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Abstract

Zero-delay lossy source coding schemes are considered for individual se-
quences. Performance is measured by the distortion redundancy, defined as
the difference between the normalized cumulative mean squared distortion of
the scheme and the normalized cumulative distortion of the best scalar quan-
tizer of the same rate which is matched to the entire sequence to be encoded.
Recently, Weissman and Merhav constructed a randomized scheme which, for
any bounded individual sequence of length n, achieves a distortion redundancy
O(n−1/3 log n). However, this scheme has prohibitive complexity (both space
and time) which makes practical implementation infeasible. In this paper, we
present an efficiently computable algorithm based on a “follow the perturbed
leader”-type prediction method by Kalai and Vempala. Our algorithm achieves
distortion redundancy O(n−1/4 log n), which is somewhat worse than that of the
scheme by Merhav and Weissman, but it has computational complexity that is
linear in the sequence length n, and requires O(n1/4) storage capacity.

1 Introduction

Consider the widely used model for fixed-rate lossy source coding at rate R where
an infinite sequence of real-valued source symbols x1, x2, . . . is transformed into a
sequence of channel symbols y1, y2, . . . taking values from the finite channel alphabet
{1, 2, . . . , M}, M = 2R, and these channel symbols are then used to produce the
reproduction sequence x̂1, x̂2, . . .. The scheme is said to have zero delay if each channel
symbol yn depends only on the source symbols x1, . . . , xn and the reproduction x̂n

for the source symbol xn depends only on the channel symbols y1, . . . , yn. Thus the

A. György and T. Linder are with the Department of Mathematics and Statistics, Queen’s
University, Kingston, Ontario, Canada K7L 3N6 (email: {gyorgy}{linder}@mast.queensu.ca).
A. György is on leave from the Computer and Automation Research Institute of the Hungarian
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encoder produces yn as soon as xn is available, and the decoder can produce x̂n when
yn is received.

In this work, we concentrate on zero-delay (sequential) methods that perform uni-
formly well with respect to a given reference coder class on every individual (deter-
ministic) sequence. In this individual-sequence setting no probabilistic assumptions
are made on the source sequence, which provides a natural model for situations where
very little is known about the source to be encoded.

The study of zero-delay coding for individual sequences was initiated in [1]. There
a zero-delay scheme was constructed whose normalized accumulated mean squared
distortion for any bounded sequence of n source symbols is not larger than that of
the best scalar quantizer that is matched to the sequence plus an error term (called
the distortion redundancy) of order O(n−1/5 log n). The scheme was based on a gen-
eralization of exponentially weighted average prediction of individual sequences (see
Vovk [2, 3], Littlestone and Warmuth [4]) and required common randomization at
the encoder and the decoder. This result was improved by Weissman and Merhav [5]
who constructed a zero-delay scheme which uses randomization only at the encoder
and has distortion redundancy O(n−1/3 log n). (This is currently the best known
redundancy bound for this problem.)

Although both schemes have the attractive property of performing uniformly well
on individual sequences, they are computationally inefficient. In particular, in their
straightforward implementation they require a computational time of order nc 2R

,
where c = 1/5 for the scheme in [1] and c = 1/3 for the scheme in [5]. Clearly,
even for moderate values of the encoding rate R, these complexities make the imple-
mentation infeasible. A low complexity algorithm for implementing the scheme of [5]
was recently developed in [6]. The method reduces the computational complexity to
the tractable O(2Rn4/3) without increasing the order of the distortion redundancy.
In effect, the algorithm efficiently generates randomly chosen quantizers according
to an exponential weighting scheme without calculating and storing the cumulative
distortions of nc 2R

reference quantizers as was done in [1] and [5]. By adjusting the
parameters of the algorithm, the complexity of the scheme can be reduced to O(2Rn)
(i.e., linear in the length of the sequence) at the cost of increasing the distortion
redundancy to O(n−1/4

√
log n).

In this paper we construct a new, low complexity algorithm for zero-delay lossy
coding of individual sequences. Our approach combines the elegant “follow the per-
turbed leader” prediction scheme of Kalai and Vempala [7] and Hannan [8] with the
coding method of [5]. The new algorithm has linear-time computational complexity
O(2Rn) and distortion redundancy O(n−1/4 log n) (almost the same as the linear-time
version of the algorithm in [6]), but it can be implemented with O(2Rn1/4) storage
capacity while the method of [6] has O(2Rn1/2) storage requirement. In addition,
the new algorithm has the advantage of being conceptually simpler as it essentially
manages to reduce the problem to the well-understood off-line design of empirically
optimal scalar quantizers [9].
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2 Zero-delay universal quantization of individual

sequences

A fixed-rate zero-delay sequential source code of rate R = log M (M is a positive
integer and log denotes base-2 logarithm) is defined by an encoder-decoder pair con-
nected via a discrete noiseless channel of capacity R. We assume that the encoder
has access to a sequence U1, U2, . . . of independent random variables distributed uni-
formly over the interval [0, 1]. The input to the encoder is a sequence of real numbers
x1, x2, . . . taking values in the interval [0, 1]. (All results may be extended trivially
for arbitrary bounded sequences of input symbols.) At each time instant i = 1, 2, . . .,
the encoder observes xi and the random number Ui. Based on xi, Ui, the past in-
put values xi−1 = (x1, . . . , xi−1), and the past values of the randomization sequence
U i−1 = (U1, . . . , Ui−1), the encoder produces a channel symbol yi ∈ {1, 2, . . . , M}
which is then transmitted to the decoder. After receiving yi, the decoder outputs the
reconstruction value x̂i based on the channel symbols yi = (y1, . . . , yi) received so far.

Formally, the code is given by a sequence of encoder-decoder functions {fi, gi}∞i=1,
where

fi : [0, 1]i × [0, 1]i → {1, 2, . . . , M}
and

gi : {1, 2, . . . , M}i → [0, 1].

so that yi = fi(x
i, U i) and x̂i = gi(y

i), i = 1, 2, . . .. Note that there is no delay in
the encoding and decoding process. The normalized cumulative squared distortion of
the sequential scheme at time instant n is given by 1

n

∑n
i=1(xi − x̂i)

2 . The expected
cumulative distortion is

E

[
1

n

n∑
i=1

(xi − x̂i)
2

]

where the expectation is taken with respect to the randomizing sequence Un =
(U1, . . . , Un).

An M -level scalar quantizer Q is a measurable mapping R → C, where the codebook
C is a finite subset of R with cardinality |C| = M . The elements of C are called the
code points. Without loss of generality, we only consider nearest neighbor quantizers
Q such that (x−Q(x))2 = miny∈C(x−y)2 for all x. Also, since we consider sequences
with components in [0, 1], we will assume without loss of generality that all quantizers
Q are defined on and take values in [0, 1].

Let Q denote the collection of all M -level nearest neighbor quantizers taking
values in [0, 1]. For any sequence xn, the minimum normalized cumulative distortion
in quantizing xn with an M -level scalar quantizer is

min
Q∈Q

1

n

n∑
i=1

(xi − Q(xi))
2.

Note that to find a Q ∈ Q achieving this minimum one has to know the entire
sequence xn in advance.
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The expected distortion redundancy of a scheme (with respect to the class of scalar
quantizers) is the quantity

sup
xn

(
E

[
1

n

n∑
i=1

(xi − x̂i)
2

]
− min

Q∈Q
1

n

n∑
i=1

(xi − Q(xi))
2

)

where the supremum is taken over all individual sequences of length n with compo-
nents in [0, 1] (recall that the expectation is taken over the randomizing sequence).
In [1] a zero-delay sequential scheme was constructed whose distortion redundancy
converges to zero as n increases without bound. In other words, for any bounded in-
put sequence the scheme performs asymptotically as well as the best scalar quantizer
that is matched to the entire sequence. The main result of Weissman and Merhav
[5], specialized to the zero-delay case, improves the construction in [1] and yields the
best distortion redundancy known to date given by

sup
xn

(
E

[
1

n

n∑
i=1

(xi − x̂i)
2

]
− min

Q∈Q
1

n

n∑
i=1

(xi − Q(xi))
2

)
≤ cn−1/3 log n (1)

where c is a constant depending only on M .
The coding scheme of [5] works as follows: the source sequence xn is divided into

non-overlapping blocks of length l (for simplicity assume that l divides n), and at the
end of the kth block, that is, at time instants i = kl, k = 0, . . . , n/l − 1, a quantizer
Qk is drawn randomly (using exponential weighting) from the class QK of all M -level
nearest-neighbor quantizers whose code points all belong to the finite grid

C(K) = {1/(2K), 3/(2K), . . . , (2K − 1)/(2K)}
according to the probabilities

P{Qk = Q} =
e−η

∑kl
t=1(xt−Q(xt))2∑

Q̂∈QK
e−η

∑kl
t=1(xt−Q̂(xt))2

(2)

where η > 0 is a parameter used to optimize the algorithm. At the beginning of
the (k + 1)st block the encoder uses the first � 1

R
log
(

K
M

)� time instants to describe
the selected quantizer Qk to the receiver, by transmitting an index identifying Qk

(note that |QK | =
(

K
M

)
), and in the rest of the block the encoder uses Qk to encode

the source symbol xi and transmits Qk(xi) to the receiver. In the first � 1
R

log
(

K
M

)�
time instants of the (k + 1)st block, that is, while the index of the quantizer Qk is
communicated, the decoder emits an arbitrary symbol x̂i. In the remainder of the
block, the decoder uses Qk to decode the transmitted x̂i = Qk(xi). Optimizing the
values of η, K and l, the upper bound (1) is shown to hold in [5] for the expected
distortion redundancy of the scheme.

3 An efficient “follow the perturbed leader”-type

algorithm

In the straightforward implementation of Weissman and Merhav’s algorithm, one has
to compute the distortion for all the

(
K
M

)
quantizers in QK in parallel. This method
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is computationally inefficient since it has to perform O(KM) computations for each
input symbol, which becomes O(nM/3) when K is chosen optimally to be proportional
to n1/3. Thus, the overall computational complexity of encoding a sequence of length
n becomes O(n1+M/3), and the storage requirement of the algorithm is O(KM) =
O(nM/3), since the cumulative distortion for each quantizer in QK has to be stored.
(Throughout this paper we do not consider specific models for storing real numbers;
for simplicity we assume that a real number can be stored in a memory space of fixed
size.) Clearly, this complexity is prohibitive for all except very low coding rates.

Recently, an efficient implementation of the algorithm was given in [6], achieving
O(n−1/3 log n) distortion redundancy using O(Mn4/3) computations. The algorithm
can also be implemented with O(Mn) time and O(Mn1/2) storage complexity, result-
ing in a slightly worse O(n−1/4

√
log n) distortion redundancy. This rather substantial

reduction in complexity is achieved by a nontrivial sequential algorithm for draw-
ing a quantizer according to the distribution in (2), without having to compute the
cumulative distortions for all Q ∈ QK .

In the following we combine Weissman and Merhav’s [5] coding scheme with an
efficient, novel prediction algorithm, due originally to Hannan [8], and recently re-
discovered and simplified by Kalai and Vempala [7]. In the prediction context, the
algorithm forfeits choosing predictors according to the (essentially optimal) expo-
nential weighting method, and instead it chooses the predictor that is optimal in
hindsight for a randomly perturbed version of the past data (thus the name “follow
the perturbed leader”). Although sequential prediction schemes cannot directly be
applied in sequential lossy coding problems (where the loss incurred at every step is
not available at the decoder), we show how to use this idea in the context of zero-delay
lossy coding. The resulting algorithm reduces the computational complexity of the
online problem by solving its off-line version, that is, the problem of finding an em-
pirically optimal quantizer for a given source sequence, which can be solved in linear
time [9]. Indeed, the algorithm to be presented here has computational complexity of
order of O(Mn) and requires storage capacity of order of O(Mn1/4), at the expense
of a slightly increased O(n−1/4 log n) expected distortion redundancy.

Theorem 1 For any n ≥ 1, M ≥ 2, there exists a zero-delay coding scheme of rate
R = log M for coding sequences of length n such that for all xn ∈ [0, 1]n,

E

[
1

n

n∑
i=1

(xi − x̂i)
2

]
− min

Q∈Q
1

n

n∑
i=1

(xi − Q(xi))
2 ≤ Cn−1/4 log n (3)

for some constant C > 0 depending only on M , and the coding procedure has compu-
tational complexity O(Mn) and requires O(Mn1/4) storage capacity.

Remark. The algorithm of the theorem is conceptually simpler and uses less storage
space than the linear-time version of the algorithm in [6]. However, it is less flexible
in terms of a trading off complexity for performance; it appears that the distortion
redundancy cannot be further reduced at the cost of slightly increasing the time
complexity, as was the case for the algorithm in [6].
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Proof. Fix the positive integers K > M and l > log
(

K
M

)
/ log M (for simplicity

assume that l divides n) to be specified later. Let qK denote a K-level uniform
quantizer on [0, 1] with code points {1/(2K), 3/(2K), . . . , (2K−1)/(2K)}. Notice that
we do not lose too much in terms of distortion, if instead of the sequence x1, . . . , xn,
we encode its finely quantized version x̄1, . . . , x̄n, where

x̄i = qK(xi), i = 1, . . . , n.

It is easy to check that for any nearest neighbor quantizer Q with code points in [0, 1]
we have

max
x∈[0,1]

|(x − Q(x))2 − (qK(x) − Q(qK(x)))2| ≤ 1

K
.

Thus for any sequence Q0, Q1, . . . , Qn/l−1 of quantizers in Q,

n/l−1∑
k=0

(k+1)l∑
i=kl+1

(xi − Qk(xi))
2 − min

Q∈Q

n∑
i=1

(xi − Q(xi))
2

≤
n/l−1∑
k=0

(k+1)l∑
i=kl+1

(x̄i − Qk(x̄i))
2 − min

Q∈Q

n∑
i=1

(x̄i − Q(x̄i))
2 +

2n

K
. (4)

Now let IA denote the indicator function of the event A, and for i = 1, . . . , n and
j = 1, . . . , K, let

hi(j) =
i∑

t=1

I{x̄t=
2j−1
2K

}.

Hence for any i, the vector of integers hi = (hi(1), . . . , hi(K)) describes the histogram
of x̄i. For any vector a = (a1, . . . , aK) with aj ≥ 0, j = 1, . . . , K, let Qa ∈ Q denote a
K-level quantizer that is optimal for the discrete distribution that assigns probability
aj/|a|1 to each point 2j−1

2K
, j = 1, . . . , K, where |a|1 =

∑K
j=1 |aj|. Thus, for example,

Qhn is the M -level quantizer that quantizes the entire sequence x̄n with minimum
distortion.

For any Q ∈ Q with codebook {y1, . . . , yK} ⊂ [0, 1], let qK(Q) ∈ QK denote a
nearest neighbor quantizer with codebook {qK(y1), . . . , qK(yK)}. Notice that

sup
x∈[0,1]

|(x − Q(x))2 − (x − qK(Q)(x))2| ≤ 1

K
. (5)

Our coding scheme works as follows: the quantized source sequence x̄n is divided
into non-overlapping blocks of length l, and at the end of the kth block, that is, at
time instants i = kl, k = 0, . . . , n/l − 1, a quantizer Qk ∈ QK is chosen such that

Qk = qK(Qhkl+Vk
)

where Vk is a random variable uniformly distributed in the K-dimensional cube
[0, 1/ε]K and ε > 0 is a parameter to be specified later. At the beginning of the
(k + 1)st block the encoder uses the first � 1

R
log
(

K
M

)� time instants to describe the
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Input: n, M, K, l, ε, x1, . . . , xn.

k := 0 and h0(j) := 0 for all j.

For i := 1 to n

if i− 1 = kl then

draw Vk uniformly from [0, 1/ε]K;
Qk := qK(Q(hkl(1),...,hkl(K))+Vk

);
x̄i := qK(xi);
hi(j) := hi−1(j) + I{x̄i= 2j−1

2K
} for all j;

if i− kl ≤ ⌈ 1
log M log

(
K
M

)⌉
then transmit the corresponding index symbol for Qk;

else transmit Qk(xi);
if i = (k + 1)l then k := k + 1.

Figure 1: Universal low complexity zero-delay source coding scheme

selected quantizer Qk to the receiver, (note that |QK | =
(

K
M

)
). In the rest of the

block the encoder uses Qk to encode the source symbol xi and transmits Qk(xi) to the
receiver. In the first � 1

R
log
(

K
M

)� time instants of the (k+1)st block, that is, while the
index of the quantizer Qk is communicated, the decoder emits an arbitrary symbol
x̂i. In the remainder of the block, the decoder uses Qk to decode the transmitted
x̂i = Qk(xi). The algorithm is summarized in Figure 1.

Upper bound on the expected distortion redundancy: Since the algorithm does not
code the first �log

(
K
M

)
/ log M� source symbols in each block, the distortion redun-

dancy of the coding scheme can be bounded as

n∑
i=1

(xi − x̂i)
2 − min

Q∈Q

n∑
i=1

(xi − Q(xi))
2

≤
n/l−1∑
k=0

(k+1)l∑
i=kl+1

(xi − Qk(xi))
2 − min

Q∈Q

n∑
i=1

(xi − Q(xi))
2 +

n

l

⌈
log
(

K
M

)
log M

⌉

≤
n/l−1∑
k=0

(k+1)l∑
i=kl+1

(x̄i − Qk(x̄i))
2 − min

Q∈Q

n∑
i=1

(x̄i − Q(x̄i))
2 +

n

l

⌈
log
(

K
M

)
log M

⌉
+

2n

K
(6)

where the second inequality holds by (4). In what follows, we bound the distortion
redundancy for encoding the sequence x̄n. First notice that by (5)

n/l−1∑
k=0

(k+1)l∑
i=kl+1

(x̄i − Qk(x̄i))
2 ≤

n/l−1∑
k=0

(k+1)l∑
i=kl+1

(x̄i − Qhkl+Vk
(x̄i))

2 +
n

K
. (7)

Next we show that for any ε > 0, the expectation of the first term on the right hand
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side of (7) can be bounded as

E


n/l−1∑

k=0

(k+1)l∑
i=kl+1

(x̄i − Qhkl+Vk
(x̄i))

2


 ≤ min

Q∈Q

n∑
i=1

(x̄i − Q(x̄i))
2 +

K

ε
+ εnl. (8)

The proof of (8) is an appropriately adapted version of the proof of Theorem 1 in [7]
(given in a prediction context). For any quantizer Q ∈ Q let

dj(Q) =

(
2j − 1

2K
− Q

(
2j − 1

2K

))2

for j = 1, . . . , K

and set d(Q) = (d1(Q), . . . , dK(Q)). Since h(k+1)l(j) − hkl(j) is the number of times
(2j − 1)/(2K) occurs in the sequence x̄kl+1, . . . , x̄(k+1)l, we have

n/l−1∑
k=0

(k+1)l∑
i=kl+1

(x̄i − Qhkl+Vk
(x̄i))

2 =

n/l−1∑
k=0

d(Qhkl+Vk
) · (h(k+1)l − hkl)

where a · b =
∑K

j=1 ajbj for a = (a1, . . . , aK) and b = (b1, . . . , bK).
As we will show later, for large values of k the distributions induced by (hkl +Vk)

and (h(k+1)l + Vk) are close, so first we consider the more tractable expectation

E


n/l−1∑

k=0

d(Qh(k+1)l+Vk
) · (h(k+1)l − hkl)


 .

Defining V−1 = (0, . . . , 0), for any n/l ≥ m ≥ 1, we have

m−1∑
k=0

d(Qh(k+1)l+Vk
) · (h(k+1)l + Vk − hkl − Vk−1)

≤ d(Qhml+Vm−1) · (hml + Vm−1) ≤ d(Qhml
) · (hml + Vm−1). (9)

Here the second inequality follows since Qhml+Vm−1 is optimal for hml + Vm−1, and
the first inequality follows by induction: for m = 1, the inequality holds trivially; the
induction step from m to m + 1 follows from

d(Qhml+Vm−1) · (hml + Vm−1) ≤ d(Qh(m+1)l+Vm) · (hml + Vm−1)

which holds again by the optimality of Qhml+Vm−1 for hml + Vm−1. Since Vm−1 =∑m−1
k=0 (Vk − Vk−1), from (9) we obtain

m−1∑
k=0

d(Qh(k+1)l+Vk
) · (h(k+1)l − hkl)

≤ d(Qhml
) · hml +

m−1∑
k=0

(d(Qhml
) − d(Qh(k+1)l+Vk

)) · (Vk − Vk−1)
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≤ min
Q∈Q

ml∑
i=1

(x̄i − Q(x̄i))
2 + K

m−1∑
k=0

|Vk − Vk−1|∞ (10)

where |a|∞ = maxj |aj|, and the second inequality follows since Qhml
is optimal for

hml, a · b ≤ |a|1|b|∞ for any a,b ∈ R
K , and 0 ≤ dj(Q) ≤ 1 for all Q ∈ Q and

j = 1, . . . , K.

Since the expectation E

[∑n/l−1
k=0 d(Qh(k+1)l+Vk

) · (h(k+1)l − hkl)
]

does not change

if Vk is replaced by V0 for all k = 0, . . . , n/l − 1, from (10) we get

E


n/l−1∑

k=0

d(Qh(k+1)l+Vk
) · (h(k+1)l − hkl)


 ≤ min

Q∈Q

n∑
i=1

(x̄i − Q(x̄i))
2 + KE

(|V0|∞
)

≤ min
Q∈Q

n∑
i=1

(x̄i − Q(x̄i))
2 +

K

ε
. (11)

In order to prove (8) from (11), we need to give an upper bound on the ex-
pected difference in the distortion between using the quantizer Qh(k+1)l+Vk

instead of
Qhkl+Vk

. Notice that h(k+1)l + Vk and hkl + Vk are both uniformly distributed over
cubes. Assuming that both h(k+1)l + Vk and hkl + Vk fall into the intersection of
the two cubes, their conditional distributions are the same (both being uniform), and
hence the corresponding conditional expectations of d(Qh(k+1)l+Vk

)·(h(k+1)l−hkl) and
d(Qhkl+Vk

) · (h(k+1)l − hkl) are the same. Therefore, since for any quantizer Q ∈ Q,
d(Q) · (h(k+1)l −hkl) ≤ |h(k+1)l −hkl|1 = l, if the two cubes overlap on a fraction δ of
their volume, then

E
[
d(Qhkl+Vk

) · (h(k+1)l − hkl)
]−E

[
d(Qh(k+1)l+Vk

) · (h(k+1)l − hkl)
]
≤ (1−δ)l. (12)

Clearly, (12) holds for k = 0, . . . , n/l − 1. It is easy to see that for any a ∈ R
K ,

the cubes [0, 1/ε]K and a + [0, 1/ε]K overlap in at least a (1 − ε|a|1) fraction of their
volume if ε|a|∞ ≤ 1. Therefore, δ ≥ 1− ε|h(k+1)l −hkl|1 = 1− εl; hence summing (12)
for all k, by (11) we obtain (8).

Combining (6), (7) and (8) we have

E

[
n∑

i=1

(xi − x̂i)
2

]
− min

Q∈Q

n∑
i=1

(xi − Q(xi))
2 ≤ n

l

M log K

log M
+

3n

K
+

K

ε
+ εnl

where we used the fact that log
(

K
M

)
/ log M + 1 ≤ M log K/ log M . Letting ε =

√
K
ln

,

K = c1n
1/4, and l = c2n

1/4 for some constants c1, c2 > 0 satisfying K > M and
l > log

(
K
M

)
/ log M gives (3).

Finally, it is easy to see that in case l does not divide n, the distortion on the last,
truncated block can be accounted in the bound by slightly increasing the constant C.

Complexity analysis: By the scalar quantizer design algorithm of Wu and Zhang
[9], for any nonnegative vector a ∈ R

K , the mean-square optimal M -level scalar
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quantizer Qa can be found in O(MK) time, thus the computational complexity of the
algorithm is O(MKn/l)+O(n) = O(Mn). Since the design of each quantizer requires
O(MK) storage capacity, the storage requirement of the algorithm is O(Mn1/4). �

Note that when the quantizer Qk is drawn, we implicitly assumed that we are able
to perform O(Mn1/4) operations in one time slot. To alleviate this problem, one can
modify the algorithm so that Qk is determined during the (k + 1)st block which is
of length O(n1/4), and then Qk can be applied in the (k + 2)nd block instead of the
(k+1)st block. This way at each time instant only a constant number of computations
is carried out. It is not difficult to see that this modification results in essentially the
same distortion redundancy, and only the constants will slightly increase.

References

[1] T. Linder and G. Lugosi, “A zero-delay sequential scheme for lossy coding of
individual sequences,” IEEE Trans. Inform. Theory, vol. 47, pp. 2533–2538, Sep.
2001.

[2] V. Vovk, “Aggregating strategies,” in Proceedings of the Third Annual Work-
shop on Computational Learning Theory, (New York), pp. 372–383, Association
of Computing Machinery, 1990.

[3] V. Vovk, “A game of prediction with expert advice,” Journal of Computer and
System Sciences, vol. 56, pp. 153–173, 1998.

[4] N. Littlestone and M. K. Warmuth, “The weighted majority algorithm,” Infor-
mation and Computation, vol. 108, pp. 212–261, 1994.

[5] T. Weissman and N. Merhav, “On limited-delay lossy coding and filtering of
individual sequences,” IEEE Trans. Inform. Theory, vol. 48, pp. 721–733, Mar.
2002.

[6] A. György, T. Linder, and G. Lugosi, “Efficient adaptive algorithms
and minimax bounds for zero-delay lossy source coding,” submit-
ted to IEEE Transactions on Signal Processing, 2003. available at
www.szit.bme.hu/~gya/publications/GyLiLu03.ps.

[7] A. Kalai and S. Vempala, “Efficient algorithms for the online decision problem,” in
Proc. 16th Conf. on Computational Learning Theory, (Washington, D. C., USA),
2003. available at http://www-math.mit.edu/∼vempala/papers/online.ps.

[8] J. Hannan, “Approximation to Bayes risk in repeated plays,” in Contributions to
the Theory of Games (M. Dresher, A. Tucker, and P. Wolfe, eds.), vol. 3, pp. 97–
139, Princeton University Press, 1957.

[9] X. Wu and K. Zhang, “Quantizer monotonicities and globally optimal scalar quan-
tizer design,” IEEE Trans. Inform. Theory, vol. 39, pp. 1049–1053, 1993.

Proceedings of the Data Compression Conference (DCC’04) 
1068-0314/04 $ 20.00 © 2004 IEEE 


	Index: 
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index: 
	INDEX: 
	ind: 


