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Abstract — In this paper we consider the connection between the
packet loss ratio (PLR) in a switch with a finite buffer of size L and the
tail distribution of the corresponding infinite buffer queue Q. In the liter-
ature the PLR is often approximated with the tail probability P(Q > L),
and in practice the latter is often a good conservative estimate on the PLR.
Therefore, efforts have mainly focused on finding bounds and asymptotic
expressions concerning the tail probabilities of the infinite queue. How-
ever, our first result shows that the ratio PLR/P(Q > L) can be arbi-
trary, in particular the PLR can be larger than the tail probability. We
also determine an upper bound on this ratio yielding an upper bound on
the PLR using the tail distribution of the infinite queue. The bound is
fairly tight for certain traffic patterns. In many situations it clearly im-
proves the estimation with the tail probability, and it is rarely significantly
larger than the estimate P(Q > L), while it is an upper bound. On the
other hand, if the PLR is much smaller than P(Q > L), then our bound
is usually loose. For this case a practically good approximation on their
ratio is proposed.

I. INTRODUCTION

The emerging integrated services (broadband) telecommunication
networks offer a new type of services which, unlike traditional best
effort data networks, meet strict Quality of Service (QoS) require-
ments. From the engineering point of view, one of the most important
questions is how to utilize the network resources efficiently, that is,
how one can transmit as much traffic as possible while keeping the
QoS requirements. To achieve high utilization the burstiness of the
sources can be exploited via statistical multiplexing and buffering.
However, recent results indicated that the performance of data net-
works cannot be significantly improved by the use of large buffers
[1]. Moreover, the delay requirements of real-time applications also
constrain the buffer size. Therefore, the importance of the analysis of
finite buffers has considerably increased. In this paper the connection
of the finite and infinite buffers is investigated from the point of view
of one of the most important QoS parameters, the packet loss ratio
(PLR).

The PLR in a buffer of size L is generally estimated with the tail
probability P(Q > L) of the corresponding infinite buffer queue
Q. Measurements showed that for generally used traffic models
and for some real traffic traces this estimation is in fact an upper
bound [2, 3, 4]. Therefore, the tail of queue length distributions (in
infinite buffers) has been extensively studied, see, e.g., [5, 6] and
the references therein. The asymptotic expressions (or rarely up-
per bounds) on the tail probabilities are generally obtained for large
buffers [7, 8, 9, 10, 11] or many sources [12, 13, 14, 15].

Although Theorem 1 in the next section shows that the ratio
PLR/P(Q > L) can be arbitrary, only a few papers deal with the
real PLR. For memoryless arrivals Kelly [5] derived an asymptotic
expression for the PLR for large buffers, and in [15] Likhanov and
Mazumdar gave an asymptotic formula for the case of many sources.

In Theorem 2 we determine an upper bound on the PLR in a buffer
of size L using the tail probability P(Q > L). The result enables
the correct extension of the bounds and asymptotic expressions corre-
sponding to the tail probability to the PLR.

In the third part of the paper the behavior of the new bound is dis-
cussed for real traffic traces. The examples also show situations where
PLR > P(Q > L) and where the packet loss is smaller than the tail
probability by an order of magnitude. For the latter case an approx-
imation is proposed which proved to be fairly good for real traffic
traces.

II. BOUNDING THE PACKET LOSS PROBABILITY

We consider the well-known discrete time model of a switch. Let
Xn denote the number of packets arriving in slot n to the switch (the
arrival process {Xn} is the overall traffic offered by all sources), let
Yn denote the number of packets that can be served in slot n, and let
Sn denote the number of waiting packets in the buffer of size L at the
end of slot n. Then the queue length can be described by the equation

Sn+1 = min
�
(Sn − Yn+1 + Xn+1)

+, L
�

for n ≥ 0, where x+ equals zero if x is negative, and it is x otherwise.
The packet loss ratio is defined as

PLR = lim
n→∞

{no. of packets lost up to slot n}
{no. of packets offered up to slot n}.

To analyze the PLR, an auxiliary infinite buffer queue is introduced:

Qn+1 = (Qn − Yn+1 + Xn+1)
+. (1)

Concerning the stability of the sequence {Qn}, Loynes [16] proved
that if the pair {Xn, Yn} is stationary and ergodic, then the queue
defined by (1) is stable if

EXn < EYn (2)

for all n. Moreover, there is a unique limit distribution of the sequence
{Qn}. In what follows we assume that Q has the limit distribution of
the sequence {Qn}.

As we have mentioned in the introduction, the PLR is often ap-
proximated with the tail probability P{Q > L} in the literature. The
heuristic considerations behind this decision are the following [17].
The expected number of packets lost in one time slot due to buffer
overflow is given by

E(no. of packets lost) = P(S overflows)

· E(no. of packets arriving while S overflows).
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The arrivals are approximately independent of the state of the queue,
and so the expected number of packets arriving while S overflows is
approximately the mean activity of the sources. For stationary and
ergodic sources the PLR is

PLR =
E(no. of packets lost)

E(no. of packets arriving)

=
E(no. of packets lost)

mean activity

giving

PLR ≈ P(S overflows) ≤ P(Q > L) (3)

However, as the next theorem shows, despite the empirical justi-
fications the above approximate inequality does not hold in general.
Moreover, the ratio PLR/P(Q > L) can be set arbitrarily.

Theorem 1 For any r > 0 there is a queuing system with con-
stant service rate such that PLR/P(Q > L) < r, and there is
another system such that PLR/P(Q > L) > r. That is, the ratio
PLR/P(Q > L) can be arbitrarily small (nonnegative) and arbitrar-
ily large.

Remark. In particular the theorem implies that the PLR can be sig-
nificantly larger than P(Q > L).

Proof. Assume that Yn = s for all n, L = Bs, and let {Xn} be
a periodic source with one-slot-long peaks followed by (t − 1)-slot-
long low activity periods for some positive integer t, and suppose that
the occurrence of the first peak is uniformly distributed in the first
t time slots (the latter condition ensures that the sequence {Xn} is
stationary). The source emits ps packets during peaks and ms packets
in all other time slots. (Here we assume that (p − 1)s > L to induce
packet loss, and (t − 1)m + p < t to meet the stability conditions of
(2).) More formally, for k = 1, . . . , t and all positive integer u

P(X1 = ms, . . . , Xk−1 = ms, Xk = ps,

Xk+1 = ms, . . . , Xt = ms) = 1/t

and

Xk = Xtu+k.

Note that the source {Xn} is stationary and ergodic. Then in every
period of length t starting at a peak activity time slot, (p − 1 − B)s
packets are lost in the finite buffer case if the buffer was originally
empty, and at the end of the period the buffer gets empty again (this is
guaranteed by the stability condition). On the other hand, s(p + (t −
1)m) packets are to be transmitted in every period, hence

PLR =
p − 1 − B

p + (t − 1)m
.

In case of an infinite buffer, at the end of the first slot of the period
(p − 1)s packets are stored in the buffer, and then emptied at a rate

(1−m)s. Thus the event {Q > L} occurs for �(p−1−B)/(1−m)	
time slots. Therefore,

P(Q > L) =
1

t

�
p − 1 − B

1 − m

�
.

For simplicity assume that (p − 1 − B)/(1 − m) is an integer (the
following discussion can also be carried out without this assumption).
Then we obtain

PLR
P(Q > L)

=
t(1 − m)

p + (t − 1)m
.

Now if m = 0 and t → ∞, then PLR/P(Q > L) → ∞. On the
other hand, if m → 1 and, for each m, the value of p is chosen to be
very close to t − (t − 1)m, then PLR/P(Q > L) → 0 (for small
values of B, otherwise no packet loss occurs). �

The following theorem gives a strict upper bound on the ratio
PLR/P(Q > L) provided the stability requirements are met. The
result can also be used to give an exact upper bound on the PLR when
it is combined with different estimations corresponding to the tail dis-
tribution of Q.

Theorem 2 Assume that {Xn} is stationary and ergodic, and the
service process {Yn} is stationary, memoryless, independent of Q0

and {Xn}, and EXn < EYn for all n. Let m ≥ 0 be a real number
such that Xn ≥ m almost surely. Then

PLR ≤ (EY1 − m)

EX1
P(Q > L).

where Q has the limit distribution of {Qn}.

Remarks. Note that (i) equality holds for the source of Theorem 1;
(ii) if m, the essential minimum of Xn is unknown, then the theorem
yields the (weaker) upper bound

PLR ≤ EY1

EX1
P(Q > L).

Proof. The number of packets lost from the finite buffer in slot n is
given by

XS
n = (Sn−1 + Xn − Yn − L)+

Let XQ
n = (Qn − L)+. Since Qn ≥ Sn for all n ≥ 0 (assuming

Q0 = S0),

XS
n = (Sn−1 + Xn − Yn − L)+

≤ (Qn−1 + Xn − Yn − L)+ (4)

= (Qn − L)+ = XQ
n .

That is, in each time slot n, the number of lost packets in the finite
buffer system can be bounded from above by the number of packets
overflown in the infinite buffer system (we call a packet overflown if
there are at least L packets waiting at the queue when it arrives). With-
out loss of generality we can assume that first the overflown packets
are transmitted from the infinite buffer queue (this assumption clearly
does not modify the number of packets waiting at the queue). In each
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time slot n the number of overflown packets waiting in the infinite
queue is decreased by at most Yn − m. Moreover, observe that if
Qn ≤ L, then no overflown packets are waiting at the infinite buffer
queue at the end of the time slot n. Thus, at most (Yn−m)I{Qn−1>L}
overflown packets can be emptied at time n. Therefore, whenever
Qi ≤ L

iX
n=1

XQ
n ≤

iX
n=1

(Yn − m)I{Qn−1>L}. (5)

Now let {ik} be the monotone increasing sequence of indices for
which Qik ≤ L. Then, by stability, ik → ∞ almost surely. Thus,
combining (4) and (5), we have

PLR = lim
i→∞

Pi
n=1 XS

nPi
n=1 Xn

≤ lim
i→∞

Pi
n=1 XQ

nPi
n=1 Xn

= lim
k→∞

Pik
n=1 XQ

nPik
n=1 Xn

≤ lim
k→∞

Pik
n=1(Yn − m)I{Qn−1>L}Pik

n=1 Xn

= lim
k→∞

1
ik

Pik
n=1(Yn − m)I{Qn−1>L}

1
ik

Pik
n=1 Xn

= lim
n→∞

E((Yn − m)I{Qn−1>L})

EXn

= lim
n→∞

E(Yn − m)P(Qn−1 > L)

EXn

=
(EY1 − m)P(Q > L)

EX1

almost surely, where we used the ergodicity of {Xn, Yn} and the in-
dependence of Yn and Qn−1. This completes the proof. �

III. BOUNDS FOR REAL TRAFFIC

In this section the bound of Theorem 2 is applied for different types
of real traffic traces. A server with finite and infinite buffers driven
by video traces is investigated and the ratio of PLR/P(Q > L) is
compared to the calculated bounding constant. Examples are given
for cases where the packet loss exceeds the tail probability and where
it is smaller by an order of magnitude.

The video traces used in this paper are captured and encoded by
Fitzek and Reisslein [18]. MPEG4 compression method was used
for encoding, which involves reduction of both spatial and temporal
redundancy. The captured video files were compressed according to
variable bit rate (VBR) coding scheme.

Example 1 In this example the frame level version of an MPEG4
trace is used as the input process. There are three types of frames
in this trace: I, P and B, which considerably differ in their av-
erage sizes, i.e., an I frame is typically a couple of times larger
than P and B frames. Due to the MPEG coding technique, the
frames are arranged in a deterministic periodic sequence (in this case
”IBBPBBPBBPBB”), which is called Group of Pictures (GOP). This
coding scheme leads to a highly bursty traffic on the frame level.
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Fig. 1: The PLR and the tail probability for a bursty MPEG source.

In the simulation process the large I frames of 5 Kbytes were frag-
mented into smaller packets of 300-400 bytes. The average rate is
450 bytes/frame. In order to keep the frame delay in the order of
500 ms a service rate of 2600 bytes/frame slot were chosen. Figure 1
shows the obtained results for the tail probability P(Q > L) in the
infinite buffer and true PLR. It can be seen that the packet loss exceeds
the tail probabilities over a wide range of buffer sizes. From this sim-
ulation their ratio proves to be ∼ 2.5, while the calculated constant
is EY

EX
= 2600

450
≈ 5.7. In this case, the approximation of the PLR

with P(Q > L) underestimates the actual loss, while the calculated
multiplier provides an upper bound that overestimates the real packet
loss only by a factor of 2.

Example 2 In practice the input process is a superposition of the traf-
fic offered by different sources. Thus, input traffic generally does not
contain such high peaks as those in the previous example. In these
cases, the tail probability usually overestimates the packet loss. This
scenario was investigated in the second simulation, where the input
was an aggregate of 15 different VBR coded MPEG4 traces. The
simulation was performed on the GOP level to eliminate the bursti-
ness due to the deterministic MPEG structure. This requires the
smoothing of the 12 frame periods (∼ 500 ms). The resulting ag-
gregate traffic has 1.12 Mbyte/s average rate, while the service rate
was set to 1.3 Mbyte/s. The obtained results are shown in Figure 2.
It can be clearly seen that there is an order of magnitude difference
between the tail probability and true PLR. If the minimum rate is
known (720 Kbyte/s in this case), a slightly better – but strictly con-
servative – approximation can be given with the calculated bound
EX−minX

EY
P (Q > L) ≈ .51 P (Q > L).

IV. PACKET LOSS ESTIMATION

When the actual packet loss is much below the queue tail proba-
bility, Theorem 2 cannot be used for approximating the actual packet
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Fig. 2: The the tail probability, PLR and its approximation for an aggregate
traffic input.

loss. If the minimum rate is not known, the constant multiplier is al-
ways greater than one. On the other hand, if the utilization is high, the
constant is close to one, which already provides a basis for using the
infinite buffer tail probability as a conservative estimate in such cases.

However, it is possible to give a better approximation for packet
loss with a heuristic argument based on the proof of Theorem 2, as
follows. If in time slot n the finite buffer overflows, i.e., Sn = L, the
number of arriving packets is Xn and at most (Xn −Yn)+ of them is
lost. Then an upper bound can be given to the number of lost packets
up to time i. For all i we have

iX
n=1

XS
n ≤

iX
n=1

(Xn − Yn)+I{Sn=L} ≤
iX

n=1

(Xn − Yn)+I{Qn≥L}.

Then the PLR is bounded by

PLR ≤ E{(Xn − Yn)+I{Qn≥L}}
EX1

=
E{(Xn − Yn)+|Qn ≥ L}P(Qn ≥ L)

EX1
.

For constant service rate s the conditional expectation can be approx-
imated by E {Xn − s|Xn > s} since in general there is a high cor-
relation between the events {Xn > s} and {Qn ≥ L}. On the other
hand, P(Q ≥ L) ≈ P(Q > L), and so the PLR can be simply
approximated as

PLR ≈ E {Xn|Xn > s} − s

EX1
P(Q > L).

Unfortunately, this is not an upper bound. However, when applying
to real traces, it was always conservative for both single and multi-
plexed input traces. In certain cases it improves the estimation of the
packet loss with the tail probability by an order of magnitude, as can
be seen in Figure 2. The ratio PLR/P(Q > L) and its approximation
for Example 2 for different buffer sizes is shown in Figure 3. Since
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Fig. 3: The ratio of the queue tail to the packet loss of Example 2 for different
buffer sizes.

the approximation of this ratio is independent of the buffer size, it
is usually expected to overestimate the highest ratio, as depicted in
the figure. Several simulations performed for other VBR MPEG and
constant bit rate (CBR) coded H.263 traces yielded similar results.

V. CONCLUSION

In this paper we considered the connection between the packet loss
in a finite buffer and the tail probability of the corresponding infinite
buffer queue. We showed that the PLR can significantly differ from
P(Q > L) in both directions. An upper bound was given on their ra-
tio, which, in addition, can easily be calculated since it assumes only
the knowledge of the average rate. An improved version can be ob-
tained with the use of the minimum rate. In case of high utilization the
bound is close to 1, which suggests that the tail probability is indeed
a conservative estimate for the PLR. As simulations with real traf-
fic traces showed, the bound is fairly tight for certain traffic patterns.
However, if the packet loss is much smaller than the tail probability,
the bound is usually loose. Therefore, an approximation on the ratio
PLR/P(Q > L) is proposed, which turned out to be in the same or-
der as the real ratio for all investigated scenarios performed with real
traffic patterns.
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