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On the Structure of Optimal Entropy-Constrained
Scalar Quantizers
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Abstract—The nearest neighbor condition implies that when
searching for a mean-square optimal fixed-rate quantizer it is
enough to consider the class of regular quantizers, i.e., quantizers
having convex cells and codepoints which lie inside the associated
cells. In contrast, quantizer regularity can preclude optimality in
entropy-constrained quantization. This can be seen by exhibiting
a simple discrete scalar source for which the mean-square optimal
entropy-constrained scalar quantizer (ECSQ) has disconnected
(and hence nonconvex) cells at certain rates. In this work, new
results concerning the structure and existence of optimal ECSQs
are presented. One main result shows that forcontinuoussources
and distortion measures of the form ( ) = ( ), where

is a nondecreasing convex function, any finite-level ECSQ can
be “regularized” so that the resulting regular quantizer has the
same entropy and equal or less distortion. Regarding the existence
of optimal ECSQs, we prove that under rather general conditions
there exists an “almost regular” optimal ECSQ for any entropy
constraint. For the squared error distortion measure and sources
with piecewise-monotone and continuous densities, the existence
of a regular optimal ECSQ is shown.

Index Terms—Convex distortion measures, entropy coding, op-
timal quantization, regular quantizers.

I. INTRODUCTION

T HE main objective of quantizer design is to find a collec-
tion of codepoints (the codebook) and associated quanti-

zation cells providing minimum distortion subject to a rate con-
straint. In fixed-rate quantization, where the quantizer’s rate is
measured by the log-cardinality of the codebook, the rate con-
straint means that the number of codepoints is fixed. In this
case, efforts to design optimal quantizers have lead to the well-
known necessary conditions of quantizer optimality (namely,
the nearest neighbor and centroid conditions), first for scalar
quantizers and the squared error distortion measure [1], [26],
[2], and subsequently for vector quantizers and more general
distortion measures [3], [4]. An important consequence of the
nearest neighbor condition is that an optimal fixed-rate quan-
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tizer is essentially determined by its codepoints since its cells
are the Voronoi regions (with respect to the source distribution)
associated with the codepoints. For the squared error distor-
tion measure this implies that an optimal quantizer isregular,
i.e., each of its cells is a convex set and the associated code-
point lies inside the cell. The cells of a regular scalar quan-
tizer are intervals, and the cells of a regular vector quantizer
with a finite number of codepoints are convex polytopes. In
this sense, the structure of optimal fixed-rate quantizers for the
squared error distortion measure (and to a certain extent for
more general norm-based distortion measures [5]) is relatively
well understood. Moreover, for reasonable distortion measures
and source distributions, the distortion of a quantizer satisfying
the nearest neighbor condition is a continuous function of its
codepoints, and so the existence of optimal fixed-rate quantizers
can be deduced using standard continuity-compactness argu-
ments [6]–[8].

The average rate of a quantizer can further be reduced if
a variable-rate lossless code (entropy code) is applied to its
output. In this case, the rate is usually defined as the entropy of
the output of the quantizer [9] in order not to tie the performance
of such a scheme to a particular entropy code, and the resulting
scheme is called an entropy-constrained quantizer. The objec-
tive of the design is then to minimize the quantizer’s distortion
for a given entropy constraint, and a quantizer achieving this
minimum distortion is called an optimal entropy-constrained
quantizer. Since the nearest neighbor condition is no longer nec-
essary for the optimality of an entropy-constrained quantizer,
existence and structural problems concerning optimal quanti-
zation appear to be harder in this case. In contrast to fixed-rate
quantization, where particular attention has been payed to struc-
tural and existence issues, works on entropy-constrained quan-
tization have focused more on design issues. For scalar sources,
Berger [10] and Farvardin and Modestino [11] found necessary
conditions for the optimality of a regular entropy-constrained
scalar quantizer (ECSQ) with a fixed number of output points.
These conditions give rise to practical algorithms for designing
locally optimal ECSQs with a fixed number of codepoints [10],
[12], [11], [13]. Chouet al. [14] gave an effective iterative de-
scent algorithm using a Lagrangian formulation for the design
of locally optimal entropy-constrained vector quantizers. Suffi-
cient conditions for the existence of an optimal quantizer among
all regular ECSQs with a fixed number of codepoints were given
for sources with log-concave densities by Kiefferet al. [13].
It appears, however, that no general result concerning the ex-
istence of optimal entropy-constrained quantizers is known.

The assumption of quantizer regularity seems to be ubiqui-
tous in the literature on entropy-constrained quantization. A reg-
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ular quantizer with a finite number of codepoints can be de-
scribed using a finite number of parameters, while a more gen-
eral quantizer structure may not be described this way. Thus, a
fundamental question is whether it is sufficient to consider only
regular quantizers when searching for a (mean-square) optimal
entropy-constrained quantizer. In fact, this question can be an-
swered in the negative by a simple example; there exists a dis-
crete scalar source distribution and an interval of entropy con-
straints for which no quantizer with interval cells is optimal (see
Example 1 in Section III). One main contribution of this paper is
to show that such a pathological example cannot exist when the
source distribution is continuous; for such a source any “good”
quantizer is essentially regular.

In a recent work, Chou and Betts [15] showed that if an
entropy-constrained quantizer is optimal and achieves the
lower convex hull of , the lowest possible distortion of
any quantizer with entropy not greater than, then it satisfies
a modified version of the nearest neighbor condition. For the
squared error distortion measure, all quantizers satisfying
this modified nearest neighbor condition can be shown to be
regular. This result is very general in that it is valid for an
arbitrary source distribution and quantizer dimension. On the
other hand, it does not cover optimal quantizers that lie above
the lower convex hull of , which can happen if is
not convex. (For example, is not convex for a uniform
scalar source and the squared error distortion measure [16].)
Moreover, the result already presumes the optimality of the
quantizer, but the achievability of is an open issue.

Our purpose in this paper is to give new results on the struc-
tural properties and the existence of optimal ECSQs. The paper
is organized as follows. In Section II, notation and definitions
are introduced. In Section III, regularity type properties of
ECSQs are investigated. Throughout, our basic assumption is
that the source has a nonatomic distribution (i.e., its distribution
function is continuous) and the distortion measure is of the
form , where is a nondecreasing convex
function. Theorem 1 shows that for any finite-point quantizer
there is a regular quantizer with the same entropy and equal
or less distortion. As a consequence, Corollary 2 shows that
regular finite-point quantizers can perform arbitrarily close to
the operational distortion-rate curve . Theorem 2 ex-
tends Theorem 1 to infinite-point quantizers; it shows that any
quantizer can be replaced with an “almost regular” quantizer,
that is, with a quantizer which has interval cells but may be
undefined on a set of probability zero.

In Section IV, existence results concerning optimal ECSQs
are given. Theorem 3 proves that an optimal ECSQ achieving

always exists, and that such an optimal quantizer can
be assumed to be almost regular. Theorem 4 shows that a reg-
ular optimal ECSQ exists among all quantizers having a fixed
number of codepoints. In Section V, for the squared error distor-
tion measure and sources with densities, the almost regularity
of an optimal ECSQ is strengthened to regularity. Theorem 5
shows the existence of regular optimal ECSQs for a wide class
of source densities which contains all univariate densities com-
monly used as parametric source models. Concluding remarks
are given in Section VI.

II. PRELIMINARIES

An -point(or -level)scalar quantizer is a (Borel) mea-
surable mapping of the real lineinto a finite or countably in-
finite set of distinct reals called the
codebookof . In case the codebook is not finite, we formally
define and call an infinite-point quantizer. The
are called thecodepointsand the sets
are called thecells(or decision regions) of . The codebook
and the collection of cells completely
characterize since is a partition of and

for

The distortion of in quantizing a real random variable
with distribution is measured by the expectation

where thedistortion measure is a nonnegative measur-
able function of two real variables. When the distributionis
clear from the context, the short notation will be used.
Thepartial distortionof the th cell of is defined by

(1)

so that . In case is an arbitrary finite
measure, and the are still well defined by the
corresponding integrals.

The entropy-constrainedrate of is the entropy of the dis-
crete random variable

where denotes base logarithm. A scalar quantizer whose
rate is measured by is called anentropy-constrained
scalar quantizer(ECSQ).

Unless otherwise stated, we always assume that the cell prob-
abilities , , are all positive. One can
always redefine on a set of probability zero (by possibly re-
ducing the number of cells) to satisfy this requirement.

For any let denote the lowest possible distor-
tion of any quantizer with output entropy not greater than.
This function is formally defined by

where the infimum is taken over all finite or infinite-point scalar
quantizers whose entropy is less than or equal to. If there is
no with finite distortion and entropy , then we
formally define . The existence of a “reference
letter” such that is a sufficient (but
not necessary) condition for to be finite for all .
Any that achieves in the sense that and

is called anoptimalECSQ.
A scalar quantizer is calledregular if i) its cells are subin-

tervals of the real line; ii) each of its codepoints lies inside the
associated cell; iii) the collection of cells is locally finite in
the sense that the number of cells inintersecting any bounded
subset of the real line is finite. This definition reduces to the
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usual definition of regularity [9] if has a finite number of
codepoints since in this case iii) is automatically satisfied.

Let be a regular finite-point scalar quantizer with code-
points indexed so that . Then the corre-
sponding interval cells satisfy

where, for , means that for all
and . Defining and , the interval
boundaries , satisfy

and

if

The points , , called thesubdivision pointsor
thresholdsof , may belong to either or .

Similarly, if an infinite-point quantizer is regular, then its
codepoints can be linearly ordered so that if ,
where the index set is either the positive integers (if there is a
smallest codepoint), or the negative integers (if there is a largest
codepoint), or the set of all integers (if there are no smallest
and largest codepoints), and the cells ofare intervals with
endpoints and such that . Throughout
the paper we assume that the source random variablehas a
nonatomicdistribution, i.e., for all .1

Thus, each subdivision point can be mapped arbitrarily to
either or without changing the distortion and entropy
of . Hence we adopt the convention that the bounded cells
of a regular quantizer are of the form . For
the sake of unifying the notation, if has a leftmost cell, we
sometimes formally extend the domain ofto and
write instead of .

In what follows, we often assume thatis a difference dis-
tortion measure of the form

(2)

where : is a nondecreasing function. Then
the limit

exists, and is either finite or . It will be convenient to
formally extend the domain of to and accord-
ingly define

(3)

for all .
It is easy to show that if is also lower semicontinuous, then

for any Borel set such that

1Note that if the distribution ofX is “continuous” in the sense that it has a
probability density function, then it is necessarily nonatomic. On the other hand,
there exist nonatomic distributions (such as the Cantor measure; see, e.g., [17])
that do not have densities.

there is a (the “generalized centroid” of ) minimizing
the distortion over , i.e.,

(4)

Since is nondecreasing, if is an interval, then there is a
minimizing that lies inside . If is strictly convex then
is unique for any such that [4]. For example,

for the squared error distortion measure.

III. REGULARIZING ECSQS

Consider a scalar quantizer with a finite codebook
. For any source random variable

Thus, if is a quantizer that maps any input to a code-
point in minimizing , , then it has min-
imum distortion among all quantizers with codebook. This is
the well-known nearest neighbor condition for fixed-rate quan-
tizers. Although the cells of are not
uniquely defined, each satisfies

For the squared error distortion measure ,
or more generally for , where is non-
decreasing, each is an interval and ; hence is reg-
ular. This means that any finite point quantizer can be “regu-
larized” to obtain a regular quantizer with the same number of
codepoints and equal or less distortion, and that it is enough to
consider the much smaller, parametric class of-point regular
quantizers when searching for an optimal quantizer in the non-
parametric family of all -point quantizers.

Although the nearest neighbor condition is no longer valid
for entropy-constrained quantizers, it was recently shown in [15]
that a modified version of it still holds in the entropy-constrained
setting.2 If a quantizer with codebook and cells
achieves the lower convex hull of for a source with
distribution , then there is a (the negative slope of a line
of support to the lower convex hull at) such that for all and

-almost all

(5)

For the squared error distortion (and more generally for
th-power distortions), if . In this case, the

infimum in (5) is achieved by some index, and (5) defines a
quantizer with convex cells such that only finitely many cells
intersect any bounded set [15]. Thus, for the squared error
distortion measure, any achieving the lower convex hull of

can be assumed to be regular. Moreover, it was shown
in [15] that has a finite number of codepoints if the source
distribution has sufficiently light tail. Condition (5) works
for arbitrary source distribution and quantizer dimension, but
it does not cover optimal quantizers that lie above the lower

2A similar necessary condition for the optimality of variable-rate quantizers
also appeared in [14].
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convex hull of , which can happen if is not
convex. For example, for a uniform scalar source and
the squared error distortion coincides with its lower convex
hull only at rates for [16]. In
general, little is known about the properties of , and
so the achievability of the lower convex hull is very difficult
to check. Thus, other methods are needed to find for each
rate a tractable, sufficiently small family of quantizers that
still contains an optimal entropy-constrained quantizer. In
the scalar case, such a family will turn out to be the class of
regular quantizers if the source distribution is nonatomic. For
discrete sources, however, it may happen that no regular ECSQ
achieves the minimum mean-squared distortion among all
ECSQs satisfying a given entropy constraint.

Example 1: Let , and let be a discrete
random variable taking values in with the following
distribution:

and

A quantizer for is in effect defined by a partition of the set
(the definition of for other values is immaterial)

and by the corresponding codepoints (the optimal codepoints for
each partition can easily be found). Checking the five possible
partitions, it turns out that for all such that

where , an optimal ECSQ
has two codepoints and , and the corresponding
cells must satisfy

and

Thus, if is an interval, then is a union of two disjoint in-
tervals, each with positive probability. It follows that no regular
quantizer can be optimal in this case.

The first result of this section shows that no such patholog-
ical example can exist if has a nonatomic distribution. More
specifically, we show that if has a nonatomic distribution,
then, for nondecreasing convex difference distortion measures,
every finite-point ECSQ can be “regularized” so that the re-
sulting regular quantizer has the same cell probabilities (and
hence the same entropy) and equal or less distortion. The key
to this result is the following lemma.

Lemma 1: Assume that the random variable has a
nonatomic distribution , and let , where
: is convex and nondecreasing. Letbe

an arbitrary two-point quantizer with cells and cor-
responding codepoints such that . Then there
exists a two-point quantizer with interval cells
and corresponding codepoints such that ,

, , and .

Remark: has interval cells but it is not necessarily regular
( is not guaranteed by the construction). However, since

is nondecreasing, the centroid rule (4) guarantees that each
can be replaced by a such that the distortion is not

increased.

Proof of Lemma 1:Since the distribution function of is
continuous, there is an such that .
Let be the quantizer with cells , ,
and codepoints . We show that . If
is not finite, we are done; so assume . The key
observation is that the function

is nondecreasing. To show this, rewritein the following form:

if

if

if .

Since is nondecreasing, is clearly nondecreasing in the in-
terval , and the convexity of readily implies that is
also nondecreasing in and .

Since and

(It is easy to see that and the monotonicity of
imply that both integrals are finite.) Adding

to both sides and rearranging terms yields .

We showed that convex and nondecreasing distortion mea-
sures allow regularizing any two-point quantizer if the source
distribution is nonatomic. We call a distortion measure pos-
sessing this property two-point regular. More generally, given a
positive integer we say that a distortion measureis -point
regular if for any nonatomic distribution and any -point
quantizer there is aregular -point quantizer such that

and and have the same cell probabilities
(i.e., there is a one-to-one mappingbetween the cells of and

satisfying for any cell of ). Finally, is
calledfinitely regular if it is -point regular for every positive
integer .

Lemma 1 showed that nondecreasing and convex difference
distortion measures are two-point regular. The next theorem
shows that if is two-point regular, then it is also finitely reg-
ular. The proof can be found in Appendix A.

Theorem 1: Every two-point regular distortion measure is
finitely regular. That is, if has a nonatomic distribution,
and is two-point regular, then for any finite-point quantizer

with cells there exists a regular quantizer
with interval cells such that ,

, and .

Remarks: i) Note that not only do and have equal en-
tropies, but if the outputs of and are encoded using the
same variable-length code (e.g., a Huffman code [18]), then the
resulting average code lengths will be equal. ii) By Lemma 1, the
theorem holds for any difference distortion measure

with a nondecreasing and convex. Although we
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have not yet found other examples for two-point regular dis-
tortion measures, we conjecture that this class is actually larger
than the class of nondecreasing and convex difference distortion
measures.

For with a nondecreasing and convex
, the construction of Lemma 1 does not change the codepoints

of the quantizer, and it orders the cells according to the corre-
sponding codepoints. It is easy to see that this order preserving
construction is maintained in Theorem 1 if Lemma 1 is used in
each step of the induction argument given in the proof. Thus,
we obtain the following corollary.

Corollary 1: Assume that the real random variablehas a
nonatomic distribution , and let , where

is nondecreasing and convex. Then for any
finite-point quantizer with cells and corre-
sponding codepoints there exists a regular quan-
tizer with interval cells such that

for all , , and if ,
then .

Remark: It follows from Lemma 1 and the construction in
the proof of Theorem 1 that can also preserve the codepoints
of , not only their order. In this case, has interval cells, but
it is not necessarily regular ( is not guaranteed).

Another immediate consequence of Theorem 1 is that
can be arbitrarily well approximated by regular finite-point
ECSQs. This fact can be very useful in analyzing the high-rate
asymptotic behavior of [19].

Corollary 2: Assume has a nonatomic distribution, and
let be a two-point regular distortion measure. If there is a

such that , then for any and ,
there is a regular finite-point quantizer such that
and

Remark: The conditions of the corollary are satisfied for the
squared error distortion measure if .

Proof of Corollary 2: First we show that for any quantizer
with finite distortion, there is a sequence of regular finite-

point quantizers such that for all and

(6)

If is a finite point quantizer, then (6) follows by regularizing it
using Theorem 1. Otherwise, assumehas cells
and corresponding codepoints , and for de-
fine the -point quantizer to have cells

and codepoints . It is clear that
. Moreover, and are identical on ,

and so

since , increases to , and .
Since each is an -point quantizer, Theorem 1 can be
used to obtain a regular -point quantizer such that

, and . Hence (6) is
proved. Now for any choose a quantizer such
that and . Then, by
(6), there is a regular finite-point quantizer such that

and , which in turn
satisfies .

Unexpected problems may arise if one wants to extend The-
orem 1 to infinite-point quantizers. To illustrate the problem as-
sume that the order-preserving construction of Corollary 1 car-
ries over to the regularization of infinite-point quantizers. In this
case, if and are two codepoints of the initial infinite-point
quantizer such that , then the corresponding cells
and of the regularized quantizer satisfy . As a re-
sult, can have quite an unusual structure if the initial quantizer

is arbitrary. For example, assume thatis an infinite-point
quantizer with codepoints such that if , then
there exists a such that . Then the collection of
interval cells of the regularized will have the prop-
erty that for any and with , there is an such that

. It can be seen that such collection of intervals
cannot form a partition of the real line.3

To deal with such cases, we introduce the notion of almost
regular quantizers. Given a finite measure, a quantizer is
called -almost regular(or almost regular if is clear from the
context) if there exists an with such that is
defined on , and every cell of is an interval containing
the associated codepoint. Thus, an almost regular quantizer has
interval cells but it may not be defined on a set of-measure
zero. (We can define in an arbitrary manner for all
without changing the entropy and distortion of.) As an ex-
ample, let be the Cantor ternary set [17], and let
be absolutely continuous with respect to the Lebesgue measure
with . Then is a union of countably many
open intervals which form the cells of a-almost regular quan-
tizer. As this example shows, an almost regular quantizer can
have infinitely many cells in a bounded interval. Also note that
the quantizer of this example cannot be (re)defined on a set of
probability zero to obtain a quantizer with interval cells.

This definition can be extended similarly to higher dimen-
sions. A -dimensional vector quantizer is called -almost
regular if there is a set such that , is defined
on , and has convex cells containing the corresponding
codepoints. To exhibit an example for a-almost regular vector
quantizer, we can use a corollary of the Vitali covering theorem
[20]. The corollary states that there exists a countable collection

of disjoint closed balls in the unit cube
of such that the set has Lebesgue
measure zero. Now let be absolutely continuous with respect
to the -dimensional Lebesgue measure with .
Then form the cells of an almost regular-di-
mensional quantizer.

3Let Ŝ denote the interior of̂S . Then n ( Ŝ ) is nonempty and perfect
(sinceŜ andŜ cannot have a common endpoint ifi 6= j), and thus uncount-
able. Therefore, n ( Ŝ ) is nonempty and uncountable.
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Remark: If is a -almost regular scalar quantizer with
cells such that only finitely many of the intersect any
bounded interval, then can be redefined on a set of-measure
zero to obtain a regular quantizer with the same distortion and
entropy. This follows since in this case there is an indexing of
the cells such that for all , and now the set of points
(of measure zero) lying between and where is pos-
sibly not defined can be assigned to (say)to obtain interval
cells whose union covers the real line.

The last result of this section shows that for two-point reg-
ular difference distortion measures, any infinite-point quantizer
can be replaced by an almost regular quantizer with the same
entropy and equal or less distortion. The theorem is proved in
Appendix A.

Theorem 2: Assume that the random variable has a
nonatomic distribution , and let be a
two-point regular distortion measure, where
is nondecreasing and left-continuous. Then for any infi-
nite-point quantizer there exists an almost regular quantizer

with the same cell probabilities such that .

IV. THE EXISTENCE OFOPTIMAL ECSQs

The regularization result of Theorem 2 makes it possible to
show the existence of an optimal ECSQ for any source with
a nonatomic distribution. Theorem 2 also implies that such an
optimal ECSQ can be assumed to be almost regular.

Theorem 3: Let have a nonatomic distribution and let
be a two-point regular distortion measure,

where is nondecreasing and left-contin-
uous. Then for any there exists a -almost regular quan-
tizer such that and .

Remarks: i) The conditions on are satisfied when is
convex and nondecreasing; hence, the result holds for the
squared error distortion measure. ii) This theorem would imply
the existence of a regular optimal ECSQ if one could directly
prove that an optimal ECSQ cannot have infinitely many cells
in a bounded interval. While this is a reasonable conjecture
under general conditions, we have only been able to prove
it for the squared error distortion measure and sources with
well-behaved densities (see Section V).

Proof of Theorem 3:Fix and assume is
finite; otherwise, the statement is trivial. Consider a sequence
of quantizers such that for all and

By Theorem 2, we can assume that eachis almost regular.
For positive integers and let denote the
cell of with the th largest probability, let denote the
corresponding codepoint, and let . In case of
ties, any ordering of the equiprobable cells suffices. If has

cells, then is formally defined to be empty for all .
For every , let

Then , where

for all

Now for any , let be a positive-integer-
valued random variable with distribution ,

. Then by a result of Wyner [21, Theorem 1] we have

Thus, for any , Markov’s inequality implies

Hence, the family of distributions corresponding tois tight.
Therefore, by Prokhorov’s theorem [17], has a point-
wise-convergent subsequence, denoted also by , which
converges to some probability distribution .
Clearly, , and by Fatou’s lemma

(thus, , implying that is compact under pointwise con-
vergence). Now for the subsequence of quantizers corre-
sponding to , form the vectors

If is empty, define . By Cantor’s diagonal-
ization method, a subsequence converging pointwise to
a vector can be chosen (con-
vergence to or is also allowed). For this vector, we can
construct a quantizer with codepoints and corresponding
cells . If (in this case also by con-
struction), then is empty by definition. Since for every fixed

the intervals , are pair-
wise disjoint, it is easy to see that the intervals ,

are also pairwise disjoint. Sinceis nonatomic

for all , and hence . Thus, if is defined to have
cells and codepoints (note that just as in the proof of
Theorem 2, some of the may not be finite), then since ,
we have

On the other hand, Lemma 4 in Appendix B shows that
, , and imply

Now we can use the centroid rule (4) to replace any nonfinite
by a finite one that lies inside its associated cell. The modified
quantizer is -almost regular and achieves .
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The following result shows that for any finite there is an
optimal quantizer among all ECSQs with no more thancode-
points.

Theorem 4: Assume that the random variable has a
nonatomic distribution , and let be a
two-point regular distortion measure, where
is nondecreasing and left-continuous. Then for any and
positive integer , there exists a regular quantizer with at most

codepoints achieving

has at most codepoints

Remark: Note that the quantizer achieving may
have less than codepoints. For the squared error distortion
case and for sources with log-concave densities, Kiefferet al.
[13] provided conditions under which is achieved by
a quantizer having exactly codepoints.

Proof of Theorem 4:The proof of Theorem 3 is used with
a slight modification. By Theorem 1, there exists a sequence of
regular quantizers , each having no more than code-
points, such that for all and

Then the construction in the proof of Theorem 3 yields an almost
regular quantizer with at most codepoints. Since

and , can be redefined to obtain a
regular quantizer which achieves .

We conclude this section with a short discussion on the (lack
of) stability of . For two probability distributions and

with and define

where the infimum is over all joint distributions of the pairs of
random variables such that has distribution and

has distribution . Then is a metric on probability dis-
tributions with finite second moments which has been widely
used in fixed-rate quantization (see, e.g., [22], [6], [5]). For the
squared error distortion measure, optimal fixed-rate quantizer
performance is a continuous function of the source distribution
in this metric [6], that is, letting denote the min-
imum mean-squared distortion for a source with distribution
of any quantizer with codepoints, one has

for any sequence of source distributions with
. The convergence in is easy to characterize

( if and only if and
weakly [6]), and the continuity of in is an

important tool in proving consistency and convergence rate re-
sults for empirical quantizer design. In particular, if a quantizer

is optimal for , and and are close in , then is
nearly optimal for .

One can ask whether an analogous stability result holds for
, the minimum ECSQ distortion (here we have made

explicit the dependence of on ). The following simple
example uses this fact to demonstrate that is not con-
tinuous in .

Example 2: Let denote the distribution of in Example 1,
and let , , be defined by the density such that

if or ,
if , and is zero otherwise. Then . Let
the two-point quantizer be defined by if
and if . Consider the squared error distortion
measure. Then for all , implying

Also, it is easy to see that

Since from Example 1, we obtain

V. OPTIMALITY AND REGULARITY FOR SOURCES

WITH DENSITIES

In the previous section, we showed the existence of almost
regular optimal ECSQs for nonatomic source distributions and
a wide class of difference distortion measures. We can obtain
the stronger result that a regular optimal ECSQ exists if we re-
strict our attention to the squared error distortion measure and
sources with well-behaved densities. For convenience, we as-
sume in this section that the source density is supported in a
subinterval of the real line , where we allow the possi-
bility that and . Accordingly, quantizers need
only be defined on .

A function is calledpiecewise monotoneif
can be partitioned into countably many intervals such

that any bounded set intersects only a finite number of these
intervals and is monotone in each of these intervals.Piece-
wise continuityis similarly defined with continuity in place of
monotonicity. All continuous unimodal densities are, of course,
piecewise monotone and piecewise continuous, and all densi-
ties commonly used in source modeling belong to this class, in-
cluding the generalized Gaussian, Cauchy, and beta densities
[11].

The following theorem resolves the problem of the regularity
of optimal ECSQs in the special, but important case of the
squared error distortion measure and piecewise-monotone and
piecewise-continuous source densities.

Theorem 5: Let be a random variable with a density
which is piecewise monotone and piecewise continuous in

. Assume that . Then for any entropy
constraint there is an optimal ECSQ which is regular.

To prove this result, we need two useful technical lemmas.
The proofs of these are deferred to Appendix C. The first lemma
is an extension of a result of Kiefferet al. [13, Lemma A.5].

Lemma 2: Let be a random variable with a density
function which is continuous, positive, and nonincreasing
(resp., nondecreasing) on and . Assume

. Then for any scalar quantizer there
exists a quantizer satisfying the following:
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a) and have the same cell probabilities and
;

b) has interval cells such that (resp.,
);

c) the cell probabilities are nonincreasing as in-
creases.

The next lemma is a simple consequence of a necessary con-
dition for the optimality of a finite-point regular ECSQ due to
Farvardin and Modestino [11], who generalized a similar result
of Berger [10] from the squared error distortion to more general
distortion measures.

Lemma 3: Let have a density which is positive and
continuous in and let , where

is nondecreasing and continuous. Assume
is an ECSQ with finite distortion that is optimal for some

entropy constraint . If has codepoints and interval
cells , where for all , then there is
a such that for all

(7)

where .

Proof of Theorem 5:Denote the distribution of by
and assume ; otherwise, the result trivially holds.
By Theorem 3, for any rate constraint there is a -almost
regular optimal quantizer . If only finitely many cells of
intersect any bounded interval in , then can be redefined
on a set of -measure zero to obtain a regular quantizer (see the
remark preceding Theorem 2), and the theorem holds.

Assume now that has an infinite number of cells in some
bounded interval. Sinceis piecewise monotone and piecewise
continuous, it is easy to see that there is an interval partition

of such that only finitely many of the intersect
any bounded subset of , and is continuous and mono-
tone in the interior of each . Then there is a bounded interval
such that for some , contains infinitely many
cells, say , of , and the intersection of with any cell of

not contained in has -measure zero. Thus, we can define a
new quantizer on to have cells with the corresponding
codepoints. If denotes the conditional density of on , and

is the corresponding distribution, thenis -almost regular,
and is positive, continuous, and monotone on. Assume
is nonincreasing; the argument is similar for nondecreasing.
Then, by Lemma 2, there is a with
such that and have the same cell probabilities, has in-
terval cells with subdivision points such
that the cell probabilities are nonincreasing asin-
creases, and , the left endpoint of . Note that the condi-
tion required in Lemma 2 is automatically
satisfied since is bounded. Since was optimal, must be
optimal for and the entropy constraint . Denoting by

the codepoint for the cell , by Lemma 3, there is a
such that for all we have

(8)

where . If , we follow an idea in [15]
to show that only finitely many can be nonzero, which con-

tradicts the assumption thathas an infinite number of cells in
. Notice that (8) implies that for any

where denotes the length of and the last inequality holds
because is convex and nondecreasing. There-
fore, if , then is bounded from above; hence, there
is an such that for all . But then ,
which is impossible. Thus, . Then (8) implies that the cells

satisfy the standard nearest neighbor condition. Since
, the optimal codepoint corresponding to

is the centroid , and since is
nonincreasing on , . By the nearest neighbor
condition, , and so
for all . That is, the cell lengths increase with. Therefore,

, contradicting the fact the is bounded and
for all . Thus, only finitely many cells of can intersect
any bounded interval.

VI. CONCLUSION

In this paper, we presented new results on the structure and
existence of optimal ECSQs. First, we considered the problem
of regularization. For nonatomic source distributions and a wide
class of difference distortion measures we showed that for any
finite-point ECSQ there is a regular ECSQ with the same en-
tropy and equal or less distortion. As a consequence, we showed
(under the standard assumption that there is a reference point
with finite expected distortion) that regular finite-point ECSQs
can perform arbitrarily close to the operational distortion-rate
curve . We introduced the notion of an almost regular
quantizer (such quantizers have convex cells but may be un-
defined for a set of input points of probability zero), and we
showed that any infinite-point quantizer can be replaced with
an almost regular quantizer that has the same entropy and equal
or less distortion.

Using the technique of regularization, we gave results con-
cerning the existence of optimal ECSQs. We proved that there
exists an almost regular ECSQ that achieves the operational
distortion-rate function . This result basically settles the
problem of existence of optimal entropy-constrained quantizers
in the scalar case. We also showed that a regular optimal ECSQ
exists among all ECSQs having no more than a given finite
number of codepoints. For the squared error distortion mea-
sure and a wide class of sources with well-behaved densities
we showed that can be achieved by a regular ECSQ.

It is of interest to extend these results to entropy-constrained
vector quantizers (ECVQs). The techniques used in this paper
rely rather heavily on the fact that the set of reals can be lin-
early ordered in a natural way, and the proofs do not easily carry
over to the vector case. For example, the existence of optimal
ECVQs is an open problem. Another interesting (and perhaps
easier) problem is to show that for the squared error distortion
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measure, theth-order entropy-constrained operational distor-
tion-rate function can be arbitrarily well approached
by regular -dimensional ECVQs. Such a result would help
tie up some loose ends in asymptotic (high-rate) quantization
theory [23], [24].

APPENDIX A

Proof of Theorem 1:Assume is finite; otherwise, the
statement is trivial. The proof uses induction on. A one-point
quantizer is always regular; henceis always one-point regular.
Also, is two-point regular by assumption. Now assume that
is -point regular for all , where . We show
that then is also -point regular.

Assume without loss of generality that the indexing of the
cells of is such that

(9)

and for , let denote the codepoint corresponding
to .

The main idea in constructing is the following. First, we
fix and, using the induction hypothesis, redefine the cells

such that the new cells are “intervals” in .
That is, the new cells satisfy and .
Then we redefine and such that the quantizer thus
obtained have a leftmost cell which is a proper interval. Finally,
the other cells are replaced by intervals using the induction
hypothesis.

Step 1: Let be the restriction of to , that is,
for any Borel set . Further-

more, let the -point quantizer be defined to have cells
and codepoints . Then

(10)

(recall definition (1)). Since is nonatomic, the induction hy-
pothesis implies that there is a regular quantizerwith interval
cells and codepoints
such that

(11)

and the cells of and have the same measures according to
. Now define to have cells and code-

points such that

if

if

and
if

if .

From the construction of it follows that and have the
same cell probabilities according to

(12)

and

if

if .

Thus, (10) and (11) imply that

Step 2: Let be the restriction of to , and
let the two-point quantizer have cells and
codepoints . Then, since is assumed to be two-
point regular, there is a regular quantizerwith interval cells

and codepoints such that
and and have the same cell measures according

to . We assume (as we may without loss of generality) that
and , where

Since either or , by
(9) we have . Thus , because

, and so

Therefore, we can define the quantizer with cells and code-
points

if

if

if
and

if

if

if .

Then, as inStep 1, it is easy to see that

and and have the same cell probabilities according to.
Step 3: Since is an interval, using the re-

striction of to , by the induction hypothesis we can re-
place the cells with interval cells
and corresponding codepoints to obtain a regular quantizer
(where and ) such that has the same cell
probabilities as according to , and

Consequently, , and and have the
same cell probabilities.

Proof of Theorem 2:Assume ; otherwise, the
statement is trivial. Suppose that is an infinite-point quan-
tizer with cells and codepoints . The
proof consists of two parts. First, for every nonatomic finite
measure and for every positive integer we construct an in-
finite-point quantizer with having cells
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such that for all , and ei-
ther or if , .
Then we show that converges, in a sense, to an almost reg-
ular quantizer which has the same cell probabilities asand
satisfies .

The construction is a simple application of Theorem 1.
For let denote the restriction of to ,
and apply Theorem 1 to and the -point quantizer with
cells and codepoints .
The resulting regular quantizer has codepoints, say,

and interval cells such that

for

Now define to have cells

for

and for , with corresponding codepoints
for , and for . Then either

or for all , and

In the second part of the proof, we show that there is a-al-
most regular quantizer with (interval) cells
such that

for all (13)

and

(14)

Since , this completes the proof.
To show the existence of satisfying (13) and (14), let

and and form the vector

(recall that is the codepoint associated with , and
that for by construction since

was a regular quantizer). By Cantor’s diagonalization
method, there is a subsequence of , for convenience
denoted also by , converging componentwise to a vector

(convergence to or
is also allowed). Denote the corresponding subsequence of
quantizers also by . Then for all , and
the intervals , are pairwise disjoint
since , , are pairwise disjoint by the

construction of . Also by construction, we have that for all

if . Hence, for all

Since for all , this implies

for all

and since is nonatomic and , ,
we obtain . Thus, the quantizer with cells

and codepoints , satisfies (13).
(Note that it may happen that or ).

To show (14), observe that if , then
for all large enough. Since the sequence

increases to by construction, and either or

for , , this implies that if

then for all large enough. In other words,
letting denote the indicator function of a set

if

otherwise.

Also, for all , we have

since and is nondecreasing and left-contin-
uous (this also holds if is not finite; recall (3)). Thus, since

, we obtain

where the first inequality follows by applying Fatou’s lemma
[17] twice. Finally, we can use the centroid rule (4) to replace
any nonfinite by a finite one that lies inside its associated cell.
The modified quantizer is -almost regular and satisfies (13)
and (14).

APPENDIX B

Lemma 4: Assume has a nonatomic distribution and
, where is nonde-

creasing and left-continuous. Let be a sequence of infi-
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nite-point almost-regular quantizers, each with cells
and codepoints such that ,

, and for all , where , , and
are not necessarily finite. If the intervals sat-

isfy , then for the quantizer with cells and
codepoints , we have

Proof: Since is nondecreasing and left-continuous, we
have

for -almost all (recall definition (3) if is not finite). Then,
by applying Fatou’s lemma twice, we obtain

APPENDIX C

Proof of Lemma 2:Assume that is nonincreasing, and de-
note the cells of by . By Theorem 2, we can
redefine to be almost regular. If has a finite number of
codepoints, then it can be redefined to be a regular quantizer.
For a finite-point regular quantizer the statement of the lemma
reduces to [13, Lemma A.5].

Now assume that has infinitely many codepoints. Denote
the distribution of by and let us index the cells of
in such a way that . The proof of
Corollary 2 shows that there is a sequence of regular

-point quantizers such that each has cell probabilities
(and so ),

and .
Apply the lemma to to obtain a unique -point regular

quantizer with , having subdivision points

and codepoints

such that

for

where is obtained by ordering the probabilities
in a nonincreasing manner.

Let us formally make an infinite-point quantizer by defining
for all . Denote the distribution function of by

, and let be the inverse of in the interval . Clearly,

for each fixed and all large enough, ,

and so . Consequently, for suchand

and so letting

we have for all large enough. Therefore, Lemma 4
can be applied to show that the infinite-point quantizerwith
subdivision points and codepoints

, satisfies

Since clearly satisfies the other requirements of the lemma,
the proof is complete for nonincreasing. A similar argument
can be used when is nondecreasing.

Proof of Lemma 3:Consider first the case where is a
finite-point regular quantizer with ordered subdivision points

and codepoints . In this case,
[11, eq. (13)] shows that (7) holds for all .
(This result is an immediate consequence of the Kuhn–Tucker
conditions of constrained optimization [25] applied to the
distortion and the entropy of as functions of the vector

. Although explicit conditions on the source
density and the distortion measure were not stated in [11], it is
easy to check that the positivity and continuity of the source
density and the continuity of are sufficient.)

If is constant for all , then (7) does not depend on. Oth-
erwise, there is ansuch that , and then is uniquely
given by

(15)

Notice that the numerator in the above expression is independent
of the distribution of , and the denominator depends only on
the ratio of the probabilities of adjacent cells. Therefore, ifis
an infinite-point quantizer, then for some , and the
application of (15) to the conditional density of on
for all proves (7) for all (clearly, the finite-point
quantizer obtained by restricting to must also be op-
timal for the conditional density and the corresponding rate).
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