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Abstract—Scheduling the transmission of status updates over
an error-prone communication channel is studied in order to
minimize the long-term average age of information (AoI) at
the destination under a constraint on the average number of
transmissions at the source node. After each transmission, the
source receives an instantaneous ACK/NACK feedback, and
decides on the next update without prior knowledge on the
success of future transmissions. First, the optimal scheduling
policy is studied under different feedback mechanisms when
the channel statistics are known; in particular, the standard
automatic repeat request (ARQ) and hybrid ARQ (HARQ)
protocols are considered. Then, for an unknown environment, an
average-cost reinforcement learning (RL) algorithm is proposed
that learns the system parameters and the transmission policy in
real time. The effectiveness of the proposed methods are verified
through numerical simulations.

I. INTRODUCTION

We consider a source node which continually communicates
the most up-to-date status packets to a destination (see Figure
1). In particular, we are interested in the age of information
(AoI) [1], [2], [3] at the destination, for a system in which
the source node samples an underlying time-varying process
and sends the sample values over an imperfect link which
introduces delays. The AoI at the destination at any point in
time can simply be defined as the amount of time that elapsed
since the most recent status update at the destination was
generated. Our goal is to minimize the average AoI taking into
account packet retransmissions. Retransmissions are essential
for providing reliability of status updates over error-prone
channels, particularly in wireless settings. Here, we analyze
the AoI for both the standard ARQ and hybrid ARQ (HARQ)
protocols. In the latter, the receiver combines information
from all previous transmission attempts of a packet in order
to increase the success probability of decoding after each
retransmission [4].

To address the trade-off between the success probability and
the freshness of the status update to be transmitted, we develop
scheduling policies to minimize the expected average AoI un-
der an average transmission-rate constraint. This constraint is
motivated by the fact that sensors sending status updates have
usually limited energy supplies (e.g., are powered via energy
harvesting); hence, they cannot afford to send an unlimited
number of updates, or increase the signal-to-noise-ratio in the
transmission. First, we assume that the success probability
before each transmission attempt is known (which depends on
the number of previous unsuccessful transmissions); hence, the
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Figure 1. System model of a status update system over an error-prone point-
to-point link in the presence of ACK/NACK feedback from the destination.

source can judiciously decide when to retransmit, and when to
discard failed information and send a fresh update. Then, we
consider transmitting status updates over an unknown channel,
in which the success probabilities of transmission attempts are
not known a priori, and must be learned in an online fashion
using the ACK/NACK feedback signals.

The main contributions of this paper are outlined next:

• Average AoI is studied under a long-term average re-
source constraint imposed on the transmitter, which limits
the average number of transmissions.

• Both retransmissions and pre-emption following a failed
transmission are considered, corresponding, respectively,
to the HARQ and ARQ protocols.

• The optimal preemptive transmission policy for the stan-
dard ARQ protocol is shown to be threshold-type, and
the optimal threshold value is derived in closed-form.

• An average-cost reinforcement learning (RL) algorithm is
proposed to learn the optimal scheduling decisions when
the transmission success probabilities are unknown.

• Extensive simulations are conducted in order to evaluate
the impact of the resource constraint on the average AoI
for the ARQ and HARQ protocols.

A. Related Work

Most of the earlier work on AoI considered queue-based
models, in which the status updates arrive at the source node
randomly following a memoryless Poisson process, and are
stored in a buffer before being transmitted to the destination
[2], [3]. Instead, in the so-called generate-at-will model, [1],
[5], [6], [7], also considered in this paper, the status updates
of the underlying process of interest can be sampled and
generated at any time by the source node.



A constant packet failure probability for status update
systems is investigated for the first time in [8], but this
work focuses on an M/M/1 queuing model, and no feedback
is considered for retransmissions. The paper [6] considers
broadcasting of status updates to multiple clients over an
unreliable broadcast channel. However, this paper only con-
siders work-conserving policies, which update the information
at every time slot, since no constraint is imposed on the
number of updates. Optimizing the scheduling decisions in
an AoI system multiple receivers is also investigated in [7],
focusing on a perfect transmission medium, and an optimal
scheduling algorithm for the MDP is shown to be threshold-
type. The AoI in the presence of HARQ is modeled through
an M/G/1/1 queue in [9]; however, no resource constraint is
taken into account, and the status update arrivals are assumed
to be memoryless and random, in contrast to our work, which
considers general and controlled status update generation. To
the best of our knowledge, this is the first work in the literature
that addresses a status update system with HARQ in the
presence of resource constraints.

The rest of the paper is organized as follows. In Section II,
the system model is presented, and the problem of minimizing
the average AoI with HARQ under a resource constraint is
formulated as a constrained Markov decision process (CMDP).
In Section III, a primal-dual algorithm is proposed to solve this
CMDP. AoI under the standard ARQ protocol is investigated
in Section IV, and a computationally efficient solution that
minimizes the average AoI is proposed. Section V introduces
an RL algorithm to minimize AoI in an unknown environment.
Simulation results are presented in Section VI for both HARQ
and ARQ protocols, and the paper is concluded in Section VII.

II. SYSTEM MODEL AND PROBLEM FORMULATION

We consider a time-slotted status update system over an
error-prone wireless link (see Figure 1 for an illustration). The
source monitors an underlying time-varying process, and it
is able to generate a status update at the beginning of each
time slot; this is known as the generate-at-will model [6]. A
transmission attempt of a status update takes constant time,
which is assumed to be equal to the duration of one time slot.

We assume that the channel state changes randomly from
one time slot to the next in an independent and identically
distributed fashion. We further assume the availability of error-
and delay-free single-bit feedback from the destination to
the source node. Successful reception of a status update is
acknowledged by an ACK signal, while a NACK signal is
sent in case of a failure. In the classical ARQ protocol, a
packet is retransmitted after each NACK feedback, until it
is successfully decoded, and the received signal is discarded
after each failed transmission attempt. In the considered AoI
framework there is no point in retransmitting a failed out-of-
date status packet if it has the same error probability with
a fresh status update. Hence, the source always removes a
failed status signal, and transmits a fresh status update (pre-
emption). On the other hand, when the HARQ protocol is
adopted, signals from all previous transmission attempts are
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Figure 2. Illustration of the AoI in a slotted status update system with HARQ.

combined for decoding; and therefore, the probability of error
decreases with the number of retransmissions. In general, the
error probability of each retransmission attempt depends on the
particular combining technique used, as well as the channel
conditions [4].

The AoI is defined as the time elapsed since the most up-
to-date packet at the destination is generated. Assume that the
most up-to-date packet at the destination at time t has a time
stamp of generation U(t), then the AoI at time t, denoted by
δt, is defined as: δt , t− U(t). Therefore, the AoI increases
by one when a transmission fails, while it decreases to one
(or, to the number of retransmissions in the case of HARQ)
when a status update is successfully decoded.

The probability of error after r retransmissions, denoted by
g(r), depends on r and the particular HARQ scheme used
for combining multiple transmission attempts (an empirical
method to estimate g(r) is presented in [10]). As in any rea-
sonable HARQ strategy, we assume that g(r) is non-increasing
in the number of retransmissions r; that is, g(r1) ≥ g(r2)
for all r1 ≤ r2. Standard HARQ methods only allow a finite
maximum number of retransmissions rmax [11], which is also
adopted here to simplify the analysis.

Let δt ∈ Z+ denote the AoI at time slot t, and rt ∈
{0, . . . , rmax} denote the number of previous transmission
attempts of the same packet. Then the state of the system can
be described by the vector st , (δt, rt). At each time slot, the
source node takes one of the three possible actions, denoted
by a ∈ A, where A = {i,n, x}: (i) remain idle (a = i); (ii)
generate and transmit a new status update packet (a = n);
or (iii) retransmit the previously failed packet (a = x). The
evolution of AoI for a slotted status update system is illustrated
in Figure 2.

Note that if no resource constraint is imposed on the source,
remaining idle is clearly a suboptimal action since it does
not contribute to decreasing the AoI. However, continuous
transmission is typically not possible in practice due to energy
or interference constraints. To model these situations, we
impose a constraint on the average number of transmissions,
denoted by Cmax ∈ (0, 1].

This leads to the CMDP formulation, defined by the 5-tuple(
S,A,P, c, d

)
[12]: The countable set of states (δ, r) ∈ S



and the finite action set A = {i,n, x} are already defined. P
refers to the transition function, where P(s′|s, a) = Pr(st+1 =
s′ | st = s, at = a) is the probability that action a in state
s at time t will lead to state s′ at time t+ 1, which will
be explicitly defined in (1). The instantaneous cost function
c : S × A → R, which models the AoI at the destination,
is defined as c((δ, r), a) = δ for any (δ, r) ∈ S, a ∈ A,
independent of the action a. The instantaneous transmission
cost related to the constraint, d : S ×A → R, is independent
of the state and depends only on the action a, where d = 0 if
a = i, and d = 1, otherwise.

The transition probabilities of the CMDP are given as
follows (with omitting the parenthesis from (δ, r)):

P(δ + 1, r|δ, r, i) = 1,

P(δ + 1, 1|δ, r, n) = g(0),

P(1, 0|δ, r, n) = 1− g(0),

P(δ + 1, r + 1|δ, r, x) = g(r),

P(r + 1, 0|δ, r, x) = 1− g(r),

(1)

and P(δ′, r′|δ, r, a) = 0 otherwise.
A stationary policy is a decision rule represented by π : S×

A → [0, 1], which maps the states s ∈ S into actions a ∈ A
with some probability π(a|s). We will use sπt = (δπt , r

π
t ) and

aπt to denote the sequences of states and actions, respectively,
induced by policy π. Let Jπ(s0) denote the infinite horizon
average age, and Cπ(s0) denote the expected average number
of transmissions, when policy π is employed with initial state
s0. Without loss of generality, we restrict our attention to
stationary policies (see [12]), and denote the set of feasible
policies by Π such that Cπ ≤ Cmax for all π ∈ Π.

We can state the CMDP optimization problem as follows,
where E [·] represents the expectation with respect to policy π
and error probabilities g(r):

Problem 1.

Minimize
π

Jπ(s0) , lim sup
T→∞

1

T
E

[
T∑
t=1

δπt

∣∣∣s0

]
, (2)

s.t. Cπ(s0) , lim sup
T→∞

1

T
E

[
T∑
t=1

1[aπt 6= i]
∣∣∣s0

]
≤ Cmax.

We define a policy π∗ to be optimal if J∗ , Jπ
∗ ≤ Jπ

for all π ∈ Π. A policy is said to be deterministic if it
chooses an action with probability one; with a slight abuse
of notation, we will use π(s) to denote the action taken with
probability one in state s. Also, without loss of generality, we
assume that the sender and the receiver are synchronized at
the beginning, that is, s0 = (1, 0); and s0 will be omitted
from the notation for simplicity. We assume throughout this
paper that the Markov decision process (MDP) is unichain:
an MDP is said to be unichain if under any stationary policy
the corresponding Markov chain contains a single (aperiodic)
ergodic class [12]. The unichain assumption is not restrictive
since any reasonable policy for Problem 1 will transmit a fresh

update regularly, making the system to return to state (1, 0),
which results in an ergodic Markov chain.

A. Structure of the Optimal Policy

Note that for countable-state average-cost MDPs, an optimal
deterministic stationary policy exists, and it can be found under
certain conditions defined in [13], [14]. However, the optimal
policies for constrained MDPs are no longer limited to the set
of deterministic policies [12], [15], and randomized stationary
policies should be considered. Since the CMDP defined in
Problem 1 has a single global constraint, Corollary 1 below
follows immediately from Theorem 4.4 of [12].

Corollary 1. An optimal stationary policy for the CMDP in
Problem 1 exists, and it is a mixture of two deterministic
policies.

The next proposition formalizes the simple observation that
retransmitting a packet immediately after a failed attempt is
better than remaining idle for some slots and then retrans-
mitting (since remaining idle just increases the age, and the
probability of successful retransmission will stay the same).
The proof of the proposition is trivial, and hence omitted.

Proposition 1. There exists an optimal policy for Problem 1
that takes a retransmission action only after a failed transmis-
sion event, that is Pr(a∗t+1 = x|a∗t = i) = 0.

Note that one can explicitly enforce the above property by
slightly changing the transition kernel P by changing the first
equation in (1) to P(δ+1, 0)|δ, r, i) = 1 (since retransmissions
are not allowed in states (δ, 0)).

III. PRIMAL-DUAL ALGORITHM TO MINIMIZE AOI
To solve the average cost CMDP in Problem 1, we adopt

the Lagrangian primal-dual method [12], [15]. Similar meth-
ods have been adopted in other wireless network problems
including [16], [17].

A. Relaxed Unconstrained MDP

Lagrangian relaxation of the constraint with non-negative
multiplier η can be written as:

Jπη = lim
T→∞

1

T
E

[
T∑
t=1

δπt

]

− η

(
Cmax −

1

T
E

[
T∑
t=1

1[aπt 6= i]

])
, (3)

and the optimal J∗η for a given η is defined as J∗η , minπ J
π
η .

This formulation is equivalent to an unconstrained average-
cost MDP, in which the instantaneous overall cost becomes
δt + η1[aπt 6= i]. It is well-known that there exits an optimal
stationary deterministic policy for this problem. In particular,
there exists a function hη(δ, r), called the differential cost
function, satisfying the so-called Bellman optimality equations

hη(δ, r) + J∗η = min
a∈{i,n,x}

(
δ + η · 1[a 6= i] + E [hη(δ′, r′)]

)
,

(4)



where (δ′, r′) is the next state obtained from (δ, r) after taking
action a. We also introduce the state-action cost function:

Qη(δ, r, a) , δ + η · 1[a 6= i] + E [hη(δ′, r′)] . (5)

Then the optimal policy, for any (δ, r) ∈ S , is given by the
action achieving the minimum in (4):

π∗η(δ, r) ∈ arg min
a∈{i,n,x}

(
Qη(δ, r, a)

)
. (6)

Note that the state space of our problem is possibly count-
ably infinite, since the age can be arbitrarily large. However,
in practice we can approximate the countable state space with
a large finite space by setting a maximum bound on the age
(which will be denoted by N ), and by selecting a finite rmax
(whenever the chain would leave this constrained state space,
we truncate the value of the age to N ); this gives a finite
state space approximation to the problem similarly to [1],
[7]. Clearly, letting N go to infinity, the optimal policy for
the restricted state space will converge to that of the original
problem.

B. Relative Value Iteration (RVI)

The RVI algorithm can be employed to solve (4) for any
given η; and hence, to find the optimal policy π∗η [13].
Starting with an initialization of h0(δ, r), ∀(δ, r), and setting
an arbitrary but fixed reference state (δref , rref ), a single
iteration for the RVI algorithm is given as follows:

Qn+1(δ, r, a)← δ + η · 1[aπ 6= i] + E [hn(δ′, r′)] , (7)
Vn+1(δ, r)← min

a
(Qn+1(δ, r, a)), (8)

hn+1(δ, r)← Vn+1(δ, r)− Vn+1(δref , rref ), (9)

where Qn(δ, r, a), Vn(δ, r) and hn(δ′, r′) denote the state
action value function, value function and differential value
function for iteration n, respectively.It can be shown that
hn converges to hη , and π∗n(δ, r) , arg minaQn(δ, r, a)
converges to π∗η(δ, r) [13]. Using the deterministic policies π∗η ,
it is possible to characterize optimal policies for our CMDP
problem according to Corollary 1.

C. Finding the Lagrange Parameter and Randomization

With the aim of finding a single η value such that Cη ≈
Cmax, starting with an initial parameter η0, we run an iterative
algorithm updating η as ηm+1 = ηm + α(Cηm − Cmax) for
some step size parameter α , 1/

√
m (note that for each step

we need to run the RVI algorithm to be able to determine
Cηm ). We continue this iteration until |ηm+1− ηm| is smaller
than a given ε ∈ R+, and denote the resulting value as η∗.

According to Corollary 1, one can think of the optimal
policy as a randomized policy between two deterministic
policies: in any state s = (δ, r), the optimal policy in the
CMDP problem chooses action π∗η1(s) with probability µ and
π∗η2(s) with probability 1−µ independently for each time slot.
For any η, let Cη denote the average resource consumption
under the optimal policy π∗η and J∗η denote the average AoI
for π∗η (note that Cη and J∗η can be computed directly through

finding the stationary distribution of the chain, but can also be
estimated empirically just by running the MDP with policy
π∗η). Obviously, Cη and J∗η are monotone functions of η.
Therefore, given η1 and η2, one can find the optimal weight,
denoted by µ, by solving µCη1 + (1−µ)Cη2 = Cmax, which
has a solution µ ∈ [0, 1] if Cη1 ≥ Cmax ≥ Cη2 . Next we
approximate the values of η1 and η2 by η∗ ± ξ, where ξ
is a small perturbation. Then the mixing coefficient can be
obtained by setting the transmission rate µCη1 + (1 − µ)Cη2
of the mixture to Cmax; that is,

µ =
Cmax − Cη2
Cη1 − Cη2

, (10)

and the optimal policy is

π∗Cmax
= µπ∗η1 + (1− µ)π∗η2 . (11)

IV. AOI WITH CLASSICAL ARQ PROTOCOL

Now, assume that the system adopts the classical ARQ
protocol; that is, failed transmissions are discarded at the
destination. In this case, there is no point in re-transmitting
a failed packet since the successful transmission probabilities
are the same for a retransmission and the transmission of
a new update. The state space reduces to δ ∈ {1, 2, . . .}
as rt = 0, ∀t, and the action space to A ∈ {i,n}. The
probability of error of each status update is p , g(0). State
transitions in (1), Bellman optimality equations in (4), and
the RVI algorithm can all be simplified accordingly. Thanks
to these simplifications, we are able to provide a closed-
form solution to the corresponding unconstrained MDP with
Lagrange relaxation.

Lemma 1. The optimal policy that minimizes Jπη with the
standard ARQ protocol is deterministic, and has a threshold
structure:

π∗(δ) =

{
n if δ ≥ ∆∗η,

i if δ < ∆∗η.
(12)

for some integer ∆∗η that depends on η.

Proof. Proof is not included here due to space limitations, but
will be provided in the extended version.

Lemma 2. Under the standard ARQ protocol, the optimal
threshold value for the Lagrangian MDP with Lagrange
multiplier η satisfies

∆∗η ∈

{⌊√
2η(1− p) + p− p

1− p

⌋
,

⌈√
2η(1− p) + p− p

1− p

⌉}
.

(13)

Proof. Proof will be provided in the extended version.

The transmission cost (per time slot) of the threshold policy
for any integer threshold ∆ is given by

C∆ =
1

∆(1− p) + p
, (14)



and the corresponding average AoI for the CMDP is

J∆ =
(∆(1− p) + p)2 + p

2(1− p)(∆(1− p) + p)
+

1

2
. (15)

We note that, for all positive integers ∆, the points
(C∆, J∆) lie on the lower convex hull of the (Cη, J

∗
η ), η ≥ 0,

and no other deterministic policy achieves the lower convex
hull. Therefore, by (11), if Cmax ∈ (C∆, C∆+1) for some ∆,
then the optimal policy is a mixture of the threshold policies
with thresholds ∆ and ∆ + 1. These threshold values can be
found by inverting (14), and taking the closest integers to the
resulting non-integer threshold value. Thus, we have obtained
the following result which gives a closed form expression for
the optimal policy under the ARQ protocol:

Theorem 1. For any C ∈ (0, 1], let ∆Cmax
= 1/Cmax−p

1−p .
Then the optimal policy for Problem 1 under the ARQ protocol
is a mixture of two threshold policies with thresholds ∆1 =
b∆Cmaxc and ∆2 = d∆Cmaxe, respectively, with a mixture
coefficient

µ =
Cmax − C∆2

C∆1 − C∆2
.

V. LEARNING TO MINIMIZE AOI IN AN UNKNOWN
ENVIRONMENT

In most practical scenarios, channel error probabilities for
all retransmissions may not be known at the time of deploy-
ment, or may change over time. In this section, we consider
a practically motivated scenario, in which the source node
does not have a priori information about the decoding error
probabilities, and has to learn them. We employ an online
learning algorithm to learn g(r) over time without degrading
the performance significantly. The literature for average-cost
RL is quite limited compared to discounted cost problems
[18], [19]. For the average AoI minimization in Problem 1,
an average cost version of the SARSA algorithm [19], as out-
lined in Algorithm 1, is employed with Boltzmann (softmax)
exploration. Moreover, we update the gain Jη at every time
slot based on the empirical average, instead of updating it at
non-explored time slots and losing information. The resulting
algorithm is called average-cost SARSA with softmax.

VI. SIMULATION RESULTS

Decoding error probability is assumed to be given by
g(r) , p02−r, where p0 denotes the failure probability of
the first transmission, and r is the retransmission count. The
exponential behavior of the error probability follows from
previous research on HARQ [4], [10]. In Figure 3, we illustrate
the deterministic policies obtained by RVI and η search for
given Cmax, rmax and p0 values. Final policies are generated
by randomizing between πη−ξ and πη+ξ. As it can be seen
from the figure, the designed policy transmits less as η
increases, and vice versa.

Figure 4 illustrates the performance of the proposed ran-
domized HARQ policy with respect to Cmax for different
p0 values. We also include the performance of deterministic
and randomized threshold policies with ARQ. As expected,

Algorithm 1: Average-cost modified SARSA with softmax
Input : Lagrange parameter η

1 n← 0 /* time iteration */
2 τ ← 1 /* softmax temperature parameter */
3 QN×M×3

η ← 0 , J∗η ← 0 /* initialization */

4 foreach n do
5 foreach a ∈ A do

6 π(a|sn) =
exp(−Qη(sn, a)/τ)∑

a′∈A
exp(−Qη(sn, a′)/τ)

7 end
8 Sample an from π(a|Sn), observe next state sn+1 and cost

cn = δn + η1[an 6= i]
9 foreach a ∈ A do

10 π(a|sn+1) =
exp(−Qη(sn+1, an+1)/τ)∑

a′n+1∈A

exp(−Qη(sn+1, a
′
n+1)/τ)

11 end
12 Sample an+1 from π(an+1|sn+1)
13 Update Qη(sn, an) as:
14 αn ← 1/

√
n

15 Qη(sn, an)←
Qη(sn, an) + αn[cn − J∗η +Qη(sn+1, an+1)−Qη(sn, an)]

/* update J∗η at every step */
16 J∗η ← J∗η + 1/n[cn − J∗η ]
17 n← n+ 1
18 end

Figure 3. Deterministic policies πη+ξ (top) and πη−ξ (bottom) when
Cmax = 0.4, p0 = 0.3, and rmax = 9. (Blue circles, red stars and green
diamonds represent actions πη(δ, r) = i, n and x, respectively.)

average AoI can be reduced by randomization between two
deterministic threshold policies. We observe that the average
AoI decreases exponentially with respect to Cmax. The aver-
age AoI also decreases with decreasing p0 and with increasing
rmax as expected.

Figure 5 shows the evolution of the average AoI over time
when the proposed average-cost SARSA learning algorithm is
employed. It can be observed that the average AoI achieved
by Algorithm 1 converges to the one obtained from the RVI
algorithm which has a priori knowledge of g(r). Average
AoI achieved by the proposed online learning algorithm is



0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Average number  of transmissions, C
max

0

1

2

3

4

5

6

7

8

9

10

A
v
e

ra
g

e
 A

o
I

p
0
=0.5, ARQ, deterministic

p
0
=0.5, ARQ, randomized

p
0
=0.5, r

max
=3, HARQ

p
0
=0.3, r

max
=3, HARQ

p
0
=0.1, r

max
=9, HARQ

Figure 4. Expected average AoI Jπ with respect to Cmax for ARQ and
HARQ protocols for different p0 and rmax values. Time horizon is set to
T = 1000, and the results are averaged over 1000 trials.

Figure 5. Performance of the average-cost SARSA for rmax = 3, p0 = 0.2,
η = 10 and n ≤ 10000, averaged over 1000 trials (both the mean and the
variance are shown).

presented in Figure 6 as a function of Cmax, which shows
that the performance is close to that of RVI.

VII. CONCLUSIONS

We have considered a wireless system transmitting time-
sensitive data over an imperfect channel with the average
AoI as the performance measure, which quantifies the time-
liness of the data available at the destination. Considering
both the classical ARQ and the HARQ protocols, preemptive
scheduling policies have been proposed by taking into account
retransmissions under a resource constraint. In addition to
identifying a randomized threshold structure for the optimal
policy when the error probabilities are known, an efficient RL
algorithm is also proposed for practical deployments, when
the system characteristics may not be known in advance. The
algorithms designed in this paper are relevant to other systems
concerning the timeliness of information, and the proposed
methodology can be used in other CMDP problems. As a
future work, the problem will be extended to time-correlated
channel statistics in a multi-user setting.
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Figure 6. Performance of the RL (average-cost SARSA) with respect to RVI
Algorithm for n = 10000 iterations, and values are averaged over 1000 trials
for different p0 and rmax values (both the mean and the variance are shown).

REFERENCES

[1] E. Altman, R. E. Azouzi, D. S. Menasché, and Y. Xu, “Forever young:
Aging control in dtns,” CoRR, vol. abs/1009.4733, 2010.

[2] S. Kaul, M. Gruteser, V. Rai, and J. Kenney, “Minimizing age of
information in vehicular networks,” in IEEE Coms. Society Conf. on
Sensor, Mesh and Ad Hoc Coms. and Nets., June 2011, pp. 350–358.

[3] S. Kaul, R. Yates, and M. Gruteser, “Real-time status: How often should
one update?” in INFOCOM, Proc. IEEE, March 2012, pp. 2731–2735.

[4] P. Frenger, S. Parkvall, and E. Dahlman, “Performance comparison of
HARQ with chase combining and incremental redundancy for hsdpa,”
in IEEE Vehicular Technology Conf. Proc., vol. 3, 2001, pp. 1829–1833.

[5] B. T. Bacinoglu, E. T. Ceran, and E. Uysal-Biyikoglu, “Age of infor-
mation under energy replenishment constraints,” in Information Theory
and Applications Workshop (ITA), Feb 2015, pp. 25–31.

[6] I. Kadota, E. Uysal-Biyikoglu, R. Singh, and E. Modiano, “Minimizing
age of information in broadcast wireless networks,” in Annual Allerton
Conf. On on Communication, Control, and Computing, September 2016.

[7] Y. P. Hsu, E. Modiano, and L. Duan, “Age of information: Design and
analysis of optimal scheduling algorithms,” in 2017 IEEE International
Symposium on Information Theory (ISIT), June 2017, pp. 561–565.

[8] K. Chen and L. Huang, “Age-of-information in the presence of error,”
in IEEE Int’l Symp. on Inf. Theory (ISIT), July 2016, pp. 2579–2583.

[9] E. Najm, R. D. Yates, and E. Soljanin, “Status updates through M/G/1/1
queues with HARQ,” CoRR, vol. abs/1704.03937, 2017.

[10] V. Tripathi, E. Visotsky, R. Peterson, and M. Honig, “Reliability-based
type ii hybrid ARQ schemes,” in Communications, 2003. ICC ’03. IEEE
International Conference on, vol. 4, May 2003, pp. 2899–2903 vol.4.

[11] “IEEE standard for local and metropolitan area networks-part 16:
Air interface for fixed broadband wireless access systems,” IEEE Std
P802.16/Cor1/D5, 2005.

[12] E. Altman, Constrained Markov Decision Processes, ser. Stochastic
modeling. Boca Raton, London: Chapman & Hall/CRC, 1999.

[13] M. L. Puterman, Markov Decision Processes: Discrete Stochastic Dy-
namic Programming. New York, NY, USA: John Wiley & Sons, 1994.

[14] L. I. Sennott, “Average cost optimal stationary policies in infinite state
Markov decision processes with unbounded costs,” Operations Research,
vol. 37, no. 4, pp. 626–633, 1989.

[15] ——, “Constrained average cost Markov decision chains,” Probability
in Eng. and Informational Sciences, vol. 7, no. 1, p. 6983, 1993.

[16] M. H. Ngo and V. Krishnamurthy, “Monotonicity of constrained optimal
transmission policies in correlated fading channels with ARQ,” IEEE
Trans. on Signal Processing, vol. 58, no. 1, pp. 438–451, Jan 2010.

[17] A. Roy and A. Karandikar, “Optimal radio access technology selection
policy for lte-wifi network,” in Int’l Symp. Modeling and Opt. in Mobile,
Ad Hoc, and Wireless Nets. (WiOpt), May 2015, pp. 291–298.

[18] S. Mahadevan, “Average reward reinforcement learning: Foundations,
algorithms, and empirical results,” Machine Learning, vol. 22, no. 1,
pp. 159–195, 1996.

[19] R. S. Sutton and A. G. Barto, Introduction to Reinforcement Learning,
1st ed. Cambridge, MA, USA: MIT Press, 1998.


