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Abstract

We study the behavior of random geometric graphs in high dimensions. We show that as the di-
mension grows, the graph becomes similar to an Erdős-Rényi random graph. We pay particular
attention to the clique number of such graphs and show that it is very close to that of the corre-
sponding Erdős-Rényi graph when the dimension is larger than log3 n where n is the number of
vertices. The problem is motivated by a statistical problem of testing dependencies..
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1 Introduction

A random geometric graph is defined by n independent random points taking values in Rd , drawn
from the same distribution. These points correspond to the vertices of the graph and two of them are
joined by an edge if and only if their Euclidean distance is less than a certain threshold. Such random
geometric graphs have been studied extensively and many of their basic properties are now well
understood. We refer to Penrose [16] for an extensive treatment. These graphs are usually studied
in an asymptotic framework when the number n of vertices is very large (it grows to infinity) while
the dimension d is held fixed. However, in some applications it is of interest to consider situations
when the dimension is large. In such cases the graph is expected to behave differently. In this paper
we consider random geometric graphs defined by n independent vectors uniformly distributed on
the surface of the unit ball in Rd . We show that if d →∞ while n is held fixed, the random graph
becomes, in a very strong sense, similar to an Erdős-Rényi random graph. Motivated by a hypothesis
testing problem, we pay particular attention to the clique number of such random geometric graphs.
We show that if d is at least of the order of log3 n, then the clique number is essentially the same
as that of the corresponding Erdős-Rényi random graph. This is in sharp contrast to the behavior of
the clique number when the dimension is fixed.

The paper is organized as follows. In Section 2 the basic model is described and the asymptotic
equivalence of the random geometric graph and the Erdős-Rényi random graph is presented (The-
orem 2). In Section 3 the main results of the paper are stated and proved on the behavior of the
clique number of high-dimensional random geometric graphs. In Section 4 some numerical experi-
ments are reported in which the behavior of the clique number is illustrated. In Section 5 we show a
statistical application that motivated our research. We describe a hypothesis testing problem arising
in applications of remote sensing and finance and propose a test based on computing the clique
number of random geometric graphs. Finally, the Appendix contains some of the proofs of results
announced in Sections 3 and 5.

2 Notation, set-up

Denote the unit sphere in Rd by Sd−1 = {x ∈ Rd : ‖x‖ = 1} where ‖ · ‖ stands for the Euclidean
norm. Let X1, . . . , Xn be independent vector-valued random variables, uniformly distributed in Sd−1.
We denote the components of the random vector X i by X i = (X i,1, . . . , X i,d). For a given value of
p ∈ (0,1) (possibly depending on n and d) we define the random geometric graph G(n, d, p) as
follows: the graph has n vertexes labeled by 1, . . . , n and vertex i and vertex j are connected by an
edge if an only if

�

X i , X j

�

≥ tp,d ,

where (x , y) denotes the inner product of the vectors x and y and tp,d is determined such that the
probability of each edge equals p, that is,

P
¦�

X i , X j

�

≥ tp,d

©

= p .

Equivalently, vertex i and vertex j are connected if and only if ‖X i − X j‖ ≤
p

2(1− tp,d).

For example, for p = 1/2, tp,d = 0. To understand the behavior of tp,d as a function of p, we
introduce some notation. Let µd−1 denote the uniform probability measure over Sd−1. For a unit
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Figure 1: A spherical cap of height 1− t.

vector u ∈ Sd−1 and real number 0 ≤ t ≤ 1, let Cd−1(u, t) = {x ∈Rd : x ∈ Sd−1, (x , u) ≥ t} denote
a spherical cap of height 1− t around u (see Figure 1). The angle of a spherical cap Cd−1(u, t) is
defined by arccos(t).

Then p = µd−1(Cd−1(e, tp,d)) is the normalized surface area of a spherical cap of height 1 − tp,d
centered at (say) the first standard basis vector e = (1,0, 0, . . . , 0). The following estimates for the
measure of a spherical cap will be used (see Brieden et al. [6]): for

p

2/d ≤ tp,d ≤ 1,

1

6tp,d
p

d
(1− t2

p,d)
d−1

2 ≤ p ≤
1

2tp,d
p

d
(1− t2

p,d)
d−1

2 . (1)

These bounds show that if p is fixed and d is large, tp,d is of the order of 1/
p

d.

Sometimes it is useful to think about random points on Sd−1 as projections of Gaussian vectors on
the unit sphere. In particular, let Z1, . . . ,Zn be independent standard normal vectors (i.e., Z i has
mean 0= (0, . . . , 0) and unit covariance matrix). Then the vectors

X1 =
Z1

‖Z1‖
, . . . , Xn =

Zn

‖Zn‖

are independent and uniformly distributed on Sd−1. This representation will be used in some proofs.
For example, this representation may be used to determine the asymptotic value of tp,d . Let Z =
(Z1, . . . , Zd) be a standard Gaussian vector and let X = Z/‖Z‖= (X1, . . . , Xd). Observe that E‖Z‖2 =
d. Also, by the law of large numbers, ‖Z‖/

p
d → 1 in probability. This implies that X1

p
d converges,

in distribution, to a standard normal random variable. In fact, for any fixed k, the joint distribution
of
p

d(X1, . . . , Xk) is asymptotically standard normal. One consequence of this is that for any s > 0,

µd−1(Cd−1(e, s/
p

d)) = P{X1 > s/
p

d}= P{Z1/‖Z‖> s/
p

d} → 1−Φ(s)
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as d →∞ where Φ(x) = (2π)−1/2
∫ x

−∞ e−t2/2d t is the standard normal distribution function. This
implies that tp,d satisfies, for any fixed p ∈ (0,1),

lim
d→∞

tp,d

p

d = Φ−1(1− p) . (2)

Later we will need a quantitative estimate of the rate of convergence. Such a bound is given by the
next lemma, proved in Appendix C.

Lemma 1. Assume 0< p ≤ 1/2 and d ≥max
¦

(2/p)2, 27
©

. Then

|tp,d

p

d −Φ−1(1− p)| ≤ Up,d ,

where
Up,d = κp

p

ln d/d +κ′p/
p

d .

with κp = 2
p

2Φ−1(1− p) and κ′p = 2
p

2πe(Φ
−1(1−p/2))2/2.

One of the main messages of this paper is that the random geometric graph G(n, d, p) defined
above behaves like an Erdős-Rényi random graph when d is large. An Erdős-Rényi random graph
G(n, p) is defined as a graph on n vertices such that any pair of vertices is connected by an edge
with probability p and all edges are present independently. The G(n, p) random graph model was
introduced by Erdős and Rényi [10] and most of its properties are well understood – see Bollobás
[5], Palmer [15], Janson, Łuczak, and Ruciński [11] for monographs dedicated to the subject.

First we point out that asymptotically (i.e., as d → ∞), the random geometric graph G(n, d, p)
converges to G(n, p) in total variation distance. However, our proof only implies a small total
variation distance for astronomically large values of d. Certain characteristics of G(n, d, p) resemble
those of G(n, p) for moderate values of d. In Section 3 we show that when (log3 n)/d = o(1), the
clique numbers of the two random graphs behave quite similarly.

The next theorem states that the distribution of the random geometric graph G(n, d, p) converges to
that of the Erdős-Rényi random graph G(n, p) in total variation distance. The total variation distance
between two random graphs G and G′ defined on the same set of vertices (say {1, . . . , n}) is defined
by

dT V (G, G′) =max
G
|P{G ∈ G}−P{G′ ∈ G}|=

1

2

∑

g
|P{G = g} −P{G′ = g}| ,

where the maximum is taken over all 22(
n
2) sets G of graphs over n vertices and the sum is taken

over all such graphs.

Theorem 2. Fix a positive integer n and 0≤ p ≤ 1. Then

lim
d→∞

dT V (G(n, d, p), G(n, p)) = 0 .

The proof, given in Appendix A, is based on a relatively straightforward application of the multivari-
ate central limit theorem.

Theorem 2 shows that, asymptotically, the random geometric graph behaves like an ordinary random
graph. However, by the bounds provided by the proof, astronomical values of d are required to make
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the total variation distance small. (Just note that the total variation distance is the sum over all 2(
n
2)

possible graphs g and therefore d needs to be much bigger than 2n2
in order to make the obtained

bound meaningful.) For this reason, the interest in Theorem 2 is purely theoretical.

On the other hand, the notion by which Theorem 2 relates the random geometric graph to an
ordinary random graph is very strong. If one is interested in simple characteristics of G(n, d, p), it
may behave as that of G(n, p) for much smaller values of d. The main result of the paper, presented
in the next section, shows that if d is poly-logarithmic in n, then the clique number of G(n, d, p)
already behaves very similarly to that of G(n, p). At the same time, for values of d significantly
smaller than log n, the clique number behaves very differently.

In this paper we study the (random) clique number ω(n, d, p) of G(n, d, p), that is, the number of
vertices in the largest clique contained in G(n, d, p). It is well-known (see, e.g., Bollobás [5]) that
the clique number of the Erdős-Rényi random graph G(n, p) is, with probability converging to one,
within a constant of 2 log1/p n− 2 log1/p log1/p n when p is held fixed as n grows. This is in sharp
contrast with the behavior of ω(n, d, p) for small values of d. It is easy to see that for any fixed d,
the clique number grows linearly with n and even for d = ε log n, for sufficiently small values of
ε > 0, ω(n, d, p) grows as nα where α→ 1 as ε→ 0 (see Proposition 4 below).

Theorem 2 implies that, for very large values of d, ω(n, d, p) behaves similarly to the clique number
of G(n, p). The more interesting question is how large d needs to be. The main result of the paper
(Theorem 3) establishes that when d is about log3 n, the behavior of the clique number is already
similar to that of G(n, p) (for fixed p). This result is complemented by Theorem 5 which implies
that for d ∼ (3 log n)2, we have ω(n, d, p) = Op(log3 n).

3 The clique number of G(n, d, p)

The following result describes the behavior of the clique number of the random geometric graph
G(n, d, p) for large values of d.

Theorem 3. Fix p ≤ 1/2 and define the positive constant

p′ = p′(p) =

¨

1/2 if p = 1/2
1−Φ(2Φ−1(1− p) + 2.5) if p < 1/2.

Let δn ∈ (0, p) and suppose

d = dn ≥
bκp

δ2
n

log3
1/(p−δn)

n

where bκp = 65 ln2(1/p′). If either δn → 0 or δn ≡ δ for some constant 0 < δ < p, then, with
probability converging to 1 (as n→∞),

ω(n, d, p)≤ 2 log1/(p+δn) n− 2 log1/(p+δn) log1/(p+δn) n+O(1) .

Also, if lim supn→∞δn log2 n<∞, then with probability converging to 1,

ω(n, d, p)≥ 2 log1/(p−δn) n− 2 log1/(p−δn) log1/(p−δn) n+Ω(1) .
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Observe that the theorem implies that if d is about log3 n then ω(n, d, p) is already of the order
of log n. This is obtained by choosing δn as a constant. By letting δn go to zero slowly, we see
that if (log3 n)/d = o(1) then ω(n, d, p) ≤ (2+ o(1)) log1/p n. Finally, by taking δn ∼ 1/ log n, we
obtain that when d ∼ log5 n then ω(n, d, p) ≤ 2 log1/p n− 2 log1/p log1/p n+O(1) and therefore the
clique number is at most as large as in an Erdős-Rényi random graph, up to an additive constant.
For the lower bound, we need the extra condition that δn = O(1/ log2 n) and therefore the lower
bound is only meaningful for d at least of the order of log7 n. We believe that this condition is not
necessary. In fact, we conjecture that for fixed d and p, the clique number is non-increasing in d
(in the stochastic sense that P{ω(n, d, p) ≥ k} is non-increasing for each k). If this conjecture was
true that the lower bound would hold without any condition for d simply because, as d → ∞, by
Theorem 2, ω(n, d, p) converges, in distribution, to the clique number of the Erdős-Rényi random
graph.

The theorem follows from Theorems 8 and 9 (together with the observation that p′ ≤ min(bp,ep))
which are shown in Section 3.2. Before turning to the proof we note that for small values of d,
ω(n, d, p) behaves in an entirely different way, as the next simple proposition shows.

Proposition 4. If d ≥ 8,

Eω(n, d, p)≥
n

3
p

d(1+ t2
p,d)









1−

�

1+ t2
p,d

�2

4









d−1
2

.

The proposition follows simply by observing that if k points fall in any spherical cap C of angle
arccos(tp,d)/2 that is, a spherical cap of height 1− (1+ t2

p,d)/2, then they are mutually connected
and therefore form a clique. The expected number of points that fall in any such fixed cap C is
nµd−1(C) which, by (1) is at least

n
1

3
p

d(1+ t2
p,d)









1−

�

1+ t2
p,d

�2

4









d−1
2

provided
p

2/d ≤ (1 + t2
p,d)/2. This lower bound may be improved by packing as many non-

overlapping spherical caps of height 1− (1+ t2
p,d)/2 in Sd−1 as possible and considering the one

containing the largest number of points. Even though the number of such caps is exponentially
large in d, the refined bound is not significantly better than the one obtained above. The negligible
benefit does not justify the inclusion of the more technical details.

On the one hand, Proposition 4 above shows that if d � log n, the clique number grows linearly,
or almost linearly, with n while according to Theorem 3, if d is at least of the order of log3 n, the
clique number is logarithmic in n. The next result, using very different techniques, shows that when
d ∼ log2 n, then the clique number is already poly-logarithmic in n, at least for p < 1/2. The proof
is given in Appendix B.

Theorem 5. For any p < 1/2 and 0 < η < 1, the clique number ω(n, d, p) of the random geometric
graph G(n, d, p) satisfies, with probability at least 1−η,

ω(n, d, p)≤ n

È

d + 1

d(d tp,d + 1)
exp

�

−(d − 1)(d tp,d + 1)

2(d + 1)

�

+ 4(d + 1) ln
2ne

d + 1
+ 4 ln

4

η
.
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To interpret this bound, recall that for p < 1/2 fixed and d large, tp,d ≈ d−1/2Φ−1(1− p). Thus, the
upper bound is of the order nd−1/2 exp(−d1/2/2) + d log(n/d). Thus, when d ∼ (3 log n)2, we have
ω(n, d, p) = Op(log3 n). Notice also that as soon as d →∞, ω(n, d, p) = op(n).

3.1 The expected number of cliques

The proof of Theorem 3 is based on the first and second moment methods (see, e.g., Alon and
Spencer [2]). To this end, first we need to study the expected number of cliques of size k in the
random geometric graph G(n, d, p). In particular, we compare it to the expected number of cliques
of the same size in G(n, p) which is

�

n

k

�

p(
k
2) .

Denote the (random) number of cliques of size k by Nk = Nk(n, d, p). But

ENk =
�

n

k

�

P{X1, . . . , X k form a clique}

and therefore it suffices to study the probability that k points are all connected with each other. Let
pk = pk(d, p) = P{X1, . . . , X k form a clique} denote this probability.

The cases when p = 1/2 and p < 1/2 are slightly different and we treat them separately.

Theorem 6. (UPPER BOUND FOR THE EXPECTED NUMBER OF CLIQUES.)
Let K ≥ 2 be a positive integer, let δn > 0, and define

bp = bp(p) = 1−Φ(tp,d

p

d)

Assume

d ≥
8(K + 1)2 ln 1

bp

δ2
n

�

K ln
4

bp
+ ln

K − 1

2

�

.

Then, for any 1≤ k ≤ K,

ENk(n, d, 1/2)≤ e
�

n

k

�

Φ(δn)(
k
2) .

Furthermore, for p < 1/2, define β = 2
p

ln(4/bp) and for β
p

K/d < 1, let α =
Æ

1− β
p

K/d. Then
for any 0< δn < αtp,d

p
d we have, for any 1≤ k ≤ K,

ENk(n, d, p)≤ e1/
p

2
�

n

k

�

�

1−Φ
�

αtp,d

p

d −δn

��(k2)
.

Remark. Note that (2) implies that as α→ 1 and δn→ 0, 1−Φ
�

αtp,d
p

d −δn

�

→ p.

Proof. Fix a k ≤ K . We use the Gaussian representation of the X i described in Section 2. That is,
we write X i = Z i/‖Z i‖ where Z1, . . . ,Zn are independent standard normal vectors in Rd . First we
perform Gram-Schmidt orthogonalization for Zk−1

1 = Z1, . . . ,Zk−1. In other words, let

v1 =
Z1

‖Z1‖

2487



and define r 1 = 0 (the d-dimensional zero vector). For j = 2, . . . , k− 1, introduce, recursively,

r j =
j−1
∑

i=1

(Z j , v i)v i and v j =
Z j − r j

‖Z j − r j‖
.

Then v1, . . . , v k−1 are orthonormal vectors, depending on Zk−1
1 only.

First we treat the case p < 1/2. Introduce the “bad” event

Bk−1 =
�

∃ j ≤ k− 1 : ‖r j‖2 > 2(k+ 1)2 ln(1/bp) or ∃ j ≤ k− 1 : ‖Z j‖2 <
d

2

�

and write

pk ≤ P{X1, . . . , X k form a clique, Bc
k−1}+P{Bk−1}

= E

�

P

¨�

Zk

‖Zk‖
,

Z j

‖Z j‖

�

≥ tp,d for all j ≤ k− 1|Zk−1
1

«

I{X1,...,X k−1 form a clique}I{Bc
k−1}

�

+P{Bk−1} . (3)

Now fix Zk−1
1 such that X1, . . . , X k−1 form a clique and Bk−1 does not occur. Then, for any δn > 0,

P

¨�

Zk

‖Zk‖
,

Z j

‖Z j‖

�

≥ tp,d for all j ≤ k− 1|Zk−1
1

«

= P

¨�

Zk,
r j

‖Z j‖
+
‖Z j − r j‖
‖Z j‖

v j

�

≥ tp,d‖Zk‖ for all j ≤ k− 1|Zk−1
1

«

≤ P

¨�

Zk,
‖Z j − r j‖
‖Z j‖

v j

�

≥ tp,d‖Zk‖−δn for all j ≤ k− 1|Zk−1
1

«

+
k−1
∑

j=1

P

¨�

Zk,
r j

‖Z j‖

�

≥ δn|Zk−1
1

«

. (4)

For any fixed 1≤ j ≤ k− 1 and δn > 0,

P

¨�

Zk,
r j

‖Z j‖

�

≥ δn|Zk−1
1

«

≤ P
n

�

Zk, r j

�

> δn

p

d/2|Zk−1
1

o

≤
1

2
e
− δ2

nd

4‖r j‖2 ≤
1

2
e
− δ2

nd

8(k+1)2 ln 1
bp , (5)

where we used the fact that, conditionally on Zk−1
1 , (Zk, r j) has centered normal distribution with

variance ‖r j‖2 ≤ 2(k+ 1)2 ln(1/bp). Furthermore, on Bc
k−1, for any 0< α < 1, if αtp,d

p
d > δn then

P

¨�

Zk,
‖Z j − r j‖
‖Z j‖

v j

�

≥ tp,d‖Zk‖−δn for all j ≤ k− 1|Zk−1
1

«

≤ P

§

�

Zk, v j

�

≥ tp,dα
p

d −δn for all j ≤ k− 1|Zk−1
1

ª

+P{‖Zk‖< α
p

d} (6)

≤
�

1−Φ
�

αtp,d

p

d −δn

��k−1
+ e−

(1−α)2d
4 , (7)
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where we used the fact that by rotational invariance of the multivariate standard normal distribu-
tion, the (Zk, v1), . . . , (Zk, v k−1) are independent standard normal random variables, and the last
term follows from the standard tail bound on the χ2 distribution

P{χ2
d < d − 2

p

d t} ≤ e−t (8)

with t = (1−α2)2d/4, where χ2
d denotes a random variable with χ2 distribution with d degrees of

freedom (see, e.g., Massart [13]). Therefore, the first term in (3) can be bounded as

E

�

P

¨�

Zk

‖Zk‖
,

Z j

‖Z j‖

�

≥ tp,d for all j ≤ k− 1|Zk−1
1

«

I{X1,...,X k−1 form a clique }I{Bc
k−1}

�

≤ pk−1

�

�

1−Φ
�

αtp,d

p

d −δn

��k−1
+ e−

(1−α2)2d
4 +

k− 1

2
e
− δ2

nd

8(k+1)2 ln(1/bp)

�

. (9)

Using the definition of α, the second term above may be bounded, by

e−
(1−α2)2d

4 ≤
�

bp

4

�K

.

The last term in (9) can also be bounded by (bp/4)K using

δ2
n ≥

8(k+ 1)2 ln 1
bp

d

�

K ln
4

bp
+ ln

k− 1

2

�

.

Thus, (9) is bounded from above as

pk−1

�

�

1−Φ
�

αtp,d

p

d −δn

��k−1
+ e−

(1−α2)2d
4 +

k− 1

2
e
− δ2

nd

8(k+1)2 ln(1/bp)

�

≤ pk−1

�

�

1−Φ
�

αtp,d

p

d −δn

��k−1
+ 2
�

bp

4

�K�

≤ pk−1

�

1+ 2−3K+k
�

�

1−Φ
�

αtp,d

p

d −δn

��k−1
, (10)

where we used the fact that bp ≤ 1−Φ
�

αtp,d
p

d −δn

�

< 1/2 (as αtp,d
p

d > δn by our assumptions).

We may bound the probability of the “bad” event as follows.

P{Bk−1} ≤ P

�

∃ j ≤ k− 1 : ‖r j‖2 > 2(k+ 1)2 ln
1

bp

�

+P
�

∃ j ≤ k− 1 : ‖Z j‖2 <
d

2

�

≤ (k− 1)P
�

χ2
k−1 > 2(k+ 1)2 ln

1

bp

�

+ (k− 1)P
�

χ2
d <

d

2

�

.

Here the second term can be bounded by using the tail inequality (8) with t = d/16, which yields
P{χ2

d < d/2} ≤ e−d/16. The first term can be bounded using the standard tail bound

P{χ2
l − l > 2t + 2

p

l t} ≤ e−t (11)
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(see [13]) with

t =

�q

4(k+ 1)2 ln 1
bp
)−
p

k− 1
�2

4
= (k+ 1)2 ln

1

bp
−

q

(k− 1)
�

4(k+ 1)2 ln 1
bp
)− k+ 1

�

2

and l = k− 1, which implies

P{χ2
k−1 > 2(k+ 1)2 ln(1/bp)} ≤ e−2(k+1)2 ln(1/bp)/4 = bp(k+1)2/2 .

Thus
P{Bk−1} ≤ (k− 1)

�

bp(k+1)2/2+ e−d/16
�

. (12)

If, in addition, d ≥ 8(k+ 1)2 ln(1/bp), we obtain

P{Bk−1} ≤ 2(k− 1)bp(k+1)2/2, (13)

and so, by (3), (9) and (10) we have

pk ≤ pk−1

�

1+ 2−3K+k
�

�

1−Φ
�

αtp,d

p

d −δn

��k−1
+ 2(k− 1)bp(k+1)2/2. (14)

Next we show that

pk ≤
�

1−Φ
�

αtp,d

p

d −δn

��(k2) k−1
∏

j=1

(1+ 2− j−1/2) (15)

which finishes the proof of the theorem for p < 1/2 since
∏k

j=1(1+2− j−1/2)≤ e
∑k

j=1 2− j−1/2
< e1/sqr t2.

We proceed by induction. (15) trivially holds for k = 1. Assuming it holds for k− 1 for some k ≥ 2,
from (14) we obtain

pk ≤
�

1−Φ
�

αtp,d

p

d −δn

��(k−1
2 )






k−2
∏

j=1

(1+ 2− j−1/2)







�

1+ 2−3K+k
�

�

1−Φ
�

αtp,d

p

d −δn

��k−1

+2(k− 1)bp(k+1)2/2

≤
�

1−Φ
�

αtp,d

p

d −δn

��(k2)






k−2
∏

j=1

(1+ 2− j−1/2)







�

1+ 2−3K+k + 2(k− 1)2−
3k+1

2

�

≤
�

1−Φ
�

αtp,d

p

d −δn

��(k2) k−1
∏

j=1

(1+ 2− j−1/2)

where we used that bp ≤ 1− Φ
�

αtp,d
p

d −δn

�

< 1/2 (as αtp,d
p

d > δn by our assumptions) and

that 2−3K+k+2(k−1)2−
3k+1

2 < 2−k+1/2 for K ≥ 2 since 2(k−1)2−k/2 ≤ 3/2 for all k. This completes
the proof of (15), and hence that of the theorem for p < 1/2.

For p = 1/2, we need the following modifications. Bk−1 is now defined as

Bk−1 =
�

∃ j ≤ k− 1 : ‖r j‖2 > 2(k+ 1)2 ln2 or ∃ j ≤ k− 1 : ‖Z j − r j‖2 <
d

2

�

.
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Then (3) still holds, but instead of (4) we write

P

¨�

Zk

‖Zk‖
,

Z j

‖Z j‖

�

≥ 0 for all j ≤ k− 1|Zk−1
1

«

≤ P
¦�

Zk, v j

�

≥−δn for all j ≤ k− 1|Zk−1
1

©

+
k−1
∑

j=1

P

¨�

Zk,
r j

‖Z j − r j‖

�

> δn|Zk−1
1

«

.

From here, similarly to (5) and (7), the following analog of (9) can be obtained:

E
h

P
¦�

X k, X j

�

≥ tp,d for all j ≤ k− 1|Zk−1
1

©

I{X1,...,X k−1 form a clique }I{Bc
k−1}

i

≤ pk−1

�

�

1−Φ
�

−δn
��k−1+

k− 1

2
e
− δ2

nd

8(k+1)2 ln 2

�

.

As the bound (12) remains valid for the redefined Bk−1 (with bp = 1/2), the proof may be finished
as before for d ≥ 8(k+ 1)2 ln2 and

δ2
n ≥

8(K + 1)2 ln 2

d

�

K ln
4

Φ(δn)
+ ln

K − 1

2

�

.

Theorem 7. (LOWER BOUND FOR THE EXPECTED NUMBER OF CLIQUES.) Introduce

ep = ep(p) =

(

1/2 if p = 1/2;

1−Φ
�

2tp,d
p

d + 1
�

if p < 1/2;

and let δn ∈ (0, 2/3] and K ≥ 3. Assume

d >
8(K + 1)2 ln 1

ep

δ2
n

�

K ln
4

ep
+ ln

(K − 1)
2

�

. (16)

Then, for any 1≤ k ≤ K,

ENk(n, d, 1/2)≥
4

5

�

n

k

�

�

1−Φ(δn)
�(k2) .

For p < 1/2, define α > 0 as

α2 = 1+

r

8K

d
ln

4

ep
.

Then

ENk(n, d, p)≥
4

5

�

n

k

�

�

1− eΦK(d, p)
�(k2) , (17)

where eΦK(d, p) = Φ

 

αtp,d
p

d+δn
q

1− 2(K+1)2 ln(1/ep)
d

!

.
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Proof. The proof is a simple variant of the previous theorem, and we use the notation introduced
there. Fix a k ≤ K . Define the “bad” event eBk−1 as

eBk−1 =
�

∃ j ≤ k− 1 : ‖r j‖2 > 2(k+ 1)2 ln(1/ep) or ∃ j ≤ k− 1 : ‖Z j − r j‖2 <
d

2

�

. (18)

Then

pk ≥ P{X1, . . . , X k form a clique , eBc
k−1} (19)

= E

�

P

¨�

Zk

‖Zk‖
,

Z j

‖Z j‖

�

≥ tp,d for all j ≤ k− 1|Zk−1
1

«

I{X1,...,X k−1 form a clique}I{eBc
k−1}

�

Fix Z1, . . . ,Zk−1 such that they form a clique and eBk−1 does not occur. Then

P

¨�

Zk

‖Zk‖
,

Z j

‖Z j‖

�

≥ tp,d for all j ≤ k− 1|Zk−1
1

«

≥ P

¨�

Zk,
‖Z j − r j‖
‖Z j‖

v j

�

≥ tp,d‖Zk‖+δn for all j ≤ k− 1|Zk−1
1

«

−
k−1
∑

j=1

P

¨�

Zk,
r j

‖Z j‖
≤ −δn

�

|Zk−1
1

«

. (20)

Now for any α > 1, the first term can be bounded as

P

¨�

Zk,
‖Z j − r j‖
‖Z j‖

v j

�

≥ tp,d‖Zk‖+δn for all j ≤ k− 1|Zk−1
1

«

≥ P









Zk,

r

1−
2(k+ 1)2 ln(1/ep)

d
v j



≥ tp,d‖Zk‖+δn for all j ≤ k− 1|Zk−1
1







≥ P







�

Zk, v j

�

≥
αtp,d

p
d +δn

q

1− 2(k+1)2 ln(1/ep)
d

for all j ≤ k− 1|Zk−1
1







−P
§

‖Zk‖> α
p

d
ª

≥
�

1− eΦk(d, p)
�k−1

− e−
d
4
· (α

2−1)2

α2 , (21)

where the first inequality holds since r j and Z j − r j are orthogonal and ‖r j‖2 < 2(k+ 1)2 ln(1/ep)

on eBk−1, implying ‖Z j−r j‖/‖Z j‖ ≥
p

1− 2(k+ 1)2 ln(1/ep)/d, and the last inequality follows again

by (11) (with t = d
4
· (α

2−1)2

α2 ) and the fact that the (Zk, v1), . . . , (Zk, v k−1) are independent standard
normal random variables. The second term in (20) can be bounded similarly to (5). The conditions
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of the theorem for α and d imply

P

¨�

Zk

‖Zk‖
,

Z j

‖Z j‖

�

≥ tp,d for all j ≤ k− 1|Zk−1
1

«

≥
�

1− eΦk(d, p)
�k−1

− e−
d
4
· (α

2−1)2

α2 −
k− 1

2
e
− δ2

nd

8(k+1)2 ln 1
ep (22)

≥
�

1− eΦk(d, p)
�k−1

− 2
�

ep

4

�K

≥
�

1− eΦk(d, p)
�k−1 �

1− 2−2K+1
�

(23)

where at the last step we used the fact that ep < 1− eΦk(d, p)< 1/2,1

To finish the proof of (17), we proceed, again, by induction, to prove that

pk ≥ ηk
K

 

1−
k
∑

i=2

4−i

!

�

1− eΦk(d, p)
�(k2)

with ηK =
�

1− 2−2K+1
�

. This is sufficient to prove the theorem because ηk
K

�

1−
∑k

i=2 4−i
�

> 4/5
for all k ≤ K when K ≥ 3. This clearly holds for k = 1. Assuming it holds for some k−1, k ≥ 2, and
taking into account that, similarly to (13),

P{eBk−1} ≤ 2(k− 1)ep(k+1)2/2 ≤ 2(k− 1)
�

1− eΦk(d, p)
�(k+1)2/2

,

we obtain

pk ≥ ηK

�

1− eΦk(d, p)
�k−1 �

pk−1−P{eBk−1}
�

+

≥ ηK

�

1− eΦk(d, p)
�k−1

×

 

ηk−1
K

 

1−
k−1
∑

i=2

4−i

!

�

1− eΦk(d, p)
�(k−1

2 )− 2(k− 1)
�

1− eΦk(d, p)
�(k+1)2/2

!

+

= ηK

�

1− eΦk(d, p)
�(k2)

 

ηk−1
K

 

1−
k−1
∑

i=2

4−i

!

− 2(k− 1)
�

1− eΦk(d, p)
�(5k+1)/2

!

+

≥ ηk
K

�

1− eΦk(d, p)
�(k2)

 

1−
k−1
∑

i=2

4−i − 4−k

!

where x+ =max(x , 0) denotes the positive part of a real number x and we used that 1− eΦk(d, p)<
1/2 and 2(k− 1)2−k/2−1 < ηk

K < η
k−1
K for all 2≤ k ≤ K when K ≥ 3.

1The second inequality is trivial. The first one can be obtained by noting that (16) implies α ≤
p

1+δn ≤ 1+ δn/2
and 2(K + 1)2 ln(1/ep)/d < δ2

n/4. From here, using δn ≤ 2/3, we have

αtp,d

p
d +δn

q

1− 2(K+1)2 ln(1/ep)
d

<
(1+δn/2)tp,d

p
d +δn

1−δn/2
< 2tp,d

p

d + 1

which implies ep < 1− eΦK(d, p).

2493



For p = 1/2, we proceed similarly: (19) also holds in this case, but instead of (20)-(23) we have

P

¨�

Zk

‖Zk‖
,

Z j

‖Z j‖

�

≥ 0 for all j ≤ k− 1|Zk−1
1

«

≥ P
¦�

Zk, v j

�

≥ δn for all j ≤ k− 1|Zk−1
1

©

−
k−1
∑

j=1

P

¨�

Zk,
r j

‖Z j − r j‖

�

≤−δn|Zk−1
1

«

≥
�

1−Φ(δn)
�k−1−

k− 1

2
e
− δ2

nd

8(k+1)2 ln2

≥
�

1−Φ(δn)
�k−1 �1− 2−2K+1

�

.

From here the proof can be finished easily as in the case of p < 1/2.

3.2 Upper bound for the clique number

Theorem 8. Let p ∈ (0,1/2], and let δn ∈ (0, p), be such that either δn → 0 or δn ≡ δ for some
δ ∈ (0, p). Define bp as in Theorem 6. If

d ≥
65 ln2(1/bp)

δ2
n

log3
1/(p+δn)

n

then, with probability converging to 1 (as n tends to infinity),

ω(n, d, p)≤ 2 log1/(p+δn) n− 2 log1/(p+δn) log1/(p+δn) n+O(1) .

Proof. We use the first moment method. Denote the (random) number of cliques of size k by Nk.
Since

P{ω(n, d, 1/2)≥ k}= P{Nk ≥ 1} ≤ ENk ,

it suffices to show that ENk → 0 for the clique sizes indicated in the statement of the theorem. We
apply Theorem 6. Let K = b2 log1/(p+δn) nc. Note that, for large enough n, any d and δn satisfying
the conditions in this theorem also satisfy the conditions in Theorem 6. We will show that the
conditions of the theorem imply

1−Φ(αtp,d

p

d −δn)< p+δn (24)

where α is defined as in Theorem 6. Once we show this, we have, for all k ≤ K , ENk ≤
e
�n

k

��

p+δn
�(k2) which converges to zero for all possible feasible choices of δn if

k ≥ 2 logb n− 2 logb logb n+ 1+ 2 logb(e/2) + ε
′

for any fixed ε′ > 0 where b = 1/(p+ δn) (see Palmer [15] or Bollobás [5]), proving the theorem,
since K ≥ k if n is sufficiently large.
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It remains to show (24). It clearly holds for p = 1/2, since Φ(−δn) ≥ 1/2− δn/
p

2π ≥ 1/2− δn.
For p < 1/2, we have

1−Φ(αtp,d

p

d −δn) = 1−Φ
�

Φ−1(1− p) + (tp,d

p

d −Φ−1(1− p))− (1−α)tp,d

p

d −δn

�

≤ 1−Φ
�

Φ−1(1− p)
�

+
|tp,d
p

d −Φ−1(1− p)|+ (1−α)tp,d
p

d +δn
p

2π

≤ p+
Up,d + β

p

K/d(Φ−1(1− p) + Up,d) +δn
p

2π
≤ p+δn

for all sufficiently large n, where Up,d is defined in Lemma 1, and we used that 1−α≤ β
p

K/d < 1,

Up,d = O(
p

log d/d), and therefore Up,d = o(δn) by the condition of the theorem.

3.3 Lower bound for the clique number

Theorem 9. Let p ∈ (0, 1/2], and let δn ∈ (0, p), be such that limsupn→∞δn log2 n <∞, Define ep as
in Theorem 3. Suppose

d = dn ≥
65 ln2(1/ep)

δ2
n

log3
1/(p−δn)

n .

Then, with probability converging to 1 (as n→∞),

ω(n, d, p)≥ 2 log1/(p−δn) n− 2 log1/(p−δn) log1/(p−δn) n+O(1) .

Proof. In order to prove a lower bound by the second moment method, we need to show that
var(Nk)/(ENk)2→ 0 for

k = 2 log1/(p−δn) n− 2 log1/(p−δn) log1/(p−δn) n− C (25)

with some appropriate constant C > 0, since then we have

P{Nk ≥ 1} ≥
1

1+ var(Nk)/(ENk)2
→ 1.

Recall that if pk = P{X1, . . . , X k form a clique} then

(ENk)
2 =
�

n

k

�2

p2
k

On the other hand,

var(Nk)

≤ ∆k

def
=

k
∑

m=2

�

n

k

��

k

m

��

n− k

k−m

�

×P{X1, . . . , X k form a clique and X k−m+1, X k−m+2, . . . , X2k−m form a clique}
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and therefore it suffices to prove that ∆k/(ENk)2→ 0. To this end, we may write

P{X1, . . . , X k form a clique and X k−m+1, X k−m+2, . . . , X2k−m form a clique}

= E
h

I{X1,...,X k form a clique}P{X k−m+1, X k−m+2, . . . , X2k−m form a clique|X1, . . . , X k}
i

= E
h

I{X1,...,X k form a clique}P{X k−m+1, X k−m+2, . . . , X2k−m form a clique|X k−m+1, . . . , X k}
i

.

Now the conditional probability p(m)k = P{X k−m+1, X k−m+2, . . . , X2k−m form a clique|X k−m+1, . . . , X k}
may be bounded similarly to the last k − m steps of the same recursive argument of the proof of
Theorem 6, since (15) holds for p(m)k in place of pk. Under the same conditions as there, we obtain

P{X k−m+1, X k−m+2, . . . , X2k−m form a clique|X k−m+1, . . . , X k}

≤ e1/
p

2
�

1−Φ
�

αtp,d

p

d −δn

��(k2)−(
m
2)
≤ e1/

p
2(p+δn)(

k
2)−(

m
2)

where the second inequality follows from (24). Thus, we have

P{X1, . . . , X k form a clique and X k−m+1, X k−m+2, . . . , X2k−m form a clique}

≤ pke1/
p

2(p+δn)(
k
2)−(

m
2) .

From here, we obtain

∆k

(ENk)2
≤

e1/
p

2(p+δn)(
k
2)

pk

k
∑

m=2

� k
m

��n−k
k−m

�

(p+δn)
−(m2)

�n
k

� .

Now we may lower bound for pk as

pk ≥
4

5
(p−δn)(

k
2) ,

where the last inequality holds for k ≤ K = b2 log1/(p−δn) nc by Theorem 7 since its conditions are
satisfied by the assumptions of our theorem for the actual choice of K and

1− eΦK(d, p)≥ p−δn , (26)

where eΦ(d, 1/2) = Φ(δn), as it will be shown later.

Summarizing,

∆k

(ENk)2
≤

5

4
e1/
p

2
�

p+δn

p−δn

�(k2) k
∑

m=2

� k
m

��n−k
k−m

�

(p+δn)
−(m2)

�n
k

� .

Notice that by the condition of the theorem for δn, the factor
�

(p+δn)/(p−δn)
�(k2) is bounded

and therefore it suffices to show that

k
∑

m=2

� k
m

��n−k
k−m

�

(p+δn)
−(m2)

�n
k

� → 0

which follows from the same calculations as in Bollobás [5, Corollary 11.2] for the actual choice of
k given in (25) – see also Palmer [15, Theorem 5.3.1]. Thus we have ∆k/(ENk)2→ 0.
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To finish the proof, we need to show (26). The statement clearly holds for p = 1/2. For p < 1/2,

using α as defined in Theorem 7, and defining η=
q

1− 2(K+1)2 ln(1/ep)
d

, we have

1− eΦK(d, p) = 1−Φ

 

αtp,d
p

d +δn

η

!

= 1−Φ
�

Φ−1(1− p) +
�

tp,d

p

d −Φ−1(1− p)
�

+
�

α

η
− 1
�

tp,d

p

d +
δn

η

�

≥ p−
|tp,d
p

d −Φ−1(1− p)|+
�

α
η
− 1
�

tp,d
p

d + δn
η

p
2π

≥ p−
Up,d +

�

8(K+1)2 ln 1
ep

3d

�

�

Φ−1(1− p) + Up,d

�

+ 4
3
δn

p
2π

,

where Up,d is defined in Lemma 1, and in the last step we used that

η≥ η2 = 1−
2(K + 1)2 ln(1/ep)

d
≥ 3/4

by the conditions of the theorem, and

α

η
− 1≤

α2

η2 − 1 ≤
8

3

(K + 1)2 ln(1/ep)
d

.

From here (26) follows by the fact that

Up,d +
8(K+1)2 ln 1

ep

3d

�

Φ−1(1− p) + Up,d

�

+ 4
3
δn

p
2π

< δn

for all sufficiently large n by the condition of the theorem on δn and d.

4 Numerical experiments

In this section we report some numerical experiments in which we simulated random geometric
graphs G(n, d, p) for various values of the parameters and computed their clique number. Since
finding the clique number is a computationally difficult problem, we had to limit ourselves to mod-
erate values of n and/or p.

In Figure 2 the expected clique number of G(n, d, p) is approximated by averaging B = 2000 sim-
ulated graphs for some values of n, p, d. The horizontal axis is the dimension d, while the vertical
axis is the clique number. The value of n is color coded. Note that as n increases, the curve is higher
in the graph.

To keep running time under control, our algorithm reports failure when a clique of size 20 or higher
is found. Such occurrences do not appear in the figure.
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On the right side of each graph, the expected clique number of the corresponding Erdős-Rényi
random graph is shown: small disks plot the value obtained as the average of B = 2000 simulations,
while small dashes plot the value as obtained by the asymptotic formula 2 log1/p n−2 log1/p log1/p n.

In Figure 3 we plot the approximated value of Eω(n, d, p) for the entire range of values of p ∈ [0, 1]
when n= 15, n= 50, and n= 100.

5 An application: a problem of testing dependency

Finally, we describe a statistical hypothesis testing problem from remote sensing and finance. Upon
observing random vectors Z1, . . . ,Zn, each of d independent components, one wishes to test whether
these vectors are independent or, alternatively, if there exists a small group of vectors that depend
on each other. In remote sensing the n vectors represent the signal captured at n sensors in a noisy
environment and one wishes to determine if there is a subset of the sensors that detect a common
weak signal. In financial applications the n vectors represent the evolution of the price of n assets
and one may be interested in the existence of a small subset that depend on each other in a certain
way.

The simplest way to formalize such a hypothesis testing problem is the following. Under the null
hypothesis H0, all vectors Z i are standard normal (i.e., with mean 0 and unit covariance matrix).
Under the alternative hypothesis H1 there is a small subset of vectors that are more correlated among
themselves. This may be modeled as follows. Under H1, there exists a subset S ⊂ {1, . . . , n} with a
given size |S|= m� n such that Z i = (Zi,1, . . . , Zi,d) where

Zi,t =

¨

Ni,t if i /∈ S

(Ni,t + Yt)/
p

1+σ2 if i ∈ S,

where the Ni,t are i.i.d. standard normal random variables and Y1, . . . , Yt are independent normal
(0,σ2) random variables, independent of the Ni,t . The Yt represent a common “signal” present in
the vectors Z i for i ∈ S. Clearly, Zi,t is standard normal for all i and t and EZi,t Z j,t = 0 if either i or
j are not in S. If i, j ∈ S, then EZi,t Z j,t = σ2/(1+σ2). In the applications of interest, σ� 1 and it
is so small that calculating simply the correlation of Z i and Z j one cannot easily tell whether both
i and j are in S or not. In particular, the largest empirical correlations (X i , X j) do not necessarily

belong to vertices belonging to S unless dσ2�
p

d log n. The interesting values of σ2 are those for
which the “signal” is covered by “noise”. Clearly, if d is sufficiently large, the problem becomes easy
but in the applications mentioned above it is important to keep the value of d as small as possible
in order to make quick decisions.

A simple test is obtained by considering the random geometric graph defined by the normalized
vectors X i = Z i/‖Z i‖. Fix some p (say p = 1/2 for concreteness and simplicity), and define the
random geometric graph based on the points X1, . . . , Xn, connecting vertex i and vertex j if and
only if (X i , X j) ≥ tp,d . (Recall that t1/2,d = 0 for all d.) In other words, vertices i and j are
connected if and only if the empirical correlation (X i , X j) of the observed vectors Z i and Z j exceeds
the threshold tp,d . The test is based on computing the clique number of the obtained graph. Under
the null hypothesis, the obtained random graph is just G(n, d, p) studied in this paper and Theorem
3 summarizes some properties of its clique number.
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Under the alternative hypothesis, one expects that for sufficiently large values of σ, vertices belong-
ing to S form a clique. This intuition may be quantified by the following lemma. For simplicity we
only consider the case p = 1/2. For different values of p a similar argument carries over though a
few straightforward but technical details need to be taken care of. It is not our goal here to optimize
the power of the test and for the purpose of illustration the case p = 1/2 is sufficient.

Lemma 10. Let δn ∈ (0, 1) and consider the random geometric graph with p = 1/2 defined by the
points X i = Z i/‖Z i‖, i = 1, . . . , n. Suppose 0 < σ2 ≤ 1. Under the alternative hypothesis, with
probability at least 1−δn, the graph contains a clique of size m whenever

�

m

2

�

≤ δn exp

�

dσ4

10

�

.

The proof of the lemma is given in Appendix D.

Thus, under the alternative hypothesis, if d and σ are such that dσ4 ≥ 10 ln
�

�m
2

�

/δn

�

, then, with
probability at least 1− δn, there exists a clique of size m. On the other hand, Theorem 8 implies
that under the null hypothesis, the largest clique is not larger than 3 log2 n as long as d is at least a
constant multiple of log3 n. To summarize, we may combine Theorem 8 with Lemma 10 to obtain
the following consistency result for the test based on the clique number of the random geometric
graph.

Corollary 11. Consider the hypothesis testing problem described above and the test that accepts the
null hypothesis if and only if the clique number of the random geometric graph G(n, d, 1/2) defined by
the points X i = Z i/‖Z i‖ is at most 3 log2 n. There exists a constant C and a sequence εn→ 0 such that
if

d ≥ C max
�

ln m

σ4 , log3
2 n
�

and m> 3 log2 n

then the probability that the test makes a mistake is less than εn under both the null and alternative
hypotheses.

We do not claim that the proposed test is optimal in any way. Its main drawback is that computing,
or even approximating, the clique number of a graph is a notoriously difficult problem and there is
no hope of applying the test unless n is quite small. It is a non-trivial challenge to design compu-
tationally efficient, yet powerful tests for the hypothesis testing problem described in this section.
To understand why this is a difficult problem, one may compare it to the closely related problem
of finding a hidden clique in a (Erdős-Rényi) random graph G(n, 1/2) – see Alon, Krivelevich, and
Sudakov [1].

We also note here that the hypothesis testing problem considered here is a special case of a general
class of signal detection problems where noisy observations of linearly transformed signal vectors
are available and the goal is to determine the dimension of the signal vectors (e.g., to decide if there
is some signal at all). These problems are usually solved via spectral analysis of some whitened
covariance matrix of the observations, resulting in asymptotically optimal tests, see, for example,
[14] and the references therein.
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A Proof of asymptotic equivalence with G(n, p)

Here we prove Theorem 2 based on a multivariate central limit theorem. In particular, we use the
following multivariate Berry-Esséen inequality (see Bentkus [4], Raič [17]) for convex sets.

Proposition 12. (Raǐc [17].) Let Y1, . . . , Y d be independent zero-mean random variables, taking
values in Rm such that the covariance matrix of

∑d
t=1 Y t is the identity matrix. Then for any convex

set A⊂Rm,
�

�

�

�

�

P

(

d
∑

t=1

Y t ∈ A

)

− γ(A)

�

�

�

�

�

≤
�

47+ 42m1/4
�

d
∑

t=1

E‖Y t‖3 ,

where γ is the standard Gaussian measure on Rm.

Proof of Theorem 2. Since the total variation distance equals half of the L1 distance
∑

g

�

�P{G(n, d, p) = g} −P{G(n, p) = g}
�

�

(where the summation is over all graphs g on n vertices) and because n and p are fixed, it suffices
to show that for any fixed graph g with vertex set {1, . . . , n},

lim
d→∞

P{G(n, d, p) = g}= P{G(n, p) = g} .

In order to show this, we may define G(n, p) as a function of
�n

2

�

independent standard normal
random variables N(i, j) for all i, j with 1 ≤ i < j ≤ n. If one connects vertices i and j if and only if
N(i, j) > Φ−1(1− p) then the obtained graph is just an Erdős-Rényi random graph G(n, p). Now for a
fixed graph g, let g(i, j) = 1 if edge (i, j) is present in g and let g(i, j) = 0 otherwise.

Introduce the m =
�n

2

�

-dimensional vector Y t whose components are Y(i, j),t =
p

dX i,t X j,t for all
1≤ i < j ≤ n and 1≤ t ≤ d. Then we have

P{G(n, d, p) = g}= P







⋂

1≤i< j≤n

§

I{
∑d

y=1 Y(i, j),t>
p

d tp,d}
= g(i, j)

ª







and

P{G(n, p) = g}= P







⋂

1≤i< j≤n

n

I{N(i, j)>Φ−1(1−p)} = g(i, j)
o







.

Denoting by bpd = 1−Φ(
p

d tp,d), it follows from (2) that limd→∞ bpd = p and therefore

lim
d→∞

P{G(n,bpd) = g}= P{G(n, p) = g}

so it suffices to prove that |P{G(n, d, p) = g} −P{G(n,bpd) = g}| → 0. But

P{G(n,bpd) = g}= P







⋂

1≤i< j≤n

n

I{N(i, j)>
p

d tp,d} = g(i, j)
o






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and the two probabilities may be compared with the help of Proposition 12.

Clearly, the random variables Y(i, j),t have zero mean, and Y(i, j),t and Y(k,l),t are uncorrelated if

(i, j) 6= (k, l) and EY 2
(i, j),t = 1/d. Therefore, the m =

�n
2

�

-dimensional random vector
∑d

t=1 Y t

whose components are
∑d

t=1 Y(i, j),t satisfies the assumptions of Proposition 12. Taking A as the
m-dimensional rectangle

A=







y ∈Rm :
∏

(i, j):g(i, j)=1

(
p

d tp,d ,∞)×
∏

(i, j):g(i, j)=0

(−∞,
p

d tp,d)







,

we have

P{G(n, d, p) = g}= P

(

d
∑

t=1

Y t ∈ A

)

and
P{G(n,bpd) = g}= γ(A)

and therefore Proposition 12 implies that

�

�P{G(n, d, p) = g} −P{G(n, hpd) = g}
�

�≤ (47+ 42
p

n/2)
d
∑

t=1

E‖Y t‖3 .

Now

E‖Y t‖3 = E







∑

1≤i< j≤n

Y 2
(i, j),t







3/2

=
1

d3/2
E







∑

1≤i< j≤n

(X i,t

p

d)2(X j,t

p

d)2







3/2

≤
1

d3/2









E







∑

1≤i< j≤n

(X i,t

p

d)2(X j,t

p

d)2







2








3/4

=
1

d3/2







∑

1≤i< j≤n,1≤i′< j′≤n

E

�

(X i,t

p

d)2(X j,t

p

d)2(X i′,t

p

d)2(X j′,t

p

d)2
�







3/4

.

By the joint asymptotic normality of
p

d(X i,t , X j,t , X i′,t , X j′,t),

lim
d→∞

∑

1≤i< j≤n,1≤i′< j′≤n

E

�

(X i,t

p

d)2(X j,t

p

d)2(X i′,t

p

d)2(X j′,t

p

d)2
�

=
∑

1≤i< j≤n,1≤i′< j′≤n

E
h

N2
i,t N

2
j,t N

2
i′,t N

2
j′,t

i

,
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where N1, . . . , Nn are i.i.d. standard normal random variables. But

E
∑

1≤i< j≤n,1≤i′< j′≤n

N2
i,t N

2
j,t N

2
i′,t N

2
j′,t ≤ 9

�

n

2

�2

,

where we used that the fourth moment of a standard normal random variable equals 3. Summariz-
ing, we have that for any fixed graph g,

lim sup
d→∞

p

d
�

�P{G(n, d, p) = g} −P{G(n,bpd) = g}
�

�≤ 146n3+ 92n7/2 .

which concludes the proof.

B Proof of Theorem 5

In the proof we use the following classical result of Jung [12] (see also Danzer, Grünbaum, and Klee
[8, Theorem 2.6]):

Proposition 13. (JUNG’S THEOREM.) For every set A ⊂ Rd of diameter at most 1 there exists a closed
ball of radius

p

d/(2(d + 1)) that includes A.

Proof of Theorem 5. To prove the upper bound, notice that the vectors X i corresponding to any
clique K in G(n, d, p) form a set of diameter at most

p

2(1− tp,d). Therefore, Jung’s theorem

implies that K is contained in a ball of radius
Æ

d
d+1
(1− tp,d). Furthermore, since the points lie on

the surface of the unit ball, K is contained in a spherical cap Cd−1(u, sp) for some u ∈ Sd−1 and

sp =
p

(d tp,d + 1)/(d + 1). Therefore, if Cd−1(t) = {Cd−1(u, t) : u ∈ Sd−1} denotes the set of all
spherical caps of the unit ball with height 1− t and µd−1,n denotes the empirical measure defined
by the vectors X i , that is, for any set A⊂Rd we define

µd−1,n(A) =
1

n

n
∑

i=1

I{X i∈A} ,

then the clique number of a random geometric graph can be upper bounded as

ω(d, n, p)≤ n sup
C∈Cd−1(sp)

µd−1,n(C) .

The expected number of points E{µd−1,n(C)} falling in any set C ∈ Cd−1(sp) is nµd−1(C) where
µd−1 denotes the uniform distribution on Sd−1. An inequality of Vapnik-Chervonenkis [18] states
that

P
n

∃C ∈ Cd−1(sp) : µd−1,n(C)−µd−1(C)> ε
p

µd−1,n(C)
o

≤ 4
�

2ne

V

�V

e−nε2/4 .

Here V is the VC-dimension of the class of all closed balls in Rd which is well-known to equal
V = d + 1 (Dudley [9]). Therefore, for any 0 < η < 1 we have that, with probability at least 1−η,
for all C ∈ Cd−1(sp),

µd−1,n(C)≤ µd−1(C) +

È

µd−1,n(C)
�

4(d + 1)
n

ln
2ne

d + 1
+

4

n
ln

4

η

�

.
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Solving this inequality for µd−1,n we obtain (from a ≤ b+
p

ac we get a ≤ b+ c/2+
p

c2+ 4bc/2≤
2b+ c)

µd−1,n(C)≤ 2µd−1(C) +
4(d + 1)

n
ln

2ne

d + 1
+

4

n
ln

4

η
.

Using 1+ x ≤ ex and the upper bound of (1), we have that, with probability at least 1−η,

sup
C∈Cd−1(sp)

µd−1,n(C)≤
1

sp
p

d
e−s2

p(d−1)/2+
4(d + 1)

n
ln

2ne

d + 1
+

4

n
ln

4

η
.

This implies the theorem.

C Proof of Lemma 1

Proof of Lemma 1. We show that for any 0< γ < 1/2 and d ≥max
¦

(4 ln(2/p))1/(1−2γ), 21/γ
©

,

−
3

2
d−γΦ−1(1− p)−

p
2πe−

d1−2γ−2Cl
4 ≤ tp,d

p

d−Φ−1(1− p)≤ 2d−γΦ−1(1− p)+2
p

2πe−
d1−2γ−2Cu

4 ,

(27)
where Cl = max

n

�

Φ−1(1− p)
�2

,
�

Φ−1(1− 3
2

p)
�2
o

and Cu = (Φ−1(1 − p/2))2. The state-

ment of the lemma then follows easily by setting γ = 1
2
(1 − logd(2 ln d)) and noting that

�

�

�Φ−1(1− p/2)|=max
¦�

�Φ−1(1− p/2)
�

� , |Φ−1(1− p)
�

� ,
�

�

�Φ−1(1− 3
2

p)
�

�

�

ª

for 0 < p ≤ 1/2 and that
p

d/(2 ln d)> 2 if d ≥ 27.

To show (27), we use the same technique as in Theorems 6 and 7. First we prove the upper bound.
Let Z be a d-dimensional standard normal random variable and let e = (1,0, . . . , 0) denote the first
standard basis vector. Then

p = µd−1(Cd−1(e, tp,d)) = P
��

Z

‖Z‖
, e
�

≥ tp,d

�

.

Now for any 0< α < 1, we have, similarly to (7),

p ≤ 1−Φ
�

αtp,d

p

d
�

+ e−
(1−α)2d

4 .

From here, letting α= 1− d−γ, we obtain

tp,d

p

d ≤
Φ−1

�

1− p+ e−
(1−α)2d

4

�

α
=
Φ−1

�

1− p+ e−d1−2γ/4
�

1− d−γ

≤
Φ−1(1− p) +

p
2πe−d1−2γ/4eCu/2

1− d−γ

≤ Φ−1(1− p) + 2d−γΦ−1(1− p) + 2
p

2πe−
d1−2γ−2Cu

4 ,

where the second inequality holds since Φ−1(x + y) ≤ Φ−1(x) + y
p

2πe(Φ
−1(x+y))2 for any x >

1/2, y > 0, as our assumptions imply p/2 < e−d1−2γ/4, while the last inequality follows since our
assumptions on d imply 1/(1− d−γ)≤ 1+ 2d−γ ≤ 2. This proves the upper bound of the lemma.
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The proof of the lower bound is similar. As in (21), we can prove for any α > 1,

p ≥ 1−Φ(αtp,d

p

d − e−
α2−
p

2α2−1
2

d .

Letting α= 1+ d−γ+ d−2γ/2, a similar reasoning as above yields

tp,d

p

d ≥
Φ−1

�

1− p− e−d1−2γ/4
�

1+ d−γ+ d−2γ/2

≥
Φ−1(1− p)−

p
2πe−d1−2γ/4eCl/2

1+ d−γ+ d−2γ/2

≥ Φ−1(1− p)−
3

2
d−γΦ−1(1− p)−

p
2πe−

d1−2γ−2Cl
4 ,

where in the last step we used 1/(1+ d−γ+ d−2γ/2)≥ 1− d−γ− d−2γ/2≥ 1− 3d−γ/2.

D Proof of Lemma 10

Proof of Lemma 10. It suffices to show that, if i and j both belong to S then

P{(X i , X j)< 0} ≤ e−dσ4/10 . (28)

The lemma then follows by the union bound applied for the
�m

2

�

pairs or vertices of S. Since

P{(X i , X j)< 0} = P

(

1

d

d
∑

t=1

(Ni,t + Yt)(N j,t + Yt)< 0

)

= P

(

1

d

d
∑

t=1

�

(Ni,t + Yt)(N j,t + Yt)−E(Ni,t + Yt)(N j,t + Yt)
�

<−σ2

)

,

the problem boils down to finding appropriate left-tail bounds for independent sums of products of
correlated normal random variables. To this end, we use the well-know fact (which is easy to obtain
by direct calculation) that if ξ and ζ are jointly normal zero-mean random variables with variances
s2
ξ and s2

ζ, respectively, and correlation r = E[ξζ]/(sξsζ) then the cumulant generating function of
their product equals

lnE
�

exp(λξζ)
�

=
1

2
ln

1− r2

1−
�

r + (1− r2)sξsζλ
�2

for all λ such that
�

�r + (1− r2)sξsζλ
�

�< 1.

Writing ρ = σ2/(1+σ2) for the correlation of Ni,t + Yt and N j,t + Yt , this implies that

F(λ)
def
= lnE

�

exp(λ(Ni,t + Yt)(N j,t + Yt))
�

=
1

2
ln

1−ρ2

1−
�

ρ+ (1+ρ)λ
�2
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for all λ such that |ρ+(1+ρ)λ|< 1. Since we are interested in lower tail probabilities, we consider
negative values of λ. Then F(λ) is well defined for λ ∈ (−1,0]. By Taylor’s theorem, for every such
λ there exists y ∈ (λ, 0) such that

F(λ) = F(0) +λF ′(0) +
λ2

2
F ′′(y) .

By straightforward calculation, F(0) = 0, F ′(0) = σ2, and

F ′′(y) = (1+ρ)2
1+
�

ρ+ (1+ρ)y
�2

�

1−
�

ρ+ (1+ρ)y
�2�2

which is monotone increasing for y ∈ (−ρ/(1+ρ), 0] and therefore

F(λ)≤ λσ2+
λ2

2
F ′′(0) = λσ2+

λ2

2

1+ρ2

(1−ρ)2
for all λ ∈ (−ρ/(1+ρ), 0].

Thus, by Chernoff’s bounding method (see Chernoff [7]), for all λ ∈ (−ρ/(1+ρ), 0],

P{(X i , X j)< 0} ≤ exp(dF(λ))≤ exp

�

dλσ2+
dλ2

2

1+ρ2

(1−ρ)2

�

.

The upper bound is minimized for λ = −σ2(1−ρ)2/(1+ρ2) which is a legal choice since σ2(1−
ρ)2/(1+ρ2)< ρ/(1+ρ). The upper bound becomes

P{(X i , X j)< 0} ≤ exp

�

−
dσ4(1−ρ)2

2(1+ρ2)

�

.

Since σ2 ≤ 1, we have ρ ≤ 1/2 and we obtain (28).

Acknowledgments. We thank a referee for pointing out an embarrassing mistake in the original
manuscript.
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Figure 2: Eω(n, d, p) as a function of d for various values of the parameters.
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Figure 3: Eω(n, d, p) as a function of p for some small values of n.
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