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Codecell Convexity in Optimal Entropy-Constrained Although little is known about the structure of optimal ECVQs in
Vector Quantization general, the popular assumption in the literature is that the codecells
of an optimal ECVQ are convex polytopes. In [8], it was demonstrated
Andras Gyorgy Member, IEEE,and that this assumption is wrong in general: There edistretesource
Tamas LinderSenior Member, IEEE distributions on the real line for which no scalar quantizer with interval

cells can be optimal for some values of the entropy constraint. Sim-
Abstract—Properties of optimal entropy-constrained vector quantizers Il.ar c_:ounterexamples were eXhI.b ited m. [9] for n.etwork sc.a"'?“ quan-
(ECVQs) are studied for the squared-error distortion measure. It is tization problems such as multiresolution, multiple-description, and
known that restricting an ECVQ to have convex codecells may preclude Wyner—Ziv scalar quantization. However, it was also shown in [8] that
its optimality for some sources with discrete distribution. We show that for continuousscalar source distributions and a wide class of distortion
for sources with continuous distribution, any finite-level ECVQ can be  measures (including the squared-error distortion), there always exits

replaced by another finite-level ECVQ with convex codecells that has an optimal entropy-constrained scalar quantizer with convex (interval)
equal or better performance. We generalize this result to infinite-level

quantizers, and also consider the problem of existence of optimal ECVQs Codecell§ fo.lany_value of the entropy constraint. Thus, for.cor.ltinuou.s
for continuous source distributions. In particular, we show that given source distributions, the requirement of codecell convexity is consis-
any entropy constraint, there exists an ECVQ with (possibly infinitely  tent with quantizer optimality in entropy-constrained scalar quantiza-
many) convex codecells that has minimum distortion among all ECVQs 5, Corresponding results for vector quantization do not seem to be
satisfying the constraint. These results extend analogous statements in ilable in the literat Th i heth t optimal ¢
entropy-constrained scalar quantization. They also generalize results aval a. e inthe literature. The que; |onyv e er ornot op !ma vector
in entropy-constrained vector quantization that were obtained via the quantizers have convex codecells is an interesting theoretical problem

Lagrangian formulation and, therefore, are valid only for certain values  thatalso has practical significance. For example, the encoder of a vector

of the entropy constraint. quantizer withV’ nonconvex (e.g., disconnected) codecells can, in prin-
Index Terms—Convex polytopes, entropy coding, infinite-level quan- ciple, be arbitrarily complex, while if the codecells are convex poly-
tizers, optimal vector quantization, squared-error distortion. topes, the encoding complexity (both space and time) is at most on the

order of N2,

The goal of this correspondence is to generalize the results of [8]
to vector quantization. We consider (absolutely) continuous source

Characterizing properties of optimal quantizers is an importadfstributions and assume the squared-error distortion measure. After
problem in quantization theory. In fixed-rate quantization, Lloyd’s twintroducing the relevant notation and definitions in Section 1I, we
necessary conditions for optimality [1], [2] give a useful characteriz#irst focus on finite-level quantizers in Section Ill. Here, the main
tion of quantizers having minimum distortion for a given number afesult shows that for any finite-level ECVQ there exists another
codevectors. One of these optimality conditions, the nearest neighhiaite-level ECVQ withconvexcodecells that has the same (positive)
condition, implies that for the squared-error distortion measure, thedecell probabilities (thus, the same entropy) and equal or less
codecells of an optimal scalar quantizer are intervals, and thatdmstortion. Among other things, this result implies that should a
the vector case the cells are convex polytopes. This observation fiaige-level optimal ECVQ for a given entropy constraint exist, it
proved very useful in analyzing optimal scalar and vector quantizesin be assumed to have convex codecells. Optimal ECVQ performance
performance [3]. Even more importantly, the Lloyd conditions yield may not be achieved by a finite-level quantizer. This motivates us to
popular iterative method for fixed-rate quantizer design [1], [4]. consider infinite-level quantizers in Section IV. We extend the main

The Lloyd conditions have been generalized to optimal entropy-coresult of Section 1l to vector quantizers with a countably infinite
strained vector quantizers (ECVQs) [5] via a Lagrangian formulation flumber of codecells, and also consider the problem of existence
which the performance of the quantizer is measured by a weighted sgfroptimal ECVQs. In particular, we show that given any entropy
of its distortion and rate (output entropy). In particular, for the squaredenstraint, there exists an ECVQ with (possibly infinitely many)
error distortion measure, the generalized form of the nearest neighbonvex codecells that has minimum distortion among all ECVQs
condition implies that an ECVQ that is optimal in this Lagrangiagatisfying this entropy constraint. This generalizes a recent result in
sense has convex polytope codecells. However, the Lagrangian forfig] that was obtained via the Lagrangian formulation and is thus
lation only yields optimal quantizers that achieve a distortion-rate poiwlid only for certain values of the entropy constraint.
on the lower convex hull of the entropy-constrained operational dis-
tortion-rate function. If the operational distortion-rate function is not

. INTRODUCTION

convex (which seems to be the typical case [6]), it lies strictly above II. PRELIMINARIES

its lower convex hull for a whole range of rate values. An ECVQ that a yector quantizer() is described by a measurable partition
is optimal for any such rate no longer has to satisfy the generalizgd — {81, S2, ..., Sy} of R* and a correspondingodebook
nearest neighbor condition. C = {c1, ca...,cn} C RF.If S andC are finite, we callQ an

N-level quantizer. We also allow countably infinite partitions and
codebooks, in which case we formally writdé = ~c and call@ and
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We suppose a nonnegative measuralortion measur@: R* x  summarize the relevant notation and conventions. We repregent a

R* — [0, +o0). For anR*-valued random vectak with distribution perplaneh in R* by a vector of: + 1 real component§z, . ..., ax, b)
u, the distortion ofY is measured by the expectation with [|a||* = S2%_, a? = 1 such that
D(Q, n) éE{d(X, Q(X))} h={x€R" (a, z) =0}

_ N where(a, ) = Y.*_ a;z; denotes the usual inner productof=

- /A, d(e, Q@) dplx). (a1, ..., ap) andz = (21, ..., 2¢) in R*. For the hyperplané,
In particular, we restrict the treatment to the popular squared ertbe ordered paitH., H) will denote the corresponding complementary
distortion closed and open half-spaces

k H={z¢€ R (a, ) < b}

A, y) = o —yl* = (e — wo)?

=1

H=R\H = {zeR" (a, 2) > b}.

for # = (w1, ..., 1) andy = (yi. .... y). However, the results  We say that the hyperplarie separates the sets. B C R, if
can easily be extended to somewhat more general distortion measutes H andB C H. P C R" is aconvex polytopéf P is a finite
(see the remark after Lemma 1). intersection of (open or closed) half-spaces. Note that) = 0 for
Thepartial distortionof theith codecellS; of ( is defined by any hyperplane if the distributiony is absolutely continuous with
A respect to the Lebesgue measurefdn(i.e., 2 has a density). In this
Di(Q, p) = / d(z, ¢;) dp(x) (1) case, the boundary of a convex polytope (the union of its faces) has
5 measure zero.
so that In the sequel, we alternatively use the notatiofor the hyperplane
N itself and for the parameter vectar, , ..., ax, b); the actual meaning
D(Q,p) = Z Di(Q. ). (2)  will be clear from the context. In particular, if the parameter vectors
i=1 (al™, ..., (1,5:), b)) corresponding to a sequence of hyperplanes

When the distribution: is clear from the context, the short notations 7 } converge componentwise to a parameter vetor . .., a, b)
D(Q) and D;(Q) will be used. We use (1) and (2) to extend the&orresponding to a hyperplarig we say that{h,. } converges td:.
definition of D;(Q. 1) and D(Q, 1) to any finite (not necessarily It will be convenient to allow the Earametbnof the limit hyperplane
probability) measure oR*. In particular, we occasionally work with t0 be an extended real numbiee R = RU {+oc} U {—oc}. Thus,

subprobability measures obtained by restrictingo some Borel set the convergence of the firétcomponents is meant in the usual sense
A C R*: v is said to be theestrictionof . to A if »(B) = u(AnB) N R, while the convergence df") is meant inR. Consistent with

The entropy-constrainedte of () is the entropy of its outpup (X) b = —oc. We definel (as a subset dt") to be empty in either case.
Using these conventions, it is easy to see thekif} converges té,

A , - ~
H(Q)=H(Q(X)) then for the sequence of corresponding half-sp4¢és,, H..)} and
N the half-space§H, H) corresponding té, we have
= — ;PI‘{AX € Sz}log PI‘{.X € Sz} ,Lli_l,IolQ 1Hn. (.[) =1y (‘L) and HIEI;) lffn (il)) = ]_ﬁ(;[;) (3)
N forall = ¢ h, wherel 4 (z) denotes the indicator function af C R*;
=— Z,u(Si)log,u(Si) ie,la(z)=1ifz € Aandla(z) =0if z ¢ A.
=1
wherelog denotes basklogarithm. A vector quantizep whose rate is ll. FINITE-LEVEL QUANTIZERS AND CODECELL CONVEXITY
measured by (Q) is called arentropy-constrained vector quantizer . )
(ECVQ). In this section, and throughout the correspondence, we assume that

the source distribution is absolutely continuous with respect to the
Lebesgue measure (absolutely continuous, for short). We show that
for any finite-level vector quantizer there exists another finite-level
vector quantizer with convex codecells that has the same entropy and
A , equal or less distortion. First we prove this in the next lemma for the
Din(R) = igf{D(Q)i H(Q) < R} special case of two-level quantizers. The lemma extends a similar

where the infimum is taken over all finite- or infinite-level vector quan.[es'UIt in [8] from scalar to vector quantization and it plays a key role

tizers whose entropy is less than or equaRtolf there is noQ@ with in the proof of the main result.
finite distortion and entropyZ (Q)) < R, then we formally define  Lemma 1: Let z be an absolutely continuous finite measure and
Dy, (R) = +oc. Any Q that achieve®d), (R) inthe sense thdi () <  assume tha® = ({51, Sz}, {c1, c2}) is an arbitrary two-level vector
R andD(Q) = D,(R) is called aroptimal ECVQ. quantizer with finite distortioD(Q). Then there exists a hyperplahe

It is worth noting that one of the two Lloyd conditions, tbentroid perpendicular te; — c2 and corresponding complementary half-spaces
condition still holds for entropy-constrained quantizers. Thug)ils (H,, H») with u(H;) = p(S;), i = 1, 2, such that the two-level
an optimal ECVQ, then the codevectorsi@inust be thecentroidsof — quantizerQ = ({H,, Hs}, {c1, ¢2}) satisfiesD(Q) < D(Q).

Giventhe sourc&, foranyR > 0let D, ( R) denote the lowest pos-
sible distortion of any quantizer with output entropy not greater fhan
This function, sometimes called tlperational distortion-rate func-
tion, is formally defined by

their corresponding cells, i.e., In particular, for every > 0 there is @ > 0, which depends op
1 but not on@ or @, such that
ci = 50 / xdp(r) )
S Js, D(Q) = D(Q) 2 48lles — erll(u(S1 N Ha) — ). (4)

for all S; with positive probabilityu(.5;) > 0.
Central to our work are quantizers with convex codecells defined inNote that (4) implies that if the cells of a two-level quantizer cannot
terms of half-spaces or hyperplanesiif. In the rest of the section, we be separated by a hyperplane (up to a sgtmieasure zero), then there
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is another two-level quantizer with half-space cells that has the saatemosts, we haveu (K, \ K1) < e (note that the two hyperplanes

entropy andstrictly lessdistortion. must be parallel becaudé, C K%). Therefore,
Proof: Since the Euclidean distance is invariant to orthogonal ‘ xy dp(x)
transformations, we can assume, without loss of generalitycthat S1NH,

(u1, 0, ..., 0)andcy = (u2, 0, ..., 0) for someu; < u2. Sinceu
is absolutely continuous, there istae R such that the half-spaces

H ={z:z1 <u} and Hy ={x:z( > u} (5)

satisfyu(H1) = p(S1) andu(Hz) = p(S2). Note that the hyperplane
corresponding td; and H, is perpendicular te; — ¢;. SetQ =

:/ x1 dp(z)
SinHon{a: 21 >ut8}

/ xydp(x)
JSiNHoyN{z: z1<u+6}

({H:, Ha}, {c1, c2}). We show thatD(Q) < D(Q). We have > / (u +68) dp(x)
d 9 r 2 SiNHon{z: x1>u+6}
D@ = [ lle=alfau@)+ [ o= el du)
51 S2 +/ wdp(x)
. ) . SinHoN{z: =y <u+6}
= / ((l‘l - 111)2 +ai4 -+ ;L’i) dp(z)
51 =up(S1 N Hy) + / Sdu(x)
5 5 5 p JSiNHyN{z: 1 >u+é}
+ v1 = u2)? + 23+ 4 ad) dpe «
/s_) (o1 =) 2 k) du(z) > up(S1 OV Hz) + 6(p(S1 N Ha) — p(Ha\{z: 21 > u +6}))
= / (:v% + -4 ;zrf‘,) dp(x) + / (x1 — uy)? dpfx) 2 up(S1 0 Hz) +6(u(S1 0 Hz) = e).
R¥ 51 Similarly, we have
+/ (21— u2)* dp(). / zydp(e) <up(Se N Hy) —6(p(S2NH ) —¢€).
S SonH,
Similarly, Sinceu(S: N Hy) = (S, N Hy), (8) implies
D(Q) - / (45’ 4 Li) dp(x) D) - D(Q) >48(u2 — ur)(p(S1 N Ha) — €)
JRE

=4b|lez — er||(u(S1 N H2) — ¢).

This completes the proof since the choicesoflepended only om

+/HI(;L’1 —ul)zdu(w)—l—/f;z(wl —uo)? dp(x).

Therefore andp, but not on@ or Q). O
D(Q) — D(Q) Remark (More General Distortion Measuresl):emma 1 easily gen-
eralizes towveighted squared-erradlistortion measures in the form
B /D G w)” = (o =)’ dp() d(z, y) = (& —y, Alx —y))
21 2
whereA is a positive-definite symmetric x &£ matrix [2]. In this case,
+ / ((,rl —uy)? — (21 — 1:,1)2) dp(x) the separating hyperplarieandc, — ¢; will be perpendicular with
520t respect to the inner produgt, y) 4 2 (z, Ay). All subsequent results
= (u} — u3)(u(S1 N Hy) — (S N Hy)) (6) can be shown to hold for such distortion measures, but for simplicity

) ) we will restrict the treatment to the squared-error distortion, and only
+ 2(uz — up) </ xy dp(x) — / 1 de)) . (7) give below a sketch of the argument generalizing Lemma 1.
‘ S1nTy Saniy The distortion measure can be written as
Sincepu(f) = ju(5) andp(fly) = p(S2), and{S, 52} and d(x, y) = (B(x - y), B(x — y))
{H,, H:} are partitions oR", we haveu(S: N Hz) = u(S2 N H1); ) _ - o )
hence, the expression in (6) is equal to zero. Also, from (5) we havevhereB is the unique positive-definite symmetric square rootiof
i.e., A = BZ?. (Note thatB always exists; see, e.g., [7]). Then the

/ 1 dp(z) > / wdp(r) = up(S1 N Hy) partial distortions of) are given by

JsinHy J s nHy

and D@ = [ IBG = ol dute) = [ lly = & ditw)
/ x1 dp(z) < / wdp(x) = up(S2 N Hy) o S
JSonH, JSonHy

whereé; = Be;, S; = BS; 2 {Bax: x € S;},andji = pB™*
(i.e., i(S) = n(B~'S) for every Borel sefS). Thenji is absolutely
D(Q) — D(Q) > 0. continuous angi(S;) = p(S;),i = 1, 2, so the first part of Lemma 1
implies that there are complementary half-spacds, H,) that are
perpendicular té, — & and have measuye H;) = ;(S:),i = 1, 2,
such that

and so the expression in (7) is nonnegative, implying

This completes the proof of the first part.
Next we prove (4). Recall that

D(Q) - D(Q)

= 2(uz2 —u1) </5 . x1dp(x) — /5 o 1 d,u(r)) . (8 ;/H lly = eall” dinly) < ;/5 ly = eI” dicy)- ©)

Sincey. is absolutely continuous with respect to the Lebesgue measuretting H; = B~'H;,i = 1, 2, itis easy to check thdtH,, H,) are
for everye > O thereis & > 0 such that for any two half-spac&s C  complementary half-spaces with H;) = u(S;),¢ = 1, 2, that are
K, C R* such that the distance between their defining hyperplanespsrpendicular te, — ¢, with respect to the inner produgt, y) 4. If we
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letQ = ({H,, H.}. {e1, e2}), thenD(Q)) is equal to the left-hand interior of S is empty, and, in facty C h; ; for some: < j. Thus, the

side of (9), so thaD(Q) < D(Q). The proof of the second state-union of the boundaries (faces) of the polytogesi = 1, ..., N
ment of the lemma can be generalized in a similar manner. In part@@ntainsS~ 4, and it follows that the union of the closures §f,

ular, ||c2 — c1]| is replaced by i = 1,..., N coversR*. We can, therefore, redefine the cefls,
i = 1, ..., N to obtain a partition oft* by assigning the common
llez = calla = V/{e2 = er, Alez = 1)) boundary of any two cells to the cell with the lower index. Hence, we
in (4). obtain the following corollary to Theorem 1.

_Corollary 2: Assume thatX has an everywhere positive density.

hen, for anyN -level quantizer) with finite distortion D(Q), there

is anV -level quantizer) with distortionD(Q) < D(Q) such that)
Theorem 1: Assumey is an absolutely continuous finite measuréas convex cells and the same cell probabilitie@as

and suppose th& -level quantizer

Next we extend Lemma 1 to quantizers with more than two cod$
cells.

If X has a positive density concentrated on a convex sibséR”,

Q=({S1.....5x}. {c1o.einen)) then it is enough to consider quantizers defined onlg'oin this case,
@ is anN -level quantizer with convex codecells defined only@n
has finite distortionD(Q). Then there is aQNV + 1)-level quantizer For a given source distribution and entropy constraitthere
. . . might not exist a finite-level quantizer achieving optimal performance
Q= ({5, s Sngr} {ers oo ens evga}) Dy(R). Nevertheless, Theorem 1 readily implies that finite-level
with ¢x-1 being arbitrary, such that eadh,i = 1,...,N,isa quantizers with convex codecells can arbitrarily approach the optimal

performance if the source has a finite second moment. The proof is

convex polytope . i ) .
almost identical to that of [8, Corollary 2] which deals with the scalar

p(S) =p(S), i=1,....N case.
,1(31\,“) =0 Corollary 3: Assume thafX has an absolutely continuous distribu-
tion and finite second mome®|| X ||* < co. Then, for anyR > 0
and . - ) .
R ande > 0, there is a finite-level quantiz&p. with convex codecells
D(Q) < D(Q). such that (Q.) < R and
Specifically, there exist hyperplangé; ;; 1 < i < j < N} and D(Q.) < Di(R) +e.

corresponding half-spac¢éH; ;, H; i);1 <i<j < N} with each
h;, ; being perpendicular te; — ¢; such that the codecells ¢f are
given by IV. INFINITE-LEVEL QUANTIZERS AND ECVQ OPTIMALITY

In this section, we first generalize Theorem 1 to infinite-level quan-
tizers. In the sequel, it will be convenient to allow quantizers that are
defined on subsets 6§ . We say that a quantiz€} is definedu:-almost
andSy.1 = R\ U‘-Nil s everywhere-a.e.) ifQ is defined ona sef C R* (which may be all

= of R*) such thap(R* \ S) = 0. In this case, the codecells & form

The result generalizes [8, Theorem 1] from scalar to vector quagipartition ofS instead ofR*. Note that by forming the extra codecell
tization (modulo the assumption of the squared-error distortion me@: \ S of measure zero faf, we can always extend its domain of def-
sure). The proof, however, is more involved than in the scalar cagsition to the whole ofR* without changing its distortion or entropy.

In [8], the desired quantizer could be constructed in a finite number of } ) o
steps, but that construction does not generalize to the multidimensiona] "€0rém 2: SupposeX' has an absolutely continuous distribution
case. Here the construction is less expliitwith the stated properties £+ 1hen, for any quantize) with finite distortion D(Q), there is a
is shown to exist as the “limit” of an infinite sequence of quantize/dUantizer) definedy:-a.e., such thap has convex cells) andc) have

constructed in a recursive manner. The detailed proof is given in tHt§ Same codevectors and codecell probabilities, 20d) < D(Q).

Appendix. o ) ) ) In caseQ is an infinite-level quantizer, Theorem 2 does not imply
_ !DeMorgan s law implies thaf;N+1_ can be written as a union of that the cells ofQ are convex polytopes. For example, a corollary
finitely many convex polytopes. Making each of these polytopes a neW the Vitali covering theorem [11] shows that there exists a count-
cell (of x measure zero) and defining the associated codevectors agllite collection{ B, Bs, ...} of disjoint closed balls if®* such that
trarily, we obtain the following corollary. R*\ (U, B:) has Lebesgue measure zerq. I§ absolutely continuous,

Corollary 1: Assume thatX has an absolutely continuous distribuNen any quantizer with partitiopB,, Bz, ...} is definedu-a.e. and

tion. Then for any finite-level quantiz&p with distortionD(Q) < oo its codecells are closed balls. )
there is a finite-level quantizé) with convex codecells (some ofwhich 1€ theorem is an easy consequence of the following lemma whose

may have probability zero) that has the same positive cell probabilit&0f is deferred to the Appendix. The lemma will also prove useful
asQ and distortionD(Q) < D(Q). later in showing the existence of optimal ECVQs.

Lemma 2: SupposeX has an absolutely continuous distribution
or eachm = 1,2, ..., let

§,-:ﬂH,-,]-, i=1,...,N
j#i

Note that) and( in the corollary have the same entropy. Thus, ané
finite-level ECVQ can be replaced by another one which has conv

codecells, the same entropy, and equal or Iesjs distortion. Qn = ({8, S, 3, e, M

In Theorem 1, the convex polytopes compris#gs: haveu mea-

sure zero. Each of these polytopgss an intersection of some half- be an infinite-level quantizer, defingda.e., such that for all < i <

spaces from the collectioffl; ;, H; ;1 < i < j < N}. Assume J < n the cellsS!") and S\ are separated by a hyperplah§’).
now that the density of is positive everywhere. Then, if the interior Furthermore, assume that for alt> 1, lim,, ,u,(S}”)) = p, for some
of S were not empty, we should hay5) > 0. Sincep(S) =0, the p; > 0suchthad .-, p; = 1. Thenthere existsaquanti@rdefined
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p-a.e. such that it has convex ceﬂS}, 52, ...} with probabilities Lemma 3: Let R > 0 and define the set' of probability vectors
u(S;) = p, foralli > 1, and its distortion is upper-bounded as
A .

D(Q) < liminf D(Qn). C= {(pl, P2, ...): pi > 0foralli,

n— 00

If the limit lim, <™ = ¢; € R* exists for alli > 1, then( can be - —
n ’ =7 >p2 >, =1, — dogpi < R .
defined to have codebodje, ca, ...}. p=p= D Zp Br =

Proof of Theorem 2:Suppose() is an infinite-level quantizer ThenC is compact under pointwise convergence.
Q = ({5, S2, ...}, {c1, c2, ...}); otherwise, the statement imme-
diately follows from Theorem 1. For each positive integelet 1.,, be
the restriction of« to R,, = |J;_, S:, and define the:-level quantizer

Proof of Theorem 3:Fix R > 0 and assumé), (R) is finite;
otherwise, the statement is trivial. Consider a sequence of quantizers
{Q..} such thatd (Q,) < R for all n and

qn = {51, ey Shot, U 5;‘}: {01, cevy Cn—1, cn} . ,Lli_n;D(Q") = Dh(R)

izn By Theorem 2, eacl),, can be assumed to be defingeh.e. and to

have convex cells. For positive integerand: let SE“) denote the cell

of @, with theith largest probability, Iert(") denote the corresponding

codevector, and let." = ;(S"). (In case of ties, any ordering of

in ({S(’” L8, 57(111} {017 ey Cns G }) equiprobable cells suffices.) Also,df, is a finite-level quantizer with
l cells, we formally defin@ﬁ") = 0foralli > l. For everyn, let

Applying Theorem 1 tou, andg¢,, we obtain the(n + 1)-level
quantizer

such thaSE") is a convex polytope with measu;ue(ﬁf"‘)) = 1n(S;) () A (,)(n) (n) )
for eachi 1L.o.on, w(S%) = 0, éuy1 is arbitrary, and ! Pia by

D(Gn., /"n) < D(qn, ,U'n)- Let (n

By Lemma 3, the sequende'™} has a pointwise convergent sub-
sequence{p("ﬂ}, which converges to some probability vecior=

5" AR,. fl<i<n )
() A () _ (p1, p2, ...) with entropy
5= S U(S) ) NRy). ifi=n+1 -
A
Si, if i >n 42 H(p)= - pilogpi < R.

=1

fine the infinite-level i .
and define the infinite-level quantizer The corresponding sequence of quantiZeps ; } clearly satisfies the

Q. = ({5(“) 5(n }’ {01, ea, ... }) ) re_)quirements of _Ler_nma 2 if we redefine edgh, on a set of proba-

bility zero by assigning the common boundary of any two of its convex
codecells to the codecell with the lower index. Thus, by Lemma 2 we
obtain a quantize®) definedu-a.e., with convex cell§S;, Ss, ...}
such thatu(S;) = p, foralli > 1. We have

Thenu(SE")) = u(S;) foralli > 1. Also,

D(Qu, 1) = Y Di(Qn. ) + Y Di(Qu. )

=1 >n H(C;)) = H(p) S R
=D(Gn, ptn) + Z Di(Qn, 1) and by Lemma 2,
e D(Q) < liminf D(Qn) = Di(R).
SD(qnvﬂn)+ZDi(anll‘) .
i>n Hence () is an optimal ECVQ at rat&. O
= ZD (Q. p) + ZD Q, p) APPENDIX
e Proof of Theorem 1:We construct recursively a sequence of
=D(Q, p). quantizeriQn} that converges (in an appropriate sense) to a quantizer
() that has the desired properties. Eagh in the sequence has the
Thus,D(Qn. p) < D(Q, p) for all , so same codebookc, . ... en'} as@, and partition{S{™, ..., 5("}
T (n) _ . s AT
liminf D(Qn, 1) < D(Q, ). that satlsfley(si y=pn(S;)foralli =1,..., N.
n—oco Set(); = () and assume that for some> 1 we have constructed

2IheA -level quantizer),, satisfying the above conditions. We u3g
to constructy,,+. For anyi < j, Iet,ug "+ denote the restriction of

S(") u S(") Slnce/:(") is also absolutely continuous, we can apply
r_emma 1tou,”; ) and the two-level quantizer

Clearly, the sequencf@. } satisfies the requirements of Lemma
hence, the statement of the theorem follows.

Theorem 2 shows that in the definition of the operational disto
tion-rate functionD, (R) it is enough to consider-a.e. defined quan-
tizers with convex codecells. The next theorem uses this fact to show ) = (15 REN S fo o

. . . . q1 7 = { [ \ T }7 1605 C]} .
the existence of an optimal ECVQ for a given rate constraint.

(n)
Theorem 3: Suppose thak” has an absolutely continuous distribu-We obtain for each pair of indexes < j a hyperplané:, '; (per-
tion »2. Then, for anyR > 0, there exists a quantizé} definedu-a.e. pendicular toe; — ¢;) and corresponding complementary half -spaces

and having convex cells such the{ Q) < R andD(Q) = D, (R). (H"), H")) with measures

. (n) (n)y _  (n) (n) (n) (n)y _ (rz
We need the following result from [8, p. 421]. i (S0 =g (HT7), (53) = (H )

z
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such that the quantizer

i) = (7). 5V Ao o))

satisfies
D (qf“} ﬂﬁ”}) <D (ql(-,”,)w #(])) :
Now let
2D (o). 1) = D (a7 1) (10)
and choseé* < j* such that
En) = max pgn?. (12)

1<i<y<N

We define Q.+ to have codevectordci, ..., cy} and cells

(s st given by
A0 (sPust), =i
SR ED (s us), =
5, ifisi, 5"
n+l)

Then cIearIy,;:(S( //,(Sf")) = p(S;) foralli =1,..., N,
and the distortion oQ,LH is at most that of),, since

D(Qnt1, 1)
= Di+(Qu41, p) + Dy

=D (i )+ 3

v, g
D (CIL(",),M ui ) + Y Di(Qusi. p)

= Di«(Qn. IL) +Dj*(Qn7 :U’) + Z Dl(Q
itir, g

(QnJrlz )+

Z Di(Qn+17 ")

iit,

Di(Qu+1s 1)

IA

T IL)

= D(Qna l‘)'

Continuing in this manner we obtain an infinite sequefigs. } of
N-level quantizers and an associated sequenc¥ @ — 1)/2 hy-
perplanes{ (1{"}, h{"), ..., B

(12)

responding sequence of hyperplanﬁ&(lnz, l&”%, .

converges that is, for all< j, {h("

hl\n)—l N}

sequence of hyperplanes.)

Foreveryl <i < j < N,let(H; ;, H; ;) denote the half-spaces
corresponding té;, ;, andforl < i < N, define the convex polytopes

g2

M

1<G<N, i

H; ;.
Furthermore, let
A N
I Hk\ U5
j=1

and letcx ;. be an arbitrary vector iR* . Finally, define the V + 1)-
level quantizer

Q={5. ...,

Sniihders oo enga b

N1, N )}. Now pick a subsequence of
{Q.},alsodenoted bj/Qn } to S|mpI|fythe notation, such that the cor-

)} converges to some hyperplane
. (Recall from Section Il the definition of convergence for a
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In the remainder of the proof we show thét has the desired
properties. Since the sequend®((Q,., 1)} is nonnegative and
nonincreasing, it converges, $%(Q,., ) — D(Qn+1, ) — 0 as
n — oc. Thus, sinceaﬁf‘} > 0foralli, j andn, (10)—(12) imply for
all<i<j<N

hm p( =0.

n—

Fix e > 0, and let

d*é

IIll Il

LminJle; = ]l

Then, from the second part of Lemma 1, there és=a §(¢) such that
o) >asd (u) (S0 nE) - o)
=46d* (u (Sﬁ”) N va.’n‘,;)) - 6) .

(Since eachz ) is dominated by, it is easy to see from the proof of
Lemma 1 that the sameworks for all7, j, andn.) Therefore, since
5, d* >0

lim sup u(S,(n) n H;T:)) -

n—oo

€<0

for everye > 0, implying

lim p (55“) N H;f’i)) =0 (13)

foralll1 < i < j < N. Furthermore, since

n(S N H) = u(s 0 H)
(13) holds for every # j. Define the random variablE, = Y, (X)
by

- A
Yo = Z Z 15(">mH ")(‘X)
i=11<G<N, j#i
ThenY,, — 0 in probability as: — oo, since for alle > 0
Pr{|Y.| > €} < Pr{Y¥, > 0}

J U

i=11<5<N,

3D

i=1 1< <N, j#i

{1—y(n)nH m(X) = 1}
i
u (55") N Hj.f’:}) —0.

Therefore, there is a subsequerdé,, } such thatlim; Y,,(X) =0
almost surely (see [12, Theorem 9.2.1]). Siroe.,, H(n)(x) =
o

u, ;(x) p-a.e. by (3), we obtain for all # j

0= xlingolsf””mj"j)(m) Jim 1 (w)( )1 Hgn;n('r)

= llim L e (2)1m; (2) p-ae.

It is easy to see that the preceding implies

llinolo ls(n,)\g (z) =0 p-a.e.
and
111I<I>1<> 1. \S(n,)( ') =0 p-a.e.

Combining this with the identityl 4+ — 1g| = 14\ 5 + 15,4 We con-
clude thatforalk =1, ..., N

llirnolo 157("”(m) =1z () p-ae. (14)
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Sinceu(Sf")) = p(S;) forallnandi = 1, ..., N, the dominated Sincelim,,

convergence theorem gives
1(S) = p(Si),

which also impliegi(Sx 1) = 0. SinceQ., (x) = c; if = € SV,
andQ)(x) = ¢; if € S;, from (14) we obtain

llim Qn,(x) = Q(l) j-a.e.

Therefore, Fatou’s lemma [12] implies

D)= [ = QI date)
:/ hmlnf |z — Qn,(x N dp()
Rt

gliminf/ 2 = Qu, (2)]I* dpu(x)

l—oco |
= li’m inf D(Qn,) < D(Q) (15)
sinceD(Qn41) < D(Q,,) foralln andD(Q1) = D(Q). Thus,Q
satisfies the requirements of the theorem. O

Proof of Lemma 2: Assumdim inf, D(Q,) is finite; otherwise,
the statement is trivial. For positive integerand:, Ietp(”) = (5("))

Foralll <i < j <m, Iet(H(") H(")) denote the complementary

half-spaces correspondlnglté)”) Slnceh(”‘) separates'" andS(")
S c B ands'™ ¢ H(”). For each: form the vector
Un é (02“)? an)v hgtlé‘/ 63”)7 hgilf)%v hétl;? CELVL)v R an)v

(n)

(n)
hl, h, 1 0 Clals -

whereh("l stands for the parameter vector representing the hyperplane
(see Section Il) and is defined arbitrary forak j if j > n. Now use
Cantor’s diagonal method to pick a subsequencévaf} converging

componentwise to a vecter = (ci, ¢z, h1,2, 3, b1 s, ha s, ..0).
(The convergence of each sequelﬁcﬁé’ 122, is considered iR* U

{o0}, the one-point compactlflcatlonﬂt‘ [12], while the convergence

of the last components 0)1(" n=1,2,...,isconsidered ifk.) For
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ngnj)(;c) = 1p, ,;(x) p-a.e., the dominated convergence
theorem implies

1
pi <p (ﬂ Hm’) <1l-
j=1

for all 7 and!. Since the sequence of se{'(s]i.:l H; ;}i2, decreases
to S;, letting! — oo we obtain for each

pi < p(8) < 1= pj =pi.
12
S;) = 1, s0Q has the desired cell

Z r;

1<5 <L,

Thus,u(S:) = p: and) 2 u(
probabilities.

Next, we show that for everiyand Borel seB C $;
lim p(BNS™) = u(B). (17)

If i, 1 < n, then
I (BF‘ISZ("))

1
=n <B N m H(”) <m H(") \Si_n)>>
j=1
1 1 \
o (om ) )
Jj=1

j=1

- <B\ <D1 H,\D1 Hff})))

()

l I !
=1 j=1 =

where the first equality holds sinc‘_éf") C ﬂ H("-) the second

2,77

equality holds since3 \ (ﬂ’ H; ],) =0, and the last step follows

simplicity, this subsequence is also denoted{by} Usingv we can  from (16). Sincdim, h{") = h;, ;, the dominated convergence the-

construct a quantlz@ by setting

Q = ({Sl, 52, ..

} R {Cl, C2, }>
51‘ = ﬂHi,j

J#L

where

where for alli < j, (H;,;, Hj ;) is the pair of complementary half-

spaces corresponding kg, ;. In the rest of the proof, we show that
is well defined and have the desired properties.

To simplify the notation, definéfff',-) = H; ; = R* for all n andi.
The$; are clearly disjoint and convex. To see that they cdtfewith
probability 1, notice that for alk, I < n

5™ ¢ ﬂ H and U S CR \ﬂ H™.

V<<t i
Therefore, SinC@,(-n ,j=1,2, ..., are disjoint
{
= (S0) < (m Hf,’?) <1- % (s
j=1 1< <t #i
=1- Y (16)

1< <L

orem implies for each positive integer

lim inf g (B N an)) > u(B) —

l
im in (1 - Z])j) .
j=1
Therefore, sincg(B) > p(BﬂSf”)) andy 7, p; = 1,(17) follows
by letting! — oc. '

Using (17), we next show that the codevector§)adre well defined
(i.e.,c; € R* for all 7 such that.(S;) > 0). Assume,u(S) > 0 (so
that the interior ofS; is not empty) and leB ¢ $; be a closed ball
with ¢(B) > 0. Suppose:; = oo. Then the partial distortion of the
ith cell of Q.. has the lower bound

D@0 = [ e = dut)
S

> [ el )
JBnsm

> (B n Sl(n)) min ||z — an)Hz.
r€EB

For alln large enough, we haye(B N 55")) > 6 for someé > 0 by
(17), and since we assumgch,, rf") =¢; =0

lim min ||z — c(") | =

n—oo x€B
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This would implylim inf,, D(@y) > liminf, D;(@») = oo, contra-
dicting the assumption théitm inf,, D(Q,) is finite. Thus,c; € R*
for all i such tha:(S;) > 0, and we conclude tha} is well defined.

It remains to show tth(Q) < liminf, D(Q,). To prove this, we
apply the method used in the proof of Theorem 1. Let

vi(x) 21, (X).

(m)\ 5,
Then, as: — oo, for everye > 0 we have

P {|Y}")(X)| > e} <P {Y}")(X) = 1}
=pn (S,f")) -1 (S,f"’ N Sz) — 0

by (17). Thus, for alli, ¥,"’(X) — 0 in probability asn — ooc.
Defining

(18)

o A
V(X)) 2 Ly \sm(X)

we similarly obtain thaﬁﬁ(’l)(X) — 0 in probability asn — o
for all i. It follows that every subsequence 6¥,", Yf'”} has a
subsequence, sag, "), Y"1, such thatlim, " = 0 and

lim, Y“f”” = 0 almost surely [12, Theorem 9.2.1]. Using Cantor’s
diagonal method, we can now choose an increasing sequence of

positive integers{n;} such that forall i > 1, lim; Y;""") = 0 and
lim; V") = 0 almost surely. In other words, for all
Ili>nolo 15("’)\1?1' (z) =0 p-a.e.

i

and

[llilolo 1S'i\s’f”'l)(m) =0 p-a.e.
which is equivalent to

lli>I<I>l<> 15(711)(.1’) = lg, (x) p-a.e. (29)

i

sinceQ,,(z) = " if 2 € 57 Q(x) = ¢ if 2 € S, and
(ng) _

limg e;"" = ¢, (19) implies
lim Qu,(x) = Q(x) p-ace.

Using Fatou’s lemma as in (15), we conclude thlé(@) <
liminf; D(@., ), which completes the proof. d
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On the Stability of Distributed Sequence Adaptation for
Cellular Asynchronous DS-CDMA Systems

Chi Wan SungMember, IEEEand Kin Kwong Leung

Abstract—In this correspondence, we consider the sequence adaptation
problem for cellular asynchronous code-division multiple-access (CDMA)
systems. A game-theoretic approach is used to investigate the stability
issues of distributed adaptation algorithms. It is shown that the Nash
equilibrium may not exist for cellular CDMA systems if the traditional
interference measure is used. In turn we propose a new interference
measure which ensures system stability.

Index Terms—Cellular systems, code-division multiple access (CDMA),
distributed algorithm, Nash equilibrium, signature sequence adaptation.

|. INTRODUCTION

Mitigating interference is of paramount importance in the design of

a code-division multiple-access (CDMA) system. Much research has
been conducted in designing multiuser detection techniques to suppress
interference for a given set of signature sequences. Recently, there has
been interest in managing interference from the transmitters’ side. Op-
timum signature sequence sets for synchronous CDMA systems were
characterized in [6], [10], [11]. These sets may be constructed by iter-
ative methods [5], [9].

The authors would like to thank an anonymous reviewer for pointing For practical applications, it is helpful to devise distributed algo-
out that the results can be generalized to the weighted squared-eff@ins that allow each user to adapt his own signature sequence based

distortion measure.
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