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Abstract

This paper considers least squares estima-
tors for regression problems over convex, uni-
formly bounded, uniformly Lipschitz func-
tion classes minimizing the empirical risk
over max-affine functions (the maximum of
finitely many affine functions). Based on new
results on nonlinear nonparametric regression
and on the approximation accuracy of max-
affine functions, these estimators are proved
to achieve the optimal rate of convergence up
to logarithmic factors. Preliminary experi-
ments indicate that a simple randomized ap-
proximation to the optimal estimator is com-
petitive with state-of-the-art alternatives.

1 INTRODUCTION

In this paper we consider the problem of estimating
an unknown regression function that is known to be
convex based on independent, identically distributed
(i.i.d.) samples. We also restrict the estimates to be
convex. Such convex regression problems arise in vari-
ous contexts, such as econometrics (Varian, 1982, 1984;
Merton, 1992), geometric programming (Magnani and
Boyd, 2009; Hannah and Dunson, 2012), or opera-
tions research/reinforcement learning (Shapiro et al.,
2009; Hannah et al., 2014), just to name a few. While
early papers on convex regression explored the single-
variable case, recently attention shifted towards mul-
tivariate problems (see, e.g., Seijo and Sen, 2011; Han-
nah and Dunson, 2012). Despite all the effort in de-
signing new algorithms and proving theoretical guar-
antees for them, even basic questions such as whether
least-squares estimators can achieve the optimal min-
imax rate for bounded convex regression problems re-
mained unknown (for a bounded regression problem,
the regression domain, the function and its Lipchitz
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factor are all bounded). In this paper we resolve this
open question and answer many related ones.

Our results are built on a new, technical theorem that
bounds the expected risk of nonlinear least-squares
estimators (LSEs), which might be of interest on its
own. This theorem extends the “classical” chaining
argument and achieves the same rates as techniques
based on local Rademacher complexity (Bartlett et al.,
2005; Koltchinskii, 2008) for problems with subgaus-
sian noise and function classes having finite supremum-
norm entropy (Section 3). Note that the methods
based on local Rademacher complexity can only han-
dle bounded noise, but work with more general norms
and loss functions. Additionally, our treatment im-
proves the constants in the bounds by orders of mag-
nitude, and also includes the case of nonzero approx-
imation error, which turns out to be a crucial detail
to prove near-optimal rates for max-affine estimators
(Section 4.4).

After establishing a lower bound on the minimax ex-
pected risk for a wide class of convex regression prob-
lems (Theorem 4.1), we show that LSEs, up to loga-
rithmic factors, achieve the optimal rate on bounded
regression problems when the dimension d is not higher
than four, while we obtain a suboptimal rate for d > 4.
A similar “phase-transition” is expected to happen be-
cause the function space becomes “massive” when the
dimension is larger than four in the sense that its en-
tropy integral diverges (see, e.g., van de Geer, 2000).
To prove these results, Section 4.1 builds on the work
of Bronshteyn and Ivanov (1975), and shows how well
convex functions can be approximated by the maxi-
mum of finitely many affine functions (in short: max-
affine functions). The same section also provides a
new covering bound for the class of bounded convex
Lipschitz functions. This new result removes the expo-
nential dependence of a constant in the minimax risk
bounds on the dimension.

It is important to point out that in the above men-
tioned results, LSEs search the class of convex func-
tions having a bounded range and Lipschitz factor.
Earlier works considered the problem without the
boundedness conditions (see, e.g., Seijo and Sen, 2011;
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Lim and Glynn, 2012); however, we demonstrate that
the expected risk of their estimator may become infi-
nite for any sample size even for perfectly benign data.
In Section 4.3, we show that the efficient (polynomial)
computation methods available for the case without
constraints carries over to our situation, and the result-
ing optimization problem still belongs to the family of
quadratic programs (QPs). Since the number of con-
straints grows quadratically in the sample size, stan-
dard QP solvers become impractical even for moderate
sample sizes. To alleviate this problem, we propose a
specialized cutting plane solver, which is observed to
provide significant speedups compared to other vari-
ants.

Finally, Section 4.4 provides a new LSE class whose
rate (up to logarithmic factors) matches the lower
bound (Theorem 4.2), thus resolving the open question
mentioned earlier. The idea of this new LSE comes
from the observation that the class of convex LSEs
(restricted to a bounded range and Lipchitz factor)
contains max-affine functions using at most as many
hyperplanes as the sample size n. The new LSE class
is formed by taking these max-affine LSEs and fur-
ther restricting their complexity (the number of used
hyperplanes) to balance their estimation and approx-
imation errors (by using the approximation results of
Section 4.1). We also propose a heuristic approach to
compute these estimators, whose performance is stud-
ied empirically in Section 5.

2 REGRESSION PROBLEMS

We consider regression problems defined by some class
of probability distributions D over some set X × R,
where X ⊆ Rd is a subset of the d-dimensional Eu-
clidean space.1 An instance of a regression problem
is defined by a distribution µ ∈ D. The regression
estimator’s job is to produce a function f : X → R
based on a training set Dn = {(X1, Y1), . . . , (Xn, Yn)}
of n ∈ N pairs (Xi, Yi), independently sampled from
µ (in short: Dn ∼ µn), such that on a new instance
(X,Y ) ∼ µ, the prediction error, |f(X)−Y |2 is small.
Formally, an estimator is a sequence (hn)n∈N of map-
pings hn : (X × R)n → {X → R}, where {X → R}
denotes the set of functions mapping X to R.

For a fixed µ, the (expected) cost of using a fixed
function f : X → R is equivalently measured by ei-
ther its expected squared prediction error (or L2-risk)

1 All sets and functions considered are assumed to be
measurable as necessary. To simplify the presentation, we
omit these conditions in the rest of the paper by noting
here that all the measurability issues can be overcome us-
ing standard techniques as we work only with bounded
domains and functions over Euclidean spaces.

defined by E[|f(X) − Y |2], or its squared L2-error,

‖f − f∗‖2µ
.
= E[|f(X) − f∗(X)|2], where f∗ = fµ∗ =

arg minf :X→R E[|f(X) − Y |2] denotes the regression
function, which also satisfies f∗(X) = E[Y |X] almost
surely (a.s.). The said equivalence follows from the

well known identity E[|f(X) − Y |2] = ‖f − fµ∗ ‖2µ +

E[|fµ∗ (X)− Y |2].

The cost of an estimator on a regression problem spec-
ified by a distribution µ is defined as its expected
squared L2-error, Ln(hn, µ) = E[‖hn(Dn)− fµ∗ ‖2µ],
where the data is generated i.i.d. from µ, Dn ∼ µn.
The worst-case cost of hn over D is

Ln(hn,D)
.
= sup
µ∈D

Ln(hn, µ) .

As a baseline for comparing estimators, we use the
minimax error over D,

Ln(D)
.
= inf

hn
sup
µ∈D

E
[
‖hn(Dn)− f∗‖2µ

]
,

where the infimum is taken over all (X × R)n →
{f | f : X→ R} mappings (including non-convex
ones). We say that the estimator (hn)n∈N is
near-optimal if it is suboptimal only up to poly-
logarithmic factors, that is, if for some p ≥ 0,

lim supn→∞
Ln(hn,D)

Ln(D) lnp(n) <∞.

In this paper we will be concerned with convex regres-
sion problems when the domain X is convex and the
regression functions fµ∗ are convex for all µ ∈ D. Fur-
thermore, we are interested in finding estimators that
produce convex functions as estimates.

We study least squares estimators which minimize
the empirical squared prediction error, or empiri-
cal L2-risk. Precisely, an estimator is called an α-
approximate least-squares estimator with respect to
some function set F ⊆ {X→ R}, or α-LSE(F) for
short, if its estimate fn = hn(Dn) satisfies

1

n

n∑
i=1

|fn(Xi)−Yi|2 ≤ inf
f∈F

1

n

n∑
i=1

|f(Xi)−Yi|2+α , (1)

where α ∈ [0,∞) is a constant.

We will need covering numbers2 for our results, hence
we give the basic definitions here. Let (F , `) be a met-
ric space and ε ≥ 0. The set {f1, . . . , fk} ⊆ F is called
an ε-net of F with respect to ` if the `-balls of cen-
ters {f1, . . . , fk} and radius ε cover F : for any f ∈ F ,
mini=1,...,k `(f, fi) ≤ ε. The ε-covering number of F
with respect to `, denoted by N (ε,F , `), is the cardi-
nality of the ε-net with the fewest elements:

N (ε,F , `) .
= inf

{
k ∈ N

∣∣ ∃f1, . . . , fk ∈ F :

sup
f∈F

min
i=1,...,k

`(f, fi) ≤ ε
}

2More precisely, we use internal covering numbers,
where the net is restricted to lie inside the covered set.
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with inf ∅ =∞. The ε-entropy of F with respect to `
is defined as H(ε,F , `) .

= lnN (ε,F , `). Furthermore,
for any function space F ⊆ {X → R}, N∞(ε,F)

.
=

N (ε,F , ‖·‖∞) and H∞(ε,F)
.
= H(ε,F , ‖·‖∞) will de-

note the sup-norm covering number and entropy, resp.,
where ‖f‖∞

.
= supx∈X |f(x)| for any f : X→ R.

3 REGRESSION ERROR BOUNDS

We start with a general result, which bounds the ex-
pected squared L2-error for LSEs over general func-
tion sets F in terms of the entropy of F . This re-
sult allows us to obtain sharp (sometimes optimal)
rates and so competes with the techniques based on
local Rademacher complexity, such as Corollary 5.3
of Bartlett et al. (2005) or Theorem 5.1 of Koltchin-
skii (2008). These theorems also provide similar re-
sults when combined with an upper bound on the
Rademacher complexity such as Lemma A.3 of Sre-
bro et al. (2012). However, as opposed to all results
based on local Rademacher complexities, which, as
pointed out recently by Mendelson (2014), require that
the range of the response variable Y be bounded, our
result allows unbounded Y as long as its tail is suffi-
ciently well-behaving.

Recently, Lecué and Mendelson (2013); Mendelson
(2014) also developed a new technique to deal with
subgaussian noise (or with even weaker assumptions on
the noise) on the price of making stronger assumptions
on the function class F (e.g., “Bernstein” and “star-
shaped”). Furthermore, their bounds contain some
quantities which are not straightforward to compute;
in contrast, our result uses only sup-norm entropies,
which are readily available for many standard func-
tion classes of interest. Additionally, we only require
boundedness of the function class F , making our result
directly and easily applicable for analyzing LSEs in
these cases. In particular, as we shall show, this bound
will imply that some max-affine least squares estima-
tors can achieve near-optimal rates for convex regres-
sion (Sections 4.2 and 4.4). The proof of the bound di-
rectly extends the “classical” chaining argument mak-
ing it capable to deliver fast rates, while it provides
significantly sharper constants than those previously
reported in the literature (e.g., Bartlett et al., 2005,
Corollary 5.3).

The promised result is as follows:

Theorem 3.1. Assume that the regression function
and the function class F are bounded by some positive
real B, i.e. ‖f‖∞ ≤ B for all f ∈ {f∗} ∪ F , and the
noise is uniformly σ-subgaussian with some σ ≥ 0, i.e.

sup
s∈R

E
[
es(Y−f∗(X))−s2σ2/2

∣∣X] ≤ 1 a.s.

Let fn = hn(Dn) be an α-LSE(F) estimate (1) and
set Bσ

.
= max{B, σ}. Then for all δ ∈ [0, B],

E
[
‖fn − f∗‖2µ

]
≤ 26Bσ√

n

∫ B

δ

√
H∞(s,F) ds

+ 40Bσδ + inf
f∈F
‖f − f∗‖2µ + α ,

(A)

and for all ε ∈ [0,∞), δ ∈ [0, ε],

E
[
‖fn − f∗‖2µ

]
≤ c1B2

σ

H∞(ε,F)

n
+
c2Bσ√
n

∫ ε

δ

√
H∞(s,F) ds

+ c3Bσδ + c4

(
inf
f∈F
‖f − f∗‖2µ + α

)
,

(B)

where (c1, c2, c3, c4) is an element of{
(12, 153, 171, 9/4),(16, 108, 120, 3/2),(43, 80, 89, 10/9)

}
.

Proof. See Appendix A.1 and Appendix A.2.

The general connection among the constants
c1, c2, c3, c4 can be found in the proofs of Theo-
rem 3.1 and Lemma A.6. Here we simply listed the
values we use in order to optimize different terms in
our bounds.

Notice that c4 > 1 in all cases, so the second inequality
provides a convergence rate only if the approximation
error is zero, or converges to zero fast enough by ex-
panding F appropriately as n grows.

One might wonder whether a similar result could be
proved in general when F is not uniformly bounded.3

In Section 4.3 we answer this question negatively by
means of giving an example where the risk of LSEs
is infinite when used with max-affine functions even
when Y is bounded.

4 CONVEX REGRESSION

Let X ⊆ Rd be a convex set with a nonzero, finite
diameter diam (X)

.
= supx,z∈X ‖x− z‖∞ with respect

to the supremum norm ‖·‖∞ on Rd. Let

∂f(x)
.
=
{
s ∈ Rd

∣∣∀z ∈ X : f(z) ≥ f(x) + s>(z − x)
}

denote the set of subgradients of a convex function
f : X → R at x ∈ X. Define the class of convex, uni-
formly bounded, subdifferentiable, uniformly Lipschitz
functions on X,

CX,B,L
.
=
{
f : X→ R

∣∣∣ f is convex, ‖f‖∞ ≤ B,

∀x ∈ X : ∂f(x) 6= ∅,∀s ∈ ∂f(x) : ‖s‖∞ ≤ L
}

3Boundedness might be dropped in some special cases.
See, e.g., Mendelson (2014) for hyperplane estimation.
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with B,L > 0. In what follows we consider convex re-
gression problems, where the regression function sat-
isfies fµ∗ ∈ CX,B,L.

First, we give a lower bound on the minimax rate for
these problems. For this, define

Dσ
.
=
{

distribution µ over X× R
∣∣X0 × Y ∼ µ,

X0 is uniformly distributed on X,
Y = f∗(X0) + ξ, f∗ ∈ CX,B,L, ξ ∼ N (0, σ2),

X0 and ξ are independent
}
,

where σ ∈ (0,∞) and N (0, σ2) denotes the zero-
mean normal distribution with variance σ2. Define
the Euclidean distance for square integrable functions,

‖f − g‖2X0

.
= E

[(
f(X0) − g(X0)

)2]
, where X0 is uni-

formly distributed on X. Guntuboyina and Sen (2013)
proved4 that

cl,d (B/ε)d/2 ≤ H(ε, CX,B,L, ‖·‖X0
) ≤ cu,d (B/ε)d/2 ,

for X = [0, 1]d, L ≥ 2/d and ε ∈ (0, ε0,dB], where
cl,d, cu,d, ε0,d are positive constants depending on the
domain dimension d. Unfortunately, this dependence
is not known precisely, so we provide the lower bound
only asymptotically for n, treating d as a constant.
Combining the above result with Theorem 6 of Yang
and Barron (1999), we get that the minimax error with
a sample size of n is lower bounded by Ω(ε2), where
ε is the solution of the equation (B/ε)d/2 = n ε2, thus
implying the following result:

Theorem 4.1. For any class of distributions D ⊇ Dσ,
Ln(D) = Ω

(
n−4/(d+4)

)
.

Next, we wish to study the L2-error of LSEs with var-
ious choices of F . The simplest, reasonable choice is
F = CX,B,L, and the plan is to use Theorem 3.1 to
bound the L2-error of this estimator. For this, we need
an upper bound on H∞(ε, CX,B,L). Such a bound was
given by Bronshtein (1976, Theorem 6) and further im-
proved by Guntuboyina and Sen (2013, Theorem 3.2).
However, their results are valid only for a small range
of ε. As such, these results would provide an upper
bound where the “constant” term (i.e., the term inde-
pendent of n) would be exponentially large in d. To
avoid this, in the next section we prove a new bound
for H∞(ε, CX,B,L) which improves the dependence on
d at the price of an extra ln(n) factor.

Besides proving this entropy upper bound, the next
section provides approximation and covering results

4Guntuboyina and Sen (2013) proved the lower bound
without the Lipschitz bound, which is a larger function
class. However, in the proof of their Theorem 3.3, they con-
struct a packing subset by functions having (2/d)-bounded
Lipschitz constants. For the upper bound, simply consider
the sup-norm result, Theorem 3.2 in their paper.

for CX,B,L based on max-affine functions, which can
be of independent interest. These results will be used
later to prove near-optimality of some max-affine esti-
mators for convex regression problems over CX,B,L.

4.1 Approximation and covering results

Define the class of max-affine, uniformly bounded, uni-
formly Lipschitz functions on X having at most K ∈ N
hyperplanes as

MK
X,B,L

.
=
{
h : X→ R

∣∣∣h(x) = max
k=1,...,K

p>k x+ qk,

pk, qk ∈ Rd, ‖pk‖∞ ≤ L, h(x) ∈ [−Bd, B]
}

withBd
.
= B+Ld and Ld

.
= dLdiam (X). Now consider

the following result bounding the approximation error
ofMK

X,B,L to functions in CX,B,L with respect to ‖·‖∞.

Lemma 4.1. For all f ∈ CX,B,L and K ∈ N,

inf
h∈MK

X,B,L

‖f − h‖∞ ≤ 72LdK
−2/d .

Proof. The proof is based on ideas of Bronshteyn and
Ivanov (1975). For any x ∈ X, let ∇f(x) ∈ ∂f(x) be
an arbitrary fixed subgradient of f at x; recall that
‖∇f(x)‖∞ ≤ L.

For any t > 0, define R
.
= diam (X) + 2tL, ν(x)

.
=

x + t∇f(x) for any x ∈ X, and K .
= {ν(x) : x ∈

X} ⊆ Rd. Notice that R ≥ diam (K) and ν(x) 6= ν(y)
for any x 6= y by the convexity of f . Furthermore, let
Kε ⊆ K be a

√
ε-net of K with respect to the Euclidean

norm ‖·‖ and Xε
.
= {ν−1(z) ∈ X : z ∈ Kε}. Then by

‖·‖ ≤
√
d ‖·‖∞ and Lemma A.7, we have |Xε| = |Kε| =

N (
√
ε,K, ‖·‖) ≤ N (

√
ε/d,K, ‖·‖∞) ≤ (9dR2/ε)d/2 for

all ε ∈ (0, 9dR2].

Now, for any x, z ∈ X, the convexity of f implies(
∇f(x)−∇f(z)

)>
(x− z)

= ∇f(x)>(x− z) +∇f(z)>(z − x)

≥ f(x)− f(z) + f(z)− f(x) = 0 .

(2)

By definition, for any x ∈ X there exists x̂ ∈ Xε such
that ‖ν(x)− ν(x̂)‖ ≤

√
ε. Then by (2) we have

‖x− x̂‖2 + t2 ‖∇f(x)−∇f(x̂)‖2

≤ ‖x− x̂‖2 + 2t
(
∇f(x)−∇f(x̂)

)>
(x− x̂)

+ t2 ‖∇f(x)−∇f(x̂)‖2

= ‖ν(x)− ν(x̂)‖2 ≤ ε .

Hence, ‖x− x̂‖ ≤
√
ε and t ‖∇f(x)−∇f(x̂)‖ ≤

√
ε.

Choose ε satisfying K = (9dR2/ε)d/2 ≥ |Xε| and a set
XK

.
= {x̂1, . . . , x̂K} ⊆ X such that Xε ⊆ XK . Note
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that x̂ ∈ XK for any x ∈ X. Consider the following
max-affine function h : X→ R:

h(x)
.
= max
k=1,...,K

f(x̂k) +∇f(x̂k)>(x− x̂k) .

By the convexity of f , we have h(x) ≤ f(x) ≤ B;
furthermore, by the Cauchy-Schwartz inequality and
‖·‖ ≤

√
d ‖·‖∞,

h(x) ≥ f(x̂) +∇f(x̂)>(x− x̂)

≥ −B − d ‖∇f(x̂)‖∞ ‖x− x̂‖∞ ≥ −Bd ,

so h ∈ MK
X,B,L. Moreover, the convexity of f and the

Cauchy-Schwartz inequality also imply

0 ≤ f(x)− h(x)

≤ f(x)− f(x̂)−∇f(x̂)>(x− x̂)

≤ ∇f(x)>(x− x̂)−∇f(x̂)>(x− x̂)

=
(
∇f(x)−∇f(x̂)

)>
(x− x̂)

≤ 1

t

(
t ‖∇f(x)−∇f(x̂)‖ ‖x− x̂‖

)
≤ ε/t .

Finally, rearranging K = (9dR2/ε)d/2, we get
the claim by ε = 9dR2K−2/d and ‖f − h‖∞ ≤
ε/t = 9d(R2/t)K−2/d = 72LdK

−2/d by setting t =
diam (X) /(2L).

Soon, we shall use this approximation bound on
MK

X,B,L to construct an ε-net of CX,B,L. For this, we

need a cover of MK
X,B,L first.

Lemma 4.2. For all k ∈ N, Rd ≥ 2B + 4Ld, and
ε ∈ (0, Rd],

H∞(ε,MK
X,B,L) ≤ (d+ 1)K ln(Rd/ε) .

Proof. Consider any h ∈ MK
X,B,L, and recall that

h(x) = maxk=1...,K p
>
k x+ qk. Fix any x0 ∈ X and de-

fine rk
.
= qk + p>k x0. Then h(x) = maxk=1,...,K p

>
k (x−

x0) + rk, where rk ≤ maxj rj = h(x0) ≤ B. Fur-
thermore, without loss of generality, we assume that
for every 1 ≤ k ≤ K, there is an xk ∈ X such that
h(xk) = p>k (xk − x0) + rk. Then, by h(xk) ≥ −Bd
and |p>k (xk − x0)| ≤ d ‖pk‖∞ ‖xk − x0‖∞ ≤ Ld, we
also have rk = h(xk)− p>k (xk − x0) ≥ −Bd − Ld.

Using Lemma A.7 for rectangular sets, we take an ε1-
cover of [−L,L]d, an ε2-cover of [−Bd − Ld, B] with
cardinalities no more than (2L/ε1)d, (2B + 2Ld)/ε2,
respectively, with ε1 ∈ (0, 2L], ε2 ∈ (0, 2B+2Ld]. Now

let MK
X,B,L(ε1, ε2) denote the set of functions ĥ(x) =

maxj=1,...,K p̂
>
j (x − x0) + r̂j , where p̂j and r̂j belong

to the aforementioned two nets, respectively. Then
|MK

X,B,L(ε1, ε2)| ≤ (2L/ε1)d(2B + 2Ld)/ε2. In what

follows we show that |MK
X,B,L(ε1, ε2)| provides a good

cover for MK
X,B,L.

For any h ∈ MK
X,B,L and k = 1, . . . ,K, let p̂k, r̂k be

the closest elements in the nets to pk and rk, respec-
tively, and define ĥ(x)

.
= maxj=1,...,K p̂

>
j (x− x0) + r̂j .

If h(x) ≥ ĥ(x), we have

h(x)− ĥ(x)

≤ max
k=1,...,K

p>k (x− x0) + rk −
(
p̂>k (x− x0) + r̂k

)
≤ max
k=1,...,K

ddiam (X) ‖pk − p̂k‖∞ + |rk − r̂k|

≤ ddiam (X) ε1 + ε2 .

If h(x) < ĥ(x), an analogous proof gives the

same bound for ĥ(x) − h(x). Hence, setting ε1
.
=

η ε/(ddiam (X)) and ε2
.
= (1− η) ε for some η ∈ (0, 1),

we get |h(x)− ĥ(x)| ≤ ε. Finally, setting η
.
= 2Ld/Rd,

we get the claim.

Notice that providing a tight enough covering to a well
approximating MK

X,B,L (i.e., having large enough K)
gives us a cover of CX,B,L formed by only max-affine
functions. The details are presented in the next result.

Lemma 4.3. Let R∗d
.
= max{8Ld, 2B + 4Ld}. Then

for all ε ∈ (0, 80Ld],

H∞(ε, CX,B,L) ≤ 2(d+ 1)

(
80Ld
ε

)d/2
ln

(
10R∗d
ε

)
.

Proof. Set λ
.
= 9/10 and take any ε ∈ (0, 80Ld]. Hav-

ing λε ∈ (0, 72Ld], we can pick K ∈ N such that

K ≥
(
72Ld/(λε)

)d/2 ≥ K/2. Then for any f ∈ CX,B,L,
let hf ∈MK

X,B,L be the best approximation of f . Fur-

thermore, let ĥf be the best approximation of hf in
the (1 − λ)ε-cover of MK

X,B,L. By using Lemma 4.1,
we get

‖f − ĥf‖∞ ≤ ‖f − hf‖∞ + ‖hf − ĥf‖∞
≤ 72LdK

−2/d + (1− λ)ε ≤ ε .

Finally, Lemma 4.2 (extended to R∗d ≥ Rd) provides
the bound with (1 − λ)ε = ε/10 ∈ (0, 8Ld], 8Ld ≤ R∗d
and K ≤ 2

(
80Ld/ε

)d/2
.

4.2 Least squares estimators over CX,B,L

In this section we consider the class of α-LSE(CX,B,L).
We prove that any such estimator is near-optimal for
d ∈ {1, 2, 3, 4}, while we get suboptimal bounds for
d > 4. A similar “phase-transition” was previously
noted for many other regression problems (e.g., van de
Geer, 2000), and the usual recommendation is to “reg-
ularize” the LSE for larger dimensions. We shall con-
sider this problem in Section 4.4.

To get the upper bound for an α-LSE(CX,B,L), we
simply plug the covering number result of CX,B,L
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(Lemma 4.3) into our regression bound (Theorem 3.1)
and set the (ε,δ) parameters properly to balance n in
the terms. For the case d < 4, the optimal rate for n
comes from (B) choosing ε to balance

H∞(ε, CX,B,L)

n
≈
∫ ε

0

√
H∞(s, CX,B,L)

n
ds .

For the cases d ≥ 4, the entropy integral diverges and
becomes the dominant term in the upper bound. Then
the best ratio for n is obtained by (A) choosing δ that
solves

δ ≈
∫ B

δ

√
H∞(s, CX,B,L)

n
ds .

The balancing factors and the corresponding asymp-
totic formulas are provided for any fn being an α-
LSE(CX,B,L) and n > 1. More precise formulas are
presented in Lemma A.8.

Case d < 4: Use Theorem 3.1 (B) and balance for n
with ε = 80Ld n

−2/(d+4) and δ = 0. Then

E
[
‖fn − f∗‖2µ

]
= O

(
n−4/(d+4) ln(n)

)
+ 2α .

Case d = 4: Use Theorem 3.1 (A) and balance for n
with δ = 80L4 n

−1/2. Then

E
[
‖fn − f∗‖2µ

]
= O

(
n−1/2 ln3/2(n)

)
+ α .

Case d > 4: Use Theorem 3.1 (A) and balance for n
with δ = 80Ld n

−2/d. Then

E
[
‖fn − f∗‖2µ

]
= O

(
n−2/d

√
d
(
1 + ln(n)/d

))
+ α .

Notice that we do not have any “constant” scaling ex-
ponentially in d. This is due to the wide range of ε in
Lemma 4.3, and would not be possible with a limited
ε ∈ (0, ε0] with ε0 < 80Ld.

4.3 Max-affine least squares estimators

It is widely known that one can find LSEs over all
convex functions by considering only max-affine func-
tions having n hyperplanes (see, e.g., Holloway, 1979;
Boyd and Vandenberghe, 2004, Section 6.5.5; Kuosma-
nen, 2008; Seijo and Sen, 2011; Lim and Glynn, 2012).
However, such an estimator is not bounded and can
easily overfit the data close to the domain boundary.
As a result, this estimator has infinite expected L2-
error in many cases. Next we demonstrate this on a
simple example, similar to Example 3.5 of Huang and
Szepesvári (2014).

Let X = [0, 1], X ∈ X, Y ∈ {−1,+1} be inde-
pendent uniform random variables (so that f∗ ≡ 0),

n ≥ 2, Dn be the random sample as before, fn be a
LSE({f : X→ R | f is convex}). Define the event

A =
{
X1 ∈ [1/4, 1/2], X2 ∈ [1/2, 3/4],

X3, . . . , Xn ≥ 3/4, X ≤ 1/4,

Y1 = +1, Y2 = . . . = Yn = −1
}
.

Then P{A} = (1/4)n+1(1/2)n > 0, f∗ ≡ 0, and so,
using the observation that the LSE minimizing the test
error on [0, 1/4] is linear in [0, X2], we get

E
[
‖fn − f∗‖2µ

]
≥ E

[(
2X −X1 −X2

X1 −X2

)2 ∣∣∣∣A
]
P{A}

≥ E
[

1

4(X1 −X2)2

∣∣∣∣A]P{A} =∞ .

Although event A is quite unlikely, empirically one can
also observe that the test error of this LSE is quite
often very large.

The main attraction of LSE({f | f : X→ R convex})
is that it leads to a convex optimization problem,
which can be solved in polynomial time. To pre-
vent the unbounded expected L2-error, one idea is to
consider max-affine estimates in LSE(CX,B,L) as these
were shown to enjoy controlled expected L2-error in
Section 4.2. To see that there are indeed max-affine
estimates in LSE(CX,B,L), take any estimate f∗n in
LSE(CX,B,L) and construct

f̂n(x)
.
= max
i=1,...,n

f∗n(Xi) + g>i (x−Xi) ,

where gi ∈ ∂f∗n(Xi). Then define the estimator as

fn(x)
.
= max{−B, f̂n(x)} being the lower truncated

version of f̂n. Now notice that f̂n ∈ Mn
X,B,L, fn ∈

CX,B,L and fn(Xi) = f̂n(Xi) = f∗n(Xi) ∈ [−B,B]. So
the empirical risks of f∗n and fn must be equal, and so
fn belongs to LSE(CX,B,L).

Let us now consider the problem of efficiently com-
puting a max-affine estimate in LSE(CX,B,L). For a
rectangular domain X, we will show below that one
can compute an f̂n ∈ Mn

X,B,L estimate by solving a
quadratic program (QP) similar to the one computing

unbounded LSEs. Then this function f̂n is converted
to an LSE(CX,B,L) by lower truncation. To see this, let
X .

= ×di=1[li,ui] with some l,u ∈ Rd, l ≤ u, and split
the subgradients, gi = g+i − g

−
i , g+i , g

−
i ≥ 0. Consider

max-affine estimators given as

f̂n(x) = max
i=1,...,n

yi + (g+i − g
−
i )>(x−Xi) ,

with some yi ∈ [−B,B] and g+i , g
−
i ∈ [0, L]d. Then

notice that we can rewrite maxx∈X f̂n(x) ≤ B as linear
constraints, and {yi ≥ −B : i = 1, . . . , n} implies
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fn(x) ≥ −Bd. So we can compute a LSE(Mn
X,B,L) by

the following QP:

min
y∈Rn,

g+1 ,...,g
+
n∈R

d,

g−1 ,...,g
−
n ∈R

d

n∑
i=1

(Yi − yi)2 subject to

yk ≥ yi + (g+i − g
−
i )>(Xk −Xi) ,

B ≥ yi + (g+i )>(u−Xi) + (g−i )>(Xi − l) ,

0 ≤ g+ij , g
−
ij ≤ L , −B ≤ yi ,

i, k = 1, . . . , n , j = 1, . . . , d ,

(3)

where y = [y1 . . . yn]> and {(Xi, Yi) : i = 1, . . . , n} is
the data as above.

This QP has n(1 + 2d) variables and n2 non-box con-
straints, which makes it expensive to solve directly.
Instead, we propose to apply cutting plane techniques
similar to the CNLS+-G algorithm given by Lee et al.
(2013). These methods solve the QP problem using
a relaxed constraint set and introduce new ones iter-
atively as necessary. We present our method in Ap-
pendix A.3.

Before discussing empirical studies in Section 5, we
consider another class of max-affine estimators.

4.4 Near-optimal max-affine estimators

Section 4.2 provides only a suboptimal upper bound
for LSE(Mn

X,B,L) estimators for d > 4. Here, we show

that max-affine LSEs using no more than dnd/(d+4)e
hyperplanes (instead of n), enjoy an optimal minimax
rate up to a logarithmic factor. By reducing the num-
ber of planes, we decrease the estimation and increase
the approximation error. The optimal rate is achieved
when these two effects are balanced.

To show this formally, we combine Theorem 3.1 (B)
with the covering number bound of max-affine func-
tions (Lemma 4.2) and their approximation accu-
racy (Lemma 4.1). Let fn be an α-LSE(MK

X,B,L)

with at most K
.
= dnd/(d+4)e hyperplanes and α ≤

n−4/(d+4). Then setting ε = δ = Rd n
−4/(d+4) and

(c1, c2, c3, c4) = (12, 153, 171, 9/4), we get

E
[
‖fn − f∗‖2µ

]
≤ 12B2

σ

(d+ 1)K ln
(
Rd/ε

)
n

+ 171Bσδ +
9

4

(
(72Ld)

2K−4/d + α
)

< 96
(
B2
σ ln(n) + 2BσRd + 122L2

d + 1
)
n−4/(d+4) ,

which provides the following result:5

5A similar rate was shown for convex set estimation by
Guntuboyina (2012).

Theorem 4.2. Suppose that the conditions of The-
orem 3.1 hold for µ with some f∗ ∈ CX,B,L, and
fn is an α-LSE(MK

X,B,L) with K = dnd/(d+4)e and

α = O
(
n−4/(d+4)

)
. Then

E
[
‖fn − f∗‖2µ

]
= O

(
n−4/(d+4)

(
ln(n) + d2

))
.

Notice that LSEs with n planes use a “degenerate”
partitioning, where each data point Xi forms a parti-
tion. Reducing the number of planes below n induces
a partition where some of the data points are grouped.
When such a partition is given, the LSE problem can
be solved, similar to (3).

Let Pn
.
= {C1, . . . , CK} be a partition of {1, . . . , n},

that is, for each cell Ck ⊆ N with n =
∑K
k=1 |Ck|, and

k 6= l ⇐⇒ Ck ∩ Cl = ∅ for all k, l ∈ {1, . . . ,K}.
Furthermore, let X .

= [l,u] ⊆ Rd as before and denote

the centroid of cell k by X̄k
.
= |Ck|−1

∑K
k=1Xk. Then

a (non-truncated) LSE over Pn is formed as

f̂K(x) = max
k=1,...,K

vk + (g+k − g
−
k )>(x− X̄k) ,

where the variables v
.
= [v1 . . . vK ]> ∈ [−B,B]K ,

g+k , g
−
k ∈ [0, L]d (k = 1, . . . ,K) can be computed by

the following QP,

min
v∈RK ,

g+1 ,...,g
+
K∈R

d,

g−1 ,...,g
−
K∈R

d

K∑
k=1

∑
i∈Ck

(Yi − yi)2

with yi = vk + (g+k − g
−
k )>(Xi − X̄k)

subject to

vk + (g+k − g
−
k )>(Xi − X̄k)

≥ vl + (g+l − g
−
l )>(Xi − X̄l) , i ∈ Ck ,

B ≥ vk + (g+k )>(u− X̄k) + (g−k )>(X̄k − l) ,

0 ≤ g+kj , g
−
kj ≤ L , −B ≤ yk ,

k, l = 1, . . . ,K , j = 1, . . . , d .

(4)

Finally, the estimator is given by lower truncation,
fK(x) = max{−B, f̂K(x)}, x ∈ X. Notice that (4)
reduces to (3) when K = n and all |Ck| = 1. Further-
more, the computation of this QP can also be improved
by using cutting plane methods as mentioned before.

As finding the best partition (yielding the smallest
training error) is too difficult, in our experiments we
simply draw one uniformly from the data. We draw
the index set {i1, . . . , iK} ⊆ {1, . . . , n} selecting the
center points Xik of the cells Ck, which form a Voronoi
partition, Ck

.
=
{
j ∈ {1, . . . , n}

∣∣ ‖Xik −Xj‖ =

minl=1,...,K ‖Xil −Xj‖
}

, for all k = 1, . . . ,K, and the
unlikely ties are broken arbitrarily. Surprisingly, this
simple partitioning technique worked quite well in our
experiments.
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Figure 1: Full quadratic problem (f f∗) with d = 8.

5 EXPERIMENTS

To illustrate the behavior of the algorithms proposed
and to compare them to some state-of-the-art alter-
natives, we present experiments with synthetic data.
Let X .

= [−2, 2]d, X be a uniform random variable on
X and Y = f∗(X) + ξ, where ξ ∼ N (0, 1) is a stan-
dard normal random variable, independent from X.
Consider the following two problems:

f f∗(x)
.
= −B+

B ‖x‖2

2d
, fh∗ (x)

.
= −B+

B ‖(x)+‖2

2d
, (5)

where y = (x)+ is the positive part, yi = max(0, xi),
and B

.
= 8. We refer to these problems as “full

quadratic” and “half quadratic”, respectively.

We point out that our choice, the quadratic function,
is a difficult target for max-affine estimators. Based
on the remark of Bronshteyn and Ivanov (1975) about
the approximation lower bound of polyherdal sets, it
seems that Lemma 4.1 is tight for quadratic functions
(up to some constants).

We performed the experiments with the max-affine
LSE using at most n planes (LSE, (3)), its partitioned
version using at most K = dnd/(d+4)e planes (PLSE,
(4)), where the Voronoi partition was chosen by uni-
formly drawing K points from the training data. For
a simple benchmark, we included a single fitted hyper-
plane (plane), which is a LSE({x 7→ a>x + b}). Fur-
thermore, we included two state of the art max-affine
estimators, the convex adaptive partitioning (CAP,
Hannah and Dunson 2013) and the least-squares parti-
tion algorithm6 (LSPA, Magnani and Boyd 2009). We
repeated each experiment 100 times and computed the
test errors using 106 samples.

6We initialized LSPA randomly using n and dnd/(d+4)e
cells, resp., ran the algorithm for 10000 iterations and re-
turned the solution having the smallest training error found
over these iterations. The figures show results only for the
dnd/(d+4)e case, but the results were similar in the other
case, as well.
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Figure 2: Half quadratic problem (fh∗ ) with d = 8.

Figure 1 shows the test error against the sample size
for the full quadratic problem, while the same data is
shown for the half quadratic problem on Figure 2. The
error bars show standard deviation. While LSE per-
forms really well on the full quadratic which grows at
the boundaries, its performance, relative to the other
methods is much worse on the half quadratic.7 This is
because LSE tends to overfit the noise on the flat side,
occasionally creating hyperplanes with a large growth.
This is prevented by the point subsampling scheme in
PLSE. Overall, we find that PLSE is a competitive
algorithm, at least on these examples.

6 CONCLUSIONS

We have given new results for bounded convex regres-
sion problems, resolving the open question of designing
least-squares estimators with near-optimal rates. This
is achieved by proving new results both in nonlinear
least-squares estimation and convex approximations.
Probably the most interesting open question is to de-
sign a computationally efficient, provably optimal es-
timator for this case, and perhaps our sampling based
approximation to the near-optimal LSE can be used
as the basis of such a method. Our preliminary ex-
perimental results indicate that, despite its simplicity,
this method can be beneficial as compared to either
the max-affine LSEs with n hyperplanes, or its more
advanced alternatives.
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7The reason for stopping the LSE curves is that their
calculations for 100 repetitions would have taken more than
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for these experiments can be found in Appendix A.4.
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A Appendix

A.1 Concentration inequalities

Let σ ≥ 0. A random variable W is called σ-subgaussian if sups∈R E
[
es(W−E[W ])−s2σ2/2

]
≤ 1.

Lemma A.1. Let F be a finite, nonempty set (i.e. 1 ≤ |F| <∞), σ ∈ [0,∞) and Wf be a centered σ-subgaussian

random variable for all f ∈ F . Then E
[

maxf∈F Wf

]
≤ σ

√
2 ln |F|.

Proof. The proof of the lemma is available in the literature (see, e.g., Cesa-Bianchi and Lugosi 1999, Lemma
7 or Boucheron et al. 2012, Theorem 2.5), and is provided for completeness. The claim is trivial if |F| = 1 or
σ = 0. When |F| > 1 and σ > 0, applying Jensen’s inequality, replacing the maximum of non-negative elements
by their sum and using the condition on Wf , for any t ∈ R, we get

exp

(
tE
[
max
f∈F

Wf

])
≤ E

[
max
f∈F

etWf

]
≤
∑
f∈F

E
[
etWf

]
≤ |F| et

2σ2/2 .

Taking logarithm and dividing both sides by t =
√

2 ln |F|/σ > 0, we get the claim.

Let (F , `) be a separable metric space, W be a random variable taking values in the set W and φ : F ×W→ R
be a function. The following definitions will be useful for our purposes:

Definition A.1 (Subgaussian Process). Let σ ≥ 0. We call the random process (φ(f,W ))f∈F σ`-subgaussian
if φ(f,W )− φ(g,W ) is a centered (σ `(f, g))-subgaussian random variable for all f, g ∈ F .

Definition A.2 (Uniformly Lipschitz Process). We call the random process (φ(f,W ))f∈F uniformly Lipschitz
with respect to ` and (Lipschitz) modulus τ : W → [0,∞) if φ(f,W ) − φ(g,W ) ≤ `(f, g) τ(W ) holds a.s. for all
f, g ∈ F .

The following lemma gives a bound on the expectation of the supremum of the process (φ(f,W ))f over f ∈ F in
terms of its entropy integral. The development is a modification of the proof of Lemma 3.4 of Pollard (1990) by
replacing the packing numbers with internal covering numbers (for better numerical constants) and the sample
continuity condition by Lipschitzness (for truncating the entropy integral at δ). The result also improves upon
Proposition 3 of Cesa-Bianchi and Lugosi (1999), which uses external covering numbers and a slightly different
chaining argument.

Lemma A.2. Let (F , `) be a separable metric space, W be a random variable taking values in the set W and
φ : F ×W→ R be a function such that:

(a) there exist β ∈ [0,∞) and f0 ∈ F such that β ≥ supf∈F `(f, f0) and E
[
φ(f0,W )

]
= 0;

(b) (φ(f,W ))f∈F is σ`-subgaussian for some σ ≥ 0;

(c) (φ(f,W ))f∈F is uniformly Lipschitz with respect to ` and modulus τ for some function τ : W→ [0,∞).

Then, for all δ ∈ [0, β/2],

E

[
sup
f∈F

φ(f,W )

]
≤ 4
√

2σ

∫ β/2

δ

√
H(s,F , `) ds+ 4δ E[τ(W )] .

Proof. Let g ∈ F and notice that by condition (c), we have

E

[
sup
f∈F

{
φ(f,W )− φ(g,W )

}]
≤

(
sup
f∈F

`(f, g)

)
E[τ(W )] . (6)

Hence, by condition (a), the claim holds for δ = β/2 (with g = f0). Furthermore, if there exists s ∈ (δ, β/2] such
that N (s,F , `) = ∞, then the integral is infinite (since N (s,F , `) is a non-increasing function of s) and so the
claim is trivial. Hence we can assume that 0 < β, δ ∈ [0, β/2) and N (s,F , `) <∞ for all s ∈ (δ, β/2].

First consider the δ > 0 case. Then there exists some m ∈ N∪{0} such that 2δ ≤ β/2m < 4δ. Now let F0 = {f0},
ε0 = β, εk = β/2k and Fk be an εk-cover of F with respect to ` having minimal cardinality for all k ∈ {1, . . . ,m}.
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Furthermore, let gk(f) ∈ argming∈Fk `(f, g) be the closest element (or one of the closest elements if there are
multiple ones) to f ∈ F in Fk for all k ∈ {0, . . . ,m}.

Fix some k ∈ {0, . . . ,m − 1} and f ∈ Fk+1. When k = 0, we have `(f, gk(f)) = `(f, f0) ≤ β = ε0, while for
k > 0, the definition of Fk implies that `(f, gk(f)) ≤ εk. So by condition (b), φ(f,W )−φ(gk(f),W ) is a centered
εkσ-subgaussian random variable. Combining this with Lemma A.1, we can chain maximal inequalities for all
k ∈ {0, . . . ,m− 1} as

E
[

max
f∈Fk+1

φ(f,W )

]
= E

[
max
f∈Fk+1

{
φ(gk(f),W ) + φ(f,W )− φ(gk(f),W )

}]
≤ E

[
max
f∈Fk

φ(f,W )

]
+ E

[
max
f∈Fk+1

{
φ(f,W )− φ(gk(f),W )

}]
≤ E

[
max
f∈Fk

φ(f,W )

]
+ εk σ

√
2 ln |Fk+1|

= E
[

max
f∈Fk

φ(f,W )

]
+ εk σ

√
2 lnN (εk+1,F , `) .

(7)

We further have

E

[
sup
f∈F

φ(f,W )

]
= E

[
sup
f∈F

{
φ
(
gm(f),W

)
+ φ(f,W )− φ

(
gm(f),W

)}]

≤ E
[

max
f∈Fm

φ(f,W )

]
+ E

[
sup
f∈F

{
φ(f,W )− φ

(
gm(f),W

)}]
.

Using (6) with `(f, gm(f)) ≤ εm < 4δ, the second term can be bounded by 4δE[τ(W )]. To bound the first term,
we use (7) repeatedly with k = m− 1,m− 2, . . . , 0 and E [maxf∈F0 φ(f,W )] = E [φ(f0,W )] = 0 for the last step
(implied by condition (a) and the definition of F0), to get

E

[
sup
f∈F

φ(f,W )

]
< σ

m−1∑
k=0

εk
√

2 lnN (εk+1,F , `) + 4δ E[τ(W )] .

Now notice that the non-decreasing property of the covering number implies

εk

√
lnN

(
εk+1,F , `

)
= 4

β

2k+2

√
2 lnN

(
β/2k+1,F , `

)
≤ 4

∫ β/2k+1

β/2k+2

√
2 lnN

(
s,F , `

)
ds ,

for all k ∈ {0, . . . ,m− 1}. Combining this with δ ≤ β/2m+1 proves the claim for all δ ∈ (0, β/2).

Finally, taking the limit δ ↓ 0, we get the claim for δ = 0 as well.

Lemma A.3. Let F be a finite, nonempty set (i.e. 1 ≤ |F| < ∞), and Wf be a random variable such that
supf∈F E

[
exp(Wf/θ)

]
≤ 1 holds for some θ > 0. Then E

[
maxf∈F Wf

]
≤ θ ln |F|.

Proof. Applying Jensen’s inequality, replacing the maximum of non-negative elements by their sum and using
the condition on Wf , we have

exp

(
E
[
max
f∈F

Wf/ θ

])
≤ E

[
max
f∈F

eWf/ θ

]
≤
∑
f∈F

E
[
eWf/ θ

]
≤ |F| .

Taking logarithm and multiplying both sides by θ, we get the claim.

Lemma A.4. Let (F , `) be a separable metric space, W be a random variable on a set W, λ : F ×W→ R be a
function and φ(f,W )

.
= λ(f,W )− E[λ(f,W )] for all f ∈ F . Furthermore, assume that the following conditions

hold:

(a) there exists θ ∈ (0,∞) such that E
[

exp
(
λ(f,W )/θ

)]
≤ 1 holds for all f ∈ F ;
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(b) (φ(f,W ))f∈F is σ`-subgaussian for some σ ≥ 0;

(c) (φ(f,W ))f∈F is uniformly Lipschitz with respect to ` and modulus τ for some function τ : W→ [0,∞).

Then for all 0 ≤ δ ≤ ε,

E

[
sup
f∈F

λ(f,W )

]
≤ θ lnN (ε,F , `) + 16σ

∫ ε

δ

√
lnN (s,F , `) ds+ 8δ E[τ(W )] .

Proof. When N (δ,F , `) =∞ for some δ ∈ (0, ε], the claim is trivial. So we can assume that N (δ,F , `) <∞ for all
δ ∈ (0, ε]. Let Fε be an ε-net of F with respect to ` with minimal cardinality and define gf ∈ argming∈Fε `(f, g),
the closest element to f ∈ F in Fε. Due to Jensen’s inequality and condition (a), E[λ(f,W )] ≤ 0 holds for all
f ∈ F . Define8 g∗f ∈ argmaxg∈F :`(g,gf )≤ε E[λ(g,W )]. Then, for all f ∈ F , `(f, g∗f ) ≤ `(f, gf ) + `(gf , g

∗
f ) ≤ 2ε

and, due to `(gf , f) ≤ ε, E[λ(f,W )] ≤ E[λ(g∗f ,W )]. Consequently, F∗ε
.
=
{
g∗f : gf ∈ Fε

}
is a 2ε-cover of F with

respect to ` with |F∗ε | ≤ |Fε| = N (ε,F , `).

Now consider the following decomposition,

sup
f∈F

λ(f,W ) = sup
f∈F

{
λ(g∗f ,W ) + λ(f,W )− λ(g∗f ,W )

}
≤ max
g∈F∗ε

λ(g,W ) + sup
f∈F

{
φ(f,W )− φ(g∗f ,W ) + E

[
λ(f,W )− λ(g∗f ,W )

]}
≤ max
g∈F∗ε

λ(g,W ) + sup
f∈F

{
φ(f,W )− φ

(
g∗f ,W

)}
.

(8)

Then by Lemma A.3 and condition (a), we obtain

E
[

max
g∈F∗ε

λ(g,W )

]
≤ θ ln |F∗ε | ≤ θ lnN (ε,F , `) . (9)

For all (f, g∗1), (h, g∗2) ∈ F × F∗ε and w ∈W, define

φ̃
(
(f, g∗1), w

) .
= φ(f, w)− φ(g∗1 , w) ,

˜̀
(
(f, g∗1), (h, g∗2)

) .
= min

{
`(f, h) + `(g∗1 , g

∗
2), 4ε

}
,

Notice that (F × F∗ε , ˜̀) is a metric space9, and recall that `(f, g∗f ) ≤ 2ε for all (f, g∗f ) ∈ K. Furthermore, let

K .
=
{

(f, g∗f ) : f ∈ F
}
⊆ F × F∗ε and f0 ∈ argmaxf∈F∗ε E[λ(f,W )] arbitrary; then f0 = g∗f0 , and so (f0, f0) ∈ K.

Now for all (f, g∗f ), (h, g∗h) ∈ K, conditions (b) and (c) imply that

φ̃
(
(f0, f0),W

)
= 0 a.s. , ˜̀

(
(f0, f0), (f, g∗f )

)
≤ 4ε .

Moreover, the process (φ̃(κ,W ))κ∈K is σ ˜̀-subgauss, since

φ̃
(
(f, g∗f ),W

)
− φ̃

(
(h, g∗h),W

)
= φ(f,W )− φ(h,W ) + φ(g∗h,W )− φ(g∗f ,W )

is subgaussian with parameter
(
`(f, h) + `(g∗h, g

∗
f )
)
σ , and

φ̃
(
(f, g∗f ),W

)
− φ̃

(
(h, g∗h),W

)
= φ(f,W )− φ(g∗f ,W ) + φ(g∗h,W )− φ(h,W )

is subgaussian with parameter
(
`(f, g∗f ) + `(g∗h, h)

)
σ ≤ 4ε σ;

and (φ̃(κ,W ))κ∈K is also uniformly Lipschitz with respect to ˜̀ and modulus τ , since

φ̃
(
(f, g∗f ),W

)
− φ̃

(
(h, g∗h),W

)
= φ(f,W )− φ(h,W ) + φ(g∗h,W )− φ(g∗f ,W )

≤
(
`(f, h) + `(g∗h, g

∗
f )
)
τ(W ) a.s., and

φ̃
(
(f, g∗f ),W

)
− φ̃

(
(h, g∗h),W

)
= φ(f,W )− φ(g∗f ,W ) + φ(g∗h,W )− φ(h,W )

≤
(
`(f, g∗f ) + `(g∗h, h)

)
τ(W ) ≤ 4ε τ(W ) a.s.

8If such g∗f element does not exist, one can choose an element which is arbitrary close to the supremum and shrink the
gap to zero at the end of the analysis.

9To prove the triangle inequality, use min{a + b, c} ≤ min{a, c}+ min{b, c} for a, b, c ≥ 0.
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Thus, the requirements of Lemma A.2 hold for the function φ̃ defined on the metric space (K, ˜̀) with the centering
element being (f0, f0). Letting β = 4ε ≥ supκ,κ′∈K

˜̀(κ, κ′), we get

E

[
sup
f∈F

{
φ(f,W )− φ

(
g∗f ,W

)}]
= E

[
sup
κ∈K

φ̃(κ,W )

]
≤ 4σ

∫ 2ε

2δ

√
2 lnN (s,K, ˜̀) ds+ 8δ E[τ(W )] . (10)

It remains to bound the entropy of (K, ˜̀). For any s ∈ (δ, 2ε], let Fs be an s-cover of F with respect to ` with
minimal cardinality and define Ks

.
= Fs×F∗ε . Then Ks is an external s-cover of K in the metric space (F×F∗ε , ˜̀),

which means that Ks might not be a subset of K, but for any κ ∈ K there exists κ̂ ∈ Ks for which ˜̀(κ, κ̂) ≤ s.
Notice that |Ks/2| = |Fs/2| · |F∗ε | ≤ N (s/2,F , `)2, so using the relation between internal and external covering
numbers (Dudley, 1999, Theorem 1.2.1), we have√

2 lnN (s,K, ˜̀) ≤
√

2 ln |Ks/2| ≤ 2
√

lnN (s/2,F , `) . (11)

Taking expectation of (8) and plugging in (9,10,11), we get the claim.

A.2 Proof of Theorem 3.1

Recall that µ denotes the distribution of (X,Y ) and that E[Y 2] <∞ by the assumptions of the theorem. For a
function f : X→ R, define the prediction error (L2-risk) of f to be

‖f − y‖2µ
.
= E

[∣∣f(X)− Y
∣∣2] =

∫
X×R
|f(x)− y|2 µ(dx, dy) ,

where we slightly abused notation, treating y as the function y : X × R → R, y(x̂, ŷ) = ŷ and f as the two
argument function f(x̂, ŷ) = f(x̂). With this notation we have

‖f − f∗‖2µ = ‖f − y‖2µ − ‖f∗ − y‖
2
µ . (12)

Furthermore, denote the empirical risk of f : X → R by ‖f − y‖2n
.
= 1

n

∑n
i=1

∣∣f(Xi) − Yi
∣∣2. Then the condition

for fn to be an α-LSE(F), given by (1), can be rewritten as ‖fn − y‖2n ≤ inff∈F ‖f − y‖2n + α.

Following the derivation of Equation 11.12 in the book of Györfi et al. (2002),

E
[
‖fn − y‖2n

]
− ‖f∗ − y‖2µ ≤ E

[
inf
f∈F
‖f − y‖2n

]
− ‖f∗ − y‖2µ + α (by the definition of fn)

≤ inf
f∈F

E
[
‖f − y‖2n

]
− ‖f∗ − y‖2µ + α

= inf
f∈F

(
‖f − y‖2µ − ‖f∗ − y‖

2
µ

)
+ α

(
because E[‖f − y‖2n] = ‖f − y‖2µ

)
= inf
f∈F
‖f − f∗‖2µ + α . (by (12)) (13)

Now for f : X→ R, dn = {(xi, yi) ∈ X× R : i = 1, . . . , n}, r ∈ (0, 1] and (x, y) ∈ X× R define

λr(f, dn)
.
= rE[ψ(f,X, Y )]− 1

n

n∑
i=1

ψ(f, xi, yi) where ψ(f, x, y)
.
= |f(x)− y|2 − |f∗(x)− y|2 ,

so that 1
rλr(f,Dn) = ‖f − y‖2µ − ‖f∗ − y‖

2
µ −

1
r (‖f − y‖2n − ‖f∗ − y‖

2
n). Together with (13), this gives

E
[
‖fn − f∗‖2µ

]
= E

[
‖fn − y‖2µ − ‖f∗ − y‖

2
µ

]
= E

[
‖fn − y‖2µ − ‖f∗ − y‖

2
µ −

1

r

(
‖fn − y‖2n − ‖f∗ − y‖

2
n

)]
+

1

r
E
[
‖fn − y‖2n − ‖f∗ − y‖

2
n

]
=

1

r
E
[
λr(fn, Dn)

]
+

1

r

(
E
[
‖fn − y‖2n

]
− ‖f∗ − y‖2µ

)
≤ 1

r
E

[
sup
f∈F

λr(f,Dn)

]
+

1

r

(
inf
f∈F
‖f − f∗‖2µ + α

)
.

(14)
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Set

φ(f, dn)
.
= λ1(f, dn) , τ(dn)

.
= 8B + 2

(
1

n

n∑
i=1

∣∣f∗(xi)− yi∣∣2)1/2

,

and notice that the σ-subgaussian property of the noise ensures E[τ(Dn)] ≤ 2(4B + σ). Let f, g ∈ F and recall
the condition max{‖f‖∞ , ‖g‖∞ , ‖f∗‖∞} ≤ B. By elementary algebra,

ψ(g, x, y)− ψ(f, x, y) =
(
g(x)− f(x)

)(
g(x) + f(x)− 2f∗(x) + 2

(
f∗(x)− y

))
.

Using the tower rule, E[Y |X] = f∗(X) and Jensen’s inequality we derive

E
[
ψ(f,X, Y )− ψ(g,X, Y )

]
= E

[(
f(X)− g(X)

)(
f(X) + g(X)− 2f∗(X)

)]
≤ 4B ‖f − g‖∞ ,

1

n

n∑
i=1

(
ψ(g, xi, yi)− ψ(f, xi, yi)

)
=

1

n

n∑
i=1

(
g(xi)− f(xi)

)(
g(xi) + f(xi)− 2f∗(xi) + 2

(
f∗(xi)− yi

))
≤ ‖f − g‖∞ (4B + 2 ‖f∗ − y‖n) ,

and so obtain φ(f, dn)− φ(g, dn) ≤ ‖f − g‖∞ τ(dn). Using the same expansions, the σ-subgaussian property of
the noise and Hoeffding’s lemma (i.e., a bounded random variable Z, |Z| ≤ K a.s., is K-subgaussian), for any
s ∈ R, we get

E
[
exp

(
sE[ψ(f,X, Y )− ψ(g,X, Y )]− s

(
ψ(f,X, Y )− ψ(g,X, Y )

))]
= E

[
exp

(
sE[ψ(f,X, Y )− ψ(g,X, Y )]− s

(
g(X)− f(X)

)(
g(X) + f(X)− 2f∗(X)

))
×

E
[

exp
(

2s
(
g(X)− f(X)

)(
f∗(X)− Y

)) ∣∣∣X]]
≤ E

[
exp

(
sE
[(
f(X)− g(X)

)(
f(X) + g(X)− 2f∗(X)

)]
− s
(
f(X)− g(X)

)(
f(X) + g(X)− 2f∗(X)

))]
×

exp
(

2 s2 ‖f − g‖2∞ σ2
)

≤ exp
(
s2 ‖f − g‖2∞ (4B)2/2

)
exp

(
2 s2 ‖f − g‖2∞ σ2

)
= exp

(
s2 ‖f − g‖2∞

(
(4B)2 + 4σ2

)
/2
)
.

Then exploiting the independence of (X1, Y1), . . . , (Xn, Yn), Lemma 1.7 of Buldygin and Kozachenko (2000)
implies that φ(f,Dn)− φ(g,Dn) is σ̂ ‖·‖∞-subgaussian with σ̂ = 2

√
4B2 + σ2

/√
n.

Then the conditions of Lemma A.2 hold for the process (φ(f,Dn))f∈F with `(f, g) = ‖f − g‖∞: the process is
centered (any f0 ∈ F works), it is σ̂`-subgaussian and it is Lipschitz with modulus τ(Dn). Choosing β = 2B ≥
supf,g∈F ‖f − g‖∞, we get

E

[
sup
f∈F

λ1(f,Dn)

]
≤ 8
√

8B2 + 2σ2

√
n

∫ B

δ

√
H∞(s,F) ds+ 8(4B + σ) δ . (15)

Combining (14) using r = 1 with (15), we prove Theorem 3.1 (A).

For the second inequality, we need the following results.

Lemma A.5 (Bernstein’s lemma). Let β ∈ (0,∞) and W ∈ [−β, β] be a bounded random variable. Then for all
s ∈ [0, 3/β),

E
[
esW

]
≤ exp

(
sE[W ] +

s2 E
[
W 2
]

2(1− sβ/3)

)
.

Proof. See Boucheron et al. (2012, Theorem 2.10) using n← 1, v ← E[W 2] and c← β/3.
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Lemma A.6. Let h : X→ R be a function with ‖h‖∞ ≤ K for some K > 0, X ∈ X, Y ∈ R be random variables,
Z = h2(X) + 2h(X)Y and assume that for some σ ≥ 0, Y |X is a centered σ-subgaussian random variable. Then
E
[

exp
(
(rE[Z]− Z)/θ

)]
≤ 1 holds with θ = ρmax{σ2,K2/4} and the following configurations,

(r, ρ) ∈
{

(0.468, 5.6), (2/3, 10.5), (0.9, 38.6)
}
. (16)

Proof. Let k > 0, M = max{σ2,K2/k} and s > 0 such that 0 < s−2s2M < 3/K2. Then, using the subgaussian
property of Y |X with σ2 ≤M and Lemma A.5, we get

E
[
exp

(
− sZ

)]
= E

[
exp

(
− sh2(X)

)
E
[
exp

(
− 2 s h(X)Y

) ∣∣X] ]
≤ E

[
exp

(
−
(
s− 2s2M

)
h2(X)

)]
≤ exp

(
−
(
s− 2s2M

)
E
[
h2(X)

]
+

(s− 2s2M)2 E
[
h4(X)

]
2
(
1− (s− 2s2M)K2/3

)) .

(17)

Now let c > 1 to be chosen later, set s = 1/(2cM) and notice that the s− 2s2M = (c− 1)/(2c2M) ∈ (0, 3/K2)
condition holds if k < 6c2/(c−1). Then by using E[Z] = E

[
h2(X)

]
+E
[
h(X)E[Y |X]

]
= E

[
h2(X)

]
and (17) with

E
[
h4(X)

]
≤ K2 E

[
h2(X)

]
, sK2 ≤ k/(2c), 1 − 2sM = (c − 1)/c and 1 − s(1 − 2sM)K2/3 ≥ 1 − k(c − 1)/(6c2),

we have

E
[

exp
(
s
(
rE[Z]− Z

))]
≤ exp

(
sE
[
h(X)2

] (
r +

1− c
c

+
3k (c− 1)2

2c (6c2 − kc+ k)

))
≤ 1 ,

with k = 4, c = ρ/2 and any of the given (r, ρ) configurations for the second inequality. This proves the claim
with θ = 1/s = 2cM .

Then applying Lemma A.6 to

Z = ψ(f,Xi, Yi) =
(
f(Xi)− f∗(Xi)

)2
+ 2
(
f(Xi)− f∗(Xi)

)(
f∗(Xi)− Yi

)
with h← f − f∗, X ← Xi, Y ← f∗(Xi)− Yi, K ← 2B, (r, ρ) chosen as in (16) and θ ← ρmax{σ2, B2} = ρB2

σ,
we get

E
[

exp
((
rE[ψ(f,Xi, Yi)]− ψ(f,Xi, Yi)

)/
θ
)]
≤ 1 ,

for all i = 1, . . . , n. We will apply Lemma A.4 with the metric space (F , `), `(f, g) = ‖f − g‖∞ and with the
process (λr(f,Dn))f∈F . For any (r, ρ) as in (16), we have

E
[

exp
(
λr(f,Dn)

/
(θ/n)

)]
=

n∏
i=1

E
[

exp
((
rE[ψ(f,Xi, Yi)]− ψ(f,Xi, Yi)

)/
θ
)]
≤ 1 ,

showing that condition (a) is satisfied with the parameter ρB2
σ/n. Now, notice that λr(f,Dn)− E[λr(f,Dn)] =

λ1(f,Dn) = φ(f,Dn). Thus, in (b) and (c) of Lemma A.4 we can use the same σ̂ and τ as in the first part of
the proof. Hence, the conclusion of Lemma A.4 gives

E

[
sup
f∈F

λr(f,Dn)

]
≤ ρB2

σH∞(ε,F)

n
+

32
√

4B2 + σ2

√
n

∫ ε

δ

√
H∞(s,F) ds+ 16(4B + σ) δ . (18)

Combining (14) with (18) and using the values of (16), finishes the proof of Theorem 3.1 (B).

A.3 Computation of LSEs (3)

In this section we present a cutting plane method to compute the QP of LSEs given in (3). We took the CNLS+-
G variant proposed by Lee et al. (2013) as a starting point. We kept its constraint updating step by adding the
most violated constraints in each iteration, and replaced the initialization completely. We also use aggregate
constraints for the ones left out, which can improve the quality of solutions on the price of a small additional
computational cost.
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To form an initial constraint set, we search for no more than 2d points around each Xi, which are close for some
coordinate on both sides, to approximate a minimal set of points whose convex hull contains Xi. Then we form
a group Gi of these points and aggregate the corresponding constraints by their sum,

∑
k∈Gi yi − yk + (g+i −

g−i )>(Xk −Xi) ≤ 0. Then we start with these aggregate constraints (n of them) and introduce the yi ≤ B box
constraints to relax the one corresponding to the boundary. After each iteration, all the n − 1 non-boundary
constraints are verified for each point Xi and the most violated ones are added to the set (if the corresponding
point was a member of Gi, the related constraint is subtracted from the aggregate). So the overall constraint set
is increased by at most n constraints in each iteration. Finally, after there are no more violated non-boundary
constraints, the boundary ones are also checked and introduced to the constraint set if necessary.

We observed that the aggregate constraints significantly reduce solution time. We compared the running time
of this aggregate cutting plane (AGCP) method to the CNLS+-G algorithm10 on 8-dimensional full and half
quadratic problems (5). Figure 3 shows the performance comparison of the two methods with standard deviation
error bars.11 Each experiment was repeated 50 times.
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Figure 3: Performance comparison of CNLS+-G and AGCP to find a LSE (3) on the full quadratic (left) and
half quadratic (right) problems (5) with d = 8.

The lower figures show the number of non-boundary constraints (cardinality of C̄nb) used by the algorithms in
the last iteration. In both cases, this number is far less than the quadratic n(n − 1) used by a direct method.
Still, the CNLS+-G algorithm is already too slow for sample size n = 1024. However, we could find LSEs with
ACPG for n = 1536 in 4986± 671 and 15082± 1972 seconds (mean ± standard deviation over 100 repetitions)
for the full and half quadratic problems, repsectively.

10As we did not find any available source code, we implemented the algorithm according to our best understanding.
11Hardware: Dual-Core AMD Opteron(tm) Processor 250 (1KB L1 Cache, 1MB L2 Cache, 2.4 GHz), 8GB RAM.

Software: MATLAB R2010b (constraint matrices were built using C), MOSEK 7 Optimization Software (to solve QPs).
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To present the algorithm, denote the set of gradient variables by g
.
= {g+1 , . . . , g+n , g

−
1 , . . . , g

−
n } and the constraints

by

cik(y, g)
.
= yi − yk + (g+i − g

−
i )>(Xk −Xi) ≤ 0 ,

c̄i(y, g)
.
= yi −B + (g+i )>(u−Xi) + (g−i )>(Xi − l) ≤ 0 ,

for all i, k = 1, . . . , n. Then the AGCP method is given in Algorithm 1.

1: input: {(Xi, Yi) ∈ Rd × R : i = 1, . . . , n}
2: C̄nb ← ∅ and C̄b ← ∅
3: for all i = 1, . . . , n do
4: Gi ← ∅
5: for all j = 1, . . . , d do
6: kl ← argmink=1,...,n:Xij>Xkj

(Xij −Xkj) {choose one randomly if tied}
7: ku ← argmaxk=1,...,n:Xij<Xkj

(Xij −Xkj) {choose one randomly if tied}
8: Gi ← Gi ∪ {kl, ku}
9: end for

10: end for
11: while true do
12: Solve the following QP:

min
y, g

n∑
i=1

(Yi − yi)2 subject to yi ∈ [−B,B] , g+i , g
−
i ∈ [0, L]d , i = 1, . . . , n ,∑

k∈Gi

cik(y, g) ≤ 0 , i = 1, . . . , n ,

cik(y, g) ≤ 0 , (i, k) ∈ C̄nb , c̄l ≤ 0 , l ∈ C̄b

13: violated ← false
14: for i = 1, . . . , n do
15: Vi ← {k = 1, . . . , n : cik(y, g) > 0}
16: if |Vi| > 0 then
17: violated ← true
18: k∗ ← argmaxk∈Vi cik(y, g) {choose one randomly if tied}
19: if k∗ ∈ Gi then
20: Gi ← Gi \ {k∗}
21: end if
22: C̄nb ← C̄nb ∪ {(i, k∗)}
23: end if
24: end for
25: if not violated then
26: V̄ ← {l = 1, . . . , n : c̄l(y, g) > 0}
27: if |V̄ | = 0 then
28: break{a soultion is found, exit}
29: end if
30: C̄b ← {1, . . . , n} {use all boundary constraints}
31: end if
32: end while
33: output: y ∈ Rn, g+1 , . . . , g+n , g

−
1 , . . . , g

−
n ∈ Rd

Algorithm 1: AGCP

A.4 Computation of PLSEs (4)

In this section we present the running time comparison of LSE and PLSE for the 8-dimensional full and half
quadratic problems (5). Notice that the QP of LSE has (2d+1)n variables and n(n−1) constraints (not counting
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the boundary ones), while PLSE has (2d + 1)K variables and n(K − 1) constrains with K = dnd/(d+4)e. So
it is not surprising that PLSE can be more efficiently computed as long as d is not too large. In particular,
for our settings with d = 8 and K = dn2/3e, Figure 4 shows the running time statistics for LSE and PLSE
computed by AGCP methods (for computing PLSE we use a slightly different method than for LSE to aggregate
the constraints) averaged over 100 repetitions (error bars show standard deviation).
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Figure 4: Training time comparison of LSE and PLSE using AGCP methods on the full quadratic (left) and half
quadratic (right) problems (5) with d = 8.

A.5 Additional material

Lemma A.7. Let p ∈ N ∪ {∞} and X ⊂ Rd such that X has a finite diameter with respect to ‖·‖p. Let

R ∈ (0,∞) such that diamp(X)
.
= supx,z∈X ‖x− z‖p ≤ R <∞. Then N (ε,X, ‖·‖p) ≤ (3R/ε)d for all ε ∈ (0, 3R].

Furthermore, for a rectangular set X = {x : ‖x‖∞ ≤ L} with some L > 0, we have N (ε,X, ‖·‖∞) ≤ (R/ε)d for
all ε ∈ (0, R].

Proof. For the first claim, consider the volume argument as shown by Pollard (1990, Lemma 4.1) for p = 2.
Then notice that the volumes of ‖·‖p balls scale proportionally to the d-th power of the radius, so the claim can
be proved similarly for any p ∈ N ∪ {∞}. Then relate the internal covering and packing numbers by Dudley
(1999, Theorem 1.2.1) to get the result for ε ∈ (0,diamp(X)]. Finally simply observe that N (ε,X, ‖·‖p) = 1 for
all ε ≥ diamp(X).

For the second claim, cover X by hypercubes with side length 2ε having centers in X. The number of such
cubes is no more than (1 + diam∞(X) /(2ε))d ≤ (diam∞(X) /ε)d for all ε ∈ (0,diam∞(X) /2]. Finally, note that
N (ε,X, ‖·‖∞) = 1 for all ε ≥ diam∞(X) /2.

Lemma A.8 (Detailed bounds for Section 4.2). Let f∗ ∈ CX,B,L and fn be an α-LSE(CX,B,L). Then the
following cases hold:

E
[
‖fn − f∗‖2µ

]
< 7629(d+ 1)Bσ max{Bσ, Ld}n−4/(d+4)

(
ln
(
(R∗d/(8Ld))

2 n
)

+ 4
)

+ 2α , for d < 4 ,

E
[
‖fn − f∗‖2µ

]
< 1551BσL4 n

−1/2
(

ln3/2
(
(R∗4/(8L4))2 n

)
+ 3
)

+ α , for d = 4 ,

E
[
‖fn − f∗‖2µ

]
< 11767

√
d+ 1

d− 4
BσLd n

−2/d
(

ln
(
(R∗d/Ld)n

2/d
)

+ 6
)

+ α , for d > 4 .

Proof. To handle the integrals of Theorem 3.1 in the d 6= 4 cases, we used the
√

ln(10R∗d/s) ≤ ln(10eR∗d/s)
approximation with s ≤ 80Ld ≤ 10R∗d. For the case d < 4, we used the (c1, c2, c3, c4) = (43, 80, 89, 10/9)
constants. The rest is pure calculation using ε, δ as given in Section 4.2.
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