
On the Seond Order Charaterization in TraÆ Modeling
Tam�as Borsos1;2, L�aszl�o Gy�or�1, Andr�as Gy�orgy11Department of Computer Siene and Information TheoryBudapest University of Tehnology and EonomisP�azm�any P. 1/D, 1117 Budapest, Hungary2TraÆ Analysis and Network Performane Laboratory,Erisson HungaryLabor 1, 1037 Budapest, Hungary

AbstratSuperposition of ON/OFF proesses frequently arise in network traÆ modeling and oftenserves as a basis for performane evaluation of queueing systems. In this paper we onsiderthe tail distribution of a queue, when multiplexing idential ON/OFF soures with keepingthe average length of ON and OFF periods onstant. The duration of ON and OFF periodsfollows a distribution that has polynomial tail. We show that for a �nite but arbitrarily largenumber of multiplexed soures the limit distribution of the queue has at least polynomialtail. On the other hand, in the ase of the equivalent Gaussian input, that is, a Gaussianproess with the same mean and seond order harateristis, the queue tail asymptotis isat most sub-exponential. Simulations showed that this signi�ant di�erene of the queuetail probabilities also appear in ase of pratial traÆ senarios. These results imply thatdespite the similarity of multiplexed ON/OFF and Gaussian proesses these models shouldbe distinguished from a traÆ engineering viewpoint.Keywords: ON/OFF proesses, multiplexing, queue tail asymptotis, Gaussian modeling
1 IntrodutionIt is well known that traÆ on paket data networks and traditional voie traÆ show substan-tially di�erent harateristis. The most signi�ant di�erene lies in their dissimilar temporalbehaviour, i.e., the time dependene struture of a large proportion of data traÆ types is notexponential. Paket data appears to be (asymptotially) self-similar, whih gives rise to new,long range dependent (LRD) traÆ models. Modeling e�orts have been mainly fousing on ap-turing the �rst and seond order harateristis (i.e., marginals and orrelation struture) of realdata traes. As a parsimonious model, the self-similar frational Gaussian noise was suggestedfor this purpose by Leland et al. [10℄, although they did not provide any physial explanation.From queueing viewpoint, the heavy orrelation of an input proess has fundamental impaton traÆ engineering, sine the tail of the generated queue length distribution is larger thanexponential. This phenomenon is also regarded as "bu�er ine�etiveness", beause large queuebuild-ups may our with high probability. For the frational Brownian model Norros [13℄showed that the queue length is at least Weibullian. Using large deviation tehniques DuÆeldand O'Connell [4℄ proved that this bound is asymptotially tight.Superimposed ON/OFF soures and the M/G/1 proess are also onsidered for modelingand trae generation, as these proesses an easily be parametrized to take the desired polynomialorrelation struture. One type is the "idealized" ON/OFF proess, i.e., when an ON periodmay be followed by another ON period and an OFF period an sueed another OFF period. Inthis ase the ON and OFF period distributions are idential and the proess beomes a simplerenewal proess. The autoorrelation funtion of suh a soure is exatly equal to the normalized1



integrated tail of the renewal distribution funtion (see, e.g. [9℄). The autoorrelation funtionof stritly alternating ON/OFF soures are more diÆult to alulate. An asymptoti estimatefor polynomial ON and OFF distributions is obtained in expliit form in [6℄. This result issimilar to the idealized ase: the tail of the autoorrelation funtion is asymptotially the sameas the integrated tail of the ON/OFF period distribution funtion. This means that the tail ofthe autoorrelation funtion of multiplexed idential ON/OFF soures with power tail ON/OFFdurations remains polynomial.Dani�els and Blondia [3℄ and Parulekar [14℄ proved that an M/G/1 input proess whih isLRD generates polynomial queue length distribution. Jelenkovi� and Lazar [7℄ onsidered thesuperposition of in�nite number of idential ON/OFF soures, while keeping the average rate�xed by inreasing the length of OFF periods. In this ase the aggregate proess onverges indistribution to the M/G/1 proess. Similar aggregation is studied in [11℄. Another way ofmultiplexing ON/OFF soures is introdued by Willinger et al. [17℄. In that paper the sourerate in the ON period is suitably saled and the limiting proess turns out to be frationalGaussian noise. This model already gives a physial explanation for self-similarity. In [2℄ it isshown that the queue length has asymptotially Weibullian distribution.In this paper we onsider the disrete time queueing behaviour of the aggregation of a�nite but arbitrarily large number of ON/OFF soures with polynomial ON and OFF perioddistributions. For both long and short range dependent (SRD) ases, we ompare these queuelengths with those of the orresponding limiting Gaussian proesses (i.e., whih have the sameautoorrelation funtions). While the queue tail asymptotis is always polynomial with theON/OFF input, it is exponential for SRD and Weibullian for LRD equivalent Gaussian inputproesses. The results on the tail asymptotis mean that one has to be areful when applyingeither ON/OFF or Gaussian models. Finally, we present simulation results to demonstrate thedi�erene for pratial queue tail probabilities.
2 Multiplexing ON/OFF soures - the queue tail an be largeConsider a disrete time queuing model with onstant servie rate s, and denote by Xn thenumber of arrivals in time slot n. Let the initial length of the queue Q0 be an arbitrary non-negative integer valued random variable. ThenQn+1 = (Qn � s+Xn+1)+for n � 0. Conerning stability, Loynes [12℄ proved the following. LetV0 = 0;Vn = n�1Xi=0 X�i � ns; (n � 1);where the sequene fVng is alled the workload proess. If fXig is stationary and ergodi, andEfX1g < s, then there is a stationary and ergodi sequene fQ0ig and there is an almost surely�nite random variable N0 suh that Q0n = Qn for all n > N0, and Q00 = supn�0 Vn:In this setion it is shown that depending on the duration of the ON periods the queue lengthQ may have larger tail than either exponential or Weibullian. The following proposition laimsthat even when multiplexing a large number of idential ON/OFF soures the queue tail mayexeed an arbitrarily long polynomial tail if the ON/OFF distributions are hosen appropriately.Proposition 1 For all Æ > 0 there are stationary and ergodi ON/OFF soures fX(l)n g; l =1; 2; : : : ; L with EfX(l)1 g = 1=2 suh that if the servie rate s satis�es L > s > L=2 then for thestationary queue length sequene we havePfQ � qg � q�Æ; 2



for any q � 0 with some onstant  > 0.A mathematially detailed and formal proof of the proposition an be found in [1℄. Here amore intuitive approah is presented.Proof. Suppose that the length of the ON and OFF periods �i are independent and identiallydistributed positive random variables with distributionrj = Pf�1 = jg; j = 1; 2; : : : ; and r0 = 0;and orresponding distribution funtion F (z) =Pz�1i=1 ri: Assume that Ef�1g <1.De�ne fX(l)n g to be 1 if the lth soure is in ON state in time slot n and 0 otherwise. Theproesses fX(l)n g are independent, stationary and ergodi. Note that sine the length of theON and OFF periods have the same distribution, PfX(l)n = 1g = PfX(l)n = 0g = 1=2. LetXn =PLl=1X(l)n . Beause s > L=2 the queue length Qn is stable and has a limit distribution.Let W (l)n be the number of pakets generated by the lth soure in the orresponding ONperiod up to time n. If n is in an OFF period of the soure l then W (l)n = 0. If all soures are inON state for an interval of length t, the generated workload proess during this time is t(L�s).In this ase, the required time to reah queue length q is t = d qL�se. Therefore, for q � 0PfQn � qg � PfQn � q jX(l)n = 1; l = 1; 2; : : : ; LgPfX(l)n = 1; l = 1; 2; : : : Lg� PfW (l)n � qL� s ; l = 1; 2; : : : ; L jX(l)n = 1; l = 1; 2; : : : Lg2�L= �PfW (1)n � qL� s jX(1)n = 1g�L 2�L:
The seond inequality omes from the fat that if W (l)n � qL�s for all soures, then Qn � q. Onthe other hand, the event W (l)n � qL�s means that the ON period of soure l started at least qL�sslot before the random time instant n (note that, by ondition, all soures are in ON state in thenth slot). Its distribution an then be alulated using the bakward reurrene time argumentfrom renewal theory (see, e.g. [8℄)PfW (1)n = jg = 1� F (j)Ef�1g for j = 1; 2; : : : :Thus

PfQn � qg � �PfW (1)n � qL� s jX(1)n = 1g�L 2�L = 0�P1j= qL�s (1� F (j))Ef�1g 1AL 2�L;
therefore

PfQ � qg � 0�P1j= qL�s (1� F (j))Ef�1g 1AL 2�L:
If the ON and OFF distributions have power tail, i.e.,1� F (z) = z�(1+); (1)where  > 0 and z � 1, we have that for some onstant  > 0PfQ � qg � q�L:The proposition then holds with  = Æ=L. 2
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Remark. Note that the bound of Proposition 1 an be applied for both idealized and stritlyalternating ON/OFF soures.Sine in this paper the e�ets of seond order harateristis on queueing performane areonsidered, the ovariane funtion of the umulated input proess is of primary interest. In thefollowing we alulate it for an aggregated ON/OFF input. For simpliity, idealized ON/OFFsoures are onsidered. Let G(j) be the distribution funtion of the bakward reurrene timeW (1)n , i.e.,1�G(j) = 1Xi=j 1� F (j)Ef�1g :
Then the ovariane funtion of one ON/OFF soure fX(1)n g (see e.g. [9℄) isR(k) = R(0) (1�G(k)); k = �1;�2; : : :where R(0) = 14 , and the ovariane funtion of L multiplexed soures fXng isLR(k) = LR(0) (1�G(k)); k = �1;�2; : : :It implies that

�2n = Var( nXi=1Xi) = 2 n�1Xk=1LR(k) (n� k) + nLR(0):
fXng is alled short range dependent (SRD) if the sequene �2n=n is bounded, otherwise longrange dependent (LRD). For the hoie 1�G(z) =  z� with some onstant  > 0, we have

�2n = 2L n�1Xk=1 k�(n� k) + nLR(0)
After some manipulations we get

�2n ' 8><>: 1 n2� if 0 <  < 12 n log n if  = 13 n if  > 1 (2)
where 1; 2; 3 > 0 are other onstants. It means that for 0 <  � 1, �2n=n is not bounded,hene fXng is LRD, and for  > 1 �2n=n is bounded, so fXng is SRD. Note that, althoughdepending on  > 0, fXng may be short range dependent or long range dependent, the queuelength distribution always has at least polynomial tail by Proposition 1.
3 Queue tail with Gaussian inputIn [16℄ Willinger et al. proposed to use aggregation of ON/OFF soures for trae generation tomodel self-similar Gaussian traÆ. In that paper they onsidered idealized ON/OFF proesses,while stritly alternating ON/OFF soures are onsidered in [17℄. Taqqu et al. [15℄ use theCentral Limit Theorem to prove the onvergene of multiplexed ON/OFF soures to a stationaryGaussian proess. On the basis of this result they propose to model a self-similar Gaussianproess by multiplexed ON/OFF soures. The ON and OFF period length distributions are setso that the autoorrelation funtions of the two proesses math. In the following we show thatthe queue tail for a �nite number of soures is larger than that of the limiting Gaussian proess.Consider the equivalent Gaussian proess for the aggregate ON/OFF traÆ, i.e. the asewhen the arrival proess fXng is Gaussian with autoovariane funtion whih has a polyno-mial tail. If fXng is weakly dependent then the tail of the limit distribution is asymptotially4



exponential. The exponential tail distribution an be derived using large deviation tehniques[5℄. The basi tool in this respet is the umulant generating funtion of the workload proess:�(�) = limn!1 1n logEfe�(Pnk=1Xk �ns)g;assuming that the limit exists. If the set f�;�(�) < 0g is nonempty then let Æ = supf�;�(�) < 0g.Then for large q, PfQ > qg ' e�Æq, that islimq!1 1q logPfQ > qg = �Æ:For a short range dependent Gaussian proess fXng the umulant generating funtion of theworkload proess fPni=1Xi � nsg is�(�) = limn!1 1n logEe�(Pni=1Xi�ns) = �22 limn!1 �2nn + �(m� s);where m = EXi is the mean of the proess. In our ase limn!1 �2n=n is positive and �nite,therefore for s > m the set f�(�) � 0g is nonempty and the queue length distribution isexponential.Proposition 2 Assume that the input fXng is a stationary Gaussian proess with varianeLR(0) = L=4 and ovariane funtion LR(k) = k�; k > 0; and mean m = L=2. Then for > 1 and servie rate s suh that L2 < s < L,PfQ > qg ' e�Æqfor some Æ > 0.For long range dependent arrivals DuÆeld and O'Connell [4℄ proved that the tail may benon-exponential. They introdued the saled umulant generating funtion��(�) = limn!1 1vn logEfe� vnn (Pnk=1Xk�ns)g;assuming that this limit exists, where vn is a monotone inreasing funtion with limn!1 vn =1. Assume that there exist funtions g and hn suh that hn is monotone inreasing withlimn!1 hn = 1 and limq!1 vq=yhq = g(y) for all y > 0. DuÆeld and O'Connell proved thatunder ertain onditionsPfQ > qg ' e�Æhq ;where Æ = infy>0 g(y)I�(y) and I�(y) is the Legendre-Fenhel transform of ��(�), i.e., I�(y) =sup�2Rf�y � ��(�)g. They applied this result for the ases where fPnk=1Xkg is a Gaussianproess with stationary inrements, or Ornstein-Uhlenbek proess, or a squared Bessel proess.In ase a of long range dependent Gaussian proess the saled umulant generating funtionis ��(�) = limn!1 1vn logEe� vnn (Pni=1Xi�ns) = limn!1 �2 vn2n2�2n + �(m� s):With saling funtionsvn = n2�2n ' n21 n2� = 11n ; hn = nwhih are inreasing (reall that 1 is de�ned in (2)), we have that��(�) = �22 + �(m� s);
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for whih the limit g(y) = 11y exists, and so
limq!1 �2qq2 logP(Q > q) = �Æ;whereÆ = infy>0 (y �m+ s)221y :These results are summarized in the following proposition.Proposition 3 Under the onditions of Proposition 2, for 0 <  � 1 and L2 < s < L,PfQ > qg ' e�Æqfor some Æ > 0.

Remark. When the input proess is a LRD Gaussian proess with polynomial ovarianefuntion, it is asymptotially seond order self-similar. The deay rate of the ovariane funtionis determined by the Hurst parameter 1=2 < H < 1 : �2n ' n2H . Then the saling funtionvn = 11n�2(1�H)
is polynomial and we getP(Q > q) ' e�Æq2(1�H):In our notationPfQ > qg ' e�Æ q2�2q ' e�Æ q21 q2� = e� Æ1 q ;whih gives the relation 2H = 2� .Combining Propositions 1-3 implies that the widely assumed equivalene of an aggregatedON/OFF traÆ and the orresponding Gaussian proess may lead to inadequate traÆ engi-neering.Proposition 4 The queue tail generated by an aggregated ON/OFF proesses with polynomialON and OFF duration distributions is asymptotially always larger than that of the equivalentGaussian proess.
4 Queue tail simulationsThe above results on the queue length distributions for the ases of SRD and LRD input pro-esses are asymptotially di�erent for the ON/OFF aggregates and the orresponding equivalentGaussian soures. However, sine all of these bounds refer to the asymptotis, one may be inter-ested in how they perform for a pratial number of multiplexed soures and overow probabilityvalues (in the range 10�2 � 10�6). To demonstrate the di�erene between the queue tails simu-lations were performed and the results are presented graphially in this setion.In the �rst example the input proess is L = 50 multiplexed ON/OFF soures with servierate s = 32 to ahieve a reasonable 1% zero bu�er overow. The onstituent soures are om-posed of stritly alternating identially distributed ON and OFF periods, resulting an aggregatemean of L=2 = 25. The deay parameter was hosen to be  = 0:4, thus the input traÆ islong range dependent. Its Gaussian equivalent has a Hurst parameter H = 2�2 = 0:8. The6
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Figure 1.: Queue tails for 50 ON/OFF soures and its Gaussian equivalent on logarithmi andlog-log sale
queue tail of the ON/OFF input was obtained via simulations, while for the Gaussian proessthe approximation of [4℄ were used. (The lower and upper bounds of [2℄ show no signi�antdeviation.)One an see in Figure 1. that, although both proesses have almost the same marginaldistributions and autoorrelation funtions, their queue tails di�er by one or two orders ofmagnitude even at pratial overow probabilities, whih shows the validity of the asymptotilaim of Proposition 4 also for small queue lengths. On the log-log plot the polynomial tail ofthe queue length for the ON/OFF aggregate input an also be observed even for small values.In the seond example a higher degree of aggregation is onsidered. The number of ON/OFFsoures is L = 100, the servie rate s = 60,  = 0:4, resulting the same Hurst parameter H = 0:8for the orresponding Gaussian proess. The queueing behaviour is shown in Figure 2.It an be seen that by inreasing the number of ON/OFF soures the queueing performane ofthe multiplexed traÆ somewhat approahes that of the equivalent Gaussian proess. However,an order of magnitude di�erene in the queue tail probabilities remains for as many as 100aggregated soures. Due to the di�erent asymptoti behaviour of the two queue tails the observed
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Figure 2.: Queue tails for 100 ON/OFF soures and its Gaussian equivalent on logarithmi andlog-log sale
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di�erene grows further for larger queue lengths. One an also see from the log-log plots thatthe polynomial tail of the ON/OFF input also appears in ase of high degree of multiplexing.
5 ConlusionIn this paper we onsidered the disrete time queueing behaviour of the superposition of a �-nite but arbitrarily large number of idential ON/OFF soures. It was proved that if the ONperiod distribution is polynomial, then the generated queue tail asymptotis will also be poly-nomial. Comparison with the equivalent Gaussian proesses, whih have the same orrelationstruture, showed that while the queue tail asymptotis is polynomial with the ON/OFF in-put, it is exponential for SRD and Weibullian for LRD equivalent Gaussian input proesses.Simulations on the queueing behaviour indiated an order of magnitude di�erene for high de-gree of multiplexing and pratial overow probabilities. These results show that multiplexedON/OFF and Gaussian traÆ models are not equivalent from traÆ engineering viewpoint, asthey signi�antly di�er in their queueing performane.
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