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Abstra
tSuperposition of ON/OFF pro
esses frequently arise in network traÆ
 modeling and oftenserves as a basis for performan
e evaluation of queueing systems. In this paper we 
onsiderthe tail distribution of a queue, when multiplexing identi
al ON/OFF sour
es with keepingthe average length of ON and OFF periods 
onstant. The duration of ON and OFF periodsfollows a distribution that has polynomial tail. We show that for a �nite but arbitrarily largenumber of multiplexed sour
es the limit distribution of the queue has at least polynomialtail. On the other hand, in the 
ase of the equivalent Gaussian input, that is, a Gaussianpro
ess with the same mean and se
ond order 
hara
teristi
s, the queue tail asymptoti
s isat most sub-exponential. Simulations showed that this signi�
ant di�eren
e of the queuetail probabilities also appear in 
ase of pra
ti
al traÆ
 s
enarios. These results imply thatdespite the similarity of multiplexed ON/OFF and Gaussian pro
esses these models shouldbe distinguished from a traÆ
 engineering viewpoint.Keywords: ON/OFF pro
esses, multiplexing, queue tail asymptoti
s, Gaussian modeling
1 Introdu
tionIt is well known that traÆ
 on pa
ket data networks and traditional voi
e traÆ
 show substan-tially di�erent 
hara
teristi
s. The most signi�
ant di�eren
e lies in their dissimilar temporalbehaviour, i.e., the time dependen
e stru
ture of a large proportion of data traÆ
 types is notexponential. Pa
ket data appears to be (asymptoti
ally) self-similar, whi
h gives rise to new,long range dependent (LRD) traÆ
 models. Modeling e�orts have been mainly fo
using on 
ap-turing the �rst and se
ond order 
hara
teristi
s (i.e., marginals and 
orrelation stru
ture) of realdata tra
es. As a parsimonious model, the self-similar fra
tional Gaussian noise was suggestedfor this purpose by Leland et al. [10℄, although they did not provide any physi
al explanation.From queueing viewpoint, the heavy 
orrelation of an input pro
ess has fundamental impa
ton traÆ
 engineering, sin
e the tail of the generated queue length distribution is larger thanexponential. This phenomenon is also regarded as "bu�er ine�e
tiveness", be
ause large queuebuild-ups may o

ur with high probability. For the fra
tional Brownian model Norros [13℄showed that the queue length is at least Weibullian. Using large deviation te
hniques DuÆeldand O'Connell [4℄ proved that this bound is asymptoti
ally tight.Superimposed ON/OFF sour
es and the M/G/1 pro
ess are also 
onsidered for modelingand tra
e generation, as these pro
esses 
an easily be parametrized to take the desired polynomial
orrelation stru
ture. One type is the "idealized" ON/OFF pro
ess, i.e., when an ON periodmay be followed by another ON period and an OFF period 
an su

eed another OFF period. Inthis 
ase the ON and OFF period distributions are identi
al and the pro
ess be
omes a simplerenewal pro
ess. The auto
orrelation fun
tion of su
h a sour
e is exa
tly equal to the normalized1



integrated tail of the renewal distribution fun
tion (see, e.g. [9℄). The auto
orrelation fun
tionof stri
tly alternating ON/OFF sour
es are more diÆ
ult to 
al
ulate. An asymptoti
 estimatefor polynomial ON and OFF distributions is obtained in expli
it form in [6℄. This result issimilar to the idealized 
ase: the tail of the auto
orrelation fun
tion is asymptoti
ally the sameas the integrated tail of the ON/OFF period distribution fun
tion. This means that the tail ofthe auto
orrelation fun
tion of multiplexed identi
al ON/OFF sour
es with power tail ON/OFFdurations remains polynomial.Dani�els and Blondia [3℄ and Parulekar [14℄ proved that an M/G/1 input pro
ess whi
h isLRD generates polynomial queue length distribution. Jelenkovi�
 and Lazar [7℄ 
onsidered thesuperposition of in�nite number of identi
al ON/OFF sour
es, while keeping the average rate�xed by in
reasing the length of OFF periods. In this 
ase the aggregate pro
ess 
onverges indistribution to the M/G/1 pro
ess. Similar aggregation is studied in [11℄. Another way ofmultiplexing ON/OFF sour
es is introdu
ed by Willinger et al. [17℄. In that paper the sour
erate in the ON period is suitably s
aled and the limiting pro
ess turns out to be fra
tionalGaussian noise. This model already gives a physi
al explanation for self-similarity. In [2℄ it isshown that the queue length has asymptoti
ally Weibullian distribution.In this paper we 
onsider the dis
rete time queueing behaviour of the aggregation of a�nite but arbitrarily large number of ON/OFF sour
es with polynomial ON and OFF perioddistributions. For both long and short range dependent (SRD) 
ases, we 
ompare these queuelengths with those of the 
orresponding limiting Gaussian pro
esses (i.e., whi
h have the sameauto
orrelation fun
tions). While the queue tail asymptoti
s is always polynomial with theON/OFF input, it is exponential for SRD and Weibullian for LRD equivalent Gaussian inputpro
esses. The results on the tail asymptoti
s mean that one has to be 
areful when applyingeither ON/OFF or Gaussian models. Finally, we present simulation results to demonstrate thedi�eren
e for pra
ti
al queue tail probabilities.
2 Multiplexing ON/OFF sour
es - the queue tail 
an be largeConsider a dis
rete time queuing model with 
onstant servi
e rate s, and denote by Xn thenumber of arrivals in time slot n. Let the initial length of the queue Q0 be an arbitrary non-negative integer valued random variable. ThenQn+1 = (Qn � s+Xn+1)+for n � 0. Con
erning stability, Loynes [12℄ proved the following. LetV0 = 0;Vn = n�1Xi=0 X�i � ns; (n � 1);where the sequen
e fVng is 
alled the workload pro
ess. If fXig is stationary and ergodi
, andEfX1g < s, then there is a stationary and ergodi
 sequen
e fQ0ig and there is an almost surely�nite random variable N0 su
h that Q0n = Qn for all n > N0, and Q00 = supn�0 Vn:In this se
tion it is shown that depending on the duration of the ON periods the queue lengthQ may have larger tail than either exponential or Weibullian. The following proposition 
laimsthat even when multiplexing a large number of identi
al ON/OFF sour
es the queue tail mayex
eed an arbitrarily long polynomial tail if the ON/OFF distributions are 
hosen appropriately.Proposition 1 For all Æ > 0 there are stationary and ergodi
 ON/OFF sour
es fX(l)n g; l =1; 2; : : : ; L with EfX(l)1 g = 1=2 su
h that if the servi
e rate s satis�es L > s > L=2 then for thestationary queue length sequen
e we havePfQ � qg � 
q�Æ; 2



for any q � 0 with some 
onstant 
 > 0.A mathemati
ally detailed and formal proof of the proposition 
an be found in [1℄. Here amore intuitive approa
h is presented.Proof. Suppose that the length of the ON and OFF periods �i are independent and identi
allydistributed positive random variables with distributionrj = Pf�1 = jg; j = 1; 2; : : : ; and r0 = 0;and 
orresponding distribution fun
tion F (z) =Pz�1i=1 ri: Assume that Ef�1g <1.De�ne fX(l)n g to be 1 if the lth sour
e is in ON state in time slot n and 0 otherwise. Thepro
esses fX(l)n g are independent, stationary and ergodi
. Note that sin
e the length of theON and OFF periods have the same distribution, PfX(l)n = 1g = PfX(l)n = 0g = 1=2. LetXn =PLl=1X(l)n . Be
ause s > L=2 the queue length Qn is stable and has a limit distribution.Let W (l)n be the number of pa
kets generated by the lth sour
e in the 
orresponding ONperiod up to time n. If n is in an OFF period of the sour
e l then W (l)n = 0. If all sour
es are inON state for an interval of length t, the generated workload pro
ess during this time is t(L�s).In this 
ase, the required time to rea
h queue length q is t = d qL�se. Therefore, for q � 0PfQn � qg � PfQn � q jX(l)n = 1; l = 1; 2; : : : ; LgPfX(l)n = 1; l = 1; 2; : : : Lg� PfW (l)n � qL� s ; l = 1; 2; : : : ; L jX(l)n = 1; l = 1; 2; : : : Lg2�L= �PfW (1)n � qL� s jX(1)n = 1g�L 2�L:
The se
ond inequality 
omes from the fa
t that if W (l)n � qL�s for all sour
es, then Qn � q. Onthe other hand, the event W (l)n � qL�s means that the ON period of sour
e l started at least qL�sslot before the random time instant n (note that, by 
ondition, all sour
es are in ON state in thenth slot). Its distribution 
an then be 
al
ulated using the ba
kward re
urren
e time argumentfrom renewal theory (see, e.g. [8℄)PfW (1)n = jg = 1� F (j)Ef�1g for j = 1; 2; : : : :Thus

PfQn � qg � �PfW (1)n � qL� s jX(1)n = 1g�L 2�L = 0�P1j= qL�s (1� F (j))Ef�1g 1AL 2�L;
therefore

PfQ � qg � 0�P1j= qL�s (1� F (j))Ef�1g 1AL 2�L:
If the ON and OFF distributions have power tail, i.e.,1� F (z) = z�(1+
); (1)where 
 > 0 and z � 1, we have that for some 
onstant 
 > 0PfQ � qg � 
q�L
:The proposition then holds with 
 = Æ=L. 2
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Remark. Note that the bound of Proposition 1 
an be applied for both idealized and stri
tlyalternating ON/OFF sour
es.Sin
e in this paper the e�e
ts of se
ond order 
hara
teristi
s on queueing performan
e are
onsidered, the 
ovarian
e fun
tion of the 
umulated input pro
ess is of primary interest. In thefollowing we 
al
ulate it for an aggregated ON/OFF input. For simpli
ity, idealized ON/OFFsour
es are 
onsidered. Let G(j) be the distribution fun
tion of the ba
kward re
urren
e timeW (1)n , i.e.,1�G(j) = 1Xi=j 1� F (j)Ef�1g :
Then the 
ovarian
e fun
tion of one ON/OFF sour
e fX(1)n g (see e.g. [9℄) isR(k) = R(0) (1�G(k)); k = �1;�2; : : :where R(0) = 14 , and the 
ovarian
e fun
tion of L multiplexed sour
es fXng isLR(k) = LR(0) (1�G(k)); k = �1;�2; : : :It implies that

�2n = Var( nXi=1Xi) = 2 n�1Xk=1LR(k) (n� k) + nLR(0):
fXng is 
alled short range dependent (SRD) if the sequen
e �2n=n is bounded, otherwise longrange dependent (LRD). For the 
hoi
e 1�G(z) = 
 z�
 with some 
onstant 
 > 0, we have

�2n = 2L
 n�1Xk=1 k�
(n� k) + nLR(0)
After some manipulations we get

�2n ' 8><>: 
1 n2�
 if 0 < 
 < 1
2 n log n if 
 = 1
3 n if 
 > 1 (2)
where 
1; 
2; 
3 > 0 are other 
onstants. It means that for 0 < 
 � 1, �2n=n is not bounded,hen
e fXng is LRD, and for 
 > 1 �2n=n is bounded, so fXng is SRD. Note that, althoughdepending on 
 > 0, fXng may be short range dependent or long range dependent, the queuelength distribution always has at least polynomial tail by Proposition 1.
3 Queue tail with Gaussian inputIn [16℄ Willinger et al. proposed to use aggregation of ON/OFF sour
es for tra
e generation tomodel self-similar Gaussian traÆ
. In that paper they 
onsidered idealized ON/OFF pro
esses,while stri
tly alternating ON/OFF sour
es are 
onsidered in [17℄. Taqqu et al. [15℄ use theCentral Limit Theorem to prove the 
onvergen
e of multiplexed ON/OFF sour
es to a stationaryGaussian pro
ess. On the basis of this result they propose to model a self-similar Gaussianpro
ess by multiplexed ON/OFF sour
es. The ON and OFF period length distributions are setso that the auto
orrelation fun
tions of the two pro
esses mat
h. In the following we show thatthe queue tail for a �nite number of sour
es is larger than that of the limiting Gaussian pro
ess.Consider the equivalent Gaussian pro
ess for the aggregate ON/OFF traÆ
, i.e. the 
asewhen the arrival pro
ess fXng is Gaussian with auto
ovarian
e fun
tion whi
h has a polyno-mial tail. If fXng is weakly dependent then the tail of the limit distribution is asymptoti
ally4



exponential. The exponential tail distribution 
an be derived using large deviation te
hniques[5℄. The basi
 tool in this respe
t is the 
umulant generating fun
tion of the workload pro
ess:�(�) = limn!1 1n logEfe�(Pnk=1Xk �ns)g;assuming that the limit exists. If the set f�;�(�) < 0g is nonempty then let Æ = supf�;�(�) < 0g.Then for large q, PfQ > qg ' e�Æq, that islimq!1 1q logPfQ > qg = �Æ:For a short range dependent Gaussian pro
ess fXng the 
umulant generating fun
tion of theworkload pro
ess fPni=1Xi � nsg is�(�) = limn!1 1n logEe�(Pni=1Xi�ns) = �22 limn!1 �2nn + �(m� s);where m = EXi is the mean of the pro
ess. In our 
ase limn!1 �2n=n is positive and �nite,therefore for s > m the set f�(�) � 0g is nonempty and the queue length distribution isexponential.Proposition 2 Assume that the input fXng is a stationary Gaussian pro
ess with varian
eLR(0) = L=4 and 
ovarian
e fun
tion LR(k) = 
k�
; k > 0; and mean m = L=2. Then for
 > 1 and servi
e rate s su
h that L2 < s < L,PfQ > qg ' e�Æqfor some Æ > 0.For long range dependent arrivals DuÆeld and O'Connell [4℄ proved that the tail may benon-exponential. They introdu
ed the s
aled 
umulant generating fun
tion��(�) = limn!1 1vn logEfe� vnn (Pnk=1Xk�ns)g;assuming that this limit exists, where vn is a monotone in
reasing fun
tion with limn!1 vn =1. Assume that there exist fun
tions g and hn su
h that hn is monotone in
reasing withlimn!1 hn = 1 and limq!1 vq=yhq = g(y) for all y > 0. DuÆeld and O'Connell proved thatunder 
ertain 
onditionsPfQ > qg ' e�Æhq ;where Æ = infy>0 g(y)I�(y) and I�(y) is the Legendre-Fen
hel transform of ��(�), i.e., I�(y) =sup�2Rf�y � ��(�)g. They applied this result for the 
ases where fPnk=1Xkg is a Gaussianpro
ess with stationary in
rements, or Ornstein-Uhlenbe
k pro
ess, or a squared Bessel pro
ess.In 
ase a of long range dependent Gaussian pro
ess the s
aled 
umulant generating fun
tionis ��(�) = limn!1 1vn logEe� vnn (Pni=1Xi�ns) = limn!1 �2 vn2n2�2n + �(m� s):With s
aling fun
tionsvn = n2�2n ' n2
1 n2�
 = 1
1n
 ; hn = n
whi
h are in
reasing (re
all that 
1 is de�ned in (2)), we have that��(�) = �22 + �(m� s);
5



for whi
h the limit g(y) = 1
1y
 exists, and so
limq!1 �2qq2 logP(Q > q) = �Æ;whereÆ = infy>0 (y �m+ s)22
1y
 :These results are summarized in the following proposition.Proposition 3 Under the 
onditions of Proposition 2, for 0 < 
 � 1 and L2 < s < L,PfQ > qg ' e�Æq
for some Æ > 0.

Remark. When the input pro
ess is a LRD Gaussian pro
ess with polynomial 
ovarian
efun
tion, it is asymptoti
ally se
ond order self-similar. The de
ay rate of the 
ovarian
e fun
tionis determined by the Hurst parameter 1=2 < H < 1 : �2n ' n2H . Then the s
aling fun
tionvn = 1
1n�2(1�H)
is polynomial and we getP(Q > q) ' e�Æq2(1�H):In our notationPfQ > qg ' e�Æ q2�2q ' e�Æ q2
1 q2�
 = e� Æ
1 q
 ;whi
h gives the relation 2H = 2� 
.Combining Propositions 1-3 implies that the widely assumed equivalen
e of an aggregatedON/OFF traÆ
 and the 
orresponding Gaussian pro
ess may lead to inadequate traÆ
 engi-neering.Proposition 4 The queue tail generated by an aggregated ON/OFF pro
esses with polynomialON and OFF duration distributions is asymptoti
ally always larger than that of the equivalentGaussian pro
ess.
4 Queue tail simulationsThe above results on the queue length distributions for the 
ases of SRD and LRD input pro-
esses are asymptoti
ally di�erent for the ON/OFF aggregates and the 
orresponding equivalentGaussian sour
es. However, sin
e all of these bounds refer to the asymptoti
s, one may be inter-ested in how they perform for a pra
ti
al number of multiplexed sour
es and over
ow probabilityvalues (in the range 10�2 � 10�6). To demonstrate the di�eren
e between the queue tails simu-lations were performed and the results are presented graphi
ally in this se
tion.In the �rst example the input pro
ess is L = 50 multiplexed ON/OFF sour
es with servi
erate s = 32 to a
hieve a reasonable 1% zero bu�er over
ow. The 
onstituent sour
es are 
om-posed of stri
tly alternating identi
ally distributed ON and OFF periods, resulting an aggregatemean of L=2 = 25. The de
ay parameter was 
hosen to be 
 = 0:4, thus the input traÆ
 islong range dependent. Its Gaussian equivalent has a Hurst parameter H = 2�
2 = 0:8. The6
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Figure 1.: Queue tails for 50 ON/OFF sour
es and its Gaussian equivalent on logarithmi
 andlog-log s
ale
queue tail of the ON/OFF input was obtained via simulations, while for the Gaussian pro
essthe approximation of [4℄ were used. (The lower and upper bounds of [2℄ show no signi�
antdeviation.)One 
an see in Figure 1. that, although both pro
esses have almost the same marginaldistributions and auto
orrelation fun
tions, their queue tails di�er by one or two orders ofmagnitude even at pra
ti
al over
ow probabilities, whi
h shows the validity of the asymptoti

laim of Proposition 4 also for small queue lengths. On the log-log plot the polynomial tail ofthe queue length for the ON/OFF aggregate input 
an also be observed even for small values.In the se
ond example a higher degree of aggregation is 
onsidered. The number of ON/OFFsour
es is L = 100, the servi
e rate s = 60, 
 = 0:4, resulting the same Hurst parameter H = 0:8for the 
orresponding Gaussian pro
ess. The queueing behaviour is shown in Figure 2.It 
an be seen that by in
reasing the number of ON/OFF sour
es the queueing performan
e ofthe multiplexed traÆ
 somewhat approa
hes that of the equivalent Gaussian pro
ess. However,an order of magnitude di�eren
e in the queue tail probabilities remains for as many as 100aggregated sour
es. Due to the di�erent asymptoti
 behaviour of the two queue tails the observed
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Figure 2.: Queue tails for 100 ON/OFF sour
es and its Gaussian equivalent on logarithmi
 andlog-log s
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di�eren
e grows further for larger queue lengths. One 
an also see from the log-log plots thatthe polynomial tail of the ON/OFF input also appears in 
ase of high degree of multiplexing.
5 Con
lusionIn this paper we 
onsidered the dis
rete time queueing behaviour of the superposition of a �-nite but arbitrarily large number of identi
al ON/OFF sour
es. It was proved that if the ONperiod distribution is polynomial, then the generated queue tail asymptoti
s will also be poly-nomial. Comparison with the equivalent Gaussian pro
esses, whi
h have the same 
orrelationstru
ture, showed that while the queue tail asymptoti
s is polynomial with the ON/OFF in-put, it is exponential for SRD and Weibullian for LRD equivalent Gaussian input pro
esses.Simulations on the queueing behaviour indi
ated an order of magnitude di�eren
e for high de-gree of multiplexing and pra
ti
al over
ow probabilities. These results show that multiplexedON/OFF and Gaussian traÆ
 models are not equivalent from traÆ
 engineering viewpoint, asthey signi�
antly di�er in their queueing performan
e.
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