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Abstract

Superposition of ON/OFF processes frequently arise in network traffic modeling and often
serves as a basis for performance evaluation of queueing systems. In this paper we consider
the tail distribution of a queue, when multiplexing identical ON/OFF sources with keeping
the average length of ON and OFF periods constant. The duration of ON and OFF periods
follows a distribution that has polynomial tail. We show that for a finite but arbitrarily large
number of multiplexed sources the limit distribution of the queue has at least polynomial
tail. On the other hand, in the case of the equivalent Gaussian input, that is, a Gaussian
process with the same mean and second order characteristics, the queue tail asymptotics is
at most sub-exponential. Simulations showed that this significant difference of the queue
tail probabilities also appear in case of practical traffic scenarios. These results imply that
despite the similarity of multiplexed ON/OFF and Gaussian processes these models should
be distinguished from a traffic engineering viewpoint.
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1 Introduction

It is well known that traffic on packet data networks and traditional voice traffic show substan-
tially different characteristics. The most significant difference lies in their dissimilar temporal
behaviour, i.e., the time dependence structure of a large proportion of data traffic types is not
exponential. Packet data appears to be (asymptotically) self-similar, which gives rise to new,
long range dependent (LRD) traffic models. Modeling efforts have been mainly focusing on cap-
turing the first and second order characteristics (i.e., marginals and correlation structure) of real
data traces. As a parsimonious model, the self-similar fractional Gaussian noise was suggested
for this purpose by Leland et al. [10], although they did not provide any physical explanation.

From queueing viewpoint, the heavy correlation of an input process has fundamental impact
on traffic engineering, since the tail of the generated queue length distribution is larger than
exponential. This phenomenon is also regarded as ”buffer ineffectiveness”, because large queue
build-ups may occur with high probability. For the fractional Brownian model Norros [13]
showed that the queue length is at least Weibullian. Using large deviation techniques Duffield
and O’Connell [4] proved that this bound is asymptotically tight.

Superimposed ON/OFF sources and the M /G /oo process are also considered for modeling
and trace generation, as these processes can easily be parametrized to take the desired polynomial
correlation structure. One type is the ”idealized” ON/OFF process, i.e., when an ON period
may be followed by another ON period and an OFF period can succeed another OFF period. In
this case the ON and OFF period distributions are identical and the process becomes a simple
renewal process. The autocorrelation function of such a source is exactly equal to the normalized



integrated tail of the renewal distribution function (see, e.g. [9]). The autocorrelation function
of strictly alternating ON/OFF sources are more difficult to calculate. An asymptotic estimate
for polynomial ON and OFF distributions is obtained in explicit form in [6]. This result is
similar to the idealized case: the tail of the autocorrelation function is asymptotically the same
as the integrated tail of the ON/OFF period distribution function. This means that the tail of
the autocorrelation function of multiplexed identical ON/OFF sources with power tail ON/OFF
durations remains polynomial.

Daniéls and Blondia [3] and Parulekar [14] proved that an M/G/oco input process which is
LRD generates polynomial queue length distribution. Jelenkovié¢ and Lazar [7] considered the
superposition of infinite number of identical ON/OFF sources, while keeping the average rate
fixed by increasing the length of OFF periods. In this case the aggregate process converges in
distribution to the M/G/oco process. Similar aggregation is studied in [11]. Another way of
multiplexing ON/OFF sources is introduced by Willinger et al. [17]. In that paper the source
rate in the ON period is suitably scaled and the limiting process turns out to be fractional
Gaussian noise. This model already gives a physical explanation for self-similarity. In [2] it is
shown that the queue length has asymptotically Weibullian distribution.

In this paper we consider the discrete time queueing behaviour of the aggregation of a
finite but arbitrarily large number of ON/OFF sources with polynomial ON and OFF period
distributions. For both long and short range dependent (SRD) cases, we compare these queue
lengths with those of the corresponding limiting Gaussian processes (i.e., which have the same
autocorrelation functions). While the queue tail asymptotics is always polynomial with the
ON/OFF input, it is exponential for SRD and Weibullian for LRD equivalent Gaussian input
processes. The results on the tail asymptotics mean that one has to be careful when applying
either ON/OFF or Gaussian models. Finally, we present simulation results to demonstrate the
difference for practical queue tail probabilities.

2 Multiplexing ON/OFF sources - the queue tail can be large

Consider a discrete time queuing model with constant service rate s, and denote by X, the
number of arrivals in time slot n. Let the initial length of the queue Qg be an arbitrary non-
negative integer valued random variable. Then

Qni1=(Qn — 5+ Xpt1)"

for n > 0. Concerning stability, Loynes [12] proved the following. Let

VvO = 07
n—1

Vo = ZXfi—ns, (n>1),
1=0

where the sequence {V,,} is called the workload process. If {X;} is stationary and ergodic, and
E{X:} < s, then there is a stationary and ergodic sequence {Q’} and there is an almost surely
finite random variable Ny such that Q!, = Q,, for all n > Ny, and Qf = sup,~¢ Va.

In this section it is shown that depending on the duration of the ON periods the queue length
() may have larger tail than either exponential or Weibullian. The following proposition claims
that even when multiplexing a large number of identical ON/OFF sources the queue tail may
exceed an arbitrarily long polynomial tail if the ON/OFF distributions are chosen appropriately.

Proposition 1 For all § > 0 there are stationary and ergodic ON/OFF sources {XT(LI)},Z =

1,2,..., L with E{Xfl)} = 1/2 such that if the service rate s satisfies L > s > L/2 then for the
stationary queue length sequence we have

P{Q>q} >cq®,



for any q > 0 with some constant ¢ > 0.

A mathematically detailed and formal proof of the proposition can be found in [1]. Here a
more intuitive approach is presented.

Proof. Suppose that the length of the ON and OFF periods 7; are independent and identically
distributed positive random variables with distribution

rj:P{lej}7j:]_,2,..., andr():(),

and corresponding distribution function F(z) = Y7 r;. Assume that E{r} < cc.

Define {X,gl)} to be 1 if the I'" source is in ON state in time slot n and 0 otherwise. The
processes {X,(ll)} are independent, stationary and ergodic. Note that since the length of the
ON and OFF periods have the same distribution, P{Xg) =1} = P{X,(ll) =0} = 1/2. Let
X, =%t X", Because s > L/2 the queue length @, is stable and has a limit distribution.

Let W,(Ll) be the number of packets generated by the [* source in the corresponding ON
period up to time n. If n is in an OFF period of the source ! then W,El) = 0. If all sources are in

ON state for an interval of length ¢, the generated workload process during this time is ¢(L — s).
In this case, the required time to reach queue length ¢ is ¢ = [;Z;]. Therefore, for ¢ > 0

P{Q,>q} > P{Q.>q|XV=11=12 .. L}P{xY=1,1=1,2,...L}

q

> P{wl¥ > L—,l:1,2,...,L|X§j):1,1:1,2,...L}2*L
— S

L
_ W _9 |y _ > L
<P{Wn >——|xV=1) 2~

The second inequality comes from the fact that if W,«(Ll) > L for all sources, then @, > ¢. On

the other hand, the event Wrgl) > 1L means that the ON period of source [ started at least ;-
slot before the random time instant n (note that, by condition, all sources are in ON state in the
nt* slot). Its distribution can then be calculated using the backward recurrence time argument

from renewal theory (see, e.g. [8])

P{W) =j} = 1];{71:1(? for j=1,2,....

Thus
S A\ L

P{O, > g} > <P{W,§1) > %s P 1}>L2L _ (Zj:ﬁiilg F(J))) -
therefore

P{Q>q} > (ZﬁLq‘s - F(j))) L2—L.

E{n}

If the ON and OFF distributions have power tail, i.e.,

1— F(z) = 2~ (4, (1)
where v > 0 and z > 1, we have that for some constant ¢ > 0

P{Q>q}>cqg ™.
The proposition then holds with v = §/L. O



Remark. Note that the bound of Proposition 1 can be applied for both idealized and strictly
alternating ON/OFF sources.

Since in this paper the effects of second order characteristics on queueing performance are
considered, the covariance function of the cumulated input process is of primary interest. In the
following we calculate it for an aggregated ON/OFF input. For simplicity, idealized ON/OFF
sources are considered. Let G(j) be the distribution function of the backward recurrence time

WT(LI), ie.,

1-60) = 3 g

Then the covariance function of one ON/OFF source {Xr(bl)} (see e.g. [9]) is
R(k) = R(0) (1 — G(k)), k==£1,%£2,...

where R(0) = 1, and the covariance function of L multiplexed sources {X,,} is

LR(k)=LR(0)(1—G(k), k==142, . ..

It implies that

n n—1
02 = Var {ZXZ-} =2> LR(k)(n—k) + nLR(0).
i=1 k=1
{X,} is called short range dependent (SRD) if the sequence o2 /n is bounded, otherwise long
range dependent (LRD). For the choice 1 — G(z) = ¢z~ with some constant ¢ > 0, we have
n—1
o2 =2Lc> k(n—k) + nLR(0)
k=1

After some manipulations we get
can® ifo<y<1

~ ¢ cpnlogn ify=1 (2)
c3n ify>1

2
On

where cy,ca,c3 > 0 are other constants. It means that for 0 < v < 1, 62 /n is not bounded,
hence {X,} is LRD, and for v > 1 02/n is bounded, so {X,} is SRD. Note that, although
depending on v > 0, {X,,} may be short range dependent or long range dependent, the queue
length distribution always has at least polynomial tail by Proposition 1.

3 Queue tail with Gaussian input

In [16] Willinger et al. proposed to use aggregation of ON/OFF sources for trace generation to
model self-similar Gaussian traffic. In that paper they considered idealized ON/OFF processes,
while strictly alternating ON/OFF sources are considered in [17]. Taqqu et al. [15] use the
Central Limit Theorem to prove the convergence of multiplexed ON/OFF sources to a stationary
Gaussian process. On the basis of this result they propose to model a self-similar Gaussian
process by multiplexed ON/OFF sources. The ON and OFF period length distributions are set
so that the autocorrelation functions of the two processes match. In the following we show that
the queue tail for a finite number of sources is larger than that of the limiting Gaussian process.

Consider the equivalent Gaussian process for the aggregate ON/OFF traffic, i.e. the case
when the arrival process {X,} is Gaussian with autocovariance function which has a polyno-
mial tail. If {X,} is weakly dependent then the tail of the limit distribution is asymptotically



exponential. The exponential tail distribution can be derived using large deviation techniques
[5]. The basic tool in this respect is the cumulant generating function of the workload process:

A(f) = lim l log E{e"(ZLl Xy — ns)},

n—o00 N,

assuming that the limit exists. If the set {6; A\(#) < 0} is nonempty then let 6 = sup{0; A(#) < 0}.
Then for large ¢, P{Q > ¢} ~ e7%9, that is

1
lim alog P{Q > ¢} = —d.

q—r o0

For a short range dependent Gaussian process { X, } the cumulant generating function of the
workload process {> 1" X; — ns} is

AB) = lim L log B/ Xi=na) — &y T g
(6) = lim, 7 log Be™ o= =5 am, o, o0m =),

where m = EX; is the mean of the process. In our case lim, . O'T% /n is positive and finite,
therefore for s > m the set {A(f) < 0} is nonempty and the queue length distribution is
exponential.

Proposition 2 Assume that the input {X,} is a stationary Gaussian process with variance
L R(0) = L/4 and covariance function L R(k) = ck™ 7,k > 0, and mean m = L/2. Then for
v > 1 and service rate s such that % <s<L,

P{Q>q}~e ™
for some § > 0.

For long range dependent arrivals Duffield and O’Connell [4] proved that the tail may be
non-exponential. They introduced the scaled cumulant generating function
]_ v n
* N . 97"(2 _, Xk—ns)
A*(6) Jim - log E{e k=1 s
assuming that this limit exists, where v,, is a monotone increasing function with lim, . v, =
00. Assume that there exist functions ¢ and h, such that h, is monotone increasing with

lim, 00 hp, = 00 and limg o % = ¢g(y) for all y > 0. Duffield and O’Connell proved that
under certain conditions

P{Q > q} ~e M,

where 0 = inf,~0g(y)I*(y) and I*(y) is the Legendre-Fenchel transform of A\*(#), i.e., I*(y) =
supger{fy — A\*(0)}. They applied this result for the cases where {>°}_; Xi} is a Gaussian
process with stationary increments, or Ornstein-Uhlenbeck process, or a squared Bessel process.

In case a of long range dependent Gaussian process the scaled cumulant generating function
is

1 vn " .
A*(6) = lim —log Ee? % (i Ximms) = jim 9221)—20% +6(m — s).
n

n—00 U, n—00

With scaling functions

2 2 1

Vp = —5 5 =—n7, h,=n"
o cin“—7 cl

which are increasing (recall that ¢ is defined in (2)), we have that

2
A*(0) = % +6(m —s),



for which the limit g(y) =

1 .
oy exists, and so

2

g
Jim, q—§ log P(Q > q) = —4,
where
5o g —mEs)?

y>0 2c1y”

These results are summarized in the following proposition.

Proposition 3 Under the conditions of Proposition 2, for 0 <~y <1 and % <s< L,

P{Q>q}~e "

for some § > 0.

Remark. When the input process is a LRD Gaussian process with polynomial covariance
function, it is asymptotically second order self-similar. The decay rate of the covariance function
is determined by the Hurst parameter 1/2 < H < 1 : 02 ~ n?/. Then the scaling function

1
oy = —p2(1=H)
C1

is polynomial and we get

(1-H)

P(Q > q) ~ e %0

In our notation

N
[¥]

)

Q|>Q
QY
1
[
>,
o
=
< o
)|
Sl

P{Q>q}~e
which gives the relation 2H = 2 — .

Combining Propositions 1-3 implies that the widely assumed equivalence of an aggregated
ON/OFF traffic and the corresponding Gaussian process may lead to inadequate traffic engi-
neering.

Proposition 4 The queue tail generated by an aggregated ON/OFF processes with polynomial
ON and OFF duration distributions is asymptotically always larger than that of the equivalent
Gaussian process.

4 Queue tail simulations

The above results on the queue length distributions for the cases of SRD and LRD input pro-
cesses are asymptotically different for the ON/OFF aggregates and the corresponding equivalent
Gaussian sources. However, since all of these bounds refer to the asymptotics, one may be inter-
ested in how they perform for a practical number of multiplexed sources and overflow probability
values (in the range 1072 — 107%). To demonstrate the difference between the queue tails simu-
lations were performed and the results are presented graphically in this section.

In the first example the input process is L = 50 multiplexed ON/OFF sources with service
rate s = 32 to achieve a reasonable 1% zero buffer overflow. The constituent sources are com-
posed of strictly alternating identically distributed ON and OFF periods, resulting an aggregate
mean of L/2 = 25. The decay parameter was chosen to be v = 0.4, thus the2 input traffic is

-

long range dependent. Its Gaussian equivalent has a Hurst parameter H = =5 = 0.8. The
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Figure 1.: Queue tails for 50 ON/OFF sources and its Gaussian equivalent on logarithmic and
log-log scale

queue tail of the ON/OFF input was obtained via simulations, while for the Gaussian process
the approximation of [4] were used. (The lower and upper bounds of [2] show no significant
deviation.)

One can see in Figure 1. that, although both processes have almost the same marginal
distributions and autocorrelation functions, their queue tails differ by one or two orders of
magnitude even at practical overflow probabilities, which shows the validity of the asymptotic
claim of Proposition 4 also for small queue lengths. On the log-log plot the polynomial tail of
the queue length for the ON/OFF aggregate input can also be observed even for small values.

In the second example a higher degree of aggregation is considered. The number of ON/OFF
sources is L = 100, the service rate s = 60, v = 0.4, resulting the same Hurst parameter H = 0.8
for the corresponding Gaussian process. The queueing behaviour is shown in Figure 2.

It can be seen that by increasing the number of ON/OFF sources the queueing performance of
the multiplexed traffic somewhat approaches that of the equivalent Gaussian process. However,
an order of magnitude difference in the queue tail probabilities remains for as many as 100
aggregated sources. Due to the different asymptotic behaviour of the two queue tails the observed
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Figure 2.: Queue tails for 100 ON/OFF sources and its Gaussian equivalent on logarithmic and
log-log scale



difference grows further for larger queue lengths. One can also see from the log-log plots that
the polynomial tail of the ON/OFF input also appears in case of high degree of multiplexing.

5 Conclusion

In this paper we considered the discrete time queueing behaviour of the superposition of a fi-
nite but arbitrarily large number of identical ON/OFF sources. It was proved that if the ON
period distribution is polynomial, then the generated queue tail asymptotics will also be poly-
nomial. Comparison with the equivalent Gaussian processes, which have the same correlation
structure, showed that while the queue tail asymptotics is polynomial with the ON/OFF in-
put, it is exponential for SRD and Weibullian for LRD equivalent Gaussian input processes.
Simulations on the queueing behaviour indicated an order of magnitude difference for high de-
gree of multiplexing and practical overflow probabilities. These results show that multiplexed
ON/OFF and Gaussian traffic models are not equivalent from traffic engineering viewpoint, as
they significantly differ in their queueing performance.
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