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Abstract—The nearest neighbor condition implies that when tizer is essentially determined by its codepoints since its cells
searching for a mean-square optimal fixed-rate quantizer it is gre the Voronoi regions (with respect to the source distribution)

enough to consider the class of regular quantizers, i.e., qUANUZErs o qqqeiated with the codepoints. For the squared error distor-
having convex cells and codepoints which lie inside the associated

cells. In contrast, quantizer regularity can preclude optimality in tion measure this implies that an optimal quantizeregular,
entropy-constrained quantization. This can be seen by exhibiting i-€., €ach of its cells is a convex set and the associated code-
a simple discrete scalar source for which the mean-square optimal point lies inside the cell. The cells of a regular scalar quan-
entropy-constrained scalar quantizer (ECSQ) has disconnected tizer are intervals, and the cells of a regular vector quantizer

(and hence nonconvex) cells at certain rates. In this work, new . . .
results concerning the structure and existence of optimal ECSQs with a finite number of codepoints are convex polytopes. In

are presented. One main result shows that focontinuoussources this sense, the structure of optimal fixed-rate quantizers for the
and distortion measures of the formd(z, y) = p(|z —y|), where squared error distortion measure (and to a certain extent for
p is a nondecreasing convex function, any finite-level ECSQ can more general norm-based distortion measures [5]) is relatively

be “regularized” so that the resulting regular quantizer has the \ye|| understood. Moreover, for reasonable distortion measures
same entropy and equal or less distortion. Regarding the existence

of optimal ECSQs, we prove that under rather general conditions and source dist.ributions, th.e.dist.ortion of ,a quantizer S_atisfyi.ng
there exists an “almost regular” optimal ECSQ for any entropy ~the nearest neighbor condition is a continuous function of its
constraint. For the squared error distortion measure and sources codepoints, and so the existence of optimal fixed-rate quantizers
with piecewise-monotone and continuous densities, the existencecan be deduced using standard continuity-compactness argu-
of a regular optimal ECSQ is shown. ments [6]-[8].
Index Terms—Convex distortion measures, entropy coding, op-  The average rate of a quantizer can further be reduced if
timal quantization, regular quantizers. a variable-rate lossless code (entropy code) is applied to its
output. In this case, the rate is usually defined as the entropy of
the output of the quantizer [9] in order not to tie the performance
of such a scheme to a particular entropy code, and the resulting
scheme is called an entropy-constrained quantizer. The objec-
I. INTRODUCTION tive of the design is then to minimize the quantizer’s distortion

HE main objective of quantizer design is to find a colleco" & given entropy constraint, and a quantizer achieving this
T tion of codepoints (the codebook) and associated quarfiinimum distortion is called an optimal entropy-constrained
zation cells providing minimum distortion subject to a rate coruantizer. Since the nearest neighbor condition is no longer nec-
straint. In fixed-rate quantization, where the quantizer's rate §Sary for the optimality of an entropy-constrained quantizer,
measured by the log-cardinality of the codebook, the rate cdristence and structural problems concerning optimal quanti-
straint means that the number of codepoints is fixed. In tH&lion appear to be harder in this case. In contrast to fixed-rate
case, efforts to design optimal quantizers have lead to the wédtantization, where particular attention has been payed to struc-
known necessary conditions of quantizer optimality (nameify/ral @nd existence issues, works on entropy-constrained quan-
the nearest neighbor and centroid conditions), first for scafigation have focused more on design issues. For scalar sources,
quantizers and the squared error distortion measure [1], [2Bf9€r [10] and Farvardin and Modestino [11] found necessary
[2], and subsequently for vector quantizers and more genergiditions for the optimality of a regular entropy-constrained
distortion measures [3], [4]. An important consequence of tifalar quantizer (ECSQ) with a fixed number of output points.
nearest neighbor condition is that an optimal fixed-rate quah’®Se conditions give rise to practical algorithms for designing
locally optimal ECSQs with a fixed number of codepoints [10],
[12], [11], [13]. Chouet al.[14] gave an effective iterative de-
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ular quantizer with a finite number of codepoints can be de- Il. PRELIMINARIES

scribed using a finite number of parameters, while a more gen-, | N-point(or N-level)scalar quantizer) is a (Borel) mea-

eral quantizer structure may not be described this way. Thu Rable mapping of the real lif¢into a finite or countably in-

fundamental question is whether it is sufficient to consider on Yite set of distinct realg — {eii =1 N} called the
regular quantizers when searching for a (mean-square) Opti@gbeboolof Q. In case the codebook is’not 1"inite, we formally

entropy-constrained quantizer. In fact, this question can be Afine N = o and callQ an infinite-point quantizer. The;

swered in the negative by a simple example; there exists a disg ~g/1ed theodepointsand the setsS; = {z: Q(z) = ¢}

crete scalar source distribution and an interval of entropy cofi called theells (or decision regions) of). The codebook
straints for which no quantizer with interval cells is optimal (segq the collection of cells — {Si;i =1, ...N} completely
Example 1 in Section Ill). One main contribution of this paper i@haracterizeQ sinces is a partition ofR and

to show that such a pathological example cannot exist when the

source distribution is continuous; for such a source any “good” Qz) = ¢, forz € 5;.

quantizer is essentially regular. The distortion of( in quantizing a real random variahlé

In a recent work, Chou and Betts [15] showed that if a@ith distribution,, is measured by the expectation
entropy-constrained quantizer is optimal and achieves the

lower convex hull ofD(R), the lowest possible distortion of  D(Q, 1) = F{d(X, Q(X))} = / d(z, Q(x)) du(z)
any quantizer with entropy not greater th&nthen it satisfies R

a modified version of the nearest neighbor condition. For tivehere thedistortion measurel(-, -) is a nonnegative measur-
squared error distortion measure, all quantizers satisfyiagle function of two real variables. When the distributjoms
this modified nearest neighbor condition can be shown to bkear from the context, the short notatidh @) will be used.
regular. This result is very general in that it is valid for afhepartial distortionof the:th cell of ¢} is defined by
arbitrary source distribution and quantizer dimension. On the

other hand, it does not cover optimal quantizers that lie above Di(Q, p) = / d(z, Q(z)) dp(z) 1)
the lower convex hull oD,,(R), which can happen iD;,(R) is Si

not convex. (For example);(R) is not convex for a uniform sothatD(Q, p) = 3, Di(Q, ). In case. is an arbitrary finite
scalar source and the squared error distortion measure [168)9asureD(Q, 1) and theD;(Q, p) are still well defined by the
Moreover, the result already presumes the optimality of t@rresponding integrals.

quantizer, but the achievability @, (R) is an open issue. The entropy-constrainete of () is the entropy of the dis-

Our purpose in this paper is to give new results on the strucf:r—ete random variabl@{(X)
tural properties and the existence of optimal ECSQs. The paper N
is organized as follows. In Section II, notation and definitions H(Q)=-) P{X € S;}log P{X € §;}
are introduced. In Section lll, regularity type properties of i=1
ECSQs are investigated. Throughout, our basic assumptiomiserelog denotes bas® logarithm. A scalar quantizer whose
that the source has a nonatomic distribution (i.e., its distributieate is measured by (@) is called anentropy-constrained
function is continuous) and the distortion measure is of thgalar quantize(ECSQ).
formd(z, y) = p(Jz — y|), wherep is a nondecreasing convex Unless otherwise stated, we always assume that the cell prob-
function. Theorem 1 shows that for any finite-point quantizeabilities P{X € S;},7 = 1, ..., NV, are all positive. One can
there is a regular quantizer with the same entropy and eqadlays redefing) on a set of probability zero (by possibly re-
or less distortion. As a consequence, Corollary 2 shows thtcing the number of cells) to satisfy this requirement.
regular finite-point quantizers can perform arbitrarily close to For anyR > 0 let D, (R) denote the lowest possible distor-
the operational distortion-rate curg,,(R). Theorem 2 ex- tion of any quantizer with output entropy not greater than
tends Theorem 1 to infinite-point quantizers; it shows that arihis function is formally defined by
quantizer can be replaced with an “almost regular” quantizer, .
that is, with a quantizer which has interval cells but may be Di(R) = inf{ D(Q): H(Q) < R}
undefined on a set of probability zero. where the infimum is taken over all finite or infinite-point scalar

In Section 1V, existence results concerning optimal ECSQgiantizers whose entropy is less than or equat.tdf there is
are given. Theorem 3 proves that an optimal ECSQ achieving @ with finite distortion and entropyd () < R, then we
Dy, (R) always exists, and that such an optimal quantizer cégrmally define D;,(R) = oo. The existence of a “reference
be assumed to be almost regular. Theorem 4 shows that a lleger” ¢* € R such thatF{d(X, ¢*)} < oc is a sufficient (but
ular optimal ECSQ exists among all quantizers having a fixewt necessary) condition fdp,,(R) to be finite for all R > 0.
number of codepoints. In Section V, for the squared error distgkny @ that achieved),,(R) in the sense thali (Q) < R and
tion measure and sources with densities, the almost regulamyQ)) = D, (R) is called aroptimal ECSQ.
of an optimal ECSQ is strengthened to regularity. Theorem 5A scalar quantizef) is calledregularif i) its cells are subin-
shows the existence of regular optimal ECSQs for a wide clagsvals of the real line; ii) each of its codepoints lies inside the
of source densities which contains all univariate densities coassociated cell; iii) the collection of cels is locally finite in
monly used as parametric source models. Concluding remattke sense that the number of cellsSintersecting any bounded
are given in Section VI. subset of the real line is finite. This definition reduces to the
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usual definition of regularity [9] if@) has a finite number of there is a¢ € R (the “generalized centroid” of) minimizing
codepoints since in this case iii) is automatically satisfied. the distortion ovels, i.e.,

Let @ be a regular finite-point scalar quantizer with code-
points indexed so that, < ¢a < --- < ¢n. Then the corre- /d(x, é)du(z) = il}n%/ d(z, c) dp(z). 4)
sponding interval cell§;, S, ..., Sy satisfy s RJs

Since p is nondecreasing, it is an interval, then there is a
S1 <8y << Sy minimizing ¢ that lies insideS. If p is strictly convex ther¢
is unique for anyS such thatu(S) > 0 [4]. For example,

where, ford, B C R, A < B means that < bforall a € A ¢ = E{X|X € S} for the squared error distortion measure.

andb € B. Defining g = —o0 andgy = oo, the interval
boundarieg;; = S;,i=1,..., N —1, satisf
W = Sup i, ¢ y lll. REGULARIZING ECS(B
Po<c<q < Sgy-1 S e <gn Consider a scalar quantizér with a finite codeboolC =
and {¢;; ¢ =1, ..., N}. Forany source random variablée
Q) =ci, g <o <a D(Q) = BU(X. QU0 2 £ {mind(X, o)}

The pointsy;, 1 < ¢+ < N — 1, called thesubdivision pointer

: Thus, ifQ i izer th i R -
thresholdsof O, may belong to eithes; or .. us, if @ is a quantizer that maps any inpute R to a code

- . A 4 : ! .. pointinC minimizingd(z, ¢;),4 =1, ..., N, then it has min-
S|m|lgrly, if an mﬁmtg-pomt quantizet) is regular., then ,'ts imum distortion among all quantizers with codeb@bKr his is
codepointsc; } can be linearly ordered so that< ¢; if @ <j, e well-known nearest neighbor condition for fixed-rate quan-
where the mdex_set is either the_ po_smve mte_gers (|f_there %i%rs. Although the ceIIs{S‘i; i=1,..., N} of O are not
smalles_t codepoint), or the negatwe mtc_egers (if thereis alargﬁﬁ quely defined, eachi; satisfies
codepoint), or the set of all integers (if there are no smallest
and largest codepoints), and the cells(fare intervals with S; C {wd(z, ¢;) < d(z, ¢;),7=1,..., N}
endpointsg;_; andg; such thaty,_1 < ¢; < ¢;. Throughout
the paper we assume that the source random variitiias a For the squared error distortion meast(e, y) = (z — y)%
nonatomicdistribution, i.e..,P{X = z} = Oforallz € R: or more generally for(z, y) = p(|x — y|), wherep is non-
Thus, each subdivision poigt can be mapped arbitrarily to decreasing, each is an interval ana; € 5;; henceQ is reg-
either¢; or ¢;4; without changing the distortion and entropyular. This means that any finite point quantizer can be “regu-
of . Hence we adopt the convention that the bounded cel§ized” to obtain a regular quantizer with the same number of
of a regular quantize®) are of the formS; = [g;_1, ¢;). For codepoints and equal or less distortion, and that it is enough to
the sake of unifying the notation, @ has a leftmost cell, we consider the much smaller, parametric classVepoint regular
sometimes formally extend the domain@fto RU {—oc} and ~ quantizers when searching for an optimal quantizer in the non-

write [—o0, ¢ ) instead of(—oco, ¢1). parametric family of allV-point quantizers.
In what follows, we often assume thatis a difference dis-  Although the nearest neighbor condition is no longer valid
tortion measure of the form for entropy-constrained quantizers, it was recently shown in [15]
that a modified version of it still holds in the entropy-constrained
d(x, y) = p(lz —yl) (2) setting? If a quantizerQ with codebook{c;} and cells{S,}

h ) . d ing . h achieves the lower convex hull @,,(R) for a sourceX with
wherep: [0, 00) — [0, c0) is a nondecreasing function. Theryigyiption,,, then there is & > 0 (the negative slope of a line

the limit of support to the lower convex hull &) such that for alk and
p-almost allx € S;

d(x, ¢;) = Alog p( i) = inf{d(x, ¢;) — Alog p(Sj)}- (5)

lim p(t) = K
t—o0
exists, andx is either finite orK = oo. It will be convenient to

formally extend the domain gfto [0, co) U {00} and accord- For the squared error distortion (and more generally for

ingly define rth-power distortions)A > 0 if Dy(R) > 0. In this case, the
d(z, 00) = d(z, —o0) = p(oo) = K ©) infimu_m in (_5) is achieved by some index and_ (5) defines a
guantizer with convex cells such that only finitely many cells
forall x € R. intersect any bounded set [15]. Thus, for the squared error
It is easy to show that i is also lower semicontinuous, thendistortion measure, an§ achieving the lower convex hull of
for any Borel setS C R such that Dy(R) can be assumed to be regular. Moreover, it was shown
in [15] that @ has a finite number of codepoints if the source
il}ﬂ%/ d(zx, ¢) du(x) < oo distribution has sufficiently light tail. Condition (5) works
cc s

for arbitrary source distribution and quantizer dimension, but

INote that if the distribution of\ is “continuous” in the sense that it has ait does not cover optimal quantizers that lie above the lower
probability density function, then itis necessarily nonatomic. On the other hand,
there exist nonatomic distributions (such as the Cantor measure; see, e.g., [L7} similar necessary condition for the optimality of variable-rate quantizers
that do not have densities. also appeared in [14].
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convex hull of D (R), which can happen ifD,(R) is not Proof of Lemma 1:Since the distribution function oY is
convex. For exampleD,, (R) for a uniform scalar source andcontinuous, there is an € R such thatu({(—oc, 7]) = u(S1).
the squared error distortion coincides with its lower convexet Q) be the quantizer with cell§; = (—oo, 7], 52 = (r, o),
hull only at ratesR = logN for N = 1,2,...[16]. In andcodepointcy, ¢, }. We show thaD(Q) < D(Q). If D(Q)
general, little is known about the properties Bf,(R), and is not finite, we are done; so assum¥()) < oco. The key
so the achievability of the lower convex hull is very difficultobservation is that the function

to check. Thus, other methods are needed to find for each

rate R a tractable, sufficiently small family of quantizers that P(x) = p(lz — c1]) — p(|lz — c2|)

still contains an optimal entropy-constrained quantizer. In ) ) » . ]
the scalar case, such a family will turn out to be the class 5fnondecreasing. To show this, rewstén the following form:

re_zgular quantizers if the source distribution is nonatomic. For pler — x) — ples — ), if 2 < ¢,
discrete sources, however, it may happen that no regular ECSQ ,

achieves the minimum mean-squared distortion among all ¢la) = ple—c) —plez—x), Faz<e
ECSQs satisfying a given entropy constraint. plz —c1) — plz — ¢2), if £ > co.

Example 1: Letd(x, y) = (x — y)?, and letX be a discrete Sincep is nondecreasing; is clearly nondecreasing in the in-
random variable taking values {r-1, 0, 2} with the following terval[c;, c»], and the convexity of readily implies thatp is
distribution: also nondecreasing ift-oc, ¢1] and[ez, o0).

Sinceu(S1 N S3) = p(51NS3)ands; < S

P{X =-1} = P{X =2} =2/5 and P{X =0} = 1/5. #(S1 0N 52) = p(S10 S2) andsy < Sy
A quantizerQ for X is in effect defined by a partition of the set / P(x) dpfz) < / _ P(z) dp(x).

{—1, 0, 2} (the definition ofQ for other values is immaterial) SN S5

and by the corresponding codepoints (the optimal codepoints {gris easy to see thab(Q) < oo and the monotonicity op

each partition can easily be found). Checking the five possifl@ply that both integrals are finite.) Adding
partitions, it turns out that for alk such that

W(1/5) < R < b2/ | le=abdue)+ [ o=l dutw)

whereh, () = —zlogz— (1 —2z)log(l—x), an optimal ECSQ

to both sid d ing t ieldlg)) < D(Q). O
has two codepointg = 1/2 andc; = 0, and the corresponding 0 both sides and rearranging terms yields?) < D(Q)

cells must satisfy We showed that convex and nondecreasing distortion mea-
sures allow regularizing any two-point quantizer if the source
{-1,2}CcS5 and {0} C S, distribution is nonatomic. We call a distortion measure pos-

sessing this property two-point regular. More generally, given a
a[trJositive integetV we say that a distortion measutés N-point

regular if for any nonatomic distributior, and anyN-point

quantizer@ there is aregular N-point quantizer@ such that

The first result of this section shows that no such patholog?(Q) < D(Q) andQ and( have the same cell probabilities

ical example can exist ik has a nonatomic distribution. More(i.e., there is a one-to-one mappingetween the cells aff and
specifically, we show that if{ has a nonatomic distribution, Q) satisfyingu(S) = u(w(S)) for any cellS of Q). Finally, d is
then, for nondecreasing convex difference distortion measurealledfinitely regularif it is /N-point regular for every positive
every finite-point ECSQ can be “regularized” so that the rentegerV.
sulting regular quantizer has the same cell probabilities (andLemma 1 showed that nondecreasing and convex difference
hence the same entropy) and equal or less distortion. The klistortion measures are two-point regular. The next theorem
to this result is the following lemma. shows that ifd is two-point regular, then it is also finitely reg-
ular. The proof can be found in Appendix A.

Thus, if S is an interval, therd; is a union of two disjoint in-
tervals, each with positive probability. It follows that no regul
quantizer can be optimal in this case.

Lemma 1: Assume that the random variabl& has a
nonatomic distribution:, and letd(z, v) = p(|z — y|), where Theorem 1: Every two-point regular distortion measure is
p: [0, 00) — [0, oo) is convex and nondecreasing. L@tbe finitely regular. That is, ifX has a nonatomic distributiop,
an arbitrary two-point quantizer with celfsS;, S>} and cor- andd is two-point regular, then for any finite-point quantizer
responding codepoints:;, ¢} such that; < ¢,. Then there @ with cells{S,, ..., Sy} there exists a regular quantizer
exists a two-point quantize® with interval cells{S;, S>}  with interval cells{S;, ..., Sy} such thatu(S;) = u(S:),
and corresponding codepoin{s;, c;} such thats; < S, i=1,..., N,andD(Q) < D(Q).

pSi) = p(Si), i =1, 2,andD(Q) < D(Q). Remarks: i) Note that not only daQ and( have equal en-
Remark: @ has interval cells but it is not necessarily regularopies, but if the outputs of) and Q) are encoded using the
(c; € S; is not guaranteed by the construction). However, sinsame variable-length code (e.g., a Huffman code [18]), then the
p is nondecreasing, the centroid rule (4) guarantees that eaesulting average code lengths will be equal. ii) By Lemma 1, the
¢; can be replaced by @ € S, such that the distortion is not theorem holds for any difference distortion measie, y) =
increased. p(|z — y|) with a nondecreasing and convexAlthough we
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have not yet found other examples for two-point regular disince E{d(X, c*)} <, {C, } increases t®, andD(Q) < ~o.
tortion measures, we conjecture that this class is actually lar@nce each@,, is an n-point quantizer, Theorem 1 can be
than the class of nondecreasing and convex difference distorticsed to obtain a regulan-point quantizer();, such that
measures. H(Q:) = H(Q,), and D(Q) < D(Q,). Hence (6) is
Ford(x, y) = p(]x — y|) with a nondecreasing and convexproved. Now for anye > 0 choose a quantize€’ such
p, the construction of Lemma 1 does not change the codepoititat H(Q.) < R and D(Q.) — Di(R) < ¢/2. Then, by
of the quantizer, and it orders the cells according to the cor@), there is a regular finite-point quantizé€p. such that
sponding codepoints. It is easy to see that this order preservid§Q.) < H(Q.) and D(Q.) — D(Q.) < ¢/2, which in turn
construction is maintained in Theorem 1 if Lemma 1 is used satisfiesD(Q.) < Dy (R)+-c. O
each step of the induction argument given in the proof. Thus

we obtain the following corollary. Unexpected problems may arise if one wants to extend The-

orem 1 to infinite-point quantizers. To illustrate the problem as-

Corollary 1. Assume that the real random variablehas a sume that the order-preserving construction of Corollary 1 car-
nonatomic distribution:, and letd(x, y) = p(Jz —y|), where ries over to the regularization of infinite-point quantizers. In this
p: [0, 00) — [0, oc) is nondecreasing and convex. Then for angase, ifc; andc; are two codepoints of the initial infinite-point

finite-point quantizer@ with cells {Sy, ..., Sy} and corre- quantizer@ such that; < ¢;, then the corresponding celfs
sponding codepointéey, ..., ey} there exists a regular quan-ands; of the regularized quantizep satisfy$; < $;. As a re-
tizer @ with interval cells{Si, ..., Sy} such that(S;) = sult,() can have quite an unusual structure if the initial quantizer
p(S;) forallé =1,..., N, D(Q) < D(Q), and ifc; < ¢;, @ is arbitrary. For example, assume tigais an infinite-point
thensS; < 5;. quantizer with codepoint$c; }52, such that ifc; < ¢;, then

Remark: It follows from Lemma 1 and the construction in_th:ere eIX|st|s| @g,s‘iﬁfh trﬁﬁi < o |< A 1:her_1|ltﬂe coil:ctlon of
the proof of Theorem 1 th&p can also preserve the codepointgqtert\;]a tcfe S{5i}2 dOS‘ ‘?ﬂzeg” aréze?rt]g Wit ar\ée € E rtﬁp;
of Q, not only their order. In this casé) has interval cells, but €'Y thatfor anys; andS; with 5; < 5;, there is arbi, such tha

it is not necessarily regulari( € gi is not guaranteed). S; < 5, < Sj. It can be seen that such collection of intervals

Another immediate consequence of Theorem 1 isEhatk) ~i}i1 cannot form a partition of the real life.
can be arbitrarily well approximated by regular finite-point To deal with such cases, we introduce the notion of almost

ECSQs. This fact can be very useful in analyzing the high-rdfedular quantizers. Given a finite measyrea quantizer is
asymptotic behavior aby,(R) [19]. calledu-almost regularor almost regular if: is clear from the

context) if there exists af C R with 1(S) = 0 such that} is
Corollary 2: AssumeX has a nonatomic distributign and  defined onR \ S, and every cell of) is an interval containing
letd be a two-point regular distortion measure. Ifthered$ &  the associated codepoint. Thus, an almost regular quantizer has
R such thatE{d(X, c¢*)} < oo, then for anyR > 0 ande > 0, interval cells but it may not be defined on a set;@measure
there is a regular finite-point quantiz@ such thatd (Q.) < B zero. (We can defin@(z) in an arbitrary manner for a € 5
and without changing the entropy and distortion @f) As an ex-
ample, letsS c [0, 1] be the Cantor ternary set [17], and Jet
D(Qe) < Dn(R) + e be absolutely c[ontir]luous with respect to the Lebesgue measure
with £([0, 1]) = 1. Then[0, 1]\ .S is a union of countably many
Remark: The conditions of the corollary are satisfied for theypen intervals which form the cells of.aalmost regular quan-
squared error distortion measured{ X?} < oc. tizer. As this example shows, an almost regular quantizer can
have infinitely many cells in a bounded interval. Also note that

Proof of Corollary 2: First we show that for any quantizer h . )
Q with finite distortion, there is a sequence of regular finitelh€ guantizer of this example cannot be (re)defined on a set of

point quantizerdQ* } such that (Q*) < H(Q) for all n and probability zero to obtain a quantizer with interval cells.
" N This definition can be extended similarly to higher dimen-

limsup D(Q7) < D(Q). (6)  sions. Ak-dimensional vector quantizep is called ;-almost

n—oo

If Q is a finite point quantizer, then (6) follows by regularizing ifegularifthereis ases’ C R* such thag,(S) = 0, Qis defined
using Theorem 1. Otherwise, assufdas cells{S;, Sy, ...} ©ON R\ S, and@ has convex cells containing the corresponding
and corresponding codepoinfs;, ¢z, ...}, and forn > 2 de- codepoints. To exhibit an example fopealmost regular vector

fine then-point quantizexy,, to have cells guantizer, we can use a corollary of the Vitali covering theorem
[20]. The corollary states that there exists a countable collection
{181, -+, oy U Si} {By, By, ...} of disjoint closed balls in the unit cutje, 1]*

. izn of R* such that the se§ = [0, 1]* \ (U, B;) has Lebesgue
and codepoint§ci, ..., ¢h_1, c*.}_ It is clear thatH(SJ_nl) < measure zero. Now let be absolutely continuous with respect
H(Q). Moreover,Q, andQ are identical orC, = U;Z) i, 1o the k-dimensional Lebesgue measure wiiHo, 1]*) = 1.
and so Then{B;, Bs, ...} form the cells of an almost regulérdi-
nlggo |D(Q.) — D(Q)] mensional quantizer.

_ 3Let ¢ denote the interior of’;. ThenR\ (U, $) is nonempty and perfect
= lim / d(x, *)dp(x) — Z Di(Q, )| =0  (since$? and3? cannot have a common endpoint # ;), and thus uncount-
T JR\C, i>n able. ThereforeR \ (|J, $:) is nonempty and uncountable.
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Remark: If @) is a p-almost regular scalar quantizer withThenp,, € C, where
cells {S;} such that only finitely many of thé; intersect any
bounded interval, thef can be redefined on a setpfmeasure ¢ — {(p1, p2. ...): p; > Oforall,
zero to obtain a regular quantizer with the same distortion and
entropy. This follows since in this case there is an indexing of o0 o0
the cells such tha%; < S;; for all £, and now the set of points pLZpy >, Z pi=1, - Z pilogp; < R}.
(of measure zero) lying betweet) and S;; where@ is pos- i=1 i=1
sibly not defined can be assigned to (say)}o obtain interval

i X Now foranyp = (p1, p2, ...) € C, letY} be a positive-integer-
cells whose union covers the real line.

valued random variable with distributiaR{Y, = ¢} = p;,
The last result of this section shows that for two-point reg-= 1. Then by a result of Wyner [21, Theorem 1] we have
ular difference distortion measures, any infinite-point quantizer

can be replaced by an almost regular quantizer with the same EllogYp} < — Z pilogp; < R.

entropy and equal or less distortion. The theorem is proved in i=1

Appendix A. Thus, for anyp € C, Markov’s inequality implies
Theorem 2:Assume that the random variabl€ has a E{logY,} R

nonatomic distribution, and letd(z, y) = p(|lz —y|) be a  £{¥p>n} = Pllog¥p > logn} < <

logn ~ logn’
two-point regular distortion measure, whetg0, oo) — [0, o) ) . ® . , g,
is nondecreasing and left-continuous. Then for any infrience, the family of distributions correspondingdais tight.

nite-point quantizer) there exists an almost regular quantizef herefore, by Prokhorov's theorem [17]p,, } has a point-

O with the same cell probabilities such tHatQ) < D(@). ~ Wise-convergent subsequence, denoted alsdgy, which
converges to some probability distributipn= (p1, po, ...).

Clearly,p; > p2 > ---, and by Fatou’s lemma
IV. THE EXISTENCE OFOPTIMAL ECSQs

The regularization result of Theorem 2 makes it possible to - Zpi logp; < R
show the existence of an optimal ECSQ for any source with i=1
a nonatomic distribution. Theorem 2 also implies that such ghus,p € C, implying thatC is compact under pointwise con-
optimal ECSQ can be assumed to be almost regular. vergence). Now for the subsequence of quantif&s} corre-
Theorem 3:Let X have a nonatomic distribution and let SPonding to{p,, }, form the vectors
d(zx, y) = p(|z—1y|) be a two-point regular distortion measure, v, — (a(n) p) L) ) ) ) )
where p: [0, o) — [0, oc) is nondecreasing and left-contin- N L L R L

uous. Then for anyz > 0 there exists q-almost regular quan- |f s, is empty, define:;; = b; = ¢; = oo. By Cantor’s diagonal-
tizer @ such that (@) < R andD(Q) = Dp.(R). ization method, a subsequengs,, } converging pointwise to

Remarks:i) The conditions ond are satisfied whem is & VECtOrw = (a1, b, 1, a, b, ¢a, ...) can be chosen (con-
convex and nondecreasing; hence, the result holds for ¥Rf9ENCe tax or —oc is also allowed). For this vector, we can
squared error distortion measure. ii) This theorem would impfPnStruct a quantizep with codepoints; and corresponding
the existence of a regular optimal ECSQ if one could directff!IS i = [ai; bi). If a; = b; (in this case also; = a; by con-
prove that an optimal ECSQ cannot have infinitely many celruction), thenS‘i( '? empt)(/ t))y (%e;‘lnmon. Since for every fixed
in a bounded interval. While this is a reasonable conjectufiethe intervalsS;™ = [a;™, ;") i = 1,2, ..., are pair-
under general conditions, we have only been able to progése disjoint, it is easy to see that the intervalis= [a;, b:),
it for the squared error distortion measure and sources witf= 1, 2. .., are also pairwise disjoint. Singeis nonatomic

well-behaved densities (see Section V). . n n
( ) u(5) =tim (o, 5)) = p
Proof of Theorem 3:Fix R > 0 and assumé);,(R) is

finite; otherwise, the statement is trivial. Consider a sequeni@ all ¢, and hencé_, 1(5;) = 1. Thus, ifQ is defined to have

of quantizer§Q,, } such thatd (Q),,) < R for all n and cells{S;} and codepointgc;} (note that just as in the proof of
Theorem 2, some of the may not be finite), then singee C,
nlggo D(Q,) = Dy(R). we have
By Theorem 2, we can assume that egthis almost regular. H(Q) <R

For positive integers, andi let 5™ = [a{™ b{™) denote the
cell of @,, with the ith largest probability, IetE") denote the
corresponding codepoint, and @T’) = u(Si(")). In case of

On the other hand, Lemma 4 in Appendix B shows that
lim,, agn) = q;, lim,, bgn) = b;, andlim,, cgn) = ¢; imply

ties, any ordering of the equiprobable cells suffices2f has D(Q) < liminf D(Q,,) = Dp(R).

k cells, thenS‘i(") is formally defined to be empty for all> k. "

For everyn, let Now we can use the centroid rule (4) to replace any nonfigite
by a finite one that lies inside its associated cell. The modified

(n)  (n) )

P,=(pi s ps ) quantizer?) is p-almost regular and achievéy, (R). O
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The following result shows that for any finit% there is an ~ Example 2: Let i denote the distribution oX in Example 1,
optimal quantizer among all ECSQs with no more thanode- and letu,, n =1, 2, ..., be defined by the densitf, such that
points. falz) =2n/5if |z 4+ 1] < & or |z — 2| < 5=, fo(z) =n/5
if |#] < 5, andf, is zero otherwise. TheA(u, u,) — 0. Let
the two-point quantize®} be defined byQ(z) = —2/3if z < 2
and@(z) = 2if « > 2. Consider the squared error distortion
measure. Thedl (Q), 1) = h,(1/5) for all »n, implying

Theorem 4:Assume that the random variabl® has a
nonatomic distributiory:, and letd(z, ) = p(|x —y|) be a
two-point regular distortion measure, whet¢0, oc) — [0, o)
is nondecreasing and left-continuous. Then for &y 0 and

positive integetV, there exists a regular quantizer with at most Dy (hy(1/5), pin) < D(Q, ).
N codepoints achieving
Also, it is easy to see that
Dy, n(R) 14
= inf{D(Q): Q has at mosiV codepoints H(Q) < R}. Jim D(Q, pn) = -

Remark: Note that the quantizer achievingy, x(R) may SinceDy,(hy(1/5), 1) = 1.8 from Example 1, we obtain

have less thamV codepoints. For the squared error distortion linsup Dy, (hy(1/5), jin) < Di(ho(1/5), p).
case and for sources with log-concave densities, Kieffexl. n—oo . ' ’
[13] provided conditions under which,, »(R) is achieved by

a quantizer having exactlyy codepoints.
V. OPTIMALITY AND REGULARITY FOR SOURCES

_ Proof of_'_l'he_orem 4:The proof of Theorem 3is used with WITH DENSITIES
a slight modification. By Theorem 1, there exists a sequence of ) ] )
regular quantizer§@Q, }, each having no more tha code- [N the previous section, we showed the existence of almost
points, such thal (Q,,) < R for all n and regular optimal ECSQs for nonatomic source distributions and
B a wide class of difference distortion measures. We can obtain
lim D(Qn) = Di, n(R). the stronger result that a regular optimal ECSQ exists if we re-

strict our attention to the squared error distortion measure and

Thenthe cons_tructio_n in the proof ofTheqrem 3yields an alm°§5urces with well-behaved densities. For convenience, we as-
regular quantize® with at mostV codepoints. Sincél (@) < sume in this section that the source density is supported in a

R anldD(Q) = hm%PéQn%z @ can be redefined to obtain asubinterval(a, 7) of the real lineR, where we allow the possi-
regular quantizer which achievé,, v (). bility that o = —oc andr = oco. Accordingly, quantizers need

We conclude this section with a short discussion on the (lagkly be defined orfo, 7).
of) stability of Dy,(R). For two probability distributiong and A function f: (o, 7) — R is calledpiecewise monotonié

v with [ 22 dp(x) < oo and [ y? dv(y) < oo define (o, 7) can be partitioned into countably many intervals such
12 that any bounded set intersects only a finite number of these
Ap, v) = inf (B{(X = Y)?}) intervals andf is monotone in each of these intervel&ece-

¥vise continuityis similarly defined with continuity in place of
monotonicity. All continuous unimodal densities are, of course,
piecewise monotone and piecewise continuous, and all densi-
fies commonly used in source modeling belong to this class, in-

trlbut|_ons_, with finite sec_ond_ moments which has been WIOIee/Iuding the generalized Gaussian, Cauchy, and beta densities
used in fixed-rate quantization (see, e.g., [22], [6], [5]). For t 1]

squared error distortion measure, optimal fixed-rate quantizer. . .
. . ) .~~~ The following theorem resolves the problem of the regularity
performance is a continuous function of the source distributio

in this metric [6], that is, lettingD (N, ) denote the min- o optimal ECS.QS n the special, but Important case of the
. . . .. squared error distortion measure and piecewise-monotone and
imum mean-squared distortion for a source with distribugion

of any quantizer withV' codepoints, one had (N, i,.) — piecewise-continuous source densities.

D (N, p) for any sequence of source distributiohs, } with Theorem 5:Let X be a random variable with a densify
A(p, un) — 0. The convergence in is easy to characterize which is piecewise monotone and piecewise continuous in
(A(p, pr) — Ofifand only if [ 2? dp,(z) — [2?dp(x) and (o, 7). Assume thatl(z, y) = (z — y)?. Then for any entropy
s — 1 Weakly [6]), and the continuity ab (N, 1) in pisan constraintk > 0 there is an optimal ECSQ which is regular.
important tool in proving consistency and convergence rate re-

o . . ; X .~ To prove this result, we need two useful technical lemmas.
sults for empirical quantizer design. In particular, if a quantlzelrhe proofs of these are deferred to Appendix C. The first lemma
Q,, is optimal for u,,, andy,, andy are close iMA, then@,, is :

. is an extension of a result of Kieffet al.[13, Lemma A.5].
nearly optimal fory.

One can ask whether an analogous stability result holds forlLemma 2:Let X be a random variable with a density
Dy, (R, 1), the minimum ECSQ distortion (here we have madtinction f which is continuous, positive, and nonincreasing
explicit the dependence @;,(R) on ). The following simple (resp., nondecreasing) @n, 7), and E{X?} < oo. Assume
example uses this fact to demonstrate gt R, ;) isnotcon- d(z, y) = (x — y)%. Then for any scalar quantiz&p there
tinuous ing. exists a quantize@ satisfying the following:

where the infimum is over all joint distributions of the pairs o
random variableg X, Y') such thatX has distribution.: and
Y has distributions. Then A is a metric on probability dis-
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a) @ andQ have the same cell probabilities arﬂ{(}) < tradicts the assumption th@thas an infinite number of cells in

D(Q); J. Notice that (8) implies that for any> 2
b) Q has ipterval cells{ﬁi} such thatS; < Sy < --- (resp., i—1

51> 52> ) —Mogp; = Y _ (plg; — ¢;) — pcj1 — ¢;)) — Alogpy
c) the cell probabilities:(3;) are nonincreasing as in- =t

creases.

t—1
o <> plg— ;) — Mogps
The next lemma is a simple consequence of a necessary con- =1
dition for the optimality of a finite-point regular ECSQ due to < p(f) — Alog py
Farvardin and Modestino [11], who generalized a similar result

of Berger [10] from the squared error distortion to more generéhere/ denotes the length of and the last inequality holds
distortion measures. because(t) = #? (+ > 0) is convex and nondecreasing. There-

fore, if A > 0, then—log p; is bounded from above; hence, there
Lemma 3:Let X have a densityf which is positive and s ane > 0 such thap; > « for all <. But thend %2, p; = o,

continuous in(s, 7) and letd(z, y) = p(|z — y|), where \hichisimpossible. Thus, = 0. Then (8) implies that the cells
p:[0, 00) — [0, 00) is nondecreasing and continuous. ASsumg. | ;) satisfy the standard nearest neighbor condition. Since
@ is an ECSQ with finite distortion that is optimal for SOME;(z, 4) = (x — y)?, the optimal codepoint; corresponding to
entropy constraink2 > 0. If () has codepoint§c; } and interval [gi—1, ;) is the centroidE{ X |X € [gi_1, ¢:)}, and sincef is
cells{S; = [gi—1, @)}, whereg;_, < g; for all 4, then there is nonincreasing od, ¢; —¢;—1 < ¢ —c¢;. By the nearest neighbor
a\ > 0 such that for ali condition,c;y1 —¢; = ¢; —¢;, and sog; — ¢i—1 < Qi1 — G

N R S . for all 4. That is, the cell lengths increase withTherefore,

plern = @) = Mlogpin = plai = i) = Alogps - (1) lim; ¢; = oo, contradicting thegl]‘act thé is bounded ang; € J

wherep; = 1u(S;). for all 4 > 1. Thus, only finitely many cells of) can intersect

Proof of Theorem 5:Denote the distribution o by ,, any bounded interval. -
and assumé);, (R) < oo; otherwise, the result trivially holds.
By Theorem 3, for any rate constraiit> 0 there is gu-almost VI. CONCLUSION

regular optimal quantize®. If only finitely many cells of@ In this paper, we presented new results on the structure and
intersect any bounded interval(im, 7), then@ can be redefined existence of optimal ECSQs. First, we considered the problem
on a set ofi-measure zero to obtain a regular quantizer (see tberegularization. For nonatomic source distributions and a wide
remark preceding Theorem 2), and the theorem holds. class of difference distortion measures we showed that for any
Assume now tha@ has an infinite number of cells in somefinite-point ECSQ there is a regular ECSQ with the same en-
bounded interval. Sincgis piecewise monotone and piecewisgropy and equal or less distortion. As a consequence, we showed
continuous, it is easy to see that there is an interval partitiginder the standard assumption that there is a reference point
{1;} of (o, 7) such that only finitely many of thé; intersect with finite expected distortion) that regular finite-point ECSQs
any bounded subset ¢, 7), and f is continuous and mono- can perform arbitrarily close to the operational distortion-rate
tone in the interior of each. Then there is a bounded intenal curve Dy, (R). We introduced the notion of an almost regular
such that/ C I for somel € {;}, J contains infinitely many quantizer (such quantizers have convex cells but may be un-
cells, say{S;}, of @, and the intersection of with any cell of defined for a set of input points of probability zero), and we
@ not contained in/ hasy-measure zero. Thus, we can define ghowed that any infinite-point quantizer can be replaced with
new quantizer) on.J to have cellg S; } with the corresponding an almost regular quantizer that has the same entropy and equal
codepoints. Iff denotes the conditional density &fonJ, and  or less distortion.
fi is the corresponding distribution, théhis ji-almost regular,  Using the technique of regularization, we gave results con-
and f is positive, continuous, and monotone gnAssumef  cerning the existence of optimal ECSQs. We proved that there
is nonincreasing; the argument is similar for nondecreagingexists an almost regular ECSQ that achieves the operational
Then, by Lemma 2, there is@ with D(Q, jz) < D(Q, i) distortion-rate functiorD;,( R). This result basically settles the
such that) and @ have the same cell probabilitie®, has in-  problem of existence of optimal entropy-constrained quantizers
terval cells with subdivision pointg < ¢1 < g2 < ---such in the scalar case. We also showed that a regular optimal ECSQ
that the cell probabilitieg([g;—1, ¢;)) are nonincreasing dsn-  exists among all ECSQs having no more than a given finite
creases, angh = a, the left endpoint of/. Note that the condi- number of codepoints. For the squared error distortion mea-
tion [, %?f(x) dx < oo required in Lemma 2 is automaticallysure and a wide class of sources with well-behaved densities
satisfied since/ is bounded. Sinc€) was optimal,Q must be we showed thab;,(R?) can be achieved by a regular ECSQ.
optimal forzz and the entropy constraii (¢, ). Denoting by Itis of interest to extend these results to entropy-constrained
¢; the codepoint for the celly; 1, ¢;), by Lemma 3, there is a vector quantizers (ECVQs). The techniques used in this paper
A > 0 such that for alk > 1 we have rely rather heavily on the fact that the set of reals can be lin-
early ordered in a natural way, and the proofs do not easily carry
over to the vector case. For example, the existence of optimal
wherep;, = f([gi—1, ¢:))- If A > 0, we follow an idea in [15] ECVQs is an open problem. Another interesting (and perhaps
to show that only finitely many; can be nonzero, which con-easier) problem is to show that for the squared error distortion

plciy1 — @) — Mogpit1 = plgi — ¢;) — Aogp;  (8)
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measure, théth-order entropy-constrained operational distoand
tion-rate functionD,(Lk)(R) can be arbitrarily well approached D1(Q, 1), if s =1

by regulark-dimensional ECVQs. Such a result would help Di(Qr, p) = { . : }

. . C L Di_1(G1. ), if2<i<N.
tie up some loose ends in asymptotic (high-rate) quantization _

theory [23], [24]. Thus, (10) and (11) imply that

D(Q17 N) S D(Q7 N)

_ o _ Step 2: Let 4, be the restriction of: to S& U SEY, and
Proof of Theorem 1:AssumeD(Q) is finite; otherwise, the let the two-point quantizeg, have cells{S™") R \ 53”} and

statement is trivial. The proof uses induction®nA one-point ) 1 (1) . .
codepornts{c1 ) c2 } Then, sinced is assumed to be two-

guantizer is always regular; henéés always one-point regular.
Also, d is two-point regular by assumption. Now assume thatpc("m regular there is a regular quantrz;@rwrth interval cells

is n-point regular for allh < N — 1, whereN > 3. We show 1 <13” and codepointge(?, e§”} such thatD(gs, 12) <

APPENDIX A

that thend is alsoN-point regular. D(q2, u2) andg, andqg. have the same cell measures according

Assume without loss of generality that the indexing of th@ Sl We assume (as e may without loss of generality) that
cells of Q is such that ? = (o0, t) andTy? =[t, o), where

— . _ _ 2
w(S1) = 11<ril<nN 1(S;) (9) t = Inf{a: pa((—o0, x)) = p2(177)}.
Since eltherm(T(Q)) = u(S(l)) Or fi2 (T(Q)) = u(S(l)) by

andfor: =1, ..., N, letc; denote the codepoint corresponding9) we havey, (T( >) < N(S(l)). Thust < sup 55 ) because
t 5. S8V ¢ (=00, sup S$V], and so

The main idea in constructing is the following. First, we
fix Sy and, using the induction hypothesis, redefine the cells 12 ((—oo, sup Sél)D > o (Sél)) =p (Sél))
Sa, ..., Sy such that the new cells are “intervals” &\ 5. 2)
That is, the new cells satisf§'" = 5, ands$” < ... < (. 2 B2 (Tl ) = piz((=00, 1))
Then we redefines;" and S§" such that the quantizer thusTherefore, we can define the quantizgs with cells and code-
obtained have a leftmost cell which is a proper interval. Finallgoints
the otherV—1 cells are replaced by intervals using the induction

i (=00, 1), if i =1
hypothesis.
Step 1: Let ;; be the restriction of: to R \ S, that is, §@ _ J[t, )N (551) U 551)) . ifi=2
p1(B) = w(BN (R \ Sy)) for any Borel setB C R. Further- ‘ )
more, let thg IV — 1)-point quantizer; be defined to have cells L Sf ), if3<i<N
{51 US>, S3, ..., Sy} and codepoint$cs, ..., ey }. Then  and
(P ifi=1
1> -
D(Qa I’L) = Dl(Qa I’L) + D(qla l’Ll) (10) 652) = 652)7 |f 'L — 2
(recall definition (1)). Since:, is nonatomic, the induction hy- [P, if3<i<h.
pothesrs implies that there is a regular quantr}ziemth interval  Then, as irStep 1it is easy to see that
cels T < - < T(,)1 and codepointge®, ... 5\,) 1t
such that D(QQa N) < D(Qla N)
. and@; and@, have the same cell probabilities according:to
D(drs p1) < Dlass pu1) (1) step 3: sinceR\ S? =[t, ~0) is an interval, using the re-
and the cells of; andg; have the same measures according t’S(%l‘ICtIOI’] of  to Et >0), by (th;e induction hypothesrs we can re-
! (1) (L ace the cellss; ., S with interval cellsSy < - - - < Sy
1. Now defmeQ1 to have cells{S;”, ..., S5’} and code- ~
ts{c(l) . )} such that and correspon2d|n9 codepo;nts to obtarrr a regular quantjzer
poin TN (whereS; = Si ) andé; = c§ ) such that}) has the same cell
. probabilities ag), according tg., and
S(l) Sl, ifi=1 .
and ConsequentlyD(Q, 1) < D(Q, n), and@ and Q have the
W 1, if 4 =1 same cell probabilities. O
T Y, if2<i< A Proof of Theorem 2:AssumeD(QQ) < oo; otherwise, the

statement is trivial. Suppose th@tis an infinite-point quan-
From the construction af; it follows that? and@; have the tizer with cells{S:, S, ...} and codepointgci, cz, .. .}. The
same cell probabilities according to proof consists of two parts. First, for every nonatomic finite
measurg: and for every positive integer we construct an in-
S << s (12) finite-point quantizer?,, with D(Q,,) < D(Q) having cells
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{5886} such tha(S;) = p(S™) for all i, and ei- construction of),,. Also by construction, we have that for all
ther (" < SJ(") or 5™ > SJ(") ifi#j,1<4j<n 1Z4j<n

Then we show thaf),, converges, in a sense, to an almost reg- (a(n) b(n)) ngM g
ular quantizer? which has the same cell probabilities@snd v J
satisfiesD(Q) < D(Q). if 7 # ¢. Hence, for alln > ¢

The construction is a simple application of Theorem 1.
Forn > 1 let p, denote the restriction of: to |J,.,, S, ) 5.(n) 5(n) 4(n)
and apply Theorem 1 tg,, and then-point quantizer with H ((“i , b )) sp S U U S;
cells{Sy, .... Su_1, U, Si} and codepointgcy, .. ., cu}. I
The resulting regular quantize@_ has ci)depoints, say, =u(Si) + Z p(Si)-
" 2™ and interval cell 54, ..., S5 such that j>n

sincep((a™, ™)) > u(S;) for all 4, this implies
<(n) _ i —
p S UsSi| | =us), fori=1,...,n lim p((a™, 0 = w(S),  foralli
i<n n

and since: is nonatomic andim,, aE") = a;, lim,, bE") =b;,
we obtainy((a;, b;)) = p(S;). Thus, the quantizep with cells
S; = [a;, b;) and codepointg;, i = 1, 2, ... satisfies (13).
&) _ 5 A s, fori—1. . .. (Note that it may happen that = oo or ¢; = —o0).

‘ ‘ U ’ T ? To show (14), observe thatife (a;, b;), thenz e (a\™, b™)
for all » large enough. Since the sequengg, ., SE") oy

Now define@,, to have cells

andS™ = §; fori > n, with corresponding codepoint§” =  increases tdR by construction, and eithes™ < SJ(") or
EE") fori =1,...,n, anch") = ¢; for i > n. Then either SE") > S](") for i #£ j, 1 < 4,7 < n, this implies that if
SE") < S](»") orSE") > Sg»n) foralll1 <4, j <n,and € (a;, b;) thenxeé‘gn) for all n large enough. In other words,
letting 15 denote the indicator function of a s&tC R
D(Qn) =D(Q,,, pin) + ZDi(Q 1) o, oy(@),  ifi=3
o Am L, onse (2) = {0 o otherwise
ion Also, for all z € R, we have
ren tmintp (J2 = ) 2 otk -

In the second part of the proof, we show that there jisa-

. PR i ; (n) _ & i i . in-
most regular quantizef) with (interval) cells {3, S5, ...} sincelim,, ¢;’ = ¢ andp is nondecreasing and left-contin

uous (this also holds i; is not finite; recall (3)). Thus, since

h that
such tha p(U;(as, b)) = 1, we obtain
and e -
D(Q) < liminf D(Q,,). (14) - IEEL%fA Z Vasonstw ()p (‘a: G ) dini)
n—odo 7/7] J
SinceD(Q,,) < D(Q), this completes the proof. > / > liminfl o, ooeo(@)p (‘a: - cg,n)‘) dp(z)
('I;o show (th)e exwzte)nce afy ?a)tlsfylng (13) and (14), let R ’
at™ = inf 5" andb™ = sup S\ and form the vector R
: : : pS; > /RZ Lar oy (@)p(|2 — &]) du()
_ () ) (n) _(n) p(n) (n) K
'vn—(a1 L0176 ay 7, by e ,) )

(recall thatcE") is the codepoint associated witﬂ‘lﬁ"), and Where the first inequality follows by applying Fatou’s lemma
thata™ < ™ < ™ or1 < i < n by construction since [17] twice. Finally, we can use the centroid rule (4) to replace

0. was a regular quantizer). By Cantor's diagonalizatioﬁ”ynonﬁnite&i by a finite one that lies inside its associated cell.
mgthod, there is a subsequence {af,}, for convenience The modified quantize® is p-almost regular and satisfies (13)

denoted also by{v, }, converging componentwise to a vectoPnd (14). -
v = (aq, b1, ¢1, ag, ba, &, ...) (cOnvergence tec or —oco

is also allowed). Denote the corresponding subsequence of
quantizers also byf(Q,.}. Thena; < & < b; forall ¢, and  Lemma 4: AssumeX has a nonatomic distributiop and

the intervals(a;, b;), ¢ = 1,2,..., are pairwise disjoint d(z, y) = p(Jz — y|), wherep: [0, o) — [0, oo) is nonde-

since(a("), bE")), ¢t = 1, ..., n, are pairwise disjoint by the creasing and left-continuous. Lé€},,} be a sequence of infi-

T
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nite-point almost-regular quantizers, each with c¢§™ = for each fixedi and alln large enoughy(S;) > 1(Ujsn S5)s

[, 8™} and codepoint§c{™} such thatim, o = a;, and sop{™ = u(S;). Consequently, for suchandn
lim,, bE") = b;, andlim,, cE") = ¢, for all 4, whereaq;, b;, and

¢; are not necessarily finite. If the intervas = [a;, b;) sat- F (qi(n)> =" u(S))
isfy (1, Si) = 1, then for the quantize® with cells {.5; } and i<i
codepoints{¢; }, we have and so letting
D(Q) < liminf D(Q,,).
) ) ] ] éi:F_l ZN(SJ)

Proof: Sincep is nondecreasing and left-continuous, we J<i

have
) we haveq( - = ¢ for all n large enough. Therefore, Lemma 4
1iér_1)i;<1>f 1S§n> (z)p (|$ -G |) > 1s,(z)p(Jx — ci) can be applied to show that the infinite-point quantigewith
subdivision pointsjy < ¢1 < ¢ < --- and codepointg; =

for p-almost allz (recall definition (3) ife; is not finite). Then, E{X|X €1, d)}i=1,2 ... Satisﬁes

by applying Fatou’s lemma twice, we obtain
D(Q) < hmlnfD(Qn) < limsup D(@Q) < D(Q).

/le ol — i) dulx) y N e

Since( clearly satisfies the other requirements of the lemma,

n) the proof is complete for nonincreasitfg A similar argument
/ Z lim inf 1s<”> )p (‘ G D dy(z) can be used whefiis nondecreasing. O
L (n) Proof of Lemma 3:Consider first the case whei@ is a
< hrfr_l}o%f/ﬂj« Z Lgon(x)p (‘x G ) dp() finite-point regular quantizer with ordered subdivision points
o g {q1, ..., gn—1} and codepoints{¢y, ..., ¢, }. In this case,
= liminf D(Qn). L' [11, eq. (13)] shows that (7) holds for all= 1, ..., n — 1.
(This result is an immediate consequence of the Kuhn-Tucker
conditions of constrained optimization [25] applied to the
APPENDIX C

distortion and the entropy of) as functions of the vector
Proof of Lemma 2:Assume thayf is nonincreasing, and de- (g1, ..., g,—1). Although explicit conditions on the source

note the cells of by {51, S2, ...}. By Theorem 2, we can density and the distortion measure were not stated in [11], it is

redefine@ to be almost regular. 1€ has a finite number of easy to check that the positivity and continuity of the source

codepoints, then it can be redefined to be a regular quantiz#gnsity and the continuity of are sufficient.)

For a finite-point regular quantizer the statement of the lemmalf p; is constant for alf, then (7) does not depend anOth-

reduces to [13, Lemma A.5]. erwise, there is afisuch thap; # p,+1, and then\ is uniquely
Now assume thaf} has infinitely many codepoints. Denotegiven by

the distribution of X by x and let us index the cells of

in such a way thap(S;) > u(S;) > ---. The proof of yo e —a) —plei — ) (15)

Corollary 2 shows that there is a sequedeg: } of regular logpit1 — logpi

n-point quantizers such that eacly, has cell probabilities Notice that the numerator in the above expression is independent

p(S1)s s 1(Sn—1); (U, S5) (and soH(Q7) < H(Q)),  of the distribution ofX, and the denominator depends only on

andlimsup,, D(Q},) < D(Q). the ratio of the probabilities of adjacent cells. Therefor€} i
Apply the lemma toQ7, to obtain a unique:-point regular an infinite-point quantizer, thep; # p; ;1 for some:, and the

quantizery,, with D(Q,.) < D(Qy,), having subdivision points application of (15) to the conditional density &F on [g;, q.)

forall j < k — 1 proves (7) for alki (clearly, the finite-point

_ ) (n) . (n) (n) _ ) ) .
C=G <O < <l <Gp =T quantizer obtained by restrictin@ to [¢;, ¢x) must also be op-
. timal for the conditional density and the corresponding raie).
and codepoints
¢ = €G-, % )5 t=4...,n REFERENCES
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