case, the encoder is not able to determine if the
decoder would receive a new-block signal by chance, since
it depends on the channel noise; therefore, we omit step 3g
of the encoding algorithm. While this modification makes the
algorithm simpler, it can also ruin its performance if such an
accident occurs since the scheme has no built-in method to
recover from such an error. However, by a careful selection of
the new-block signal, we can guarantee that this disaster hap-
pens only with very small, specifically O(1/T 2) probability.
Similarly, we set A and B large enough so that the probability
of incorrectly decoding a single new-block signal or code
index also becomes O(1/T 2). It is straightforward to modify
the algorithm so that it can avoid such complete failures
by communicating the identity of the decoding schemes in
O(
√
T ) additional deterministically chosen time windows. The

analysis of this modified algorithm is straightforward, and is
omitted to preserve clarity.

By analyzing the performance of the above coding scheme
with appropriately set parameters, the next theorem shows that
O(
√

ln(T )/T ) normalized distortion redundancy is achievable
in the joint source-channel coding problem:

Theorem 3: Let F be a finite, non-empty class of delay-δ
memory-s sequential joint source-channel codes. Then, for any
time horizon T ≥ 1, under our assumptions on the commu-
nication channel with r ≤ d2 lnT/min{σ,R}e, the expected
normalized distortion redundancy of the above coding scheme
relative to F , with appropriate parameter settings, satisfies

R̂T ≤

√
ln |F|
T

((
4

σ
+

2

R

)
lnT+

ln(|F|+ 1)

R
+r+s+

17

8

)
+

3

2T
.

Remark (Wyner-Ziv setting): Before giving the proof of the
theorem, let us discuss the implication of the above result to
the Wyner-Ziv setting considered by Reani and Merhav [12].
In this problem there is a noiseless communication channel
between the encoder and the decoder, and the decoder also has
access to a side information signal that is a noisy observation
of the current source symbol xt through a memoryless channel.
This setup can be treated as a special case of the above
joint source channel coding problem with a restricted set
of encoders and a special channel: the channel is composed
of a noiseless part and a noisy side information channel,
and each encoder has to transmit the actual source symbol
uncoded over the side information channel. In fact, this setup
is simpler, as there is no need to use error protection for
communicating the indices of the decoders and the new-block
signals; however, replacing dt by d̄t is still necessary. Thus,
the above O(

√
ln(T )/T ) normalized distortion redundancy

is also achievable in this case. Moreover, Reani and Merhav
also gave an efficient implementation for the zero-delay scalar
quantization case based on an efficient implementation of
the EWA algorithm. This efficient algorithm can easily be
incorporated in our method in the same way as the efficient
algorithms for scalar quantization (provided by [7], [13]) were
used in Section V.

Proof of Theorem 3: The proof follows very closely the
proof of Theorem 1, so we will emphasize the differences and
skip some details. As in the proof of Theorem 1, defining {x̂T }
to be the real reproduction sequence, and x̃t = x̂(f (t),g(t)),t to
be the idealized reproduction sequence, the decomposition (5)
of the regret obviously holds in the joint source-channel coding
scenario considered. That is,

T∑
t=1

dt(xt, x̂t) ≤
T∑
t=1

dt,(f (t),g(t))(xt+δ)

+ |{t : x̂t 6= x̃t, 1 ≤ t ≤ T}| .
(10)

Since
(
f (t),g(t)

)
are obtained using mSD with the losses

dt,(f,g)(x
t+δ), Lemma 2 implies

E

[
T∑
t=1

d̄t,(f (t),g(t))(xt+δ)

]
≤ D∗F (xT+δ)+

ln |F|
η

+
ηT

8
(11)

with

D
∗
F (xT+δ) = min

(f,g)∈F

T∑
t=1

d̄t,(f,g)(x
t+δ)

= min
(f,g)∈F

E

[
T∑
t=1

dt(xt, gt(y
t))

]
,

where yt = ft(x
t+δ) for all t ≥ 1. Combining (10) and (11),

we see that to bound the distortion redundancy, we need to
analyze the expectation of the last term in (10). This term
is influenced by the communication overhead for conveying
the identity of the decoder function, as well as by errors in
the communication, that is, incorrectly determining the blocks
and making an error in decoding the identity of the decoder
function. Let Bt denote the event that a new block is started
at the encoder at time t. Let Et,nb denote the event that the
corresponding new-block signal is decoded incorrectly; and let
Et,i denote the event that the decoder function to be used in
the block is determined incorrectly. Note that E1,nb means that
the new-block signal is incorrectly decoded at the beginning
of the whole communication process, while, for t ≥ 2, Et,nb
means that a new-block is not noticed at the decoder given
that E1,nb does not hold (i.e., the new-block signal is correctly
known at the decoder). By our assumptions on the channel
code, P [Et,nb| Bt] ≤ e−σA and P [Et,i| Bt] ≤ e−σB . The
other source of error in the decoding process is the event
that the decoder mistakenly declares a new block by decoding
the last A symbols seen on the channel by CA to v. If
the decoder correctly identifies all blocks before, the last A
symbols are independent of v, and so, as in the noiseless case,
the probability of finding a new-block signal when the encoder
has not sent one is bounded by 1/beARc. Using the pessimistic
bound that x̂t 6= x̃t after any of the above errors occur, and
taking into account that if a block is transmitted correctly,
x̂t 6= x̃t happens at most in the first r + A + B + s steps of
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the block , we obtain the following bound

E [|{t : x̂t 6= x̃t, 1 ≤ t ≤ T}|]

≤
T∑
t=1

(T − t+ 1)P [Bt]P [Et,nb| Bt]

+

T∑
t=1

(T − t+ 1)

(
P [Bt]P [Et,i| Bt] +

1

beARc

)

+

T∑
t=1

P [Bt] (r +A+B + s)

≤
T∑
t=1

(T − t+ 1)
(
e−σA + e−σB + 1/(eAR − 1)

)
+E [ST ] (r +A+B + s)

≤
(
e−σA + e−σB +

1

eAR − 1

)
T (T − 1)

2
(12)

+η(T − 1) (r +A+B + s)

Now selecting

A =

⌈
2 lnT

min{σ,R}

⌉
and

B =

⌈
max

{
2 lnT

σ
,

ln(|F|+ 1)

R

}⌉
(recall that B has to satisfy condition (9)) ensures that the first
term in (12) is bounded by 3/2, and using max{a, b} ≤ a+ b
for a, b ≥ 0, we get

E [|{t : x̂t 6= x̃t, 1 ≤ t ≤ T}|]

≤ 3/2+ηT

((
4

σ
+

2

R

)
lnT+

ln(|F|+ 1)

R
+r+s+2

)
.

Combining this inequality with (10) and (11) we obtain that
the expected normalized distortion redundancy can be bounded
as

R̂T ≤
ln |F|
Tη

+ η

((
4

σ
+

2

R

)
lnT+

ln(|F|+ 1)

R
+r+s+

17

8

)
+

3

2T
.

Optimizing over η proves the statement of the theorem.

VII. CONCLUSION

We provided a sequential lossy source coding scheme that
achieves an O(

√
ln(T )/T ) normalized distortion redundancy

relative to any finite reference class of limited-delay limited-
memory codes, improving the earlier O(T−1/3) results. Ap-
plied to the case when the reference class is the (infinite) set
of scalar quantizers, we showed that the algorithm achieves
O(ln(T )/

√
T ) normalized distortion redundancy, which is

almost optimal in view that the normalized distortion redun-
dancy is known to be at least of order 1/

√
T . The results were

also extended to joint source-channel coding and coding with
side information at the decoder (the Wyner-Ziv setting).

APPENDIX

A. Proof of Lemma 1

We will use the notation Wt =
∑
i∈F wt,i (note that Wt ≤ 1

for all t ≥ 1 since wt,i ≤ 1/N ). We prove the lemma by
induction on 1 ≤ t ≤ T . For t = 1, the statement follows
from the definition of the algorithm. Now assume that t ≥ 2
and the hypothesis holds for t− 1. We have

P [it = i] = P [it−1 = i] ct
wt,i
wt−1,i

+ pt,i
∑
j∈F

P [it−1 = j]

(
1− ct

wt,j
wt−1,j

)
= pt−1,ict

wt,i
wt−1,i

+ pt,i
∑
j∈F

pt−1,j

(
1− ct

wt,j
wt−1,j

)
= ct

wt−1,i
Wt−1

wt,i
wt−1,i

+
wt,i
Wt

∑
j∈F

wt−1,j
Wt−1

(
1− ct

wt,j
wt−1,j

)
= ct

wt,i
Wt−1

+
wt,i
Wt
− ct

wt,i
Wt

Wt

Wt−1

=
wt,i
Wt

= pt,i.

B. Proof of Lemma 2

Introduce the following notation:

w′t,i =
1

N
e−ηt−1Dt−1,i ,

where Dt−1,i =
∑t−1
s=1 ds,i. Note that the difference between

wt,i and w′t,i is that ηt is replaced by ηt−1 in the latter. We
will also use W ′t =

∑
i∈F w

′
t,i. First, we have

1

ηt
ln
W ′t+1

Wt
=

1

ηt
ln

∑
i∈F wt,ie

−ηtdt,i

Wt

=
1

ηt
ln
∑
i∈F

pt,ie
−ηtdt,i

≤ −
∑
i∈F

pt,idt,i +
ηt
8

= −E [dt,it ] +
ηt
8

where the next-to-last step follows from Hoeffding’s inequality
(see, e.g., [16, Lemma A.1])6 and the fact that dt,i ∈ [0, 1],
and the last equality is a consequence of Lemma 1. After
rearranging, we get

E [dt,it ] ≤ −
1

ηt
ln
W ′t+1

Wt
+
ηt
8
.

6Hoeffding’s inequality states that if X is a random variable with a ≤
X ≤ b then the inequality lnE

[
esX

]
≤ sE [X] + s2(b − a)2/8 holds for

any real number s (see, e.g., [16, Lemma A.1]). The inequality is applied for
a random variable X with distribution P [X = −dt,i] = pt,i.
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Rewriting the first term on the right hand side, we obtain

E [dt,it ] ≤
(

lnWt

ηt
− lnWt+1

ηt+1

)
+

(
lnWt+1

ηt+1
−

lnW ′t+1

ηt

)
+
ηt
8
.

(13)

The first term can be telescoped as

T∑
t=1

(
lnWt

ηt
− lnWt+1

ηt+1

)
(14)

=
lnW1

η1
− lnWT+1

ηT+1
≤ − lnwT+1,i

ηT+1

= − 1

ηT+1
ln

1

N
e−ηT+1DT,i = DT,i +

lnN

ηT+1
, (15)

for any i ∈ F , where we used that WT+1 ≥ wt+1,i and
W1 = 1 since w1,j = 1/N by definition for all j ∈ F . To
deal with the second term, observe that

Wt+1 =
∑
i∈F

1

N
e−ηt+1Dt,i =

∑
i∈F

1

N

(
e−ηtDt,i

) ηt+1
ηt

≤

(∑
i∈F

1

N
e−ηtDt,i

) ηt+1
ηt

=
(
W ′t+1

) ηt+1
ηt ,

where we applied Jensen’s inequality to the concave function
x
ηt+1
ηt , x ∈ R (the latter function is concave since ηt+1 ≤ ηt

by our assumptions). Taking logarithms in the above inequal-
ity, we obtain

lnWt+1

ηt+1
−

lnW ′t+1

ηt
≤ 0.

This shows that the second term on the right hand side of (13)
is non-positive. Thus, summing up (13) for all t = 1, 2, . . . , T
and using (15) we obtain

T∑
t=1

E [dt,it ] ≤ DT,i +

T∑
t=1

ηt
8

+
lnN

ηT+1
.

Finally, since the losses dt,i, i ∈ F and dt,it do not depend
on ηT+1 for t ≤ T , we can choose, without loss of generality
ηT+1 = ηT , and the statement of the lemma follows.

C. Proof of Lemma 3

The probability of switching experts in step t ≥ 2 is

αt
def
= P [it−1 6= it]

=
∑
i∈F

P [it−1 = i]

(
1− ct

wt,i
wt−1,i

)
(1− pt,i)

≤
∑
i∈F

P [it−1 = i]

(
1− ct

wt,i
wt−1,i

)
= 1−

∑
i∈F

wt−1,i
Wt−1

ct
wt,i
wt−1,i

= 1− ct
Wt

Wt−1

where the next-to-last equality is due to Lemma 1. Reordering
gives Wt ≤ 1−αt

ct
Wt−1 and thus

WT ≤W1

T∏
t=2

1− αt
ct

=

T∏
t=2

1− αt
ct

.

On the other hand,

WT ≥ max
j∈F

wT,j = max
j∈F

1

N
e−ηTDT−1,j =

1

N
e−ηTD

∗
T−1

where D∗T−1 = minj∈F DT−1,j . Taking logarithms of both
inequalities and putting them together, we get

− lnN − ηTD∗T−1 ≤
T∑
t=2

ln(1− αt)−
T∑
t=2

ln ct.

Now using ln(1− x) ≤ −x for all x ∈ [0, 1), we obtain

E [ST ] =

T∑
t=2

αt ≤ ηTD∗T−1 + lnN −
T∑
t=2

ln ct.

Now the statement of the lemma for the first expression in the
minimum in (1) follows since

−
T∑
t=2

ln ct =

T∑
t=2

(ηt−1 − ηt)(t− 2) =

T−1∑
t=2

(ηt − ηT ).

To prove that the second expression in (1) is also an upper
bound on the expected number of switches, we start with the
following bound:

P [it = it−1] =
∑
i∈F

P [ it = i| it−1 = i]P [it−1 = i]

≥
∑
i∈F

ct
wt,i
wt−1,i

pt−1,i.

The elements in the sum can be bounded as

ct
wt,i
wt−1,i

= eηt−1Dt−2,i−ηtDt−1,i+(ηt−ηt−1)(t−2)

= e(ηt−1−ηt)Dt−2,i−ηtdt−1,i+(ηt−ηt−1)(t−2)

≥ e(ηt−ηt−1)(t−2)−ηt

≥ 1− ηt + (ηt − ηt−1) (t− 2),

for all i ∈ F , where we used 1 + x ≤ ex. Thus, using that∑
i∈F pt−1,i = 1, we obtain

P [it 6= it−1] ≤ ηt + (ηt−1 − ηt) (t− 2).

Summing up for t = 2, . . . , T gives

E [ST ] =

T∑
t=2

P [it 6= it−1]

≤
T∑
t=2

ηt +

T∑
t=2

(ηt−1 − ηt) (t− 2)

=

T∑
t=2

ηt +

T−1∑
t=2

(ηt − ηT ) =

T∑
t=2

(2ηt − ηT ),

completing the proof.
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