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Codecell Convexity in Optimal Entropy-Constrained
Vector Quantization
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Abstract—Properties of optimal entropy-constrained vector quantizers
(ECVQs) are studied for the squared-error distortion measure. It is
known that restricting an ECVQ to have convex codecells may preclude
its optimality for some sources with discrete distribution. We show that
for sources with continuous distribution, any finite-level ECVQ can be
replaced by another finite-level ECVQ with convex codecells that has
equal or better performance. We generalize this result to infinite-level
quantizers, and also consider the problem of existence of optimal ECVQs
for continuous source distributions. In particular, we show that given
any entropy constraint, there exists an ECVQ with (possibly infinitely
many) convex codecells that has minimum distortion among all ECVQs
satisfying the constraint. These results extend analogous statements in
entropy-constrained scalar quantization. They also generalize results
in entropy-constrained vector quantization that were obtained via the
Lagrangian formulation and, therefore, are valid only for certain values
of the entropy constraint.

Index Terms—Convex polytopes, entropy coding, infinite-level quan-
tizers, optimal vector quantization, squared-error distortion.

I. INTRODUCTION

Characterizing properties of optimal quantizers is an important
problem in quantization theory. In fixed-rate quantization, Lloyd’s two
necessary conditions for optimality [1], [2] give a useful characteriza-
tion of quantizers having minimum distortion for a given number of
codevectors. One of these optimality conditions, the nearest neighbor
condition, implies that for the squared-error distortion measure, the
codecells of an optimal scalar quantizer are intervals, and that in
the vector case the cells are convex polytopes. This observation has
proved very useful in analyzing optimal scalar and vector quantizer
performance [3]. Even more importantly, the Lloyd conditions yield a
popular iterative method for fixed-rate quantizer design [1], [4].

The Lloyd conditions have been generalized to optimal entropy-con-
strained vector quantizers (ECVQs) [5] via a Lagrangian formulation in
which the performance of the quantizer is measured by a weighted sum
of its distortion and rate (output entropy). In particular, for the squared-
error distortion measure, the generalized form of the nearest neighbor
condition implies that an ECVQ that is optimal in this Lagrangian
sense has convex polytope codecells. However, the Lagrangian formu-
lation only yields optimal quantizers that achieve a distortion-rate point
on the lower convex hull of the entropy-constrained operational dis-
tortion-rate function. If the operational distortion-rate function is not
convex (which seems to be the typical case [6]), it lies strictly above
its lower convex hull for a whole range of rate values. An ECVQ that
is optimal for any such rate no longer has to satisfy the generalized
nearest neighbor condition.
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Although little is known about the structure of optimal ECVQs in
general, the popular assumption in the literature is that the codecells
of an optimal ECVQ are convex polytopes. In [8], it was demonstrated
that this assumption is wrong in general: There existdiscretesource
distributions on the real line for which no scalar quantizer with interval
cells can be optimal for some values of the entropy constraint. Sim-
ilar counterexamples were exhibited in [9] for network scalar quan-
tization problems such as multiresolution, multiple-description, and
Wyner–Ziv scalar quantization. However, it was also shown in [8] that
for continuousscalar source distributions and a wide class of distortion
measures (including the squared-error distortion), there always exits
an optimal entropy-constrained scalar quantizer with convex (interval)
codecells foranyvalue of the entropy constraint. Thus, for continuous
source distributions, the requirement of codecell convexity is consis-
tent with quantizer optimality in entropy-constrained scalar quantiza-
tion. Corresponding results for vector quantization do not seem to be
available in the literature. The question whether or not optimal vector
quantizers have convex codecells is an interesting theoretical problem
that also has practical significance. For example, the encoder of a vector
quantizer withN nonconvex (e.g., disconnected) codecells can, in prin-
ciple, be arbitrarily complex, while if the codecells are convex poly-
topes, the encoding complexity (both space and time) is at most on the
order ofN2.

The goal of this correspondence is to generalize the results of [8]
to vector quantization. We consider (absolutely) continuous source
distributions and assume the squared-error distortion measure. After
introducing the relevant notation and definitions in Section II, we
first focus on finite-level quantizers in Section III. Here, the main
result shows that for any finite-level ECVQ there exists another
finite-level ECVQ withconvexcodecells that has the same (positive)
codecell probabilities (thus, the same entropy) and equal or less
distortion. Among other things, this result implies that should a
finite-level optimal ECVQ for a given entropy constraint exist, it
can be assumed to have convex codecells. Optimal ECVQ performance
may not be achieved by a finite-level quantizer. This motivates us to
consider infinite-level quantizers in Section IV. We extend the main
result of Section III to vector quantizers with a countably infinite
number of codecells, and also consider the problem of existence
of optimal ECVQs. In particular, we show that given any entropy
constraint, there exists an ECVQ with (possibly infinitely many)
convex codecells that has minimum distortion among all ECVQs
satisfying this entropy constraint. This generalizes a recent result in
[10] that was obtained via the Lagrangian formulation and is thus
valid only for certain values of the entropy constraint.

II. PRELIMINARIES

A vector quantizerQ is described by a measurable partition
S = fS1; S2; . . . ; SNg of k and a correspondingcodebook
C = fc1; c2; . . . ; cNg �

k. If S andC are finite, we callQ an
N -level quantizer. We also allow countably infinite partitions and
codebooks, in which case we formally writeN = 1 and callQ and
infinite-level quantizer. The overall quantizerQ: k ! C is

Q(x) = ci; if and only if x 2 Si:

Theci andSi are called thecodevectorsandcodecells(or cells) of Q,
respectively. Without loss of generality, we assume that the codevectors
are distinct. To define a quantizerQ with partitionS and codebookC,
we writeQ � (S; C).
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We suppose a nonnegative measurabledistortion measured: k �
k ! [0; +1). For an k-valued random vectorX with distribution

�, the distortion ofQ is measured by the expectation

D(Q; �)
�
=Efd(X; Q(X))g

= d(x; Q(x))d�(x):

In particular, we restrict the treatment to the popular squared error
distortion

d(x; y) = kx� yk2 =

k

i=1

(xi � yi)
2

for x = (x1; . . . ; xk) andy = (y1; . . . ; yk). However, the results
can easily be extended to somewhat more general distortion measures
(see the remark after Lemma 1).

Thepartial distortionof theith codecellSi of Q is defined by

Di(Q; �)
�
=

S

d(x; ci)d�(x) (1)

so that

D(Q;�) =

N

i=1

Di(Q; �): (2)

When the distribution� is clear from the context, the short notations
D(Q) andDi(Q) will be used. We use (1) and (2) to extend the
definition of Di(Q; �) andD(Q; �) to any finite (not necessarily
probability) measure onk. In particular, we occasionally work with
subprobability measures obtained by restricting� to some Borel set
A � k: � is said to be therestrictionof � toA if �(B) = �(A\B)
for each Borel setB.

The entropy-constrainedrateofQ is the entropy of its outputQ(X)

H(Q)
�
=H(Q(X))

=�
N

i=1

PrfX 2 Sig log PrfX 2 Sig

=�
N

i=1

�(Si) log�(Si)

wherelog denotes base2 logarithm. A vector quantizerQwhose rate is
measured byH(Q) is called anentropy-constrained vector quantizer
(ECVQ).

Given the sourceX, for anyR � 0 letDh(R)denote the lowest pos-
sible distortion of any quantizer with output entropy not greater thanR.
This function, sometimes called theoperational distortion-rate func-
tion, is formally defined by

Dh(R)
�
= inf

Q
fD(Q):H(Q) � Rg

where the infimum is taken over all finite- or infinite-level vector quan-
tizers whose entropy is less than or equal toR. If there is noQ with
finite distortion and entropyH(Q) � R, then we formally define
Dh(R) = +1. AnyQ that achievesDh(R) in the sense thatH(Q) �
R andD(Q) = Dh(R) is called anoptimalECVQ.

It is worth noting that one of the two Lloyd conditions, thecentroid
condition, still holds for entropy-constrained quantizers. Thus, ifQ is
an optimal ECVQ, then the codevectors ofQ must be thecentroidsof
their corresponding cells, i.e.,

ci =
1

�(Si) S

x d�(x)

for all Si with positive probability�(Si) > 0.
Central to our work are quantizers with convex codecells defined in

terms of half-spaces or hyperplanes ink. In the rest of the section, we

summarize the relevant notation and conventions. We represent ahy-
perplaneh in k by a vector ofk+1 real components(a1; . . . ; ak; b)
with kak2 = k

i=1 a
2
i = 1 such that

h = fx 2 k: ha; xi = bg

whereha; xi = k

i=1 aixi denotes the usual inner product ofa =
(a1; . . . ; ak) andx = (x1; . . . ; xk) in k. For the hyperplaneh,
the ordered pair(H; Ĥ) will denote the corresponding complementary
closed and open half-spaces

H = fx 2 k: ha; xi � bg

Ĥ = k nH = fx 2 k: ha; xi > bg:

We say that the hyperplaneh separates the setsA; B � k, if
A � H andB � Ĥ. P � k is a convex polytopeif P is a finite
intersection of (open or closed) half-spaces. Note that�(h) = 0 for
any hyperplaneh if the distribution� is absolutely continuous with
respect to the Lebesgue measure onk (i.e.,� has a density). In this
case, the boundary of a convex polytope (the union of its faces) has�
measure zero.

In the sequel, we alternatively use the notationh for the hyperplane
itself and for the parameter vector(a1; . . . ; ak; b); the actual meaning
will be clear from the context. In particular, if the parameter vectors
(a

(n)
1 ; . . . ; a

(n)
k ; b(n)) corresponding to a sequence of hyperplanes

fhng converge componentwise to a parameter vector(a1; . . . ; ak; b)
corresponding to a hyperplaneh, we say thatfhng converges toh.
It will be convenient to allow the parameterb of the limit hyperplane
to be an extended real numberb 2 = [ f+1g [ f�1g. Thus,
the convergence of the firstk components is meant in the usual sense
in , while the convergence ofb(n) is meant in . Consistent with
this, we setH = k, Ĥ = ; if b = +1, andH = ;, Ĥ = k if
b = �1. We defineh (as a subset of k) to be empty in either case.

Using these conventions, it is easy to see that iffhng converges toh,
then for the sequence of corresponding half-spacesf(Hn; Ĥn)g and
the half-spaces(H; Ĥ) corresponding toh, we have

lim
n!1

1H (x) = 1H(x) and lim
n!1

1Ĥ (x) = 1Ĥ(x) (3)

for all x =2 h, where1A(x) denotes the indicator function ofA � k;
i.e.,1A(x) = 1 if x 2 A and1A(x) = 0 if x =2 A.

III. FINITE-LEVEL QUANTIZERS AND CODECELL CONVEXITY

In this section, and throughout the correspondence, we assume that
the source distribution is absolutely continuous with respect to the
Lebesgue measure (absolutely continuous, for short). We show that
for any finite-level vector quantizer there exists another finite-level
vector quantizer with convex codecells that has the same entropy and
equal or less distortion. First we prove this in the next lemma for the
special case of two-level quantizers. The lemma extends a similar
result in [8] from scalar to vector quantization and it plays a key role
in the proof of the main result.

Lemma 1: Let � be an absolutely continuous finite measure and
assume thatQ � (fS1; S2g; fc1; c2g) is an arbitrary two-level vector
quantizer with finite distortionD(Q). Then there exists a hyperplaneh
perpendicular toc1�c2 and corresponding complementary half-spaces
(H1; H2) with �(Hi) = �(Si), i = 1; 2, such that the two-level
quantizerQ̂ � (fH1; H2g; fc1; c2g) satisfiesD(Q̂) � D(Q).

In particular, for every� > 0 there is a� > 0, which depends on�
but not onQ or Q̂, such that

D(Q)�D(Q̂) � 4�kc2 � c1k(�(S1 \H2)� �): (4)

Note that (4) implies that if the cells of a two-level quantizer cannot
be separated by a hyperplane (up to a set of� measure zero), then there
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is another two-level quantizer with half-space cells that has the same
entropy andstrictly lessdistortion.

Proof: Since the Euclidean distance is invariant to orthogonal
transformations, we can assume, without loss of generality, thatc1 =
(u1; 0; . . . ; 0) andc2 = (u2; 0; . . . ; 0) for someu1 < u2. Since�
is absolutely continuous, there is au 2 such that the half-spaces

H1 = fx: x1 � ug and H2 = fx: x1 > ug (5)

satisfy�(H1) = �(S1) and�(H2) = �(S2). Note that the hyperplane
corresponding toH1 andH2 is perpendicular toc1 � c2. SetQ̂ �
(fH1; H2g; fc1; c2g). We show thatD(Q̂) � D(Q). We have

D(Q) =
S

kx� c1k
2
d�(x) +

S

kx� c2k
2
d�(x)

=
S

(x1 � u1)
2 + x

2
2 + � � �+ x

2
k d�(x)

+
S

(x1 � u2)
2 + x

2
2 + � � �+ x

2
k d�(x)

= x
2
2 + � � �+ x

2
k d�(x) +

S

(x1 � u1)
2
d�(x)

+
S

(x1 � u2)
2
d�(x):

Similarly,

D(Q̂) = x
2
2 + � � �+ x

2
k d�(x)

+
H

(x1 � u1)
2
d�(x) +

H

(x1 � u2)
2
d�(x):

Therefore,

D(Q)�D(Q̂)

=
S \H

(x1 � u1)
2 � (x1 � u2)

2
d�(x)

+
S \H

(x1 � u2)
2 � (x1 � u1)

2
d�(x)

= (u21 � u
2
2)(�(S1 \H2)� �(S2 \H1)) (6)

+ 2(u2 � u1)
S \H

x1 d�(x)�
S \H

x1 d�(x) : (7)

Since�(H1) = �(S1) and �(H2) = �(S2), and fS1; S2g and
fH1; H2g are partitions of k, we have�(S1 \H2) = �(S2 \H1);
hence, the expression in (6) is equal to zero. Also, from (5) we have

S \H

x1 d�(x) �
S \H

ud�(x) = u�(S1 \H2)

and

S \H

x1 d�(x) �
S \H

ud�(x) = u�(S2 \H1)

and so the expression in (7) is nonnegative, implying

D(Q)�D(Q̂) � 0:

This completes the proof of the first part.
Next we prove (4). Recall that

D(Q)�D(Q̂)

= 2(u2 � u1)
S \H

x1 d�(x)�
S \H

x1 d�(x) : (8)

Since� is absolutely continuous with respect to the Lebesgue measure,
for every� > 0 there is a� > 0 such that for any two half-spacesK1 �
K2 �

k such that the distance between their defining hyperplanes is

at most�, we have�(K2 n K1) � � (note that the two hyperplanes
must be parallel becauseK1 � K2). Therefore,

S \H

x1 d�(x)

=
S \H \fx: x >u+�g

x1 d�(x)

+
S \H \fx: x �u+�g

x1 d�(x)

�
S \H \fx: x >u+�g

(u+ �) d�(x)

+
S \H \fx: x �u+�g

ud�(x)

= u�(S1 \H2) +
S \H \fx: x >u+�g

� d�(x)

� u�(S1 \H2) + �(�(S1 \H2)� �(H2nfx: x1 > u+ �g))

� u�(S1 \H2) + �(�(S1 \H2)� �):

Similarly, we have

S \H

x1 d�(x) � u�(S2 \H1)� �(�(S2 \H1)� �):

Since�(S2 \H1) = �(S1 \H2), (8) implies

D(Q)�D(Q̂) � 4�(u2 � u1)(�(S1 \H2)� �)

= 4�kc2 � c1k(�(S1 \H2)� �):

This completes the proof since the choice of� depended only on�
and�, but not onQ or Q̂.

Remark (More General Distortion Measures):Lemma 1 easily gen-
eralizes toweighted squared-errordistortion measures in the form

d(x; y) = hx� y; A(x � y)i

whereA is a positive-definite symmetrick�k matrix [2]. In this case,
the separating hyperplaneh andc2 � c1 will be perpendicular with
respect to the inner producthx; yiA

�
= hx; Ayi. All subsequent results

can be shown to hold for such distortion measures, but for simplicity
we will restrict the treatment to the squared-error distortion, and only
give below a sketch of the argument generalizing Lemma 1.

The distortion measure can be written as

d(x; y) = hB(x� y); B(x� y)i

whereB is the unique positive-definite symmetric square root ofA,
i.e., A = B2. (Note thatB always exists; see, e.g., [7]). Then the
partial distortions ofQ are given by

Di(Q) =
S

kB(x� ci)k
2
d�(x) =

~S

ky � ~cik
2
d~�(y)

where~ci = Bci, ~Si = BSi
�
= fBx: x 2 Sig, and ~� = �B�1

(i.e., ~�(S) = �(B�1S) for every Borel setS). Then~� is absolutely
continuous and~�( ~Si) = �(Si), i = 1; 2, so the first part of Lemma 1
implies that there are complementary half-spaces( ~H1; ~H2) that are
perpendicular to~c1 � ~c2 and have measure~�( ~Hi) = �(Si), i = 1; 2,
such that

2

i=1
~H

ky � ~cik
2
d~�(y) �

2

i=1
~S

ky � ~cik
2
d~�(y): (9)

LettingHi = B�1 ~Hi, i = 1; 2, it is easy to check that(H1; H2) are
complementary half-spaces with�(Hi) = �(Si), i = 1; 2, that are
perpendicular toc2�c1 with respect to the inner producthx; yiA. If we
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let Q̂ � (fH1; H2g; fc1; c2g), thenD(Q̂) is equal to the left-hand
side of (9), so thatD(Q̂) � D(Q). The proof of the second state-
ment of the lemma can be generalized in a similar manner. In partic-
ular,kc2 � c1k is replaced by

kc2 � c1kA = hc2 � c1; A(c2 � c1)i

in (4).

Next we extend Lemma 1 to quantizers with more than two code-
cells.

Theorem 1: Assume� is an absolutely continuous finite measure
and suppose theN -level quantizer

Q � (fS1; . . . ; SNg; fc1; . . . ; cNg)

has finite distortionD(Q). Then there is an(N + 1)-level quantizer

Q̂ � (fŜ1; . . . ; ŜN+1g; fc1; . . . ; cN ; cN+1g)

with cN+1 being arbitrary, such that eacĥSi, i = 1; . . . ; N , is a
convex polytope

�(Ŝi) =�(Si); i = 1; . . . ; N

�(ŜN+1) = 0

and

D(Q̂) � D(Q):

Specifically, there exist hyperplanesfhi; j ; 1 � i < j � Ng and
corresponding half-spacesf(Hi; j ; Hj; i); 1 � i < j � Ng with each
hi; j being perpendicular toci � cj such that the codecells of̂Q are
given by

Ŝi =
j 6=i

Hi; j ; i = 1; . . . ; N

andŜN+1 = k n N

i=1 Ŝi.

The result generalizes [8, Theorem 1] from scalar to vector quan-
tization (modulo the assumption of the squared-error distortion mea-
sure). The proof, however, is more involved than in the scalar case.
In [8], the desired quantizer could be constructed in a finite number of
steps, but that construction does not generalize to the multidimensional
case. Here the construction is less explicit:Q̂ with the stated properties
is shown to exist as the “limit” of an infinite sequence of quantizers
constructed in a recursive manner. The detailed proof is given in the
Appendix.

DeMorgan’s law implies that̂SN+1 can be written as a union of
finitely many convex polytopes. Making each of these polytopes a new
cell (of � measure zero) and defining the associated codevectors arbi-
trarily, we obtain the following corollary.

Corollary 1: Assume thatX has an absolutely continuous distribu-
tion. Then for any finite-level quantizerQ with distortionD(Q) <1
there is a finite-level quantizer̂Qwith convex codecells (some of which
may have probability zero) that has the same positive cell probabilities
asQ and distortionD(Q̂) � D(Q).

Note thatQ andQ̂ in the corollary have the same entropy. Thus, any
finite-level ECVQ can be replaced by another one which has convex
codecells, the same entropy, and equal or less distortion.

In Theorem 1, the convex polytopes comprisingŜN+1 have� mea-
sure zero. Each of these polytopesS is an intersection of some half-
spaces from the collectionfHi; j ; Hj; i; 1 � i < j � Ng. Assume
now that the density of� is positive everywhere. Then, if the interior
of S were not empty, we should have�(S) > 0. Since�(S) = 0, the

interior ofS is empty, and, in fact,S � hi; j for somei < j. Thus, the
union of the boundaries (faces) of the polytopesŜi, i = 1; . . . ; N
containsŜN+1, and it follows that the union of the closures ofŜi,
i = 1; . . . ; N covers k. We can, therefore, redefine the cellsŜi,
i = 1; . . . ; N to obtain a partition of k by assigning the common
boundary of any two cells to the cell with the lower index. Hence, we
obtain the following corollary to Theorem 1.

Corollary 2: Assume thatX has an everywhere positive density.
Then, for anyN -level quantizerQ with finite distortionD(Q), there
is anN -level quantizerQ̂ with distortionD(Q̂) � D(Q) such thatQ̂
has convex cells and the same cell probabilities asQ.

If X has a positive density concentrated on a convex subsetC of k,
then it is enough to consider quantizers defined only onC. In this case,
Q̂ is anN -level quantizer with convex codecells defined only onC.

For a given source distribution and entropy constraintR, there
might not exist a finite-level quantizer achieving optimal performance
Dh(R). Nevertheless, Theorem 1 readily implies that finite-level
quantizers with convex codecells can arbitrarily approach the optimal
performance if the source has a finite second moment. The proof is
almost identical to that of [8, Corollary 2] which deals with the scalar
case.

Corollary 3: Assume thatX has an absolutely continuous distribu-
tion and finite second momentEkXk2 < 1. Then, for anyR � 0
and� > 0, there is a finite-level quantizerQ� with convex codecells
such thatH(Q�) � R and

D(Q�) < Dh(R) + �:

IV. I NFINITE-LEVEL QUANTIZERS AND ECVQ OPTIMALITY

In this section, we first generalize Theorem 1 to infinite-level quan-
tizers. In the sequel, it will be convenient to allow quantizers that are
defined on subsets ofk. We say that a quantizerQ is defined�-almost
everywhere (�-a.e.) ifQ is defined on a setS � k (which may be all
of k) such that�( k n S) = 0. In this case, the codecells ofQ form
a partition ofS instead of k. Note that by forming the extra codecell
k nS of measure zero forQ, we can always extend its domain of def-

inition to the whole of k without changing its distortion or entropy.

Theorem 2: SupposeX has an absolutely continuous distribution
�. Then, for any quantizerQ with finite distortionD(Q), there is a
quantizerQ̂ defined�-a.e., such that̂Q has convex cells,̂Q andQ have
the same codevectors and codecell probabilities, andD(Q̂) � D(Q).

In caseQ is an infinite-level quantizer, Theorem 2 does not imply
that the cells ofQ̂ are convex polytopes. For example, a corollary
of the Vitali covering theorem [11] shows that there exists a count-
able collectionfB1; B2; . . .g of disjoint closed balls in k such that
kn

i
Bi has Lebesgue measure zero. If� is absolutely continuous,

then any quantizer with partitionfB1; B2; . . .g is defined�-a.e. and
its codecells are closed balls.

The theorem is an easy consequence of the following lemma whose
proof is deferred to the Appendix. The lemma will also prove useful
later in showing the existence of optimal ECVQs.

Lemma 2: SupposeX has an absolutely continuous distribution�.
For eachn = 1; 2; . . ., let

Qn � (fS
(n)
1 ; S

(n)
2 ; . . .g; fc

(n)
1 ; c

(n)
2 ; . . .g)

be an infinite-level quantizer, defined�-a.e., such that for all1 � i <

j � n the cellsS(n)i andS(n)j are separated by a hyperplaneh(n)i; j .

Furthermore, assume that for alli � 1, limn �(S
(n)
i ) = pi for some

pi � 0 such that 1
i=1 pi = 1. Then there exists a quantizerQ̂ defined
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�-a.e. such that it has convex cellsfŜ1; Ŝ2; . . .g with probabilities
�(Ŝi) = pi for all i � 1, and its distortion is upper-bounded as

D(Q̂) � lim inf
n!1

D(Qn):

If the limit limn c
(n)
i = ci 2

k exists for alli � 1, thenQ̂ can be
defined to have codebookfc1; c2; . . .g.

Proof of Theorem 2:SupposeQ is an infinite-level quantizer
Q � (fS1; S2; . . .g, fc1; c2; . . .g); otherwise, the statement imme-
diately follows from Theorem 1. For each positive integern, let�n be
the restriction of� toRn = n

i=1 Si, and define then-level quantizer

qn � S1; . . . ; Sn�1;
j�n

Sj ; c1; . . . ; cn�1; cn :

Applying Theorem 1 to�n and qn, we obtain the(n + 1)-level
quantizer

q̂n � Ŝ
(n)
1 ; . . . ; Ŝ(n)n ; Ŝ

(n)
n+1 ; c1; . . . ; cn; ĉn+1

such that̂S(n)i is a convex polytope with measure�n(Ŝ
(n)
i ) = �n(Si)

for each i = 1; . . . ; n, �(Ŝ(n)n+1) = 0, ĉn+1 is arbitrary, and
D(q̂n; �n) � D(qn; �n). Let

S
(n)
i

�
=

Ŝ
(n)
i \Rn; if 1 � i � n

Sn+1 [ (Ŝ
(n)
n+1 \Rn); if i = n+ 1

Si; if i � n+ 2

and define the infinite-level quantizer

Qn � S
(n)
1 ; S

(n)
2 ; . . . ; c1; c2; . . . :

Then�(S(n)i ) = �(Si) for all i � 1. Also,

D(Qn; �) =

n

i=1

Di(Qn; �) +
i>n

Di(Qn; �)

=D(q̂n; �n) +
i>n

Di(Qn; �)

�D(qn; �n) +
i>n

Di(Qn; �)

=

n

i=1

Di(Q; �) +
i>n

Di(Q; �)

=D(Q; �):

Thus,D(Qn; �) � D(Q; �) for all n, so

lim inf
n!1

D(Qn; �) � D(Q; �):

Clearly, the sequencefQng satisfies the requirements of Lemma 2;
hence, the statement of the theorem follows.

Theorem 2 shows that in the definition of the operational distor-
tion-rate functionDh(R) it is enough to consider�-a.e. defined quan-
tizers with convex codecells. The next theorem uses this fact to show
the existence of an optimal ECVQ for a given rate constraint.

Theorem 3: Suppose thatX has an absolutely continuous distribu-
tion �. Then, for anyR � 0, there exists a quantizer̂Q defined�-a.e.
and having convex cells such thatH(Q̂) � R andD(Q̂) = Dh(R).

We need the following result from [8, p. 421].

Lemma 3: LetR � 0 and define the setC of probability vectors

C
�
= (p1; p2; . . .): pi � 0 for all i;

p1 � p2 � � � � ;

1

i=1

pi = 1; �

1

i=1

pi log pi � R :

ThenC is compact under pointwise convergence.

Proof of Theorem 3:Fix R � 0 and assumeDh(R) is finite;
otherwise, the statement is trivial. Consider a sequence of quantizers
fQng such thatH(Qn) � R for all n and

lim
n!1

D(Qn) = Dh(R):

By Theorem 2, eachQn can be assumed to be defined�-a.e. and to
have convex cells. For positive integersn andi letS(n)i denote the cell
ofQn with theith largest probability, letc(n)i denote the corresponding
codevector, and letp(n)i = �(S

(n)
i ). (In case of ties, any ordering of

equiprobable cells suffices.) Also, ifQn is a finite-level quantizer with
l cells, we formally definep(n)i = 0 for all i > l. For everyn, let

p
(n) �= p

(n)
1 ; p

(n)
2 ; . . . :

By Lemma 3, the sequencefp(n)g has a pointwise convergent sub-
sequencefp(n )g, which converges to some probability vectorp =
(p1; p2; . . .) with entropy

H(p)
�
= �

1

i=1

pi log pi � R:

The corresponding sequence of quantizersfQn g clearly satisfies the
requirements of Lemma 2 if we redefine eachQn on a set of proba-
bility zero by assigning the common boundary of any two of its convex
codecells to the codecell with the lower index. Thus, by Lemma 2 we
obtain a quantizer̂Q defined�-a.e., with convex cellsfŜ1; Ŝ2; . . .g
such that�(Ŝi) = pi for all i � 1. We have

H(Q̂) = H(p) � R

and by Lemma 2,

D(Q̂) � lim inf
n!1

D(Qn) = Dh(R):

Hence,Q̂ is an optimal ECVQ at rateR.

APPENDIX

Proof of Theorem 1:We construct recursively a sequence of
quantizersfQng that converges (in an appropriate sense) to a quantizer
Q̂ that has the desired properties. EachQn in the sequence has the
same codebookfc1; . . . ; cNg asQ, and partitionfS(n)1 ; . . . ; S

(n)
N g

that satisfies�(S(n)i ) = �(Si) for all i = 1; . . . ; N .
SetQ1 = Q and assume that for somen � 1 we have constructed

theN -level quantizerQn satisfying the above conditions. We useQn

to constructQn+1. For anyi < j, let �(n)i; j denote the restriction of�

toS(n)i [S
(n)
j . Since�(n)i; j is also absolutely continuous, we can apply

Lemma 1 to�(n)i; j and the two-level quantizer

q
(n)
i; j � fS

(n)
i ;

k n S
(n)
i g; fci; cjg :

We obtain for each pair of indexesi < j a hyperplaneh(n)i; j (per-
pendicular toci � cj ) and corresponding complementary half-spaces
(H

(n)
i; j ; H

(n)
j; i ) with measures

�
(n)
i; j (S

(n)
i ) = �

(n)
i; j (H

(n)
i; j ); �

(n)
i; j (S

(n)
j ) = �

(n)
i; j (H

(n)
j; i )
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such that the quantizer

q̂
(n)
i; j � fH

(n)
i; j ; H

(n)
j; i g; fci; cjg

satisfies

D q̂
(n)
i; j ; �

(n)
i; j � D q

(n)
i; j ; �

(n)
i; j :

Now let

�
(n)
i; j

�
=D q

(n)
i; j ; �

(n)
i; j �D q̂

(n)
i; j ; �

(n)
i; j (10)

and chosei� < j� such that

�
(n)
i ; j = max

1�i<j�N
�
(n)
i; j : (11)

We define Qn+1 to have codevectorsfc1; . . . ; cNg and cells
fS

(n+1)
1 ; . . . ; S

(n+1)
N g given by

S
(n+1)
i

�
=

H
(n)
i ; j \ S

(n)
i [ S

(n)
j ; if i = i�

H
(n)
j ; i \ S

(n)
i [ S

(n)
j ; if i = j�

S
(n)
i ; if i 6= i�; j�.

Then clearly,�(S(n+1)i ) = �(S
(n)
i ) = �(Si) for all i = 1; . . . ; N ,

and the distortion ofQn+1 is at most that ofQn since

D(Qn+1; �)

= Di (Qn+1; �) +Dj (Qn+1; �) +
i 6=i ; j

Di(Qn+1; �)

= D q̂
(n)
i ; j ; �

(n)
i ; j +

i6=i ; j

Di(Qn+1; �)

� D q
(n)
i ; j ; �

(n)
i ; j +

i6=i ; j

Di(Qn+1; �)

= Di (Qn; �) +Dj (Qn; �) +
i6=i ; j

Di(Qn; �)

= D(Qn; �): (12)

Continuing in this manner we obtain an infinite sequencefQng of
N -level quantizers and an associated sequence ofN(N � 1)=2 hy-
perplanesf(h(n)1; 2; h

(n)
1; 3; . . . ; h

(n)
N�1;N)g. Now pick a subsequence of

fQng, also denoted byfQng to simplify the notation, such that the cor-
responding sequence of hyperplanesf(h(n)1; 2; h

(n)
1; 3; . . . ; h

(n)
N�1;N)g

converges, that is, for alli < j, fh(n)i; j g converges to some hyperplane
hi; j . (Recall from Section II the definition of convergence for a
sequence of hyperplanes.)

For every1 � i < j � N , let (Hi; j ; Hj; i) denote the half-spaces
corresponding tohi; j , and for1 � i � N , define the convex polytopes

Ŝi
�
=

1�j�N; j 6=i

Hi; j :

Furthermore, let

ŜN+1
�
= k

N

j=1

Ŝj

and letcN+1 be an arbitrary vector ink. Finally, define the(N +1)-
level quantizer

Q̂ � (fŜ1; . . . ; ŜN+1g; fc1; . . . ; cN+1g):

In the remainder of the proof we show that̂Q has the desired
properties. Since the sequencefD(Qn; �)g is nonnegative and
nonincreasing, it converges, soD(Qn; �) � D(Qn+1; �) ! 0 as
n ! 1. Thus, since�(n)i; j � 0 for all i; j andn, (10)–(12) imply for
all 1 � i < j � N

lim
n!1

�
(n)
i; j = 0:

Fix � > 0, and let

d�
�
= min

1�i<j�N
kci � cjk:

Then, from the second part of Lemma 1, there is a� = �(�) such that

�
(n)
i; j � 4�d� �

(n)
i; j S

(n)
i \H

(n)
j; i � �

=4�d� � S
(n)
i \H

(n)
j; i � � :

(Since each�(n)i; j is dominated by�, it is easy to see from the proof of
Lemma 1 that the same� works for all i, j, andn.) Therefore, since
�; d� > 0

lim sup
n!1

�(S
(n)
i \H

(n)
j;i )� � � 0

for every� > 0, implying

lim
n!1

� S
(n)
i \H

(n)
j; i = 0 (13)

for all 1 � i < j � N . Furthermore, since

�(S
(n)
i \H

(n)
j; i ) = �(S

(n)
j \H

(n)
i; j )

(13) holds for everyi 6= j. Define the random variableYn = Yn(X)
by

Yn
�
=

N

i=1 1�j�N; j 6=i

1
S \H

(X):

ThenYn ! 0 in probability asn ! 1, since for all� > 0

PrfjYnj > �g � PrfYn > 0g

= Pr

N

i=1 1�j�N; j 6=i

1
S \H

(X) = 1

�

N

i=1 1�j�N; j 6=i

� S
(n)
i \H

(n)
j; i ! 0:

Therefore, there is a subsequencefYn g such thatliml Yn (X) = 0
almost surely (see [12, Theorem 9.2.1]). Sincelimn 1

H
(x) =

1H (x) �-a.e. by (3), we obtain for alli 6= j

0 = lim
l!1

1
S \H

(x) = lim
l!1

1
S

(x)1
H

(x)

= lim
l!1

1
S

(x)1H (x) �-a.e.

It is easy to see that the preceding implies

lim
l!1

1
S nŜ

(x) = 0 �-a.e.

and

lim
l!1

1
Ŝ nS

(x) = 0 �-a.e.

Combining this with the identityj1A � 1B j = 1AnB + 1BnA we con-
clude that for alli = 1; . . . ; N

lim
l!1

1
S

(x) = 1Ŝ (x) �-a.e. (14)
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Since�(S(n)
i ) = �(Si) for all n andi = 1; . . . ; N , the dominated

convergence theorem gives

�(Ŝi) = �(Si); i = 1; . . . ; N

which also implies�(ŜN+1) = 0. SinceQn (x) = ci if x 2 S
(n )
i ,

andQ̂(x) = ci if x 2 Ŝi, from (14) we obtain

lim
l!1

Qn (x) = Q̂(x) �-a.e.

Therefore, Fatou’s lemma [12] implies

D(Q̂) = kx� Q̂(x)k2 d�(x)

= lim inf
l!1

kx�Qn (x)k2 d�(x)

� lim inf
l!1

kx�Qn (x)k2 d�(x)

= lim inf
l!1

D(Qn ) � D(Q) (15)

sinceD(Qn+1) � D(Qn) for all n andD(Q1) = D(Q). Thus,Q̂
satisfies the requirements of the theorem.

Proof of Lemma 2:Assumelim infnD(Qn) is finite; otherwise,
the statement is trivial. For positive integersn andi, letp(n)i

�
=�(S

(n)
i ).

For all 1 � i < j � n, let (H(n)
i; j ; H

(n)
j; i ) denote the complementary

half-spaces corresponding toh(n)i; j . Sinceh(n)i; j separatesS(n)i andS(n)j ,

S
(n)
i � H

(n)
i; j andS(n)j � H

(n)
j; i . For eachn form the vector

vn
�
= c

(n)
1 ; c

(n)
2 ; h

(n)
1; 2; c

(n)
3 ; h

(n)
1; 3; h

(n)
2; 3; c

(n)
4 ; . . . ; c

(n)
l ;

h
(n)
1; l ; . . . ; h

(n)
l�1; l; c

(n)
l+1; . . .

whereh(n)i; j stands for the parameter vector representing the hyperplane
(see Section II) and is defined arbitrary for alli < j if j > n. Now use
Cantor’s diagonal method to pick a subsequence offvng converging
componentwise to a vectorv = (c1; c2; h1; 2; c3; h1; 3; h2; 3; . . .).
(The convergence of each sequencefc

(n)
i g1n=1 is considered in k [

f1g, the one-point compactification ofk [12], while the convergence
of the last components ofh(n)i; j , n = 1; 2; . . ., is considered in .) For
simplicity, this subsequence is also denoted byfvng. Usingv we can
construct a quantizer̂Q by setting

Q̂ � Ŝ1; Ŝ2; . . . ; fc1; c2; . . .g

where

Ŝi =
j 6=i

Hi; j

where for alli < j, (Hi; j ; Hj; i) is the pair of complementary half-
spaces corresponding tohi; j . In the rest of the proof, we show that̂Q
is well defined and have the desired properties.

To simplify the notation, defineH(n)
i; i = Hi; i =

k for all n andi.
TheŜi are clearly disjoint and convex. To see that they coverk with
probability1, notice that for alli; l < n

S
(n)
i �

l

j=1

H
(n)
i;j and

1�j�l;j 6=i

S
(n)
j � k

l

j=1

H
(n)
i;j :

Therefore, sinceS(n)j , j = 1; 2; . . ., are disjoint

p
(n)
i =� S

(n)
i � �

l

j=1

H
(n)
i;j � 1�

1�j�l;j 6=i

� S
(n)
j

=1�
1�j�l;j 6=i

p
(n)
j : (16)

Sincelimn 1
H

(x) = 1H (x) �-a.e., the dominated convergence

theorem implies

pi � �

l

j=1

Hi; j � 1�
1�j�l; j 6=i

pj

for all i andl. Since the sequence of setsf l

j=1Hi; jg
1
l=1 decreases

to Ŝi, letting l ! 1 we obtain for eachi

pi � �(Ŝi) � 1�
i6=j

pj = pi:

Thus,�(Ŝi) = pi and 1
i=1 �(Ŝi) = 1, so Q̂ has the desired cell

probabilities.
Next, we show that for everyi and Borel setB � Ŝi

lim
n!1

�(B \ S
(n)
i ) = �(B): (17)

If i; l < n, then

� B \ S
(n)
i

= � B \
l

j=1

H
(n)
i; j

l

j=1

H
(n)
i; j n S

(n)
i

� � B \
l

j=1

H
(n)
i; j � �

l

j=1

H
(n)
i; j n S

(n)
i

= � B

l

j=1

Hi; j

l

j=1

H
(n)
i; j

� �

l

j=1

H
(n)
i; j S

(n)
i

� �(B)� �

l

j=1

Hi; j

l

j=1

H
(n)
i; j � 1�

l

j=1

p
(n)
j

where the first equality holds sinceS(n)i � l

j=1H
(n)
i; j , the second

equality holds sinceB n l

j=1Hi; j = ;, and the last step follows

from (16). Sincelimn h
(n)
i; j = hi; j , the dominated convergence the-

orem implies for each positive integerl

lim inf
n!1

� B \ S
(n)
i � �(B)� 1�

l

j=1

pj :

Therefore, since�(B) � �(B\S
(n)
i ) and 1

j=1 pj = 1, (17) follows
by letting l ! 1.

Using (17), we next show that the codevectors ofQ̂ are well defined
(i.e., ci 2 k for all i such that�(Ŝi) > 0). Assume�(Ŝi) > 0 (so
that the interior ofŜi is not empty) and letB � Ŝi be a closed ball
with �(B) > 0. Supposeci = 1. Then the partial distortion of the
ith cell ofQn has the lower bound

Di(Qn) =
S

kx� c
(n)
i k2 d�(x)

�
B\S

kx� c
(n)
i k2 d�(x)

�� B \ S
(n)
i min

x2B
kx� c

(n)
i k2:

For alln large enough, we have�(B \ S
(n)
i ) � � for some� > 0 by

(17), and since we assumedlimn c
(n)
i = ci = 1

lim
n!1

min
x2B

kx� c
(n)
i k =1:
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This would implylim infnD(Qn) � lim infnDi(Qn) =1, contra-
dicting the assumption thatlim infnD(Qn) is finite. Thus,ci 2 k

for all i such that�(Ŝi) > 0, and we conclude that̂Q is well defined.
It remains to show thatD(Q̂) � lim infnD(Qn). To prove this, we

apply the method used in the proof of Theorem 1. Let

Y
(n)
i

(X)
�
= 1

S nŜ
(X):

Then, asn ! 1, for every� > 0 we have

P jY
(n)
i

(X)j > � �P Y
(n)
i

(X) = 1

=� S
(n)
i

� � S
(n)
i

\ Ŝi ! 0 (18)

by (17). Thus, for alli, Y (n)
i

(X) ! 0 in probability asn ! 1.
Defining

Ŷ
(n)
i

(X)
�
= 1

Ŝ nS
(X)

we similarly obtain thatŶ (n)
i

(X) ! 0 in probability asn ! 1

for all i. It follows that every subsequence offY (n)
i

; Ŷ
(n)
i

g has a
subsequence, sayfY (n )

i
; Ŷ

(n )
i

g, such thatlimt Y
(n )
i

= 0 and
limt Ŷ

(n )
i

= 0 almost surely [12, Theorem 9.2.1]. Using Cantor’s
diagonal method, we can now choose an increasing sequence of
positive integersfnlg such that forall i � 1, liml Y

(n )
i

= 0 and
liml Ŷ

(n )
i

= 0 almost surely. In other words, for alli

lim
l!1

1
S nŜ

(x) = 0 �-a.e.

and

lim
l!1

1
Ŝ nS

(x) = 0 �-a.e.

which is equivalent to

lim
l!1

1
S

(x) = 1
Ŝ
(x) �-a.e. (19)

SinceQn (x) = c
(n )
i

if x 2 S
(n )
i

, Q̂(x) = ci if x 2 Ŝi, and
liml c

(n )
i

= ci, (19) implies

lim
l!1

Qn (x) = Q̂(x) �-a.e.

Using Fatou’s lemma as in (15), we conclude thatD(Q̂) �
lim inf lD(Qn ), which completes the proof.
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On the Stability of Distributed Sequence Adaptation for
Cellular Asynchronous DS-CDMA Systems

Chi Wan Sung, Member, IEEE,and Kin Kwong Leung

Abstract—In this correspondence, we consider the sequence adaptation
problem for cellular asynchronous code-division multiple-access (CDMA)
systems. A game-theoretic approach is used to investigate the stability
issues of distributed adaptation algorithms. It is shown that the Nash
equilibrium may not exist for cellular CDMA systems if the traditional
interference measure is used. In turn we propose a new interference
measure which ensures system stability.

Index Terms—Cellular systems, code-division multiple access (CDMA),
distributed algorithm, Nash equilibrium, signature sequence adaptation.

I. INTRODUCTION

Mitigating interference is of paramount importance in the design of
a code-division multiple-access (CDMA) system. Much research has
been conducted in designing multiuser detection techniques to suppress
interference for a given set of signature sequences. Recently, there has
been interest in managing interference from the transmitters’ side. Op-
timum signature sequence sets for synchronous CDMA systems were
characterized in [6], [10], [11]. These sets may be constructed by iter-
ative methods [5], [9].

For practical applications, it is helpful to devise distributed algo-
rithms that allow each user to adapt his own signature sequence based
on local information. Rapajic and Vucetic suggested that each user iter-
atively replaces his signature sequence by the weight vector obtained at
his minimum mean-squared error (MMSE) receiver [4]. This is called
the MMSE algorithm, and its properties are investigated in [1], [7]–[9],
[12]. Signature sequence adaptation in the presence of multipath was
considered in [3].
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